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Abstract
High fuel utilization (Uf) conditions in a small-ale electrolyte-supported solid oxide fuel
cell (SOFC) with an Ni-ScSZ anode were approximdgadjusting the gas composition to
correspond to that in the downstream region of @R G stack. At Uf = 80%, and with a cell
voltage of 0.5 V, the ohmic resistance fluctuatikghfly from the early stages of operation,
and became much more significant after 80 h. Highrent density and large polarization
were found to promote Ni agglomeration, leadingngufficient connectivity of the Ni nano-
particles. At Uf = 95%, and with a cell voltage@®6 V, fluctuations in the polarization were
observed at a much earlier stage, which are at&ibto the highly humidified fuel. In particu-
lar, significant degradation was observed whencthrapensated anode potential (which in-
corporates the anode ohmic losses) approachedi tivaddition potential. Ohmic losses in the
anode are considered to influence Ni oxidation xyyosing Ni near the electrolyte to a more
oxidizing atmosphere with the increase in oxygentransport. Stable operation is therefore
possible under conditions in which the compensatextle potential does not approach the Ni

oxidation potential, assuming a stable intercorewti network.
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Introduction
Fuel cells can convert chemical energy into eleityriwith much higher efficiency than

conventional internal combustion engines. They wfiize fossil fuels such as natural gas,
biofuels, or hydrogen (produced either from rendeamergy or fossil fuels). Increasing
worldwide interest in sustainability, as symbolizgdthe Paris Agreement, has raised the ex-
pectations for fuel cells. Among the various typéfuel cells, solid oxide fuel cells (SOFCs)
have several advantages, including fuel flexibitityd high efficiency. Commercialization of
SOFC systems has already started with residemtéalradustrial applications, and demonstra-
tions for a wider range of uses have been carngdNdoreover, their application to automo-
biles as a range extender for electromobility isaating increasing interest.

For the widespread application and commercialipatd SOFC systems, further im-
provements are required both in efficiency and bilitg. To raise the efficiency, the SOFC
stack must utilize a much higher percentage of foiebenerating electricity. In conventional
SOFC technology, the fuel utilization is limiteddoound 80% to avoid damaging the anode
material, and the residual fuel is often combustetside of the SOFC stack. Ni is a widely
used anode material because of its combinationighf électrochemical activity and steam
reforming activity. However, when the stack is @ted at fuel utilization higher than the up-
per limit, the Ni anode in the downstream regiorth&f stack may be exposed to harsh condi-

tions, such as high humidity and high oxygen phlptiassure [1].

It has been reported that high humidity can acasgteNi agglomeration in SOFC anodes
[2], decreasing the triple-phase boundary (TPBytlenand thus leading to performance deg-
radation. In some cases, this causes severe dam#dgeanode by disrupting the connectivity
of the Ni network, impeding the electronic condant{3,4]. There are several theories about
the mechanism for anode degradation. One is th@ K§) formed on the surface may en-
hance Ni-ion migration outward [5]. Another is thHdib-OH species formed at the surface
cause Ni sintering by enhancing surface transggrtjnother is that Ni(OH)(g) may be the
cause of Ni agglomeration because it has the higrasor pressure, and a decrease in the

amount of Ni has been reported to support thig[2,7

When the fuel concentration in the SOFC anode tgetdow, Ni can be oxidized by the
associated increase in oxygen partial pressurexidiation is generally accompanied by a

change in morphology [8-10], which causes addefbpeance degradation even after oxi-
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dized Ni is reduced back to its metallic statetHa extreme case, volume expansion of Ni
during oxidation can cause cracking of the anodelextrolyte, leading to severe degradation
or even failure of the cell. Oxidation-reductioncliyzg also accelerates Ni agglomeration
[8,10-13]. Ni can be oxidized electrochemicallythg oxygen ions coming through the elec-
trolyte [14-16]. Electrochemical oxidation is mdileely to occur near the electrode reaction

sites when a high current density is drawn fromaglewithout sufficient fuel supply.

The degradation phenomena of Ni anodes in SOFCar@xtreme conditions are predicta-
ble. However, the upper limit of fuel utilization practical use is not yet clear, especially un-
der high current load. This study investigatesthteshold conditions under which the Ni an-
ode can maintain its performance as the fuel atitim and current density are increased, us-
ing both experimental and theoretical methods. Alkstale electrolyte-supported SOFC is
used, and high fuel utilization up to Uf = 95% iimslated by adjusting the anode gas compo-
sition to approximate that downstream of an SOFRCkstHigh current density is applied by
setting the cell voltage at 0.5 V or 0.6 V. Trigdectors leading to fatal degradation, the in-
fluence of anode potential on degradation, anddkitton phenomena related to degradation

are analyzed in detail.

Thermochemical equilibrium calculation

Figure 1 shows the phase stability diagram of thR©NH system calculated by using ther-
mochemical equilibrium calculation software (HSCe@hstry Ver. 9). The hydrogen partial
pressureH,) and the oxygen partial pressup®¥) resulting from the gas composition (100-
X)% H,: x% HO (where x = 3 to 95%) are also plotted in reduFegl (b) is an enlargement
of the region highlighted in red. As the humiditye( the water vapor pressul,O) in-
creases, thpO, approaches the region where NiO is the most sfdidse. The threshopD,
at the Ni/NiO phase boundap®,*, can be derived by the following equation:

pOZ* =1/ Kni
whereKy; is the equilibrium constant of the reaction 2Ni«<0, (g) = 2NiO (s). This value is

is pO* = 1.45x10™ bar (logpO,* = —13.84) at 800°C, corresponding to an anode !
of 0.701 V versus atmospheric g, = 0.21 bar). Even under highly humidified condiso



(5%H,:95%H,0), thepO, remains in the region where metallic Ni is mostbkt. However,
when a current load is applied, the chemical paikat oxygen at the anode reaction sites (i.e.
the solid anode surface) will increase, and theespondingoO, may exceed the threshold
pO.* and enter the NiO phase. In general, the anodepa¥entialy is considered to be the
increase in the chemical potential of oxygen atahede reaction site, and the corresponding

pO;' increases according to the following equation}:[17

pO.' =pO; exp (4F / RT)

wherepO; is the environmental oxygen partial pressdrés the temperature (KF is the
Faraday constant (C/molR is the gas constant (dol™K™): and the anode overpotential
includes all of the factors (i.e. activation ovdsggtial, concentration overpotential, etc.) that
can increase the chemical potential of oxygen atahode reaction sites. Therefore, the
thresholdpO; for the fuel gas fed to the anode will be affedigdy and decrease to:

pO, = (1 /Ky;) exp (- 4F / RT).
SincepO; in the H:H,O system is derived by the following equation:
pO, = pHL0? / (pH* Ky )

whereKy is the equilibrium constant of the reaction,2lg) + & (g) = 2H0 (g), the maxi-
mum allowablepH,O determined by the Ni/NiO phase boundary, corredpm to the maxi-
mum fuel utilization in the HH,O system, is theoretically calculated by the follogvequa-

tion:
PH20 max (%) = 100 / [ 1 +Kni / Kn )" exp (F / RT)]

Figure 2 shows the maximupH,O calculated by the above equation for temperatofes
800°C, 900°C, and 1000°C. The maximphkhO changes slightly with temperature due to the
temperature dependence of the Ni/NiO phase bountdngn the anode overpotential is less
than 0.1 V, gH,0 higher than 95% is permissible. When the anodepmtential is higher
than 0.2 V, thgH,O should be lower than 70% at 800°C. This provithesretical limits to

the fuel utilization in an SOFC.



The experimental results described below revedl tthe anode overpotential should be
evaluated by including ohmic losses in the anodeedkas polarization (i.e. non-ohmic loss-
es such as the activation overpotential and theesdration overpotential) because this also
affects Ni oxidation. In a real SOFC system, itidbddoe considered that the distribution of

gas in the stack including possible gas leakagenmedyce the upper limit of fuel utilization.

Experiments

Electrolyte plates made of ScSZ (10 mol%&¢ 1 mol% CeQ, 89 mol% ZrQ, Daiichi
Kigenso Kagaku Kogyo Co., Ltd.) with a thicknessOd2 mm and diameter of 20 mm were
used in this study. For the anode material, a mexof 56 wt% NiO (Kanto Chemical Co.,
Inc.) and 44 wt% ScSZ was used for the anode fonatilayer, and a mixture of 80 wt% NiO
and 20 wt% ScSZ was used for the anode currergatoiy layer. These mixtures were print-
ed onto the electrolyte plates and sintered at A300r 3 h. The thickness of the anode was
approx. 50 to 6@um. A mixture of 50 wt% LSM ((L&sSI.2)0.9dVINO3, Praxair, Inc.) and 50
wt% ScSZ was used for the cathode. The cathodeslayere sintered at 1200°C for 5 h. The
electrode area was 8x8 mm (0.64°gand Pt mesh (80 mesh) was used as the currdet-col
tor. A reference electrode made from Pt paste (Qt3Metalor Technologies (Japan) Corp.)
was attached to the cathode side to measure thiee amal cathode potentials. The configura-
tion of the cell is shown in Fig. 3. The distanetvieen the edge of the cathode and the refer-
ence electrode was approx. 1.5 mm, which allowetb uketect potentials within the electro-
lyte with a thickness of 0.2 mm, based on a swfity small misalignment between the an-
ode and cathode [18-19].

The cell tests were conducted at 800°C by feedurgitiified fuel to the anode and air (150
mL/min) to the cathode. In this cell test configuog, it is difficult to increase the fuel utiliza-
tion because an excess amount of gas flow is neddedefore, high fuel utilization condi-
tions were simulated by adjusting the anode gasposition to that typically found down-
stream of the SOFC stack. Fuel utilization of 80%swimulated by using a mixture of (20
mL/min), H,O (80 mL/min), and B (100 mL/min), herein referred to as “simulated Jf
80%”. Fuel utilization of 95% was simulated by g mixture of H (5 mL/min), HO (95
mL/min), and N (100 mL/min), herein referred to as “simulated4J85%". The concentra-

tion of water vapor was controlled by the tempertf the humidifier. N gas was mixed in



as an inert carrier gas to avoid liquid water corsd¢ion in the anode gas piping, and to stabi-
lize the cell performance under such a high wadgoy concentration. Because @, in the
anode is predominantly determined by theHdO ratio, the influence of the Nnclusion is

considered to be small.

The cell voltage was kept constant at 0.6 V or\Ol&y regulating the current, and changes
in the performance over time were measured up @O 10 Automatic SOFC test systems
(Toyo Corporation) were used for the gas supply eledtrochemical measurements. During
operation, the current interrupt method was appdietultaneously and continuously. In this
method, the change in voltage within 20 after current interruption was measured to evalu-
ate the ohmic loss. The remaining voltage lossetuding activation overpotential and con-

centration overpotential, were labelled as poldiona

Cathode potential and anode potential were evaluaesus the reference electrode. When
no current is applied (i.e. open circuit conditigribe cathode potential and the anode poten-
tial are determined only by the gas compositione Tathode potential under open circuit
conditions is almost zero, because the refererexdretie is exposed to the same atmosphere
as the cathode. The anode potential under opeunitcaanditions is determined by the fuel
gas composition. When the current load increabescathode potential decreases and the an-
ode potential increases due to the polarizatiomdad by each electrode reaction and the
ohmic losses in the electrolyte. The ohmic loseehe electrolyte can be divided into anode-
side and cathode-side losses using the refereactae. Because the electrolyte plate is rel-
atively thick (0.2 mm), and the reference electrizd®cated far enough away from the cath-
ode compared to the electrolyte thickness, thenpiatewithin the electrolyte can be detected
on the condition that oxygen ions flow perpendidyldo the electrolyte plate [18-19]. Be-
cause ohmic losses in the electrolyte do not affecixidation in the anode, they are exclud-
ed from the anode potential when we discuss Niaiod. At the beginning of this study, it
was not clear whether ohmic losses in the anodddaaftect Ni oxidation or not. Therefore,
two types of “compensated anode potentials” weteutated for discussing the cause of Ni
oxidation. The firstEct was compensated by the ohmic losses coming frainthe electro-
lyte and the anode, aritkris considered to reflect the localized oxygen papressurgO;
at the electrode reaction site. The secdfyg,was compensated by the ohmic losses coming

only from the electrolyte. As described below, @saconfirmed that ohmic losses in the anode



were negligible in the initial stages of operati@ecause ohmic loss in the electrolyte are
considered to be constabi;e was calculated using the initial ohmic losses.

The microstructure of the anode before and afterdilrability tests was observed using a
focused ion beam scanning electron microscope GHBA, FEI Helios NanoLab 600i).
Cross-sectional backscattered electron images wet@ned to distinguish Ni and Zr (in

ScSZ) by their difference in contrast.

Results and discussion

Figure 4 shows the performance of a cell operain®.6 V for 100 h under the simulated
Uf = 80% condition. The current density increaseuirf 0.65 to 0.74 Achf during operation.
This enhancement in current density is due to ae@se in cathode polarization, as described
below. Because the cell voltage was kept at a aohsialue, both the cathode potential and
anode potential measured by the reference electioaleged similarly over time, increasing
by 8 mV. Figure 5 shows the cathode performanceaaode performance measured by vary-
ing the current density before (0 h), and after A@@Il operation. As shown in Fig. 5 (a), the
cathode polarization decreased after 100 h of ¢iperaalthough the cathode-side ohmic loss-
es did not change. The sum of the cathode-sideande-side ohmic losses at 0 h was almost
equal to the value calculated from the resistafiteenScSZ electrolyte (02 cnt at 800°C).
This result indicates that ohmic losses in the ana@ negligible in the initial stages of cell
operation.

Figure 6 shows the cell performance during opemain0.6 V for 1000 h under the simu-
lated Uf = 80% condition. The two different typescompensated anode potentidtsy and
Ece are shown in Fig. 6 (b), and compared with theXdation potential (-0.701 V) and the
potential under open circuit conditions (—0.862 Vhe difference betwedf-r and the open
circuit potential corresponds to the anode poléiopa The initial anode polarization was 10
mV and increased by 36 mV during 1000 h of opermatighich indicates an increase in the
chemical potential of oxygen at the electrode feacsite due to degradatioBee increased
by 68 mV during 1000 h of operation. The differemedece and Ect corresponds to ohmic
losses in the anode, and these increased fromlgibgamount to 32 mV over 1000 h of
operation. This result suggests that the cell digran was accompanied a disruption of the

connectivity of the Ni network. Under these opergtconditions, althougEcr andEce in-
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creased with time, they were still lower than theokidation potential by more than 80 mV
after 1000 h. Because the cell voltage was kepstanh, the current density gradually de-
creased over time in the latter half of the 1000pkeration due to anode degradation. The

cathode potential increased until the end of theldecause of the decrease in current density.

Figure 7 shows the cell performance during opema&ib0.5 V under the simulated Uf =
80% condition. The current density and anode pitewere higher than in the case of Fig. 6
due to the lower operating cell voltage. The ihitiamic resistance was 0.18Dcnt for the
cathode side and 0.0%5cnt for the anode side. The sum of the ohmic lossskgtly low-
er than the resistance of the ScSZ electrolytechvsuggests the possibility of a slight in-
crease in local temperature caused by the highregrdudensity. Under these operating condi-
tions, significant performance degradation occumédr 80 h. The current density akge
started to fluctuate after 15 h, and this fluctoratbecame much more significant after 80 h.
Figure 8 shows the change in cathode and anodatj@seduring the performance fluctuation
from 30 to 40 h, and from 85 to 90 h. The potertiatrent density curves measured after 100
h of operation are also plotted in the figure. Pleeformance fluctuation after 80 h is attribut-
ed to the change in anode performance, becaussmtue potential varied inversely with cur-
rent density while the cathode potential variedpprtonally with the change in current den-
sity. Because the cell voltage was kept constametdrastic change and fluctuation in anode
performance was compensated for by changing threrdugiensity. The initial anode polariza-
tion was 56 mV and it increased by 10 mV duringithal 80 h operation period. This result
suggests that the localized chemical potentialxgfjen at the electrode reaction site did not
increase very much before significant degradaticcuoed at 80 hEce increased by 40 mV
during the initial 80 h of operation, which meahattohmic loss in the anode increased from
a negligible level to around 30 mV. HoweVvEgr andEce were still lower than the Ni oxida-

tion potential by more than 60 mV shortly before fignificant fluctuation occurred.

Next, the performance fluctuation was analyzedataitl Figure 9 (a) shows the change in
current density over time from 30 to 40 h. The entrdensity fluctuated from 1.02 A cfito
1.07 A cm? As shown in Fig. 9 (b)Ece increased when the current density decreased. The
response is contrary to that in normal cases, iiclwthe anode potential should decrease
when the current density decreases. The dottecbudddines in Figs. 9 (b) and (c) were
drawn from the average values during operatiorhéovialues under open circuit conditions,

and indicate the trend that these characteristiceganormally follow due to the change in
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current density. In contrasEcr did not change significantly, suggesting littleange in the

chemical potential of oxygen at the electrode ieadites. From Figs. 9 (c) and (d), the fluc-
tuation of the ohmic resistance was found to benthén cause of the phenomena, which led
to the increase in ohmic losses, a decrease iermudensity, and vice versa. The fluctuation
of ohmic resistance occurred at a slow pace, rqughte or twice per hour. The magnitude
of the slow fluctuation of ohmic losses was aboutn?V. It can be seen in Fig. 9 (a) that a
much faster fluctuation also occurred, faster thti@a data acquisition interval (10 s). The
magnitude of this fast fluctuation was about 5 nmd aould not be attributed to ohmic loss or

polarization.

Figure 10 (a) shows the change in current densigy time from 85 to 90 h. The current
density dropped drastically from 1.1 A ¢hio between 0.2 and 0.5 A cfrand recovered re-
peatedly. The change in ohmic resistance was ggnif as shown in Fig. 10 (d), and was the
main cause of the performance fluctuations. Whercthrent density started to decrease from
1.1 A cm?, Ece increased drastically, whilEcr did not change, as shown in Fig. 10 (b). The
two types of compensated anode potentials behas/&mllaws:

1) First,Eceincreased because ohmic losses in the anode iedreas

2) Then,Ece reached the Ni oxidation potential of —0.701 V.

3) Then,Ect increased dramatically, eventually reaching theddation potential.

4) Finally, both potentials returned to their onigjii values.

The above sequence indicates tBat is the trigger that causes Ni oxidation in the anod
Therefore, ohmic losses in the anode affect Ni axah. Ecr then increases as a result of Ni
oxidation, reflecting the increase in the localizb@mical potential of oxygen at the electrode

reaction sites.

Figure 11 shows the cell performance during opemadit 0.6 V under the simulated Uf =
95% condition. The initial ohmic resistance was58.© cnt for the cathode side and 0.053
Q cnt for the anode side. The sum of the ohmic lossesalmost equal to the resistance of
the ScSZ electrolyte, which means negligible ohlméses occurred in the electrodés: and
Ecr are also shown in Fig. 11 (b) compared with th@®idation potential (-0.701 V) and the
open circuit potential (-0.794 V). Under these afiag conditions, significant performance
degradation occurred after 800 h. The initial anpdiarization was 37 mV and it increased
by 20 mV during the first 800 h of operatidtsr was —0.737 V at 800 h, which was still low-

er than the Ni oxidation potential. This result gests that the localized chemical potential of
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oxygen at the electrode reaction site did not reactuitions required for Ni oxidation. On the
other handEce increased by 56 mV during the first 800 h of ofiera which is a 36 mV
larger increase compared wHgr, due to the increase in ohmic losses in the anbuerefore,
the potential required for Ni oxidation was reach@edcomparison with the case of operation
at 0.5 V under the simulated Uf = 80% conditiorg(Ht), these compensated anode potentials
were closer to the Ni oxidation potential from theginning of the operation. However, it
took much more time before significant degradatbmeurred. Significant degradation oc-
curred wherEce came close to the Ni oxidation potential, whiclygests that it was induced

by Ni oxidation.

Figure 12 (a) shows the change in current densigy time from 50 to 60 h. The current
density abruptly dropped and recovered periodidaylynore than 0.1 A/cfnroughly once
every three hours. The circled data in Figs. 12 (@) and (d) were affected by this change.
This phenomenon was probably caused by temporackiolg of the gas piping due to water
condensation in the fuel supply and exhaust systeenanode polarization was directly af-
fected, as shown in Fig. 12 (c). Anode polarizatieasured in this study includes all non-
ohmic losses such as activation overpotential amtentration overpotential, and also volt-
age changes such as by a change in the gas prel$ghre drastic but temporary change is
neglected, the current density fluctuated betwe8na@d 0.35 A cif. The fluctuation was
caused by the change in anode polarization, whcheased when the current density de-
creased. This response is the opposite trend tathiang normal operation, in which anode
polarization should decrease when the current tedscreases. The dotted diagonal lines in
Figs. 12 (b) and (c) are drawn from the averageesduring operation to the values under
open circuit conditions, and indicate the trend thase characteristic values normally follow
due to the change in current density. In this ctseohmic resistance shown in Fig. 12 (d)
seems to be independent of the fluctuation. Thetdhtion occurred faster than the data ac-
quisition interval (10 s), with an anode polarieatiamplitude of about 20 mV. In general,
anode polarization is considered to be dominatirbeby dissociative adsorption of reactants
or surface diffusion of the adsorbed species orNihgurface [20,21]. Bessler et al. [21] re-
ported that polarization losses at high overpo&tmtie due to blocking of the Ni surface with
OH. Fluctuation of the current density was obsemvader weakly humidified methane fuel
[23] and under sulfur-containing hydrogen [24], dhdse phenomena are considered to have
been affected by Ni surface reactions. These kafdsverpotential are included. However,

the fluctuation observed in this study might hagermdominated by a fluctuation of gas pres-
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sure due to water condensation in the fuel supptyexhaust system, although this is not yet
clear. Similar fluctuation phenomena of the curréensity under highly humidified condi-
tions were also reported in Refs. 2 and 17, eveagh the reason has not been clarified. This

kind of fluctuation should be carefully preventedavoid unexpected degradation.

Figure 13 shows the change in current density bwer from 900 to 950 h after cell opera-
tion at 0.6 V under the simulated Uf = 95% conditi&ast fluctuations with smaller charac-
teristic amplitude (<0.05 A crf) and slow fluctuations with a larger charactetistinplitude
(<0.15 A cm?) can be distinguished. Figure 14 (a) shows the ftat908 to 910 h. The fluc-
tuation was analyzed by dividing the duration itv@ time periods: Period | (from 908.0 to
909.0 h) and Period Il (from 909.2 to 910.0 h),responding to the slow fluctuations. In Pe-
riod |, Ece significantly exceeded the Ni oxidation poten{tad.701 V), as shown in Fig. 14
(b). Although anode polarization fluctuated sigrafitly, as shown in Fig. 14 (c), the ampli-
tude was roughly 20 mV, almost the same as tharéefegradation (Fig. 12 (c)). The ohmic
resistance fluctuated after degradation, as shawig. 14 (d). In Period Il, the current densi-
ty was higher than that in PeriodBce remained in the region around the Ni oxidatiorepet
tial. The anode polarization and ohmic resistaremehsed compared with Period I. The be-
havior of Ecg crossing the Ni oxidation potential back and fostiggests that Ni oxidation
(Period 1) and reduction (Period Il) occurred rapdly. It is therefore concluded that volume
expansion by Ni oxidation temporarily recovered ti€NiO) network and decreasdtte,

leading to this observed performance fluctuation.

The effect of ohmic loss on Ni oxidation is diseas follows. It has been reported that
the active thickness of an Ni/YSZ cermet anodepi@x. 10um from the electrolyte/anode
interface, which is limited by the ionic resistarafehe electrolyte phase (YSZ) in the anode
[25,26]. In impedance measurements, the ionic teasie appears under high-frequency re-
gions [27] and the voltage loss caused by ionitstasce is incorporated into ohmic losses in
the present study. Ohmic losses in the anode msg fiom disruption of the interconnected
Ni network, which is necessary for the electronfide smoothly from the electrode reaction
sites to the current collector. As shown in Fig. diSconnection of the Ni network will isolate
some electrode reaction sites and make them uaél&ilThen, electrode reactions must oc-
cur further away from the electrolyte/anode integftaOxygen ions will flow further into the
anode and cause an increase in ohmic losses. ésult, risolated Ni near the electrolyte will
be exposed to greater oxidizing conditions duénéoimcrease in ohmic losses. When Ni oxi-
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dation becomes more severe, the volumetric chamggscause mechanical damage [9,11-
13,29-30] even in the ScSZ network. The performéghezuations shown in Fig. 10 or Fig.
14, however, show that such interruption of theZSo8twork did not occur in this case, be-

cause the ohmic resistance repeatedly returndtktoriginal value.

For the two operating conditions, 0.5 V under timeusated Uf = 80% condition (Fig. 10),
and 0.6 V under the simulated Uf = 95% conditioig(BE4), similar performance fluctuation
related to Ni oxidation occurred, in whi€lge moved back and forth crossing the Ni oxidation
potential at a slow pace, roughly once per hours Tibctuation probably reflects the follow-
ing sequential events: i) interruption of the Niwerk; ii) an increase ikcg, iii) Ni oxidation
and associated volume expansion; iv) recovery efNI{NiO) connection; v) a decrease in
Ece, and vi) Ni reduction. Changes in morphology antume expansion of Ni particles due
to oxidation have been previously reported in matmgdies [9,14,29-33]. The performance
fluctuations observed in the early stage of openatshown in Fig. 9, must also be associated
with the above-mentioned phenomena, although thsoreis not yet clear. Oxidation and re-
duction on the Ni surface occurring in the procekslectrode reaction may be behind this

observation.

The reason for the disruption of the connectivitghe Ni network is the agglomeration of
Ni particles in the anode. By comparing the tworapieg conditionsEce at 0.6 V under the
simulated Uf = 95% condition was closer to the Midation potential from the beginning.
However, it took more time (~800 h) before oxidatioduced degradation occurred, com-
pared to that at 0.5 V under the simulated Uf = 8@dition (~80 h). In the case of opera-
tion at 0.5 V under the simulated Uf = 80% condifithe high current density accompanied
by large polarization might have promoted Ni aggtoation, and accelerated disruption of
the Ni network. For the mechanism of Ni agglomeratian increase in the localizpH,O at
the electrode reaction sites [6,22] or localizedlation of Ni which enhances cation diffusion

[5] are possible causes.

Figure 16 shows cross-sectional backscatteredretechages for (a) the initial anode, and
(b) the anode after a 1000 h durability test at\0under the simulated Uf = 95% conditions.
The distribution of Ni particles in the initial at® appears to be somewhat sparse near the
electrolyte, in which lack of connectivity of the Network may be expected when Ni parti-

cles begin to agglomerate during cell operatiore flactuation of ohmic resistance observed
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in Figs. 9 and 10 might have come from this poomiiwork, and the drastic increase in
ohmic resistance after 80 h originated from theifiigent connectivity of Ni, coupled with
the higher current density. Significant changehim microstructure could not be distinguished
for the anode after the durability test. It wadidiflt to explain the cell performance degrada-
tion by microstructural analysis, because the amydsumably experienced repeated oxida-
tion-reduction cycles, and the ex-situ SEM imagesdoot necessarily represent the situation
during operation. It is also not easy to distinguise extent of, or changes in Ni connectivity

using this technique.

The above-mentioned results firstly suggest theomamce of Ni connectivity, as already
recognized by preceding studies [3,28,30,33,36he@tise, degradation can be abruptly in-
duced by the agglomeration of Ni, especially urtdgh current density conditions. Ni oxida-
tion can be caused not only by an increase in gal@on, but also by ohmic losses in the an-
ode. Therefore, ohmic losses in the anode shoulddbeded in the “anode overpotential” in
the theoretical calculations shown in Fig. 2. Taleate the durability of the Ni anode, the
compensated anode potentiale, which includes ohmic losses in the anode, isulsei
forecasting Ni oxidation. To improve the durabilupder high fuel utilization, it is essential
to modify the microstructure to suppress Ni agglatien, which tends to be promoted under
high pH,O conditions [2-7]. Stable operation is possiblelemthe operating conditions in
which Ecg does not come close to the Ni oxidation potentdiauming a stable Ni network.
When the operating conditions exceeds this lingtgta continuous reduction-oxidation may
occur in the anode. The volumetric changes dutiege conversions firstly cause the perfor-
mance fluctuation as mentioned above, and mayalsse mechanical damage like disrup-
tion of the Ni network (or even the ScSZ netwot&pding to a significant increase in the an-
ode overpotentialn a real SOFC stack, gas distribution relatecheodell and stack structure
should be carefully considered. However, limitatafrthe gas distribution directly affects the
anode potential. Therefore, discussion of the dliyabf the Ni anode is also highly applica-
ble to SOFC stacks.

Conclusions
During operation at 0.5 V under simulated Uf = 808fditions, the ohmic resistance fluc-

tuated slightly from the early stages of operatem] became much more significant after 80

14



h. This degradation appears to have originated ftemnsufficient connectivity of Ni, due to
the high current density and large polarizatiomnpoting Ni agglomeration. The significant
fluctuation after 80 h resulted from the repeatgidlation and reduction of Ni. The compen-
sated anode potential that includes ohmic lossethenanode Kce), was the trigger that
caused Ni oxidation. Ohmic losses in the anodecansidered to affect Ni oxidation by ex-
posing Ni near the electrolyte to an oxidizing aspizere with the increase in oxygen ion flow.
During operation at 0.6 V under the simulated U359 conditions, polarization fluctuated
from the early stages of operation, which may teted to the highly humidified fuel. Signif-
icant degradation occurred whEpe came close to the Ni oxidation potential, whichgests
that Ni oxidation induced this degradation. Aftexgdadation, fluctuation of the ohmic re-
sistance also occurred, suggesting the repeateldtox and reduction of Ni. To evaluate the
durability of the Ni anode, the compensated anamterfial Ece is useful for forecasting Ni
oxidation. Stable operation is possible under doms in whichEce does not come close to

the Ni oxidation potential, assuming a stable Nwwoek.
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Figure 10. Fluctuation of the current density aeldted performance changes from between
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sistance over the change in current density. Theedialiagonal lines in (b) and (c) were
drawn from the average values during operatiorhéovialues under open circuit conditions,
and indicate the usual trends which these charstitevalues normally follow due to the

change in current density.
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(a) Before degradation (b) After degradation
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Figure 15. Schematic diagram demonstrating theedfeanode ohmic losses on Ni oxidation.
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Figure 16. Cross-sectional backscattered electr@myes for (a) the initial anode, and (b) the
anode after the 1000 h durability test at 0.6 Veaunithe simulated Uf = 95% condition (as
shown in Fig. 11).
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