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Abstract: Nanofluids have opened the doors towards the enhancement of many of today’s existing
thermal applications performance. This is because these advanced working fluids exhibit exceptional
thermophysical properties, and thus making them excellent candidates for replacing conventional
working fluids. On the other hand, nanomaterials of carbon-base were proven throughout the
literature to have the highest thermal conductivity among all other types of nanoscaled materials.
Therefore, when these materials are homogeneously dispersed in a base fluid, the resulting suspension
will theoretically attain orders of magnitude higher effective thermal conductivity than its counterpart.
Despite this fact, there are still some challenges that are associated with these types of fluids. The
main obstacle is the dispersion stability of the nanomaterials, which can lead the attractive properties
of the nanofluid to degrade with time, up to the point where they lose their effectiveness. For
such reason, this work has been devoted towards providing a systematic review on nanofluids of
carbon-base, precisely; carbon nanotubes, graphene, and nanodiamonds, and their employment
in thermal systems commonly used in the energy sectors. Firstly, this work reviews the synthesis
approaches of the carbon-based feedstock. Then, it explains the different nanofluids fabrication
methods. The dispersion stability is also discussed in terms of measuring techniques, enhancement
methods, and its effect on the suspension thermophysical properties. The study summarizes the
development in the correlations used to predict the thermophysical properties of the dispersion.
Furthermore, it assesses the influence of these advanced working fluids on parabolic trough solar
collectors, nuclear reactor systems, and air conditioning and refrigeration systems. Lastly, the current
gap in scientific knowledge is provided to set up future research directions.

Keywords: carbon nanotubes; graphene; nanodiamond; parabolic trough solar collector; nuclear
reactor; air conditioning and refrigeration

1. Introduction

Since the 20th century, scientists have been working with considerable effort to de-
velop fluids that can surpass those conventionally known by the scientific society and
industry in terms of thermal and physical performance. The idea of dispersing solid parti-
cles of millimeter (mm) and micrometer (µm) in size is the milestone, which was physically
initiated by Ahuja [1,2] in 1975, Liu et al. [3] in 1988, and other researchers at Argonne
National Laboratory (ANL) [4–6] in 1992 on the bases of Maxwell theoretical work [7].
Such suspensions have shown tremendous improvements in heat transfer characteristics
compared to their base fluids. This is due to the dispersed solid particles’ significantly
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higher thermal conductivity compared to their hosting fluid, which would enhance the
effective thermal conductivity of the colloidal. The term ‘effective’ is generally used when
referring to the net property of a solid–liquid suspension [8]. However, it was found that
in flow areas of low velocities, the particles hosted by the suspension tended to deposit
from its carrier liquid. Additionally, hence the fluid starts to lose its tuned properties.
Furthermore, clogging of small passages was also experienced due to the significant level
of agglomeration between the dispersed particles, and therefore making it extremely chal-
lenging to employ in heat transfer devices containing small channels. This is when, in 1993,
Masuda et al. [9] conceived the idea of fabricating suspensions with ultrafine particles
of silica, alumina, and titanium dioxide, where these dispersions were afterward given
the name ‘Nanofluids’ by Choi and Eastman [10], in 1995, as a result of their extensive
research work at ANL. According to the founders, a nanofluid can be generally defined as
an advanced category of fluid that is produced by homogeneously dispersing low concen-
trations (preferably ≤1 vol. %) of particles of less than 100 nanometers (nm) in size within
a non-dissolving base fluid [11]. Both Masuda et al.’s [9] and Choi and Eastman’s [10]
primary motivation at that time was to overcome the limitations associated with suspen-
sions made by their counterparts (i.e., colloidal containing millimeter or micrometer sized
particles). In addition, Choi and Eastman [10] have theoretically known beforehand that
reducing the size of the dispersed particles to the nanoscale would greatly enlarge the par-
ticle exposed surface area to the surrounding, and thus increasing the suspension overall
thermal conductivity [12]. The significant variation in thermal conductivity between solid
particles and liquids can be clearly seen in Figure 1 for some of the most commonly used
particles and base fluids, at room temperature and atmospheric pressure, for fabricating
nanofluids [13–17]. It is worth noticing that CuO, MgO, Al2O3, ZnO, TiO2, Fe2O3, SiO2, Ag,
Cu, Au, Al, Fe, carbon nanotubes (CNTs), and multiwalled carbon nanotubes (MWCNTs)
stands for cupric oxide, magnesium oxide, aluminum oxide, zinc oxide, titanium dioxide,
iron(III) oxide, silicon dioxide, silver, copper, gold, aluminum, iron, carbon nanotubes,
and multiwalled carbon nanotubes, respectively. Furthermore, the thermal conductivity of
some of the materials shown in Figure 1 was seen to have a significant scatter of data across
the literature, which can be linked to several factors such as the purity, crystallinity, particle
size, and the determination approach used to find this thermal property. In addition, the
thermal conductivity of graphene after being subjected to oxidization (i.e., having the
form of graphene oxide) gets highly reduced, where it can reach values between 1000 and
2 W/m·K [18–20].

Following their success, many researchers started to explore and develop this class of
engineered fluid via modifying their production route, enhancing the suspension stability,
and improving the colloidal thermal conductivity [13,21,22]. As of today, nanofluids
are seen to have potential usage in a wide range of areas, including the energy sector,
construction and building, transportation, oil and gas, medical sector, etc. [23–34]. Figure 2a
shows the increasing trend in scientific publications in the field of nanofluids from 1995
to 2020, while Figure 2b illustrates the different types of these published documents that
are available in the same database. It is worth mentioning that the data in Figure 2 was
obtained from Elsevier’s abstract and citation database, Scopus, via searching through the
word ‘Nanofluid’ [35].

Despite the promising achievements that nanofluids could deliver to the scientific
community, there are still some obstacles that need to be overcome before this category of
fluids can be industrially accepted. For example, the colloidal preparation phase is still
considered one of the most significant challenges, as this stage can strongly influence the
fluid physical stability and effective thermophysical properties [13,36]. Meaning that if the
fabrication process used was not well structured before being executed, the chances of an
unstable nanofluid being produced is likely to occur. As a result, some of the suspension’s
thermophysical properties will gradually degrade with time due to the separation of
particles from the hosting base fluid. Almurtaji et al. [37] have illustrated in their published
work the relationship between the effective thermal conductivity and the physical stability



Nanomaterials 2021, 11, 1628 3 of 78

of suspensions. They showed that the effective thermal conductivity of a nanofluid could
reach its optimum possible value when the dispersion is physically stable, and vice versa. In
addition, the commonly employed two-step fabrication method that relies on an ultrasonic
bath type device, was reported to raise the as-prepared nanofluid temperature and that
the surrounding atmospheric conditions govern this increase in temperature along with
the sonicator working power. Thus, it is highly unlikely that similar nanofluids can be
produced through the conventional two-step route without simultaneously fabricating
the products at the same preparation conditions. A more convenient two-step method
employed for nanofluid production would be the two-step controlled sonicator bath
temperature approach, as was reported by Ali et al. [8,11] and Song et al. [38]. The
aforementioned approach would eliminate the rise in bath temperature obstacle, and
hence will ensure an optimum level of nanofluids reproducibility to the manufacturer at
any surrounding atmospheric conditions, and even when using different types of bath
sonicators. Furthermore, as the thermal properties of a nanofluid are influenced mainly by
the dispersed particles compared to its base fluid, researchers have been focusing more
on carbon-based materials. This is because some of these materials, in the nanoscale,
have exceptional thermophysical properties compared to other commonly used materials
(e.g., metals and oxides) [39–41]. For instance, CNTs and graphene have significantly
elevated thermal conductivity [42,43], large aspect ratio [44], lower density [45,46], lower
erosion and corrosion surface effects [47], higher stability [43], and lower pressure drop
and pumping power requirement in comparison to other types of nanomaterials [48,49].
Figure 3 demonstrates common allotropes of carbon nanomaterials.
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Many published numerical and experimental studies on nanofluids fabricated with
particles of carbon-based materials were found in the literature, which show the continued
growth of interest in such materials [35,51–54]. Figure 4 classifies these documents in terms
of the number of available publications at the Scopus database for each type of carbon-based
material used in nanofluids production. The single-walled carbon nanotube (SWCNT)
and double-walled carbon nanotube (DWCNT) abbreviations in Figure 4 refer to the
single-walled carbon nanotube and double-walled carbon nanotube, respectively. During
the reviewing process, which led to the formation of Figure 4, the authors remarkably
recognized that the researchers had used different sonication duration and intensities to
fabricate their nanofluids. However, some of the suspensions had the same particles type,
size, and hosting base fluid. This shows that, up to today, there is no standard fabrication
method for the production of the colloidal. The authors have also found that dispersing
carbon-based materials, such as walled carbon nanotubes (MCNTs) and graphene, can
tremendously enhance the quality of biofuels blends, in specific biodiesel [55,56]. This
includes lowering the brake specific fuel consumption, stabilizing the fuel consumption
rate and brake thermal efficiency, and improving the diesel engine performance and the
resulting emissions from the combustion process.

This review paper provides an overview of three types of carbon-based nanofluids:
CNT, nanodiamond (ND), and graphene. The selection reason for these three carbon-
based particles is due to their outstanding thermal properties compared to any other sort
of nanoscaled solids. Hence, they can be considered promising candidates for fabricat-
ing nanofluids targeted towards heat transfer applications. The main contribution of
the present review study is that this work starts from the synthesis stage of these three
carbon-based materials, followed by their dispersed form, and up to their employment in
selected energy applications. Furthermore, recommendations on the different nanofluids
production methods used are shown along with the colloidal stability and its effect on the
thermophysical properties. Moreover, the experimental measuring devices and theoretical
equations used to determine and predict the thermophysical properties are provided. In
addition, the research work done on utilizing these carbon-based suspensions are presented
for three thermal applications, namely, parabolic trough solar collectors (PTSCs), nuclear
reactors, and air conditioning and refrigeration (AC&R) systems, with a comparison to
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those of conventional working fluids. Finally, the gaps in present scientific knowledge that
scientists need to tackle are highlighted in order to promote these advanced types of heat
transfer fluids commercially.
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2. Synthesis of Nanoscaled Carbon-Based Materials

Carbon ranks as the 4th most common element after hydrogen, helium, and oxygen
in our solar system, and the 17th in the crust of our planet [57]. Remarkably, this element
is distinctive so that when the crystal structure of carbon atoms is changed into deferent
arrangements, the material properties significantly differ [58–63]. For example, both ND
and graphene are made of carbon but of different atomic bounds arrangement. While
the first is an electrical isolator and transparent towards visible light waves, the second
has excellent electrical conductivity with complete visible light blockage. Such materials
that contain various arrangements of carbon atoms are known as ‘allotropes of carbon’,
which means that the material has chemically identical elements but with different atomic
arrangements, and hence different physical properties. Due to this fact, many allotropes
of carbon exist or have been discovered by scientists, e.g., diamond, graphene, and CNTs.
The following Sections 2.1–2.3. will provide a short overview of the fabrication of three
allotropes of carbon in the nanoscale, namely ND, graphene, and CNTs. Knowing the
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production methods of these materials is essential and will, later on, help us understand
which nanofluid fabrication route is suitable to conduct.

2.1. Nanodiamonds

NDs have existed for billions of years in nature within meteorites, crude oil, inter-
stellar dust protoplanetary nebulae, and different sediment layers of the Earth’s crust.
Nevertheless, the synthetization process of this valuable material only started in the second
half of the nineteenth century through either exposing graphite to high pressure and high
temperature conditions, or by the explosive detonation of bulk graphite [64–66]. The first is
known as the high-pressure and high-temperature (HPHT) approach, whereas the second
route is known as the detonation technique. In the literature, it was reported that the
first study conducted on the preparation of NDs was performed by Bovenkerk et al. [67],
in 1959, after which Danilenko [68] used the detonation technique as part of his synthe-
sis approach. Furthermore, many approaches were developed afterward for fabricating
ND, such as the microplasma-assisted formation [69], chemical vapor deposition (CVD)
method [70], laser ablation [71], high energy ball milling of microdiamonds produced from
high pressure and high temperature conditions [72], high energy ball milling of ultra-fine
graphite powder [73,74], ultrasound cavitation [75], chlorination of carbides [76], carbon
onions irradiated by electron [77], and irradiation of graphite by ion beam [78]. In addition
to the previous synthesizing methods, El-Eskandarany has proposed a novel approach for
producing superfine NDs from commercial graphite powders and SWCNTs under ambient
temperature and atmospheric pressure conditions, using a high-energy ball mill tech-
nique [79]. It is important to note that, according to Ali et al. [66] and Mochalin et al. [80],
the most common types of NDs seen today are the detonation NDs (DNDs) and the HPHT-
NDs. From the aforementioned production routes, it can be concluded that the synthesized
NDs can only be produced as independent solid particles, and therefore cannot be grown
within liquids through chemical and/or physical approaches. Regardless of the method
used, the production of NDs usually involves three major phases, which are 1—synthesis
(methods mentioned earlier), 2—processing, and 3—modification. The processing stage,
which follows the synthesis phase, enhances the as-produced NDs purity by removing
the metals and metals oxides along with the non-diamond carbons that remain attached
to the ND surface. Hence, a high level of sp3 carbon bonded diamond nanoparticles can
be obtained. This can be done by using oxidants such as nitric acid (HNO3), perchloric
acid (HCLO4), or hydrochloric acid (HCL) [81]. Furthermore, the modification phase is
essential so that the fabricated NDs can meet the requirements of their targeted application.
Modification can be performed using either surface functionalization (widely used) or
doping of the NDs particles. It is important to note that some researchers have recently
started focusing on the doping technique due to the distinct optical properties gained from
this NDs modification approach [82,83]. Figure 5 shows the three phases involved in the
production of NDs [84].
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2.2. Graphene

Graphene is a type of carbon material that originates from bulk graphite. It has the
shape of a 2-dimensional (2D) (i.e., monolayer) sheet of one-atom thickness and lattice
of hexagonally arranged sp2 bonded carbon atoms [85]. The material itself was success-
fully synthesized for the first time in 2004 by Novoselov et al. [86], through mechanical
exfoliating graphite with Scotch tape. Furthermore, the development in the field has re-
sulted in categorizing graphene by the materials architecture structure, which ranges from
zero-dimensional (0D) graphene quantum dots, one-dimensional (1D) graphene fibers and
nanoribbons, and 2D graphene nanomesh, rippled/wrinkled and multisheet [87]. Figure
6 shows an illustration of the different categories of graphene based on their dimension-
ality and bandgap opening. Regarding 2D graphene sheets, few suitable techniques are
commonly employed for producing such material, which are mechanical exfoliation [86],
sublimation of silicon carbide (SiC) [88], laser-induced graphene [89,90], covalent [91,92] or
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non-covalent [93] exfoliation of graphite in liquids, and CVD growth [94]. These fabrication
methods produce graphene in a solid form except for the liquid-phase exfoliation, which
delivers the material as part of a suspension.
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The mechanical exfoliation method was the first approach for obtaining graphene. In
this method, the small mesas of highly oriented pyrolytic graphite are repeatedly peeled
out with a Scotch tape, and hence the attached thin films on the tape are of monolayer
graphene. This production route is highly reliable and allowed the preparation of high-
quality graphene sheets of up to 100 µm in thickness [86]. Other less common types of
mechanical exfoliation are also available, such as ball milling of graphite nanoparticles [95]
and hammering graphite [96]. Furthermore, the high temperature sublimation of SiC, which
was developed initially for the electronics industry, relies on the thermal decomposition of
a SiC substrate via either an electron beam or resistive heating to epitaxial graphene under
ultrahigh vacuum condition. This results in the desorption of the silicon (Si) on the wafer
surface, and therefore causing the surface atoms to arrange into forming hexagonal lattice.
Moreover, fabricating graphene through laser-inducement is performed under ambient
atmosphere by subjecting carbon dioxide (CO2) pulsed laser to a substrate containing
carbon-based materials. This approach combines 3-dimensional (3D) graphene fabrication
and patterning into a single step without having to use wet chemical steps. In addition,
exfoliation of graphite in liquids or liquid-phase exfoliation depends on the employment
of external peeling force, such as an ultrasonic horn sonicator, to separate the graphene
sheets from the immersed bulk graphite in a solvent of suitable surface tension. The solvent
used in the process is usually a non-aqueous solution, such as N-methyl-2-pyrrolidone
(NMP), but aqueous solutions can also be employed if surfactant was added. It is important
to note that the yield of the liquid-phase exfoliation process is relatively low, and thus
centrifugation is used to gain a significant fraction of monolayer and few-layer graphene
flakes in the final dispersion [97]. On the other hand, the CVD production route uses
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hydrocarbon gases to grow graphene on a targeted substrate by carbon diffusion and
segregation of high carbon solubility metallic substrates, such as nickel (Ni), or by surface
adsorption of low carbon solubility metals (e.g., Cu) [98,99]. From all of the previous
methods, CVD has shown to be the most successful, promising, and feasible approach in
the field for producing monolayer graphene of high quality and large area [94]. For deeper
insight into the various graphene synthesis methods, the reader is referred to the published
work of Rao et al. [100].

2.3. Carbon Nanotubes

Although carbon is known as a ubiquitous material in nature, CNTs are not, where
this allotrope material is a human-made seamless cylindrical form of carbon. It is believed
that the oldest CNTs existed on damascene swords [101]. Still, their first proof of presence
was in 1952 through the transmission electron microscopy (TEM) images published by
Radushkevich and Lukyanovich [102], after which Boehm [103] and Oberlin et al. [104]
obtained similar images along with describing the currently widely accepted CNTs growth
model. Conceptually, CNTs are graphene sheets rolled into cylindrical tubes, of less than
1 nm in diameter, with a half fullerenes caped end. Based on the number of consistent
tubes (i.e., rolled-up graphene sheets), CNTs can be classified as SWCNTs, DWCNTs, and
MWCNTs. As the terms suggest, the SWCNTs consist of only one tube, whereas DWCNTs
and MWCNTs comprise two and three (or more) tubes, respectively [105,106]. Figure 7
shows the mechanism in which CNTs are formed and their three different types. It is
important to note that some researchers distinguished between the three tubes form of
CNTs and those of a higher number of tubes, where they have categorized the first as the
triple-walled carbon nanotubes (TWCNTs) and the second as MWCNTs [107,108].
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There are three main synthesis methods for producing CNTs, which are the arc dis-
charge, laser ablation, and CVD [109–111]. Other approaches, such as diffusion and
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premised flame method, can be used for CNTs fabrication but are less frequently uti-
lized [112]. All three primary production methods depend on the carbon feedstock, either
as a solid phased carbon source (arc discharge and laser ablation) or carbonaceous gases
(CVD method). An example of the gases employed in the CVD process include carbon
monoxide (CO), ethanol, and acetylene. Moreover, the final product is always delivered in a
dried form; thus, CNTs cannot be grown within liquids as dispersions. In the arc discharge
process, doped graphite rods or two catalysts loaded are vaporized at 4000–5000 K, within
a closed chamber, by an electric arc placed between them, after which the resulting deposit
is of CNTs. Like the arc discharge method, the laser ablation route relies on the evaporation
of a carbon feedstock, usually a graphite rod with a metallic based catalyst, to obtain the
CNTs. The difference between this approach and the previous one is that the laser ablation
uses high energy laser irradiation to heat the carbon source, and thus causing the phase
transformation (i.e., from the solid to gaseous phase). Additionally, the final product gets
accumulated in a cold trap located within the chamber. Therefore, this technique is much
more efficient than the arc discharge process in terms of the losses in the as-produced CNTs.
On the other hand, the CVD, which was mentioned earlier in Section 2.2, decomposes
carbonaceous gases on catalytic nanoparticles to produce the CNTs. The catalytic nanopar-
ticles used for this purpose are either grown while conducting the process or are initially
fabricated through a separate procedure. Furthermore, the advantage associated with this
production technique is the high level of control over the synthesis process parameters such
as carbon supply rate, growth temperature, catalyst particles size, and type of substrate
used for the CNTs growth.

3. Preparation of Nanofluids

Nanofluids can be formed by dispersion particles made of single elements (e.g., Cu
and Fe), single element oxides (e.g., CuO and Al2O3), alloys (e.g., stainless steel), metal
carbides (e.g., silicon carbide and zirconium carbide), metal nitrides (e.g., silicon nitride
and titanium nitride), or carbon-based materials in a none dissolving base fluid such as
water, methanol, glycol, ethylene glycol (EG), transformer oil, kerosene, and/or different
types of refrigerants with or without the use of surfactant/s [13,113]. The nanosuspension
is given the name ‘nanofluid’ when one type of nanoparticles is used in the fabrication
process; in contrast to the previous category, dispersions formed by employing two or more
types of nanoparticles are classified as ‘hybrid nanofluids’ [114,115]. To the best of the
authors knowledge, unlike the previous two nanofluids categories that are subjected to the
number of different particles used in the process, there does not exist a specific classification
for nanofluids made of more than one type of base fluid. However, researchers could have
used the terms ‘Bi-liquid nanofluid’ or ‘Tri-liquid nanofluid’ to refer to their nanofluid
that is made from two or three base fluids, respectively. Figure 8 shows an illustration of
the conventional nanofluid and the hybrid nanofluid. In addition, the homogeneity and
physical stability of the dispersion depend significantly on the implemented preparation
approach, which can substantially influence the effective thermophysical properties of
the as-prepared suspension. Knowing the aforementioned is essential when selecting the
appropriate type of nanofluid for any targeted application [116]. In general, two known
fabrication processes are currently used for producing nanofluids, namely, the one-step
(also referred to as the single-step) method and the two-step approach [37]. It is important
to note that some researchers prefer to classify the one-step production processes into two
categories, which are the one-step physical technique and the one-step chemical approach,
resulting in three types of methods of nanofluid fabrication for these groups [117,118].
A summary of the two fabrication schemes (i.e., the one-step and two-step methods) is
presented in the following subsections.



Nanomaterials 2021, 11, 1628 12 of 78Nanomaterials 2021, 11, x FOR PEER REVIEW 12 of 79 
 

 

 

Figure 8. Schematic demonstration to compare between conventional (a) and hybrid (b) nanofluids that uses the same 

base fluid. 

3.1. One-Step Method 

The production of nanofluids by the one-step method is conducted by simultaneous 

synthesizing and dispersing the nanoparticles in the base fluid. Thus, the storage, drying, 

and transportation of nanoparticles are unnecessary [119]. Furthermore, the dispersed 

particles in this bottom-up process avoid oxidization from their surrounding environ-

ment. In addition, this technique is well known to highly eliminate clustering and agglom-

eration of dispersed particles within the hosting fluid, and hence coagulation of nanopar-

ticles in real-life applications that uses microchannels can be minimized with an increase 

in the level of the physical stability of the colloidal compared to the two-step production 

approach. Moreover, this method allows greater control over the size and shape of the 

dispersed nanoparticles during the fabrication process. Nevertheless, the presence of re-

sidual reactants as a result of uncompleted reactions has always been a major drawback 

of such a production route. Other disadvantages can also be experienced when following 

the single-step synthesis approach, such as the inconsistency of the scale for industrial 

applications, which can only be used with base liquids of low pressure, high production 

cost, and limitation in the types of nanofluids that can be fabricated compared to the two-

step route [120–123]. 

One of the most common one-step approaches is the one that was established by 

Eastman et al. [21]. In this method, nanofluids are synthesized by evaporating a bulk ma-

terial, after which the evaporated particles get deposited then condensed in a thin film of 

base fluid attached to a vessel wall due to centrifugation. Figure 9 demonstrates the afore-

mentioned one-step approach. Many researchers have continuously worked on develop-

ing the one-step fabrication approach through physical and/or chemical means. Today, 

different methods have been acknowledged to be in the one-step nanofluid production 

category [36,120,124]. Figure 10 shows some of the commonly known one-step nanofluid 

fabrication routes in the field where their method of conduct can be found fully explained 

in the published work of Ali et al. [13] and Mukherjee et al. [36]. 

Figure 8. Schematic demonstration to compare between conventional (a) and hybrid (b) nanofluids that uses the same base
fluid.

3.1. One-Step Method

The production of nanofluids by the one-step method is conducted by simultaneous
synthesizing and dispersing the nanoparticles in the base fluid. Thus, the storage, drying,
and transportation of nanoparticles are unnecessary [119]. Furthermore, the dispersed
particles in this bottom-up process avoid oxidization from their surrounding environment.
In addition, this technique is well known to highly eliminate clustering and agglomeration
of dispersed particles within the hosting fluid, and hence coagulation of nanoparticles
in real-life applications that uses microchannels can be minimized with an increase in
the level of the physical stability of the colloidal compared to the two-step production
approach. Moreover, this method allows greater control over the size and shape of the
dispersed nanoparticles during the fabrication process. Nevertheless, the presence of
residual reactants as a result of uncompleted reactions has always been a major drawback
of such a production route. Other disadvantages can also be experienced when following
the single-step synthesis approach, such as the inconsistency of the scale for industrial
applications, which can only be used with base liquids of low pressure, high production
cost, and limitation in the types of nanofluids that can be fabricated compared to the
two-step route [120–123].

One of the most common one-step approaches is the one that was established by
Eastman et al. [21]. In this method, nanofluids are synthesized by evaporating a bulk
material, after which the evaporated particles get deposited then condensed in a thin film
of base fluid attached to a vessel wall due to centrifugation. Figure 9 demonstrates the
aforementioned one-step approach. Many researchers have continuously worked on devel-
oping the one-step fabrication approach through physical and/or chemical means. Today,
different methods have been acknowledged to be in the one-step nanofluid production
category [36,120,124]. Figure 10 shows some of the commonly known one-step nanofluid
fabrication routes in the field where their method of conduct can be found fully explained
in the published work of Ali et al. [13] and Mukherjee et al. [36].
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3.2. Two-Step Method

Unlike the one-step method, the two-step approach is a top-down process that uses
dried nanoparticles that were initially prepared, through physical or chemical processes, af-
ter which these particles get dispersed in a base fluid through ultrasonic agitation [125–128],
magnetic stirring [129–132], homogenizing [131,133,134], or ball milling (least commonly
used) [16,135,136] with or without adding surfactant(s) to the mixture. Other less common
dispersion routes can also be used, such as dissolver, kneader, three roller mill, stirred
media mill, and disc mill [137]. Figure 11 demonstrates an example of the two-step method,
where a bath type ultrasonic device is used to form the suspension. In addition to the
bath type sonicators, some researchers have employed the probe/horn type sonicators to
fabricate their nanofluids. They have reported higher particles dispersion capability and
enhanced suspensions thermal properties using this type of device compared to the bath
type dispersers [138]. The reason behind the previously achieved improvements in the
suspension is that the probe device provides focused and intense ultrasonication effects,
reaching up to 20 kW/L, to the mixture in an evenly distributed manner [139]. This is
something that the bath type sonicators cannot provide due to its low relative intensity (i.e.,
20–40 W/L) and non-uniform distribution of the ultrasonication effect on the fabricated
nanofluid. It is important to note that the bath type ultrasonicator is more applicable for
commercial scale production of nanofluids. In contrast, the probe type is better suited for
synthesis at the lab scale. Regardless of the type of two-step mixing approach used, this
method is still considered as a cost-effective process that is appropriate for both small- and
large-scale production of any type of nanofluids, which is seen as a favorable approach to
many researchers in the field [140]. However, some of the critical issues associated with this
method during nanofluids fabrication are the agglomeration of the nanoparticles due to
the very high surface energy between the particles, and the notable increase in the process
temperature with fabrication time when using some of the mixing devices (e.g., bath type
ultrasonic device) [8,13]. The first obstacle causes the suspension to be in a weak physical
stability state that results from the nanoparticles undergoing agglomeration, which is
followed by separation of the particles from the base fluid in the form of sediments. Thus,
the nanofluid thermophysical properties degrade with time. As for the raise in fabrication
process temperature problem, the reproducibility of similar nanofluids (i.e., obtaining
suspensions with the same thermophysical properties) would be impossible to achieve.
This is because different bath type ultrasonic devices and/or surrounding atmospheric
conditions lead to varying the thermophysical properties and physical stability of the fabri-
cated colloidal [8,38]. There are several ways to overcome the aforementioned limitations
in the two-step method. For example, surfactants can be added to the mixture to reduce the
level of particles agglomeration, and the sonicator bath temperature could be controlled
throughout the fabrication process by equipping the device with a temperature regulator.
Other approaches used to physically stabilize the as-prepared dispersions are mentioned
afterward in the nanofluid stability enhancement section (Section 4.2). When preparing
nanofluids, the nanoparticles and surfactants (if required) are added to the base fluid with
respect to either volume (vol.) or weight (wt.) percentage (%). Most researchers tend to use
the vol. % to calculate the added nanopowder to the base fluid, which can be estimated
through the appropriate formulae presented in Table 1.

Table 1. Fraction calculation Formulae for different forms of nanofluids.

Type of Particles Type of Base-Fluid Fraction (%) Formulae Ref. Eq.

Single type Single type vol.

Vnp
Vnp+Vb f

× 100;

or
( m

ρ )np

( m
ρ )np

+( m
ρ )b f

× 100
[13,37] (1)



Nanomaterials 2021, 11, 1628 15 of 78

Table 1. Cont.

Type of Particles Type of Base-Fluid Fraction (%) Formulae Ref. Eq.

Single type Two type vol.

( m
ρ )np

( m
ρ )np

+

[
( m

ρ )b f 1
+( m

ρ )b f 2

] × 100;

where b f 1 and b f 2 have equal volume ratio

[141] (2)

Two type Single type vol.

( m
ρ )np1

+( m
ρ )np2[

( m
ρ )np1

+( m
ρ )np2

]
+( m

ρ )b f

× 100;

where np1 and np2 have equal volume ratio

[142,
143] (3)

Two type Two type vol.

( m
ρ )np1

+ ( m
ρ )np2[

( m
ρ )np1

+( m
ρ )np2

]
+

[
( m

ρ )b f 1
+( m

ρ )b f 2

] × 100;

where np1 and np2 have equal volume ratio
as well as b f 1 and b f 2

[144] (4)

Where V, m, ρ, np, np1, np2, b f , b f 1, and b f 2 represent the volume, mass, density,
single type of nanoparticles, first type of nanoparticles, second type of nanoparticles, single
type of base fluid, first type of base fluid, and second type of base fluid, respectively. In
addition to the equations shown in Table 1, one can use the following three equations to
determine the vol. % for their nanofluids when having two different particles and/or two
base fluids concentration ratio(s).
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For single type of nanoparticles and two different types of base fluids:

(m
ρ )np

(m
ρ )np

+

[
(m

ρ )b f 1
× A

A+B + (m
ρ )b f 2

× B
A+B

] × 100 (5)

where the ratio of b f 1 : b f 2 is equal to A : B.
For two different types of nanoparticles and single type of base fluid:

(m
ρ )np1

× A
A+B + (m

ρ )np2
× B

A+B[
(m

ρ )np1
× C

C+D + (m
ρ )np2

× D
C+D

]
+ (m

ρ )b f

× 100 (6)

where the ratio of np1 : np2 is equal to C : D.
For two different types of nanoparticles and two types of base fluid:

(m
ρ )np1

+ (m
ρ )np2[

(m
ρ )np1

× C
C+D + (m

ρ )np2
× D

C+D

]
+

[
(m

ρ )b f 1
× A

A+B + (m
ρ )b f 2

× B
A+B

] × 100 (7)

where the ratio of np1 : np2 and b f 1 : b f 2 are equal to C : D and A : B, respectively.

3.3. Carbon-Based Nanofluids Fabrication

As was explained previously in Section 2, carbon allotropes, whether ND, graphene, or
CNT, have their own production routes and final product form. For instance, it was shown
that both NDs and CNTs could only be produced in the form of dried particles, whereas
graphene can be fabricated as dried sheets or as part of a dispersion. Therefore, depending
on the type of nanoscaled carbon allotrope and base fluid desired for synthesizing the
nanofluid, the production process can be constrained by only the two-step method or
the manufacturer can be left with the freedom of selecting any of the two approaches. In
general, the two-step method is the only approach that can be employed for fabricating
dispersions containing NDs or CNTs, while both one- and two-step routes can be used
for producing graphene nanofluids. Nevertheless, the majority of the studies have shown
the adaptation of the two-step method for producing graphene nanofluids, which can
be justified by the difficulties associated with the single-step route of fabrication and the
limitations in the type of base fluid that can be used (see Section 3.1) [145,146]. Some of
the research work published on fabricating NDs, graphene, and CNTs nanofluids using
the two-step method are listed in Table 2. Note that the single-step graphene nanofluid
production was excluded from Table 2 because it is precisely the same as liquid-phase
exfoliation of graphene; thus, the reader can find further information’s within the sources
provided previously in Section 2.2 and the work published by Texter [147]. Nevertheless,
it is worth mentioning that the common base fluids used in the graphene suspension
one-step (or liquid-phase exfoliation) approach are n-methyl-2-pyrrolidone (NMP), γ-
butyrolactone (GBL), n,n-dimethylacetamide (DMAC), n,n-dimethylformamide (DMF),
dimethylsulfoxide (DMSO), ortho-dichlorobenzene (ODCB), acetonitrile (ACN), and water
with the aid of surfactant [148].
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Table 2. Published work on nanodiamond, graphene, and carbon nanotubes nanofluids produced using the two-step ap-
proach.

Material Base Fluid Particles
Dimensions (nm)

Particles
Concentration Additional Information Ref.

ND EG 30–50 <1.4 vol. % - Dispersion was performed with an
ultrasonic vibration device for 3 h.

[149]

EG 5–10 0.25–5.0 vol. %

- Purification and surface modification
of the particles were done using a
mixture of nitric acid, perchloric acid,
and hydrochloric acid.

- Dispersion was performed via
continuous sonication.

[150]

EG 5–10 0.25–1.0 vol. %

- Purification and surface modification
of the particles were done using a
mixture of nitric acid and perchloric
acid.

- Nanofluid pH adjustment: 7–10.
- Dispersion was performed by

magnetic stirring and ultrasonic
sonication for 3 h.

[151]

EG—water 30–50 0. 5–2.0 vol. %

- Purification and surface modification
of the particles were done using a
mixture of nitric acid, perchloric acid,
and hydrochloric acid.

- Base fluid used was a mixture of 55%
distilled water and 45% of EG.

- Dispersion was performed by
sonication for 3 h.

[152]

EG and
mineral oil 5 2.0 g

- NDs were prepared by detonation
followed by functionalization.

- For the EG base fluid: the particles
and 48 g of dimethylsulfoxide
(DMSO) were bath sonicated for 30
min then magnetic stirred with 50 mL
of glycidol for 24 h.

- For the mineral oil base fluid: the
particles, 2.0 g of oleic acid, and 63 g
of octane were bath sonicated for 1 h

[153]

Highly refined
thermal oil 3–10 0.25–1.0 wt %

- Non-ionic sorbitane trioleate (Span
85) was used as a surfactant in a
surfactant to particles ratio of 7:1.

- Dispersion was performed by a
probe-type sonicator for 1 h.

[154]
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Table 2. Cont.

Material Base Fluid Particles
Dimensions (nm)

Particles
Concentration Additional Information Ref.

Naphthenic
transformer oil

(NTO)
10 1.0 g

- The particles, 2.0 g of oleic acid, and
50 g of octane were high energy
ultrasonicated for 30 min.

- The previous mixture was added to
the base fluid then sonicated for an
additional 1.0 h.

[155]

propylene
glycol

(PG)—water
5–10 0.2–1.0 vol. %

- The particles were initially purified
then treated with acid.

- The base fluid contained a mixture of
PG and water at ratios of 20:80, 40:60,
and 60:40, respectively.

- Fabrication was performed through a
bath type sonicator for 2.0 h.

[156]

Graphene Water 2–5 * 10 mg/mL

- Graphene powder was produced
through a modified hummer method
(i.e., mechanical exfoliation) followed
by surface treatment.

- Nanofluid fabrication was done
through mixture centrifugation at
6000 rpm for 10 min.

[157]

Water 6000–8000 * 0.001–0.01 vol. %

- Graphene powder was initially
oxidized using sulfuric acid and
nitric acid.

- Nanofluid was produced by
ultrasonicating the mixture for 2.0 h.

[158]

Water 2 * 0.025–0.1 wt %

- Graphene powder was initially
oxidized using sulfuric acid and
nitric acid.

- Nanofluid was produced by
continuous sonication using a
high-power probe type
ultrasonicator.

[159]

EG and water – 0.005–0.056 vol. %

- Fabricated graphene was treated with
acid for better dispersion.

- Nanofluid was produced by
sonicating the mixture for 30–45 min.

- Solution pH value was adjusted to
around 6–7.

[160]

Glycerol 15–50 * 13 wt %
- Graphene was surface functionalized.
- Nanofluid was produced by

sonicating the mixture for 10 min.
[161]
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Table 2. Cont.

Material Base Fluid Particles
Dimensions (nm)

Particles
Concentration Additional Information Ref.

CNTs Water 9–15 ˆ 0.5 wt %

- MWCNTs powder was surface
functionalized via nitric and sulfuric
acid of 1:3 ratio, respectively.

- Nanofluid was produced by probe
sonication for 5 min.

[162]

Vegetable
cutting oil 10–20 ˆ 0.6 vol. %

- Functionalized MWCNTs were used.
- Fabrication process consisted of three

mixing stages: 1—mechanical mixing
for 60 min at 750 rpm, 2—ultrasonic
homogenizer for 60 min, and
3—magnetic stirring for 60 min at
1500 rpm.

[163]

Turbine meter
oil 5–16.1 ˆ 0.05–0.4 wt %

- Triton X100 was added as a
surfactant to the base fluid in a ratio
of 1:3, respectively.

- Fabrication process consisted of:
1—mixing the surfactant with the
base fluid using an electric mixer for
20 min at 1500 rpm, 2—adding and
dispersing the MWCNTs using the
same device for 4 h, 3—additional
mixing using a probe sonicator for
2 h.

[164]

Water 2–4 ˆ 0.01–0.5 vol. %

- DWCNTs functionalized by
carboxylic acid were used.

- Nanofluid production was conducted
by magnetic stirring for 2.5 h,
followed by ultrasonication for 5 h.

[165]

EG 2–4 ˆ 0.02–0.6 vol. %

- DWCNTs functionalized by
carboxylic acid were used.

- Fabrication was performed by
magnetic stirring for 2.5 h, then
sonication for 6 h.

[166]

Water 1–2 ˆ 0.1–0.5 vol. %

- SWCNTs nanofluids were prepared
by first adding sodium dodecyl
sulfate (SDS) surfactant then mixing
with a high-pressure homogenizer for
1 h.

[167]

Water 0.8–1.6 ˆ 0.3 vol. %

- Nanofluid production consisted of
SWCNTs, sodium deoxycholate
surfactant (0.75 vol. %), and the base
fluid.

- Mixing was conducted by bath
sonication for 6 h, followed by probe
sonication for 2 h.

[168]

Note: * and ˆ refers to graphene sheet thickness and CNTs outer diameter, respectively.
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4. Nanofluids Stability
4.1. Stability Mechanism and Evaluation

The stability of nanofluids is of major concern for maintaining the thermophysical
properties of the mixture [169]. Specifically, the stability of the suspension combines several
aspects such as dispersion stability, kinetic stability, and chemical stability [120,170]. The
dispersion stability deals with nanoparticles aggregation within the colloidal, while the
kinetic stability describes the Brownian motion of nanoparticles hosted by the base fluid
(i.e., sedimentation of randomly agglomerated particles due to gravity). As for the chemical
stability, it is associated with the chemical reactions that occur between the nanoparticles
themselves and between the nanoparticles and the surrounding base fluid. However, it
is essential to note that chemical reactions in a nanofluid are minimized or halted at low
temperature conditions (i.e., below the temperature point of a chemical reaction). Hence,
agglomeration and sedimentation of nanoparticles would be the primary aspects concerned
with suspension stability. When a nanofluid is physically unstable, the formed sedimenta-
tion can have one of three behaviors, namely; 1—dispersed sedimentation, 2—flocculated
sedimentation, or 3—mixed sedimentation [8]. Figure 12 shows a schematic illustration of
the realistic reflection for the three types of sedimentation behaviors. In addition, the speed
at which the sediment forms and settles within an unstable suspension can be classified
into two main regions. The first is known as the rapid settling region, which occurs at
the beginning stage of the separation of the particles from the hosting base fluid; and the
following stage is called the slow settling region, where the changes in sediment formation
and settling becomes insignificant along the shelving lifetime [171]. Figure 13 demonstrates
an example of the two sedimentation speed formation regions from Witharana et al. [171]
investigation. Furthermore, there are about eight techniques that can be used to evaluate
the stability of nanofluids, such as 1—sedimentation photographical capturing method,
2—dynamic light scattering (DLS) approach, 3—zeta potential analysis, 4—3-ω approach,
5—scanning electron microscopy (SEM) analysis, 6—TEM characterization, 7—spectral
analysis, and 8—centrifugation method. From the previous stability evaluation methods,
the sedimentation photographical capturing approach is considered as the most reliable
route between them all, but at the expense of time (i.e., it takes a very long time to conduct
and analyze). The DLS approach usually over-predicts the size of the particles, especially
when using a non-ionized base fluid (e.g., deionized water), where the analysis can show
larger values (from 2 to 10 nm more) than the actual particle size [172]. Such results are very
problematic and misleading when analyzing nanofluids, especially when the dispersed
particles are 10 nm or less in size, where the oversized prediction can incorrectly indicate
an instability state. On the other hand, the zeta potential analysis should only be used as
a supportive characterization tool. This is because if the nanoparticles and/or the base
fluid are non-polar or even of low polarity, there may be other mechanisms affecting the
suspension stability [172]. Thus, it is highly recommended to use multiple approaches (e.g.,
three methods) to determine the stability of the nanofluid. A detailed description of each of
the experimental stability evaluation approaches, and their advantages and limitations can
be found in the work published by Ali et al. [13]. Other than the previous stability evalua-
tion approaches, Carrillo-Berdugo et al. [173] have proposed a novel theory-based design
framework for determining the polarity between the solid and liquid interface, which
can be used to adjust the interface tension by adding the required number of dispersive
components to meet those of the dispersed nanomaterial.
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rapid region in which the sediment height changes rapidly, and (the right side) illustrates the slow region, where the changes
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4.2. Stability Enhancements

Several approaches have been shown to improve the stability of nanofluids success-
fully. These methods are subdivided into two main categories, which are in the form of
physical and chemical routes. The physical approach involves the employment of high
energy forces such as ultrasonication, magnetic stirring, homogenizer (or probe sonicator),
or even ball milling, which is rarely reported [117,175]. Figure 14 shows the four previous
physical stability methods. Unlike the ultrasonication and homogenization methods, the
magnetic stirring approach is considered as the most basic route that can be applied to
break-down clusters of nanoparticles, within the suspension, with very low performance
effectiveness when compared to the other two physical methods [176]. Furthermore, in
the literature [177], high pressure homogenization was shown to provide better stability
characteristics than ultrasonication to the as-produced nanofluids. In addition, the mixing
duration and intensity used in the sonicator device were commonly seen to vary from
one research work to another in an attempt to physically stabilize the nanofluid. A good
explanation for the aforementioned method is that the mixing power cannot be maintained
constant throughout the process due to the voltage fluctuation that the device experienced.
Therefore, Yu et al. [178] suggested relying on the relation between the suspension absorp-
tion spectra against the total energy supplied to the mixture as a relative solution to the
sonication time.
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On the other hand, the chemical route stabilizes the suspension by declustering the
agglomerated nanoparticles by alternating the pH value of the base fluid or the mixture,
adding surfactant(s) to the solid–liquid matrix, or modifying the surface of the nanoparti-
cles. Nanofluids pH alteration affects the level of free cations or anions charges in the media
surrounding the dispersed particles, and hence the hydrophilicity or hydrophobicity nature
of the particles changes causing the colloidal to either stabilize or destabilize [179,180]. The
disadvantage of the previous method is that fabricating suspensions of high or low pH
values may be corrosive for high heat flux applications. In addition, surfactants are essen-
tial when dispersing nanomaterials of hydrophobic nature (e.g., CNTs and graphene) in a
polar base fluid (e.g., water), and vice versa [181,182]. This is because the added surfactant
would act as a bridge between the nanoparticles and the hosting fluid, and therefore would
improve the dispersion stability of the particles through increasing the repulsive force
between the particles themselves and reducing the interfacial tension between the base
fluid and the hosted particles. Surfactants are categorized based on their head group charge
as cationic, non-ionic, anionic, and amphoteric. Table 3 shows some of the surfactants used
in the nanofluids preparation process according to their head group charge [118].

Table 3. Examples of surfactants used in nanofluids fabrication categorized by classifications based on their head group
charge.

Surfactant Classification Head Group Charge Example(s)

Cationic +ve
Cetyltrimethyl ammonium bromide (CTAB),

distearyl dimethyl ammonium chloride
(DSDMAC), and benzalkonium chloride (BAC).

Non-ionic neutral or uncharged Oleic acid, polyvinylpyrrolidone (PVP), Arabic
gum (AG), Tween 80, and oleylamine.

Anionic −ve Sodium dodecyl benzenesulfonate (SDBS), and
SDS.

Amphoteric +ve and −ve lecithin.

The downside from using surfactants is that the nanofluid becomes more viscous;
starts to generate foam when being heated or cooled down; can be lost at high tempera-
tures, and would reduce the overall thermal conductivity of the suspension. As for the
nanoparticles surface modification technique, the particles are either initially functional-
ized (before the dispersion process), or the functionalized materials themselves are added
to the colloidal (where they get grafted to the surface of the segregated particles), and
therefore forming a new particle surface exposure to the hosting base fluid [183,184]. The
drawback of using functionalized materials as stabilizers is that they tend to reduce the
overall thermal conductivity of the produced nanofluid due to having a significantly lower
thermal conductivity than the dispersed nanoparticles. Figure 15 recaps all of the nanofluid
stability improvement methods that were mentioned earlier in this section.
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5. Stability Effect on Thermophysical Properties

The thermophysical properties govern the heat transfer rate that the nanofluid can
provide to the system in which it is employed as a working fluid. Nanofluids thermal
properties, such as the thermal conductivity, greatly depend on the type of base fluid,
nanoparticles material, morphological characteristics of the particles, nanoparticles con-
centration, and homogeneity of nanoparticles dispersion in the hosting base fluid. The
dispersion characteristics of the suspension are subjected to alteration with the change in
stability of the particles in their surrounding environment (i.e., base fluid). For such reason,
the stability of a nanofluid is considered as a significant factor to maintain the heat transfer
rate from and to the colloidal. This section covers the influence of stability on nanofluids
effective thermal conductivity and effective viscosity. It is important to highlight that the
effect of suspension stability, as a parameter, on the effective density was not reported
across the literature, but rather the added surfactants and particles concentration were
seen responsible for the changes caused to nanofluids densities [185–187]. This is because
nanofluids effective density (ρn f ) is constrained by its overall volume and mass, where it
can be directly calculated from extending the rule of mixtures (i.e., Equation (8)):

ρn f = f V × ρnp + (1− f V)× ρb f (8)

where fV is the particles volumetric fraction, ρnp is the density of the nanoparticles, and
ρb f is the density of the base fluid. Similarly, the effective specific heat capacity of the
colloidal was not shown to be linked to the dispersion stability. The main parameter that
affects nanofluids effective specific heat capacity is the particles concentration included



Nanomaterials 2021, 11, 1628 25 of 78

in the mixture. This is because increasing the nanoparticles concentration would result in
enhancing the overall thermal performance of the suspension, and hence less heat would
be required to raise the temperature of the fabricated nanofluid, and vice versa [188]. In
general, nanofluids effective specific heat capacity is lower than their base fluids [126,189].
According to Ali et al. [13] and other researchers [190–193], the most accurate theoreti-
cal model for calculating the effective specific heat capacity of a nanofluid (Cpn f ) is the
following equation:

Cpn f =
ρb f × (1− fV)

ρn f
× Cpb f +

ρnp × fV

ρn f
× Cpnp (9)

where Cpb f and Cpnp are the specific heat capacities of the base fluid and the nanoparticles,
respectively. Experimentally, the Cpn f can be determined using the differential scanning
calorimetry (DSC) technique, which basically measures the amount of heat required to be
delivered to both test sample and reference source, of well-known heat capacity, so that a
temperature rise can be achieved [188].

5.1. Effective Thermal Conductivity

Thermal conductivity enhancement of heat transfer fluids has always been the main
driving force that motivated researchers into developing nanofluids. This is because
the solid particles added to the liquid have tremendously higher thermal conductivity
compared to that of the base fluid, and thus cause the effective thermal conductivity of
the mixture to improve significantly. At the early stages of their discovery, the claims
on the enhancement caused by the dispersed particles on the hosting fluid were seen
as a controversial topic because many published works across the literature reported
divergence in the level of enhancement and measurement results were difficult to be repli-
cated [194–197]. Nevertheless, a worldwide round-robin, including 33 research institutes,
have demonstrated acceptable consistency in measuring the effective thermal conductivity
of nanofluids, despite the fact that they unexplored any anomalous improvement in the
effective thermal property [198]. Up to today, the effective thermal conductivity of the
suspension remains a complicated topic, where it involves many vital elements such as the
particles type and morphology, particles concentration, base fluid type and temperature,
added surfactants (if any), and dispersion stability [13,199,200]. When constraining the first
four parameters in fabricating a dispersion, the optimum effective thermal conductivity is
usually reached when the particles are well distributed in the hosting fluid with minimum
to no agglomerations/clustering between them. Since a stable state nanofluid reflects that
its nanoparticles are homogeneously dispersed within the hosting base fluid, it should
theoretically result in a superior overall suspension thermal conductivity to those of an
unstable state. The potential influence of nanoparticles agglomeration on the thermal
conduction emphasizes that colloid chemistry will play a significant role in enhancing the
thermal conductivity of nanofluids. Scientists such as Yu et al. [201], Haghighi et al. [202],
and Li et al. [203] have all proven, through their research work, that stabilized nanofluids
have greater and steady effective thermal conductivity than their counterparts. Prasher
et al. [204] and Wang et al. [205] explained this observation by analyzing the effect of
nanoparticles aggregation on the thermal conductivity of nanofluids, where they assumed
that solid liner and side chains get formed by particles clustering. Based on the researcher’s
conclusion, these chains are mainly responsible for enhancing the suspensions thermal
conductivity. Still, as more nanoparticles get accumulated, the cluster becomes heavier, and
therefore separates from the base fluid due to the gravitational force. The aforementioned
causes the thermal conductivity of the colloidal to degrade, with respect to settling time,
until it decreased to a minimum possible value when total separation is attained. The pre-
vious claim was also supported by the work of Hong et al. [206], where they examined the
effective thermal conductivity of SWCNTs—water dispersion with magnetic-field-sensitive
nanoparticles (Fe2O3) under various magnetic field strengths. In their experiment, the
researchers successfully interconnected the dispersed CNTs using Fe2O3 nanoparticles and
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the employed magnetic field, and thus forming a well aligned chains of nanomaterials.
This resulted in the effective thermal conductivity to increase by 50% over that of the base
fluid. However, as the holding time under the magnetic field increased, the nanomaterials
started to form larger clumps that caused the suspension effective thermal conductiv-
ity to degrade. Other studies have also proven the enhancement in nanofluids thermal
conductivity through the chain concept, such as the work of Wright et al. [207], Wensel
et al. [208], and Hong et al. [209]. All three groups of scholars relied on the magnetic field
to form the dispersed particles connected networks in the host fluid. However, the first
used a novel alignment approach via coating the SWCNTs with Ni, whereas the other two
achieved the interconnection with the aid of metal oxide nanoparticles (e.g., Fe2O3 and
MgO). It is important to note that different types of base fluid and surfactants were used
in the three previous studies. Younes et al. [210] have suggested an innovative nanoscale
aggregation process that can be adopted to form nanosolids with an interconnect chain
capability when dispersed in liquids. In their work, they coated the CNTs through their
aggregation process with metal oxide nanoparticles and different types of surfactants.
Afterwards, the scholars filtered and dried the aggregate to obtain their as-prepared CNTs-
based nanosolids. These newly formed nanomaterial can interconnect when dispersed in
a non-aqueous solution by applying a magnetic field. Figure 16 illustrates the effective
thermal conductivity degradation theory, which describes the mechanism in which the
particles separate from the base fluid due to the formation of both linear and side chains.
Other aspects that have less influence on the effective thermal conductivity of nanofluids
includes the liquid layering near the outer particles surface [211], Brownian motion of
dispersed particles [212,213], thermophoresis [214,215], near-field radiation [216,217], and
ballistic transport and nonlocal effects [218,219].

Nanomaterials 2021, 11, x FOR PEER REVIEW 26 of 79 
 

 

with magnetic-field-sensitive nanoparticles (Fe2O3) under various magnetic field 

strengths. In their experiment, the researchers successfully interconnected the dispersed 

CNTs using Fe2O3 nanoparticles and the employed magnetic field, and thus forming a 

well aligned chains of nanomaterials. This resulted in the effective thermal conductivity 

to increase by 50% over that of the base fluid. However, as the holding time under the 

magnetic field increased, the nanomaterials started to form larger clumps that caused the 

suspension effective thermal conductivity to degrade. Other studies have also proven the 

enhancement in nanofluids thermal conductivity through the chain concept, such as the 

work of Wright et al. [207], Wensel et al. [208], and Hong et al. [209]. All three groups of 

scholars relied on the magnetic field to form the dispersed particles connected networks 

in the host fluid. However, the first used a novel alignment approach via coating the 

SWCNTs with Ni, whereas the other two achieved the interconnection with the aid of 

metal oxide nanoparticles (e.g., Fe2O3 and MgO). It is important to note that different types 

of base fluid and surfactants were used in the three previous studies. Younes et al. [210] 

have suggested an innovative nanoscale aggregation process that can be adopted to form 

nanosolids with an interconnect chain capability when dispersed in liquids. In their work, 

they coated the CNTs through their aggregation process with metal oxide nanoparticles 

and different types of surfactants. Afterwards, the scholars filtered and dried the aggre-

gate to obtain their as-prepared CNTs-based nanosolids. These newly formed nano-

material can interconnect when dispersed in a non-aqueous solution by applying a mag-

netic field. Figure 16 illustrates the effective thermal conductivity degradation theory, 

which describes the mechanism in which the particles separate from the base fluid due to 

the formation of both linear and side chains. Other aspects that have less influence on the 

effective thermal conductivity of nanofluids includes the liquid layering near the outer 

particles surface [211], Brownian motion of dispersed particles [212,213], thermophoresis 

[214,215], near-field radiation [216,217], and ballistic transport and nonlocal effects 

[218,219]. 

 

Figure 16. Nanoparticles separation due to the formation of both linear and side chains in the base 

fluid. 

Many different techniques have been adopted for measuring the thermal conductiv-

ity of nanofluids, namely; 1—cylindrical cell method, 2—temperature oscillation ap-

proach, 3—steady state parallel-plate method, 4—3-ω method, 5—thermal constants ana-

lyzer approach, 6—thermal comparator method, 7—flash lamp method, 8—transient hot-

wire method, 9—laser flash method, and 10—transient plane source. More details on the 

usage, advantages, and disadvantages of these thermal conductivity measurement tech-

niques can be found in Mashali et al. [17], Paul et al. [220], Qiu et al. [170], and Tawfik 

[221] published works. Among the previously mentioned techniques, the transient hot-

wire approach was mainly adopted across the literature for nanofluids effective thermal 

conductivity measurements, although it was the first measuring route for such property 

[17]. The reasons that attracted researchers into favoring the transient hot-wire method 

among other methods is due to its capability of eliminating measurements errors caused 

by the natural convection of the fluid, its minimal amount of time required to perform 

Figure 16. Nanoparticles separation due to the formation of both linear and side chains in the base
fluid.

Many different techniques have been adopted for measuring the thermal conductivity
of nanofluids, namely; 1—cylindrical cell method, 2—temperature oscillation approach,
3—steady state parallel-plate method, 4—3-ω method, 5—thermal constants analyzer
approach, 6—thermal comparator method, 7—flash lamp method, 8—transient hot-wire
method, 9—laser flash method, and 10—transient plane source. More details on the usage,
advantages, and disadvantages of these thermal conductivity measurement techniques can
be found in Mashali et al. [17], Paul et al. [220], Qiu et al. [170], and Tawfik [221] published
works. Among the previously mentioned techniques, the transient hot-wire approach
was mainly adopted across the literature for nanofluids effective thermal conductivity
measurements, although it was the first measuring route for such property [17]. The
reasons that attracted researchers into favoring the transient hot-wire method among
other methods is due to its capability of eliminating measurements errors caused by the
natural convection of the fluid, its minimal amount of time required to perform each
measurement (i.e., within seconds), and its simple conceptual design compared to other
available devices or apparatuses. One thing that needs to be emphasized here is that the
high thermal conductivities of graphene, ND, and CNT found in the literature are based
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on theoretical calculations for a single particle, and that when attempting to measure this
thermal property for a powder sample, the results will show tremendously lower values
due to the presence of air along with the limitation associated with the measuring tool
itself [222,223].

Furthermore, researchers have published numerous amounts of literature on improv-
ing nanofluids effective thermal conductivity over their base fluids [224–228]. For example,
Yu et al. [224] compared the thermal conductivity of their stable graphene—EG nanofluids
to that of pure EG. The researchers have dispersed 2.0 and 5.0 vol. % of graphene, of
0.7–1.3 nm in size, in EG to fabricate their nanofluids at a set of temperatures from 10
to 60 ◦C, using the two-step approach. They have found that the as-prepared 5.0 vol. %
suspension had 86% enhanced thermal conductivity over its base fluid at 60 ◦C. Yarmand
et al. [225] synthesized water based nanofluids from 0.02 to 0.1 wt % of functionalized
graphene nanoplatelets using the two-step method at 20–40 ◦C. The functionalization
process was conducted through an acidic treatment to the graphene powder by dispersing
the as-received graphene in a 1:3 mixture of HNO3 and H2SO4, respectively. They found
that the formation of sedimentation within their as-fabricated nanofluids was minimal
throughout their 245 h test. The heat transfer coefficient improved by 19.68% compared
to the base fluid when using the 0.1 wt % nanofluid. Furthermore, Yarmand et al. [225]
concluded that the thermal property of the suspension is influenced by the temperature of
fabrication and the dispersed solid concentration. Zhang et al. [226] compared the thermal
conductivity of three ionic based nanofluids containing graphene sheets, graphite nanopar-
ticles, and SWCNTs. All three types showed enhanced thermal conductivity with a partial
increase in viscosity compared to their base fluids. Nevertheless, the nanofluid fabricated
from graphene had a higher increase in thermal conductivity compared to the other two
types of dispersions. Ghozatloo et al. [227] studied the effect of time, temperature, and
concentration on the thermal conductivity of pure and functionalized CVD graphene–water
nanofluids. The functionalizing process of graphene was conducted through an alkaline
method, and the suspensions were fabricated using sonication (i.e., the two-step approach).
Moreover, the concentration used in the production of the suspension was of 0.01–0.05
wt %, and the duration of the dispersion mechanism was 1 h. The authors found that the
nanofluids samples containing pure graphene had promptly developed clusters between
its solid content, whereas the functionalized suspensions were highly stable. Furthermore,
the effective thermal conductivity was seen to reduce to a certain extent for all nanofluids
after the time of production. In addition, the enhancement in the effective thermal con-
ductivity using functionalized graphene showed to be 13.5% (0.05 wt %) and 17% (0.03 wt
%) over 25 ◦C and 50 ◦C water, respectively. Askari et al. [46] experimentally investigated
the thermal and rheological properties of 0.1–1.0 wt % CVD nanoporous graphene–water
nanofluids along with heat transfer suspension effect on the thermal performance of a
counter-flow arranged mechanical wet tower. The base fluid used in the two-step sus-
pension fabrication was taken from one of the working cooling towers located in South
Iran to reflect a real-life case scenario. Different types of surfactants were used to stabilize
the dispersion of the as-prepared nanofluids, such as AG, Tween 80, CTAB, Triton X-100,
and Acumer Terpolymer. The authors found through analyzing the physical stability of
their nanofluids, utilizing the sedimentation capturing method and zeta potential mea-
surements, that using Tween80 as a disperser resulted in a stabilized suspension that can
last for up to two months. Furthermore, their 1.0 wt % nanofluid showed a 16% increase
in the thermal conductivity at a dispersion temperature of 45 ◦C. At the same time, the
low concentration suspensions would be appropriate for industrial applications because of
their increasing effect on the effective density and viscosity. Moreover, the as-produced
nanofluids enhanced the efficiency, cooling range, and tower characteristic compared to the
conventional base fluid. For example, using a 0.1 wt % fabricated nanofluid had resulted in
a 67% increase in the cooling range and a 19% decrease in the overall water consumption.
Goodarzi et al. [229] studied the effective thermal conductivity, specific heat capacity, and
viscosity of their as-prepared nitrogen-doped graphene–water nanofluids along with their
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convective heat transfer behavior when employed in a double-pipe type heat exchanger.
The authors used 0.025 wt % of Triton X-100, as their surfactant, along with 0.01–0.06 wt %
of graphene to prepare the suspensions using the two-step method. Their results showed
that the examined thermophysical properties where very sensitive to both temperature
and concentration. As an example, the effective thermal conductivity of their suspension
showed an increase from 0.774 to 0.942 W/m·K with the increase in temperature (from 20
to 60 ◦C). The maximum effective thermal conductivity achieved by the scholars was 37%
higher than that of the base fluid. Furthermore, they found that increasing the concentra-
tion of their nanosheets in the base fluid had caused the heat transfer coefficient of their
working fluid to improve but at the same time results in increasing the pressure drop in
the system and the pumping power requirement. Liu et al. [230] examined the effective
thermal conductivity and physical stability of their synthesized graphene oxide–water
nanofluids. Moreover, the mass fraction and temperature of the investigated samples were
1.0–4.5 mg/mL and 25–50 ◦C, respectively. The researchers found that they can achieve
a homogeneously stable nanofluid for about 3 months using their preparation process.
They also found that the effective thermal conductivity of their as-prepared nanofluid
was 25.27% higher than the base fluid, at 4.5 mg/mL mass fraction, and a temperature
of 50 ◦C. Ghozatloo et al. [228] explored the possibility of improving the convection heat
transfer behavior of a shell and tube heat exchanger, under laminar flow conditions, using
CVD graphene nanofluid of water base. The researchers also investigated the effect of
temperature and solid dispersed concentration of the mixture on the thermal conductivity
and convective heat transfer coefficients. The dispersions were prepared using 0.05, 0.075,
and 0.1 wt % of treated CVD graphene and 15 min sonication in water. According to the
authors outcomes, using 0.05, 0.075, and 0.1 wt % suspensions, at 25 ◦C, enhanced the
thermal conductivity over pure water by 15.0%, 29.2%, and 12.6%, respectively. Moreover,
the convective heat transfer coefficients of the as-produced mixtures depended on the
flow conditions in which the working fluid undergoes but were in all cases higher than
the base fluid. From the previously mentioned studies, it can be concluded that carbon-
based nanomaterials can form stabilized nanofluids, either by selecting the appropriate
base fluid–nanoscaled material matrix or through external physical and/or chemical ap-
proaches. Moreover, these suspensions have enhanced thermal properties compared to
their conventional base fluids, but the level of enhancement gets affected by parameters
such as concentration, temperature, physical stability, etc. Thus, such factors should be
carefully considered to obtain the optimum suspension thermophysical condition.

Besides the experimental studies, many researchers have developed theoretical cor-
relations to predict the effective thermal conductivity of nanofluids. Still, most of these
formulas have shown conceptual limitations towards their experimental origin. Table 4
demonstrates the developments in the effective thermal conductivity equations.

Table 4. Developments of nanofluids effective thermal conductivity formulas.

Developer/s Year Formula Dependent
Parameter Limitations

Maxwell [231] 1890

ke f f
kb f

=
knp+2kb f +2 fV (knp−kb f )
knp+2kb f− fV (knp−kb f )

;

where ke f f , kb f , and knp are the effective
thermal conductivity of the nanofluid, base
fluid thermal conductivity, and nanoparticles
thermal conductivity, respectively.

fV
Suited for spherical
shaped particles.
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Table 4. Cont.

Developer/s Year Formula Dependent
Parameter Limitations

Jefferson et al.
[232] 1958
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fV

The model is used for
spherical particles but
always underestimate the
effective thermal
conductivity by 25%.

Hamilton and
Crosser [233] 1962 ke f f

kb f
=

knp+(n−1)kb f−(n−1) fV (kb f−knp)
knp+(n−1)kb f− fV (kb f−knp)

fV and n

Preferred for spherical
and cylindrical shaped
particles with n = 3/ψ,
where n and ψ are the
empirical shape factor
and particle sphericity,
respectively. For perfectly
spherical particles ψ = 1.

Wasp et al. [234] 1977 ke f f
kb f

=
knp+2kb f−2 fV (kb f−knp)
knp+2kb f + fV (kb f−knp)

fV
Particles should have a
sphericity of ≤1.

Yu and Choi
[235] 2003

ke f f
kb f

=
knp+2kb f +2 fV (knp−kb f )(1+β)3

knp+2kb f− fV (kb f−knp)(1+β)3 ;

where β is the ratio of the nanolayer thickness
to the particle radius.

fV, interfacial
particle layer, and

radius

Modified version of the
Maxwell [231] model for
spherical particles. The
main problem is that it is
inadequate the non-linear
trend of thermal
conductivity.

Xuan et al. [236] 2003

ke f f
kb f

=

knp+2kb f−2 fV (kb f−knp)
knp+2kb f + fV (kb f−knp)

+
fV ρnp Cnp

2kb f

√
kBT
3πrc

ν;

where kB is the Boltzmann constant (1.381 ×
10−23 J/K), T is the temperature of the mixture,
rc is the particle apparent radius, and ν is the
kinematic viscosity of the liquid.

fV, ρnp, Cnp, T, rc,
and ν

Hard to predict the
thermal conductivity for
linear temperatures.

Nan et al. [237] 2003 ke f f
kb f

=
3+ fV

(
knp
kb f

)
3−2 fV

fV
Can only be used with
CNTs nanofluids.

Kumar et al.
[218] 2004

ke f f
kb f

= 1 + c 2kB T f V rm

π ν d2
np kb f

(1− f V) rnp;

- For none-spherical particles: dnp =
6Vnp
Anp

;

- For CNTs: dnp = 1.5 ab
a+( b

2 )
;

where c is a constant value from 2.9 to 3.0, rm is
the radius of the fluid medium particles, rnp is
the particles radius, dnp is the nanoparticles
mean diameter, Vnp is the volume of the
particles, Anp is the area of the particles, a is the
length of the CNT, and b is the outer diameter
of the CNT.

fV dimensions of
the particles, T, and

ν

The Brownian motion
has the dominative effect
on the thermal
conductivity prediction
over all other factors.
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Table 4. Cont.

Developer/s Year Formula Dependent
Parameter Limitations

Jang and Choi
[213] 2004

ke f f = kb f (1− f V) + knp f V +

3C1

(
db f
dnp

)
kb f f V Re2

dnp
Pr;

- Rednp =
CR.M. dnp

ν ;

- CR.M. =
kB T

3 πµdnp `b f
;

where C1 is a proportional constant, dbf is the
diameter of the base fluid molecule, Rednp is the
Reynolds number as defined above, Pr is the
Prandtl number, CR.M. is the nanoparticle
random motion velocity, and `b f is the
mean-free path of the base fluid molecule.

f V dimensions of
the particles, T, ν,

and `b f

Both conduction and
convection heat transfer
are accounted for, while
the heating duration is
much higher.

Yu and Choi
[238] 2004

ke f f
kb f

= 1 + n fVe A
1− fVe A ;

- fVe = r fV;

- A = 1
3 ∑j=a,b,c

kpj−kb f

kpj−(n−1)kb f
;

where fVe is the equivalent volume
concentration of complex ellipsoids particles, r
is the volume ratio, a, b, and c are the semi-axes
of the particle (for sphere a = b = c), A is a
parameter that reflects the equation shown
above, and kpj is the equivalent thermal
conductivity of the ellipsoids particle.

fV, n, and
interfacial
resistance

This is a renovated
Hamilton and Crosser
[233] model with n =
3/ψ−α, where α is an
empirical parameter that
depends on both particle
sphericity and the
particle to liquid thermal
conductivity ratio. In
addition, this model
includes the interface
layer between the
particles and the
surrounding liquid but
cannot predict the
nonlinear behaviour of
the thermal conductivity.

Prasher et al.
[239] 2005

ke f f
kb f

=(
1 + A′ fV Rem′ Pr0.333

)
(1+2α)+2 fV(1−α)
(1+2α)− f V(1−α)

;

- α = 2 Rb Km
dnp

;

where A′ is a constant that is independent of
the type of base fluid, m′ is a constant that
depends on the base fluid type, Re is the
Reynolds number, α is a parameter that reflects
the equation shown above, Rb is the impact of
interfacial resistance with a magnitude in the
range of 0.77 × 10−8 to 20 × 10−8 Km2 W−1,
and Km is the matrix conductivity.

fV, Rb, and dnp

Only considers the
dispersed particles
convection effect.

Xue [240] 2005 ke f f
kb f

=
1− f V+2 f V

(
knp

knp−kb f

)
ln
(

knp+kb f
2kb f

)
1− f V+2 f V

(
kb f

knp−kb f

)
ln
(

knp+kb f
2kb f

) f V
Suitable for nanofluids
made of dispersed CNTs.

Murshed et al.
[241] 2006

ke f f
kb f

=

[
1+0.27 f

4
3

V

(
knp
kb f
−1
)] 1+ 0.52 f V

1− f
1
3

V

(
knp
kb f
−1
)

1+ f
4
3

V

(
knp
kb f
−1
)  0.52 f V

1− f
1
3

V

+0.27 f
1
3

V +0.27

 f V

The particles need to be
uniformly dispersed in
the suspension for
appropriate effective
thermal conductivity
prediction.
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Table 4. Cont.

Developer/s Year Formula Dependent
Parameter Limitations

Vajjha et al.
[242] 2010

ke f f =
knp+2kb f−2(kb f−knp) f V

knp+2kb f (kb f−knp) f V
kb f + 5×

104β f V ρb f Cpb f

√
kB T

ρnp dnp
f (T, f V);

- f (T, f V) =(
2.8217× 10−2 f V + 3.917× 10−3)( T

To

)
+(

−3.0669× 10−2 f V − 3.91123× 10−3);
where β is the fraction of the liquid volume that
moves with the particle, f (T, fV) is a function
that depends on the fluid temperature and
particles concentration as defined above, and To
is a reference temperature that equals 273 K

f V, particles type,
and base fluid
temperature

Limited to nanofluids of
temperatures between
295 and 363 K.

Xing et al. [243] 2016

ke f f =

1 + η′ f V
3kb f
η′kc

33
+3H( η′P)

kb f +

0.5 f V ρCNT CpCNT

√
kB T

3 π µ rm
;

- η′ =
[(

2× 108)a2 − 13.395 a + 0.2533
]

fV
−(6988.1 a+0.1962) ;

- H =
1

P2−1

[
P√

P2−1
ln
(

P +
√

P2 − 1
)
− 1
]
;

- P = a
b ;

- kc
33 =

knp

1+
2Rk knp

a

;

where η′ is the modified straightness ratio, H is
a factor reflected by the equation defined above,
P is the CNT length to diameter ratio, kc

33 is the
equivalent thermal conductivity of the CNT
along the longitudinal axes, Rk is the Kaptiza
radius and is equal to 8 × 10−8 m2 K/W, µ is
the dynamic viscosity, ρCNT is the density of
the CNT, and is the CpCNT specific heat capacity
of the CNT.

fV, T, and aspect
ratio

Can only be used for
CNTs suspensions.
Furthermore, not all of
the parameters are
accounted in the
correlation, while the
effect of the
micro-motion is the most
significant parameter.

Gao et al. [244] 2018

ke f f
kb f

=
3+η2 f V[

kb f

(
2 Rb

L +13.4
√

t
)]

(3−η f V)
;

where L is the length of the nanoplatelet, t is the
nanoplatelet thickness, and η is the average
flatness ratio of the graphene nanoplatelet.

f V, L, t, Rb, and η.

This model is designed
for suspensions of water,
as the base fluid, and
graphene nanoplatelet.

Li et al. [245] 2019

ke f f
kb f

=
kpe+2kb f +2(kpe−kb f )

(
1− tnl

rnp

)3
f V

kpe+2kb f−(kpe−kb f )
(

1− tnl
rnp

)3
f V

;

where kpe is the equivalent particle thermal
conductivity, and tnl is the thickness of the
nanolayer surrounding the particle.

fV, tnl , rnp, and
fluid temperature

This model is a modified
form of the Yu and Choi
model with the
nanolayer constant value
changed to quadratic.
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Table 4. Cont.

Developer/s Year Formula Dependent
Parameter Limitations

Jóźwiak et al.
[246] 2020

ke f f
kb f

=

ω f V(knp−ωkb f )(γ2
1−γ2+1)+(knp+ωkb f )γ2

1[ f Vγ2(ω−1)+1]
γ2

1(knp+ωkb f )−(knp−ωkb f ) f V (γ2
1+γ2−1)

;

- ω = k IN
kb f

;

- γ = 1 + tnl
rCNT

;

- γ1 = 1 + tnl
2rCNT

;

whereω, γ, γ1 are factors representing the
equations shown above, kIN is the interfacial
nanolayer thermal conductivity, and rCNT is the
radius of a single CNT.

f V, and particles
morphology

This is a modified
version of the Murshed
et al. [241] model, which
is suitable for ionic liquid
nanofluids (also known
as ionanofluids) with
dispersed CNTs.

5.2. Effective Viscosity

The effective viscosity of nanofluids is part of the chain that determines the applica-
bility of using such a category of suspensions in heat transfer applications. Since it is a
transport property directly related to the dynamic performance of the heat transfer system,
where an increase in colloidal viscosity would lead to an increase in the friction coefficient
and thus a raise in the pressure losses in the system. The heat transfer system then com-
pensates for this pressure difference by increasing the pumping power, and accordingly,
more electrical power gets consumed. For such a reason, many research studies have
been devoted to investigating the link between the nanofluids effective viscosity and the
different parameters associated with the suspension, such as nanoparticles shape, size,
concentration, dispersion stability, and mixture temperature [247–256]. Mena et al. [257]
suggested that nanofluids fabricated with nanoparticles concentration of up to 13 vol. %
behaves as Newtonian fluids (i.e., their viscosity is independent of shear strain). In addi-
tion, many researchers proved that the stability of nanofluids has an inverse relationship
with their effective viscosity. Meaning that well-dispersed suspensions tend to have lower
effective viscosity than those of poor stability [202,258–260]. If the viscosity of a shelved
nanofluid was to be categorized according to its stability condition, then there would exist
one to three different viscosity regions. To be more precise, a well-dispersed suspension
would roughly have a uniform viscosity along its column, while three different viscosity
regions would exist in the semi-stable case, and two different viscosity regions would form
in the unstable separation scenario. Figure 17 demonstrates the three stability cases with
their different viscosity regions. As for the nanofluid in its dynamic form, these viscosity
regions would most likely still exist within the suspension while flowing in the hosting
system. Knowing this, one can explain why the unstable suspension would require higher
pumping power compared to the stable form of the same dispersion. To calculate the
percentage of viscosity increase that the dispersed particles cause to the base fluids, the
following equation can be used [154]:

Viscosity increase (%) =

(
µe f f

µb f
− 1

)
× 100 (10)

where µe f f and µb f are the effective viscosities of the nanofluid and the base fluid, re-
spectively. Furthermore, the most common and widely used approach for determining
nanofluids viscosity is via the rotational viscosity measurement method [261]. In this
method, a shaft is inserted in the sample, after which the rotational speed and the torque
per unit length of the shaft are used to determine the viscosity of the nanofluid. Other
measuring techniques are also used, such as the capillary viscometer, concentric cylinder
viscometer, rheonuclear magnetic resonance, and rheoscope [262–264]. To be noted that,
according to Prasher et al. [265], in order for a nanofluid to improve the performance of its
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hosting thermal application, the increase in effective viscosity should not exceed four times
the mixture enhanced effective thermal conductivity, otherwise the working fluid would
not serve the hosting system in terms of overall performance. This can be theoretically
calculated through the following equations [266]:(

µe f f
µb f

)
− 1( ke f f

kb f

)
− 1

< 4 (11)Nanomaterials 2021, 11, x FOR PEER REVIEW 33 of 79 
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In another study, Akhavan-Zanjani et al. [267] investigated the thermal conductivity
and viscosity of nanofluids made of graphene, water, and polyvinyl alcohol (PVA) surfac-
tant. The wt % used were of 0.005–0.02% and the mass ratio of the PVA employed was
3:1. The authors found a significant increase in the as-prepared fluid thermal conductivity
with a moderate raise in the viscosity. The highest recorded percentages for the thermal
conductivity and viscosity were 10.30% and 4.95%, respectively. Iranmanesh et al. [268]
analyzed the effect of two preparation parameters, namely; the concentration and tempera-
ture, on aqueous graphene nanosheets nanofluids thermal conductivity and viscosity. They
used 0.075–0.1 wt % to fabricate their nanofluids using the two-step method at 20–60 ◦C.
The findings indicated that the wt % used had a clear effect on the viscosity and thermal
conductivity on the prepared dispersion. Moreover, the temperature, as a parameter, was
seen to have a larger influence on the level of the final product viscosity compared to the
added solid concentration. Although the study avoided any employment of surfactants,
the authors as-prepared suspension was stable for several days. Such an observation is not
new and was also reported by other researchers, such as Mehrali et al. [159], where they
successfully fabricated stabilized nanofluids made of the graphene–water mixture without
the need for surfactants or graphene functionalization, but these are rare cases because of
the attraction nature between the head groups of both particles and the base fluid molecules.
Ghazatloo et al. [269] have developed a model that can predict the effective viscosity of
CVD graphene–water and CVD graphene–EG nanofluids at ambient temperature. They
used experimental measurements of the property and employed a commonly used model
to form their correlation. Moreover, the researchers used 0.5–1.5 vol % of 60 nm graphene
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sheets with two separate base fluids (i.e., water and EG), after which the content was
subjected to sonication for 45 min. For their water based nanofluids, a volume ratio of
1.5:1 of SDBS surfactant to solid content was used to physical stabilize the dispersion. The
outcome of their research indicated that the effective viscosity remarkably increased with
the raise of vol. %, and hence the concentration as a parameter had a significant effect on
the property. Furthermore, the Batchelor model [270] showed some deviation from the
experimental data of the as-prepared suspensions viscosity. This variation in results were
reduced by the newly developed model, which, unlike the previous model, considered the
solid additive geometry. The comparison between the authors model, Batchelor model,
and experimental results is demonstrated in Figure 18.
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Figure 18. Comparison between the Ghazatloo et al. [269] model, Batchelor [270] model, and
experimental effective viscosity, where (a) shows the results for graphene–water nanofluid of 0.5
vol. % (G/W-1), 1.0 vol. % (G/W-2), and 1.5 vol. % (G/W-3), and (b) illustrates the values for
graphene–EG suspensions of 0.5 vol. % (G/EG-1), 1.0 vol. % (G/EG-2), and 1.5 vol. % (G/EG-3).
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On the other hand, in terms of the effective viscosity theoretical models developments,
Table 5 lists these correlations with their year of development, dependent parameters, and
limitations. From the formulas shown in Table 5, it can be concluded that most of the
authors have used specific experimental conditions to come up with their correlations, and
hence the majority of the models are limited to their operating conditions (i.e., they cannot
be accounted as universal models).

Table 5. Developments of nanofluids effective viscosity formulas.

Developer/s Year Formula Dependent Parameter Limitations

Einstein [271] 1906 µe f f = µb f (1 + 2.5 fV) fV

Suited for suspensions of <0.02
vol. % and spherical shaped
particles.

Hatschek [272] 1913 µe f f = µb f (1 + 2.5 fV) fV

Designed for suspensions with
up to 40 vol. % of spherical
particles but does not account for
the size of the dispersed particle.
The formula also showed very
large deviation from the actual
viscosity value.

Saitô [273] 1950 µe f f = µb f

(
1 + 1.25 fV

1− fV
0.87

)
fV

Preferred for dispersions of
small spherical particles and is
affected by the Brownian motion
of the particles.

Mooney [274] 1951 µe f f = µb f exp
(

2.5 fV
1−CF fV

)
;

where CF is the self-crowding factor.
fV, and CF

This is an extended version of
the Einstein’s [271] formula that
can be used for suspensions of
spherical particles with any
concentration. The downside is
that the modeled suspension
needs to meet the functional
equation so that the µe f f can be
independent of the stepwise
sequence of adding further
particles concentrations.

Brinkman [275] 1952 µe f f = µb f (1− fV)
−2.5 fV

Enhanced form of the previous
Einstein [271] formula, where it
can be used for particles
concentrations of up to 4 vol. %.

Roscoe [276] 1952

µe f f = µb f (1− S fV)
S′ ;

where S is a constant that is equal to 1
(for very diverse particles sizes), −2.5
(for similar particles sizes and <0.05
vol. %), and 1.35 (for higher vol. %);
and S′ is a constant that is equal to
−2.5 (for the very diverse particles
sizes case and the >0.05 vol. %
suspension) and 1 (for the <0.05 vol. %
of similar sized particles).

fV

Can be used with any dispersion
concentration but the particles
need to be of spherical shape.

Maron and
Pierce [277] 1956

µe f f = µb f

(
1− fV

fp

)−2
;

where fp is the packing fraction of the
particles.

fV, and fp

Suitable for suspensions of small
spherical particles and of similar
sizes.
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Table 5. Cont.

Developer/s Year Formula Dependent Parameter Limitations

Krieger and
Dougherty [278] 1959 µe f f = µb f

(
1− fV

fp

)−2.5 f p ; fV, and fp

For dispersed spherical particles
of ≤0.2 vol. %, but the model
does not account for the
particle’s interfacial layers and
their aggregation.

Frankel and
Acrivos [279] 1967

µe f f = µb f

(
9
8

) (
fV
fm

) 1
3

1−
(

fV
fm

) 1
3

;

where fm is the maximum attainable
concentration.

fV

Employed for uniform spherical
particles and assumes that the
rise in viscosity with the increase
in particles concentration is due
to their hydrodynamic
interactions.

Nielson [280] 1970 µe f f = µb f exp
(

fV
1− fp

)
fV, and fp

This is a modified form of the
Einstein’s [271] formula but it
lacks accurate suspension
viscosity prediction.

Brenner and
Condiff [281] 1974
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particles concentrations are 
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Kitano et al. 
[284] 1981 μ =  μ 1 − ƒƒ ƒ , and ƒ Similar to the Maron and 

Pierce [277] formula but the ƒ
value is preliminarily defined 
numerically and is better suited
for two phase mixtures. 

Bicerano et 
al. [285] 

1999 
μ =  μ 1 +  ƒ + ƒ  ; 
where  is the intrinsic viscosity, and  is the 
Huggins coefficient. 

ƒ , , 
and 

More determined towards 
analyzing the relation between 
particles concentration andμ . 

Wang et al. 
[286]  1999 μ =  μ 1 + 7.3 ƒ + 123 ƒ   ƒ

Simple model that was formed 
from a set of experimental 
results obtained from 
modifying the suspension 
particles size and 
concentration.

Masoumi et 
al. [248] 2009 μ =  μ + 72  . 12 182 2 ; ƒ , T, , 

particle
size, and

The formula is bound by the 
experimental conditions that 
were used in its development. 

where s is the axis aspect ratio of the
dispersed particle.

f V, aspect ratio, and
shear rate

Shows good prediction
capability for dispersed particles
of rod shape but less effective for
other shapes.

Jeffrey and
Acrivos [282] 1976 µe f f = µb f

[
3 + 4

3

(
s2 fV
ln π

fV

)]
f V, and aspect ratio Designed for suspensions of

rod-shaped particles.

Batchelor [270] 1977 µe f f = µb f
(
1 + 2.5 fV + 6.2 fV

2) f V, and Brownian
motion

The model includes the
interaction between the particles
but fails to provide good
prediction agreement.

Graham [283] 1981
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particle
size, and
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were used in its development. 

where h is the minimum separation
distance between the surface of two
spherical particles.

f V, dnp, and h

Suitable for spherical particles
only and has good prediction
agreement with Einstein [271]
formula when very low particles
concentrations are used or when
µe f f is very close to that of µb f .

Kitano et al.
[284] 1981 µe f f = µb f

(
1− fV

fp

)−2 fV, and fp

Similar to the Maron and Pierce
[277] formula but the fp value is
preliminarily defined
numerically and is better suited
for two phase mixtures.

Bicerano et al.
[285] 1999

µe f f = µb f
(
1 + [η] f V + kH fV

2);
where [η] is the intrinsic viscosity, and
kH is the Huggins coefficient.

f V, [η], and kH

More determined towards
analyzing the relation between
particles concentration and µe f f .

Wang et al.
[286] 1999 µe f f = µb f

(
1 + 7.3 f V + 123 fV

2) f V

Simple model that was formed
from a set of experimental
results obtained from modifying
the suspension particles size and
concentration.
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Table 5. Cont.

Developer/s Year Formula Dependent Parameter Limitations

Masoumi et al.
[248] 2009

µe f f =

µb f +
ρnp

72δ Fun.

(
1

2rnp

√
18kBT

2πρnprnp

)(
2rnp

2);
- δ = 2rnp

(
3
√

π
6 f V

)
;

where δ is the distance between the
particles, and Fun. is a correction
function.

f V, T, ρnp, particle size,
and Brownian motion

The formula is bound by the
experimental conditions that
were used in its development.

Chevalier et al.
[250] 2009

µe f f = µb f

[
1− fV

fp

(
Da

2rnp

)3−d f
]−2

;

where Da is the average diameter of
the aggregates, and d f is the fractal
dimension, which depends on the
shape of the dispersed particles, the
type of agglomeration, and the shear
flow. fp and Da are usually set to 0.65,
for random packing of spheres, and
1.8, respectively.

fV, fp, rnp, and d f

This model depends on the
agglomerate size, and thus it is
not optimum for determining
the µe f f for stabile suspensions.

Chandrasekar
et al. [190] 2010

µe f f = 1− Coe f .1
(

fV
1− fV

)Coe f .2
;

where Coe f .1 and Coe f .2 are
regression coefficients that can be
obtained from preliminary
experimental results.

Specific area, ρnp, ρn f ,
and sphericity of the

particles

Depends on preliminary
experimental results to set-up
the unknown coefficients.

Bobbo et al.
[287] 2012

µe f f =

µb f
(
1 + Coe f .1 f V + Coe f .2 fV

2) f V, and rnp

Developed for single-walled
carbon nanohorn (SWCNH) and
TiO2 nanofluids based on the
Batchelor formula and
experimental measurements of
the µe f f at a range of
temperatures from 283.2 to 353.2
K, and concentrations from 0.01
to 1 wt %.

Esfe et al. [288] 2014 µe f f =
µb f (1.1296 + 38.158 f V − 0.0017357 T) f V, and T

Limited for water based
MWCNTs nanofluids of 0–1 vol.
%.

Aberoumand
et al. [289] 2016

µe f f = µb f (1.15 + 1.061 f V
−0.5442 fV

2 + 0.1181 fV
3)

f V
Used for low temperature oil
based suspensions.

Akbari et al.
[290] 2017
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Suitable for nanofluids of < 3 
vol. % and of temperature ≤
50 °C. 

Esfe et al. 
[291] 

2019 μ = 6.35 + 2.56 ƒ − 0.24 − 0.068 ƒ + 0.905 ƒ+ 0.0027 T ƒ , and T 

Suitable for MWCNTs and 
TiO2 hybrid nanofluids of ƒ between 0.05 and 0.85 
vol. %. 

Ansón-
Casaos et al. 

[292] 
2020 

μ =  μ 1 − χ2 ƒ ; 
where χ is equal to 2.5 for spherical particles or can be
replaced by a function, , to determine the 
suspension property containing 1D and 2D dispersed 
solids.  

 ƒ , and χ 
Suitable for SWCNTs and 
graphene oxide. 

Ilyas et al. 
[154] 

2020 

μ =  μ  exp .− . + . ƒ  exp .− . ƒ ; 
where . , . , and . are the temperature fitting 
parameters in Kelvin, whereas .  and .  are the 
dynamic viscosity fitting parameters in Pa.s. The values 

 ƒ ,   
and

Suitable for ND dispersed in 
thermal oil and is valid for the 
range of 0 ≤ ƒ ≤ 1 and 298.65 ≤T (K) ≤ 338.15.

f V, and T Suitable for nanofluids of <3 vol.
% and of temperature ≤50 ◦C.

Esfe et al. [291] 2019
µe f f = 6.35 + 2.56 fV − 0.24 T −
0.068 T fV + 0.905 fV

2 + 0.0027 T2 f V, and T
Suitable for MWCNTs and TiO2
hybrid nanofluids of f V
between 0.05 and 0.85 vol. %.
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Table 5. Cont.

Developer/s Year Formula Dependent Parameter Limitations

Ansón-Casaos
et al. [292] 2020

µe f f = µb f
(
1− χ

2 fV
)−2;

where χ is equal to 2.5 for spherical
particles or can be replaced by a
function, f

(
rnp
)
, to determine the

suspension property containing 1D
and 2D dispersed solids.

f V, and χ Suitable for SWCNTs and
graphene oxide.

Ilyas et al. [154] 2020

µe f f = µb f exp
(

FP.1
T−FP.2

)
+

FP.3 fV exp
(

FP.4
T

)
− FP.5 fV

2;
where FP.1, FP.2, and FP.4 are the
temperature fitting parameters in
Kelvin, whereas FP.3 and FP.5 are the
dynamic viscosity fitting parameters
in Pa.s. The values of these
parameters (i.e., FP.1 to FP.5) can be
found in the published source.

f V, FP and T

Suitable for ND dispersed in
thermal oil and is valid for the
range of 0 ≤ fV ≤ 1 and 298.65
≤ T (K) ≤ 338.15.

6. Thermal Applications

The previous sections showed how dispersing carbon-based nanomaterials in conven-
tional working fluids could positively affect these liquids properties, especially when it
comes to their overall thermal conductivity. On the contrary, this section concentrates on uti-
lizing carbon-based suspensions in three heat and mass transfer systems widely used in the
energy sector, namely, PTSCs, nuclear reactors systems, and AC&R systems. This is because
the previous attempts that many researchers undertook to enhance the performance of these
systems were mainly through design modifications, such as adding turbulators, geometric
and construction materials variations, and surface alterations. However, these techniques
have reached a point where limited enhancements can be accomplished. Therefore, to
break these boundaries for further progress, some scientists have proposed exchanging
the working fluids of these thermal applications with nanofluids [293]. This is because
employing a working fluid that possesses higher thermal conductivity would eventually
improve the heat transfer rate in these systems, as will be demonstrated next.

6.1. Parabolic Trough Solar Collectors

A PTSC is part of the existing energy solar systems that utilizes solar radiation (usually
emitted from the sun) to generate thermal energy with high efficiency [294]. This happens
when reflecting concentrated incident sunlight from its reflector surface, which consists of
a parabolically curved mirror polished metal, to a focal line where the receiver or absorber
tube containing the working fluid is located. The lower temperature heat transfer fluid,
which is usually water or oil, then absorbs the solar heat flux from the attached inner
tube surface, and thus causes its temperature to raise. Figure 19 shows an example of
a real life PTSC system and its working mechanism in a schematic diagram. Based on
the system configuration and the application used, the working fluid temperature in a
PTSC can exceed 500 ◦C at concentrated solar power plants (CSPP), for steam power
cycles; or can be lower than 100 ◦C, for industrial process heat (IPH) applications, such as
domestic and industrial water heating [295]. Examples of low temperature requirements
(i.e., temperature starting from ≤100 ◦C) for different industrial processes are shown in
Table 6 [296]. Most of the modern designs of PTSC contain a sunlight tracking system that
helps improve the efficiency of these systems [297].
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Figure 19. Example of a parabolic trough solar collector system, where (a) shows the physical device, (b) illustrates its
schematic diagram, and (c) demonstrates the reflection mechanism of solar radiation on the absorber tube [298].

Table 6. Examples of different industrial processes that utilize parabolic trough solar collector systems and their temperature
requirements.

Industry Process Required Temperature Range (◦C)

Dairy Boiler feed water 60–90
Agricultural products Drying 80–200

Textile Drying 100–130
Chemistry Petroleum 100–150

Desalinization Heat transfer fluid 100–250

Since the primary goals in industrial applications are to reduce the processing time,
increase the lifetime of the equipment, and decrease the amount of energy consumption,
using PTSC systems, these goals can be fulfilled through improving the rate of heat
transfer between the absorber tube and the working fluid. One way of achieving this
is by utilizing nanofluids as the heat transfer fluid in the PTSC system [299,300]. This is
because, as mentioned earlier, nanofluids have higher thermal conductivity than any known
conventional heat transfer fluid, which makes them potential candidates for the future
of such heat transfer applications. When using carbon-based particles (e.g., MWCNTs,
graphene, or NDs), the effective thermal conductivity significantly increases along with
the rate of thermal diffusion and effective viscosity of the suspension. Subsequently, this
causes the fluid heat capacity, Reynold’s number (Re), and Prandtl number (Pr) to decrease.
In the case of turbulent flow, the Nusselt number (Nu) depends on both Re and Pr. Thus,
a decrease in the two aforementioned parameters would result in fewer or smaller eddy
formations within the fluid, and hence the level of turbulently in the flow would reduce.
Furthermore, since the effective viscosity of a nanofluid is higher than its base fluid, the
pressure drop that will be experienced from using such category of fluids in a PTSC system
would be higher than that of the conventional base fluids. To overcome this issue, the
PTSC system should take into account the thermophysical properties of the suspension
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used at its design phase. One important thing to consider is that when using nanofluids, as
the PTSC working fluid, the absorber tube needs to be transparent so that the dispersed
particles can directly absorb the sunlight throughout their cycle [301].

Although the previous facts showed how promising nanofluids could be when used
in PTSC systems, the scientific field is still scarce with the amount of published works
that investigate carbon-based nanofluids in such system. Most of the work covered on
nanofluids were those involving nanoparticles of Al2O3, CuO, TiO2, Fe2O3, SiO2, Cu, SiC,
Fe3O4, and limited other literature were found for CNTs, MWCNTs, and SWCNTs [298]. For
instance, Kasaeian et al. [302] explored the overall efficiency enhancement of a pilot PTSC
system using MWCNTs–mineral oil suspensions of 0.1 wt % and 0.3 wt %. The researchers
found that the 0.1 wt % and 0.3 wt % dispersions had improved the system efficiency
by 4–5% and 5–7%, respectively, compared to conventional base fluid (i.e., mineral oil).
Furthermore, Kasaeian et al. [303] studied the effect of 0.1, 0.2, and 0.3 vol. % of MWCNTs
dispersed in EG, as the working fluid, for a direct absorber solar collector attached to a
parabolic trough. They found that the optical efficiency reached up to 71.4%, due to the
0.3 vol. % of MWCNTs particles employed in their heat transfer fluid. In addition, the
thermal efficiency of their system was found to be 17% higher, when using the 0.3 vol. %
nanofluid, than that obtained from pure EG. Moreover, Mwesigye et al. [304] coupled a
Monte Carlo ray tracing (MCRT) optical model along with a computational fluid dynamics
(CFD) finite volume method (FVM)-based model to analyze a PTSC, hosting a SWCNTs–
Therminon VP-1 suspension, thermal performance. The authors found that raising the
particles concentration from 0 to 2.5 vol. % caused the entropy generation to reduce by
70%, with the heat transfer rate to increase by 234%, and the thermal efficiency of the
system to improve by 4.4%. In addition, Dugaria et al. [305] designed and modeled the
optical efficiency of a direct absorber solar collector (DASC) that is connected to a parabolic
trough system. In their experiment, they used 0.006, 0.01, 0.02, and 0.05 g/L of SWCNTs to
fabricate their aqueous nanofluids. Their results showed that increasing the nanoparticles
concentration to more than 0.05 g/L would cause the thermal efficiency to reduce due to
the thermal radiation being mostly contained in the surrounding area between the absorber
tube inner surface and the nanofluid. In addition, using nanofluids made of 0.05 g/L
SWCNTs caused the thermal efficiency of the system, including the optical losses of the
concentrating trough, to reach 90.6% at a reduced temperature range (T∗m) = 0 K·m2/W
and 77.2% at T∗m = 0.128 K·m2/W. It is important to note that the thermal efficiency of solar
collectors is usually shown in a graph as a function of T∗m, which is defined for the case of
nanofluids as:

T∗m =

(
Tmn f − Tamb

)
DNI

(12)

where Tmn f , Tamb, and DNI are the mean temperature of the nanofluid, ambient air temper-
ature, and direct normal irradiance, respectively. One of the main aspects for the enhance-
ment in the thermal performance of the two aforementioned published works [304,305] was
due to the fact that CNTs, along with other carbon-based materials, possessed extremely
high solar absorption characteristics (i.e., more than 90%) [306]. Despite the research investi-
gations that were covered in this section on carbon-based nanofluids usage in PTSC’s, there
are only a few other alternatives [298]. To the best of the authors of this article knowledge,
there is still a lack of exploration on utilizing ND’s and graphene nanofluids for PTSC’s.
This shows that further investigation is required from the researchers working in the so-
lar energy field; especially since, for example, nanofluids of ND base showed to contain
remarkable optical and thermal properties when studied in other similar applications [307].

6.2. Nuclear Reactors

Nuclear power plants are part of the energy network that has been adopted by many
countries across the globe, such as France, USA, UK, Russia, Iran, and UAE, among others
to support their growth in energy demands [308]. Unlike most energy sources, the power
produced from the fission process of the fuel (i.e., enriched uranium or plutonium) within
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the nuclear reactor can arguably be considered as one of the solutions for solving the
problems associated with climate change and the increasing levels of CO2 emissions in the
atmosphere and its feasibility for none or low oil producing countries [309]. Nuclear tech-
nology has seen significant developments throughout the years to enhance the efficiency of
these systems, reduce their construction size, and improve their safety standards [310,311].
Historically, the first generation of commercial nuclear reactors were inaugurated in the
1950s, whereas today, the newly introduced fourth generation of reactors are currently
being either planned or under construction. In terms of the working fluid, these reactors
can be classified into three main groups (i.e., water-cooled reactors (WCRs), gas-cooled
reactors (GCRs), and molten solid cooled reactors (MSR)) [312]. The WCRs can be subdi-
vided into further categories, namely, boiling water reactors (BWRs), pressurized water
reactors (PWRs), and pressurized heavy water reactors (PHWRs). Furthermore, the thermal
transport concept of the BWR and both PWR and PHWR is similar in the sense that the
working fluid, in all cases, absorbs the thermal energy from the fuel when it undergoes
an excited state. However, the main difference is that PWR and PHWR use pressurizing
systems to maintain the working fluid in its liquid phase, and therefore must be separated
from the electrical generating cycle for contamination safety concerns. On the other hand,
the working fluid in the BWR is boiled to generate steam that is used directly to provide
the needed mechanical power to rotate the steam turbine and generate electricity. In addi-
tion to being a thermal energy carrier for power generating purposes, the working fluid
also takes the role of extracting heat from the nuclear fuel, which is primarily the main
concern related to the safe and economic operation and lifespan of the reactor. In some
cases where the cooling rate is insufficient or if the control rods fail to operate properly
to stabilize or reduce the reaction process, the reactor can experience a loss-of-coolant
accident (LOCA) [313]. In such scenarios, the nuclear fuel needs to be rapidly cooled
down, using backup water tanks, to avoid a core meltdown crisis and possibly a hydrogen
explosion in the chamber. From the aforementioned, one can generalize the modes of heat
transfer inside the rector’s core based on the driving force of the fluid motion into two
main categories; the first is flow boiling, which is a forced convection phenomenon that
occurs during normal operating conditions. The second is pool boiling, which is a natural
convection heat mechanism that takes place following a reactor LOCA state. Enhancing the
heat transfer coefficient (HTC) and critical heat flux (CHF), for flow boiling, or increasing
the minimum film boiling temperature (Tmin) in pool boiling are essential for optimizing
these thermal modes outcomes. Whether it comes to improving the energy efficiency or for
safety reasons, the aforementioned shows how crucial the role of the working fluid in a
nuclear reactor system. Therefore, utilizing working fluids of enhanced thermophysical
properties, such as nanofluids, can help in further advancements in the field of nuclear
power plants, especially in WCR systems, if properly handled and understood its role in
both nuclear flow boiling and pool boiling [314]. This section demonstrates some of the
available studies on nanofluids for both thermal modes (i.e., flow and pool boiling), but
focuses more on the pool boiling mode due to its important role in designing an emergency
core cooling system.

6.2.1. Nanofluids Influence on Flow Boiling

During the normal operating condition, the thermal efficiency of a reactor system
depends mainly on the flow boiling of the working fluid, where the working fluid is forced
to flow by means of a pump and buoyancy effects. Flow boiling consists of several flow
regimes [315] such as liquid single-phase flow, bubbly flow, slug flow, annular flow, mist
flow, and vapor single-phase flow, as shown in Figure 20. The existence of each regime is
affected by several factors such as the type of working fluid, surface orientation, degrees of
liquid subcooling, system pressure, wall temperature, mass flux, surface microstructure
(including porosity), wettability, oxidation, and surface roughness [316,317]. Moreover,
this mode of thermal transport can remarkably improve the energy efficiency of the system
when the HTC and CHF of the working fluid are enhanced [318,319]. Researchers through
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their intensive studies, have shown that a passive and a safe approach to achieve higher
HTC and CHF can be accomplished using nanofluids in the system [320]. The level of
enhancement that accompanies the utilization of nanofluids over their other conventional
counterparts is tuned by altering nanoparticle morphology (i.e., shape and size), ther-
mophysical properties and different flow parameters (i.e., mass flow rate, channel size,
flow direction, and flow regime) [321,322]. Published reports described that nanofluids of
enhanced thermal conductivities also showed better convective flow performance [319,323].
Carbon allotropes based nanofluids have higher thermal conductivities compared to the
metallic and oxide based nanofluids [324–326]. Therefore, nuclear scientists have already
started to investigate the flow boiling performance of various carbon-based nanofluids.
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Some of the work done on carbon-based nanofluids in flow boiling includes the re-
search conducted by Hashemi and Noie [328]. They experimentally used MWCNTs–water
suspensions produced through the two-step fabrication method and stabilized by adding
the AG surfactant, of the 1:1 surfactant to the nanomaterial ratio, to the mixture. The
MWCNT used had a 10–20 nm outer diameter and 30 µm length, and base fluid concen-
trations between 0.0005 and 0.005 vol. %. Furthermore, the stability of their dispersions
was determined through the zeta potential method, and the testing section consisted of a
horizontal stainless steel (SS) tube of 10 mm (diameter) and 200 cm (length). Their findings
showed that the HTC of the as-prepared nanofluids was significantly higher than the base
fluid, and that the enhancement in the HTC for both types of fluids was influenced by the
changes in heat and mass fluxes. In addition, the CHF in the nanofluids case showed a
maximum improvement over pure water by approximately 4.3%, when using the 0.005
vol. % suspensions. The same research group [329] also presented the feasibility of AG
stabilized MWCTs–water nanofluids at various concentrations (0.001, 0.005, and 0.01 wt %)
for flow boiling inside a 2 m long tube placed horizontally under atmospheric condition.
The zeta potential analysis of test samples confirmed the well dispersion of nanoparticles in
base fluid. Their report describes that CHF of nanoparticles increased significantly due to
particle inclusion as well as the increase in mass flux. The CHF enhancement was observed
better than water due to nanoparticle deposition and enhancement in wettability of the
heating surface. Another flow boiling study under forced convective and nucleate boiling
regions using CNTs nanofluid was conducted by Sarafraz and Abad [323]. Their work
was performed using statistical, regression and experimental analyses for commercial heat
transfer oil based CNTs nanofluids. The nanofluids were prepared by dispersing 0.1 wt
% and 0.3 wt % of the dry powder in therminol 66 for a total duration of 25 min, using a
two-step procedure (magnetic stirring 15 min then sonication 10 min). The stability of the
suspensions was achieved by adding nonylphenol ethoxylates surfactant of 0.1 vol. % to
the mixture matrix, after which the zeta potential of the prepared samples was measured.
The results showed that the stability of the prepared nanofluids was maintained for 5 days.
Additionally, the presence of carbon nanotube within the oil increased the convective
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HTC together with a substantial augmentation in the nucleate boiling HTC. The degree
of subcooling also increased the HTC in both boiling regions due to enhancements in
thermophysical properties of nanofluids. Furthermore, the thermal the thermo-hydraulic
performance of the system enhanced by 56% using the carbon nanotube nanofluid com-
pared to the same with pure oil. Sarafraz and Hormozi [330] experimentally investigated
flow boiling heat transfer in MWCNT, alumina, and copper oxide flow. Different tech-
niques were implemented for stabilizing based on the type of the dispersed nanomaterial.
The results showed that MWCNT–water nanofluids had higher thermal conductivity and
boiling thermal performance compared to the other suspensions. It was also found that,
as the heat and mass fluxes and the concentration of nanofluids increased, the boiling
performance of MWCNT nanofluids intensified. However, the HTC was deteriorated in
force convection and nucleate boiling regimes due to the deposition of the nanoparticle on
the surface. As a result, the surface roughness decreased over the time since it is affected
by the size of nanoparticles, thickness of deposited layer and size of microcavities. This
was confirmed by the minimal amount of bubble generation due to reduction in nucleation
sites and surface roughness. The researchers finally concluded that the MWCNT–water
nanofluids outperformed the other candidates for utilization in cooling applications.

Other studies have found that addition of graphene oxide (GO) into base fluid improve
the CHF in flow boiling due to its hydrophilicity feature [331,332]. Lee et al. [331] examined
0.01 vol. % of GO–water nanofluid in round tubes with a length of 0.5 m and an inner
diameter of 0.01041 m at two inlet temperatures (25 and 50 ◦C) and four different mass
fluxes (100, 150, 200, and 250 kg/m2·s) for low pressure and low flow scenarios. Comparing
to other oxide nanofluids from the literature [333], the research group showed maximum
CHF enhancements at mass flux of 250 kg/m2·s increased up to 100% and 72% at fixed
temperatures of 25 ◦C and 50 ◦C, respectively. This significant improvement was due to the
liquid film’s wettability enhancement caused by the deposition of GO nanoparticles. How-
ever, Park and Bang [332] reported limited improvement in CHF of up to 20% when testing
GO–water nanofluid in advanced light water reactors (ALWRs) at 50 and 100 kg/m2.s
and subcooling condition of 10 K compared to distilled water. The results showed that
GO deposited on the heated surface and changed phase to reduced GO (RGO) during
nucleate flow boiling, which might constrain the thermal activity improvement. Zhang
et al. [334] examined the deposition of GO in water nanofluids over heating surface with
nanoparticle concentration ranging from 0 to 0.05 wt %. They reported that the increase in
GO concentration depreciated the heat transfer performances (CHF and HTC) up to 100%
and 73% (at 0.05 wt % with 40 mL/min), respectively. In another study, Mohammed [335]
varied graphene particle concentration from 0 to 0.5 vol. % in zinc bromide and acetone
solution (acetone–ZnBr2).The CHF and HTC on the heated surface increased with GO
concentration by up to approximately 52% and 58%, respectively. However, the increase in
particle concentration involved a decrease in pressure drop up to 11% approximately.

In terms of nanofluids containing NDs, there were a limited amount of literature
covering this topic [336–338]. For instance, DolatiAsl et al. [338] proposed a mathematical
model using Kim et al. [336] results to estimate the different parameters that were affecting
the CHF when utilizing ND suspensions. Their correlation only required the properties of
the nanomaterial and the vol. % employed to predict the CHF. Furthermore, the numerical
findings showed that the most effecting parameters on the CHF were the length of the
tube (decreasing) and the mass flux (increasing), whereas the particles concentration and
thermal conductivity had the lowest influence. They extended the work by developing
another correlation that contains the particles property data, and thus only required an
input of the type of the particles (i.e., NDs) and the vol. % to perform the prediction. The
new model predicted the actual values with a mean absolute error of 9.8% for CHF ranging
from 500 to 2500 kW/m2.
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6.2.2. Dispersions Effect on Pool Boiling

Pool boiling heat transfer plays a crucial role in numerous technological and industrial
applications. It consists of four different regimes [339]: natural convection (single-phase),
nucleate boiling, transition boiling, and film boiling as shown in Figure 21. When a surface
is sufficiently heated and plunged in a water pool, film boiling regime occurs where the
heated surface is physically separated from the coolant by a stable vapor blanket. This re-
gion is denoted by the film boiling regime. In this regime, heat transfers by conduction and
radiation only leading to a gradual decrease in the surface temperature. The performance
of the pool boiling is evaluated by the enhancement in CHF, HTC, Tmin, and vapor film
thickness. In literature, the effects of the following parameters have been studied: substrate
material [340], surface conditions and oxidation [341,342], system pressure [343,344], initial
wall temperature [345], shape and dimension of the testing specimen [346,347], degrees
of liquid subcooling [348–350], surface wettability and vapor–liquid contact angle [351],
surface roughness and wickability [352], and type of quenchant such as water, oil, or
nanofluids [353,354]. Recently, researchers have been focused on the effects of the later
parameter on pool boiling heat transfer performance.
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Figure 21. Boiling curve for stagnant water at atmospheric pressure (1 atm), where (a) shows the boiling curve and (b–e)
illustrates the bubble formation within the free convection, nucleate boiling, transition boiling, and film boiling regimes.

Review papers have intensively presented research studies that cover the preparation
methods of various nanofluids and test their effect on CHF and HTC [321,355–359]. It was
mentioned that carbon-based nanomaterials such as graphene dispersed in water enhanced
the heat transfer as compared to any other nanoparticle [355]. Nevertheless, there are many
reasons that contribute to the CHF enhancement such as surface roughness [360], deposi-
tion of nanoparticles [361], concentration of nanoparticle beyond a certain limit [362,363],
increase in surface wettability [364], and capillary effect [365]. Some researchers have
explained that the enhancement was a result of the occurrence of cavities on the surface
due to the deposition of the dispersed nanomaterial on the surface, especially on surfaces
of rough structure. Others mentioned that the increase in surface area of the formed porous
layer because the nanoparticle accumulation enhanced heat transfer by disturbing the flow.
Active nucleation sites decreased with nanoparticle layers, which significantly increase
surface wettability, and therefore enhance CHF. As for HTC enhancement, thermophys-
ical properties has a major role on it. It has been observed that nanoparticle affects the
thermal conductivity and surface tension of the quenchant whereas viscosity, density, and
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heat capacity remain nearly constant [366]. A vapor blanket layer formed during film
boiling on the heating surface, which significantly affect the conduction heat transfer, and
hence the HTC. Yang and Liu [367] found that as the surface tension decreased, the HTC
increase due to the reduction in the formation of bubbles and the active nucleation sites.
The effect of the modified surface topologies such as surface roughness was observed to
enhance HTC [133,368]. Furthermore, the high particle concentration led to nanoparticle
deposition on the surface and thus porous surfaces occur. Depending upon either original
surface condition or size of nanoparticle, the surface roughness can be increased [360] or
decreased [369]. Generally, HTC was found to be maximum when carbon nanoparticles
were used for boiling [355]. Since the current work focuses on the effect of carbon-based
nanofluids (i.e., graphene, ND, and CNT) on heat transfer application, various selected
studies on CHF and HTC in pool boiling heat transfer have been listed in Tables 7 and 8,
respectively.

Table 7. Summary of selected CHF enhancement for various pool boiling studies in water base.

Ref. Nanofluid Concentration/Particle Size Heating Surface CHF Enhancement%

[370] CNT 0.1–0.3 wt % – Enhanced
[371] CNT 0.01–0.05 vol. % Cu block 38.2
[372] CNT 0.5–4 wt % Cu plate 60–130

[361] CNT 0.05 vol. % SS foil 108
122

[373] CNT 1.0 vol. % SS tube 29
[374] MWCNT 0.01–0.02 wt % SS cylinder Enhanced
[371] MWCNT 0.0001–0.05 vol. % Cu block 200
[375] MWCNT 0.1–0.3 wt % Microfin Cu disk 95
[372] f-MWCNT 0.5–4 wt % Cu plate 200
[162] f-MWCNT 0.25–1 wt % SS tube 37.5
[376] f-MWCNT 0.01–0.1 wt % Cu disk 271.9
[377] f-MWCNT 0.01 vol. % Cu block 98.2
[378] f-SWCNT 2.0 wt Ni-Cr wire 300
[379] GO ≤0.001 wt % Copper plate Enhanced
[380] GO 0.0005 wt % Ni-Cr wire 320
[381] GO 0.001 vol. % – 179
[382] GO 0.0001, 0.0005, 0.0010, and 0.005 wt % Ni wire Enhanced
[383] GO 0.01 vol. % Ni-Cr wire –
[366] ND 1 g/L Cu plate Enhanced
[366] ND <1 g/L Cu plate Deterioration
[384] ND 0.01–0.1 vol. % SS plate Unchanged
[384] ND 0.01 vol. % SS plate 11

Note: f-SWCNT, and f-MWCNT refer to functionalized SWCNT, and functionalized MWCNT, respectively.

Table 8. Summary of selected HTC enhancement for various pool boiling studies in water base.

Ref. Nanofluid Concentration Heating Surface CHF Enhancement%

[373] MWCNT 1.0 vol. % Cu block 28.7
[371] MWCNT 0.0001–0.05 vol. % Cu block 38.2
[385] MWCNT 0.25%, 0.5%, and 1.0 vol. % Ni-Cr wire 320
[375] MWCNT 0.1–0.3 wt % Microfin Cu disk 77
[372] f-MWCNT 0.5–4 wt % Cu plate 130
[162] f-MWCNT 0.25–1 wt % SS tube 66
[376] f-MWCNT 0.01–0.1 wt % Cu disk 38.5
[377] f-MWCNT 0.01 vol. % Cu block 10.15
[386] Graphene 0.1 and 0.3 wt % Cu 96
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The third important parameter in pool boiling is Tmin to be considered in the reactor
core under the extreme environment and severe accidents such as LOCA. Understanding
this parameter can lead to an improved nuclear cladding performance that provides
more efficient and safer future nuclear reactors. Physically, Tmin is defined as the boundary
between film boiling and transition boiling, beyond which temperature liquid loses physical
contact with the solid surface and the heat transfer significantly reduces. Fewer studies
for the quenching behavior of nanofluids have been conducted in the literature that was
focused on Tmin.

A study by Gerardi [387] showed that Tmin of a quenched indium-tin-oxide (ITO) rod
in a nanofluid pool (ND–water) was found to increase by 30 ◦C compared to the water
pool. Another experimental investigation by Fan et al. [388] was performed in aqueous
nanofluids in the presence of four CNTs having various lengths and diameters. It was
concluded that the accelerated quenching was clearly related to the enhancement in boiling
heat transfer. An increase in Tmin was exhibited for all cases. The modified quenching
and boiling behaviors were elucidated by the accumulative changes in surface properties
due to the deposition of CNTs. Given the nearly unvaried contact angles, the consistently
increased surface roughness and the formation of porous structure seem to be responsible
for quenching and boiling enhancement. In order to achieve better performance, the use
of longer and thicker CNTs tends to form a highly porous layer, even upon consecutive
quenching, which may induce rewetting by the entrapped liquid in the pores and serve as
vapor ventilation channels as well. In another experimental study, Fan et al. [389] examined
transient pool boiling heat transfer in aqueous GO nanofluids. They tested various dilute
concentrations of the nanofluids up to 0.1 wt %. It was shown that the quenching processes
could be accelerated using GO nanofluids as compared to pure water. The boiling behavior
during quenching was analyzed in relation to the modified surface properties of the
quenched surfaces. Tmin values were found to increase with raising the concentration
of GOs compared to the baseline case of pure water. The results suggested that surface
property changes due to the deposition of GOs were responsible for the modified boiling
behavior of the nanofluids. In addition, the surface wettability was a nondominant factor
in most cases. The surface effects of the deposited layer of GOs were strongly dependent
on the material properties, finish, and treatment of the original surfaces. Kim et al. [390]
quenched metal spheres made from SS and zircaloy in water-based nanofluid containing
low concentration (less than 0.1 vol. %) of ND. They showed that film boiling heat transfer
in nanofluids was almost identical to that in pure water. However, subsequent quenches
proceeded faster due to the gradual accumulation of nanoparticle deposition on the sphere
tended to destabilize the vapor film but, Tmin remained unchanged. A summary of the
previous research studies is listed in Table 9.

Table 9. Summary of selected Tmin enhancement for various pool boiling studies in water based nanofluids.

Ref. Nanomaterial(s) Heating Surface Tmin,water (◦C) Tmin,nanofluid (◦C)

[387] ND
(0.01 vol. %) ITO 230 260

[388]

CNT-1
CNT-2
CNT-3
CNT-4

(0.5 wt.%)

316L SS sphere

215
218
218
219

241, 294, 303, 328, 335
211, 229, 277, 281, 287
228, 246, 254, 262, 264
231, 238, 243, 254, 256
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Table 9. Cont.

Ref. Nanomaterial(s) Heating Surface Tmin,water (◦C) Tmin,nanofluid (◦C)

[389]

GO (0.0001 wt %)

SS sphere 230

236.1
GO (0.001 wt %) 239.6
GO (0.005 wt %) 235.7
GO (0.01 wt %) 235.6
GO (0.05 wt %) 233.1
GO (0.1 wt %) 235.9

[390]

Al2O3
SiO2
ND

(0.1 vol. %)

SS 249, 247, 249, 247, 250,
250, 251

244, 343, 345, 394, 348, 399, 389
251, 330, 368, 368, 377, 389, 397
252, 252, 250, 253, 255, 264, 279

Al2O3
SiO2
ND

(0.1 vol. %)

Zr 267, 272, 253, 272, 260,
266, 253

287, 347, 354, 400, 401, 411, 412
282, 323, 362, 372, 415

278, 275, 269, 269, 274, 283, 272

6.3. Air Conditioning and Refrigeration Systems

Air conditioning (AC) is a process used to controls air’s thermal and physical proper-
ties and then supply it with cooling or heating to an allocated area from its central plant
or rooftop units. It also maintains and controls the temperature, humidity, air cleanliness,
air movement, and pressure differential in a space within predefined limits so that condi-
tioned space occupants or products enclosed satisfy comfort and health standards [391]. A
typical AC or refrigeration system uses a vapor compression cycle to accomplish cooling
or heating. The vapor compression cycle consists mainly of a compressor, an evaporator,
a condenser, an expansion device, indoor and outdoor fans, and a working fluid. Ad-
ditionally, secondary heating and cooling loops are implemented to accommodate more
extensive systems, as shown in Figure 22. The AC system is potentially used for providing
a clean, healthy, and comfortable indoor environment, and saving energy by developing
high-efficiency equipment in residential and industrial sectors. However, none of these
uses come without associated challenges. The AC&R systems can be operating with a
very high temperature lift (different between heat source and heat sink temperatures). For
instance, the AC system operates in hot and dry climate countries needs to maintain indoor
temperature as low as 18.3 ◦C (65◦ F) [392], whereas the refrigeration system needs to run
continuously for long hours to sustain freezing chamber temperatures [393]. As a result,
the AC&R systems generate a tremendous amount of heat loss to the environment during
the compression process, which increases the pressure ratio across the compressor and
degrades its efficiency; it increases the compressor discharge temperature and jeopardizes
its reliability. Simultaneously, the cooling demand is compromised and the AC or the
refrigeration system strives to provide enough cooling in the unit’s evaporator (or reject
heating in the unit’s condenser) and therefore degrades the overall system coefficient of
performance (COP).
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One of the methods to improve the COP of AC&R systems is to reduce the power con-
sumption in the compressor. Many researchers have already shown that adding nanoparti-
cles to the compressor oil (nanolubricant) reduced its energy consumption because it en-
hanced the lubricating oil’s tribological and thermal properties, which helped improve the
compression process, and therefore increased the system COP [394–402]. Lee et al. [403,404]
studied the effects of adding nanoparticle to mineral oil. Their results showed that the
improvement in the lubricating properties of the mineral oil increases with the addition
of the nanoparticle. The authors found that adding the nanoparticle to the compressor oil
decreased its friction coefficient by 90%, and thus causing improvement in the compression
process and reducing the energy losses in the compressor. Jia et al. [405] investigated the
effects of using mineral-based nano-oils in a domestic refrigerator compressor with two
different refrigerants, namely, R-134a and R-600. They concluded that the COP values
increased by 5.33% when the nano-oil was utilized in the compressor with R-600, whereas
no effects were noticed when the same nano-oil was used with R-134a.

Another method to improve the cooling COP is to increase the heat transfer coefficient
in the heat exchangers of the AC&R system. Many studies have already shown that mixing
nanoparticles with the refrigerant enhanced the heat transfer coefficient of the refrigerant
(nanorefrigerant) in the condenser and the evaporator because of the additional nucleate
boiling and the higher thermal conductivity of the nanoparticles that enhanced the heat
transfer rate, and thus increasing the system COP [286,395,401,406–411]. Since carbon-
based nanofluids (i.e., ND, graphene, CNTs, etc.) have better performance due to their
superior features compared to other known nanomaterials [17,406,412–418], they could
result in significant system performance improvement. Therefore, researchers have further
investigated carbon-based nanoparticles for various AC&R applications [419], such as
the ones demonstrated in Figure 23. The following sections present a literature review
on studies investigating the effect of carbon-based nanoparticles on the thermophysical
properties of AC&R refrigerants, followed by a literature review on studies investigating
the effect of carbon-based nanoparticle on the AC&R system’s performance.
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6.3.1. Influence of Carbon-Based Nanoparticles on the Thermophysical Properties of
Working Fluid in AC&R Systems

It is evident from the literature that there are many researchers investigated the
performance properties (i.e., heat transfer coefficient and viscosity) of nanoparticles applied
to the refrigerants in AC&R systems including copper (Cu), aluminum (Al), nickel (Ni),
copper oxide (CuO), zinc oxide (ZnO), aluminum oxide (Al2O3), titanium oxide (TiO2),
and other metal nanoparticles [325,419–434]. However, only a limited number of research
work is available for ND, graphene, and CNTs, which can be summarized in Table 10. Park
and Jung [435] investigated the possible contribution of CNT on the nucleate boiling heat
transfer coefficients of R-123 and R-134a. They reported an enhancement up to 36.6% in
nucleate boiling heat transfer coefficients of the nanorefrigerant at low heat flux compared
to the baseline refrigerant. However, as the heat flux increases the enhancement decreased
due to robust bubble generation that prevented the CNT from penetrating the thermal
boundary layer and touch the surface. The flow boiling heat transfer characteristics and
pressure drop were also investigated experimentally by Zhang et al. [436], using MWCNT
dispersed in the R-123 refrigerant with SDBS surfactant flowing in a horizontal circular
tube heat exchanger. Their results showed that the nanorefrigerant heat transfer coefficient
and frictional pressure drop increased with the increase of nanoparticle concentration,
mass flux, and vapor quality. Similar conclusions were observed by Sun et al. [437]
when they investigated MWCNT with R-141b. Jiang et al. [438] studied the influence of
CNT diameters and aspect ratios on CNT–R-113 nanorefrigerant. The study involved
four different groups of CNTs with different physical dimensions (diameters, length, and
aspect ratio). Their experimental results showed that the thermal conductivities of CNT
nanorefrigerant increased proportionally with the increase of CNT’s volume fraction and
aspect ratio and with the decrease of CNT’s diameter. The maximum increase in the
thermal conductivity was about 104% for a volume fraction of 1.0 vol. %. Peng et al. [439]
studied the influence of CNT physical dimensions such as diameters, length, and aspect
ratios for the CNT–R-113–oil mixture. They used the same four different groups of CNTs
with different physical dimensions as Jiang et al. [438] and VG68 ester lubricating oil. An
enhancement of up to 61% was obtained in the nucleate pool boiling heat transfer coefficient
compared to R-311–oil mixture without CNTs. They also showed that the improvement of
the nucleate pool boiling heat transfer coefficient increased as the CNTs length increases
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and as CNTs outside diameter decreases. The heat transfer performance of MWCNT–oil–
R-600A nano-refrigerant in horizontal counter-flow double-pipe heat micro-fin tube heat
exchanger, was studied by Ahmadpour et al. [440]. Their experiments covered a wide
range of parameters, including mass velocity, vapor quality, and condensation pressure.
Their results showed that an increase up to 74.8% in the heat transfer coefficient could be
achieved with 0.3% nanoparticles concentration at 90 kg/m2.s mass velocity compared
to the pure refrigerant. Kumaresan et al. [441] conducted an experimental study on the
convective heat transfer characteristics of secondary refrigerant nanofluids in a tubular
heat exchanger. The objective of the secondary refrigerant loop is to reduce the primary
refrigerant charge in vapor compression refrigeration systems. The nanofluid used in the
study consists of MWCNT dispersed in a water-EG mixture. Their results showed that the
maximum enhancement in convective heat transfer coefficient was 160% for the nanofluid
containing 0.45 vol. % of MWCNT compared to the base fluid. However, the friction factor
was also increased by 8.3 times, which might increase the pumping power and reduce the
advantage of the increase in the heat transfer coefficient of the nanofluid [442]. Similar
findings were attained by Baskar et al. [443] and Wang et al. [444] when they experimentally
tested MWCNT–IPA and graphene–EG in a secondary refrigeration loop, respectively.

The dispersion stability of MWCNT in the R-141b refrigerant with the addition of
surfactant was investigated by Lin et al. [445]. Three different types of surfactants, in-
cluding SDBS, hexadecyl trimethyl ammonium bromide, and nonylphenoxpoly ethanol
(NP-10), were tested to prevent the aggregation and sedimentation of MWCNTs during
the long-term operation. SDBS was found to have an excellent adsorption ability on the
MWCNT surface. It was also shown that the relative concentration increased with decreas-
ing MWCNT length or outer diameter and increasing ultrasonication time. The optimal
SDBS concentration for the highest dispersion stability increased proportionally with the
increase of the initial MWCNT concentration. However, the SDBS might reduce the nanore-
frigerant’s thermal conductivity at higher operating temperatures. The thermophysical
properties and heat transfer performance of SWCNTs dispersed in the R-134a refrigerant
was also investigated by Alawi and Sidik [446]. They found that up to a 43% increase in
thermal conductivity can be reached when 5 vol. % of nanoparticle concentration is used
in the MWCNT–R-134A nanorefrigerant compared to the pure R-134A refrigerant. Similar
to other nanofluids, the thermal conductivity increases with the increase of nanoparticle
volume concentrations and with the increase in the temperature of the nano-refrigerant.
Moreover, the increase of volume fractions at a constant temperature led to a significant
increase in the viscosity and density of the nanorefrigerant.

Dalkilic et al. [447] investigated the stability and viscosity of MWCNTs–polyolester
(POE) oil nanolubricants. The study involved using four different refrigeration compressor
oil with different values of viscosity (i.e., 32 mm2/s, 68 mm2/s, 100 mm2/s, and 220 mm2/s)
tested at a maximum temperature of 50 ◦C and a concentration of MWCNTs up to 1 wt %.
They reported a substantial augmentation in viscosity up to 90% compared to the viscosity
of the base oil. This could reduce the refrigeration efficiency due to the possible increase
in the compressor pumping power. Most of the review studies [325,419,420,431,448] have
shown that adding nanoparticles always enhances the heat transfer coefficient of the
nanofluid mixture due to the higher thermal conductivity of nanorefrigerant and due to the
reduction of the thermal boundary layer thickness caused by the presence of nanoparticles.
Additionally, nanoparticles increased the viscosity of the nano-refrigerant causing an
increase in the frictional pressure drop and therefore might reduce the AC&R system
performance. The review studies of references [325,419,420,431,448] covered only CNTs
nanomaterial from the carbon family, and therefore further investigations on other types of
carbon-based nanoparticles, such as diamonds and graphene, needs to be conducted.
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Table 10. List of studies related to carbon-based nanoparticles effect with working fluid in AC&R systems.

Reference Nanofluid Test Conditions
Nanoparticle

Concentration Diameter
(nm)

Length
(µm)

Park and Jung [435] CNT–R-123
CNT–R-134a

Heat Flux
20–60 kW/m2 1.0 vol. % 20 1

Zhang et al. [436] MWCNT–R-123 Heat Flux
– 0.02–0.20 vol. % 30–70 2–10

Sun et al. [437] MWCNT–R-141b
Mass flux
100 to 350
kg/(m2s)

0.059, 0.117 and
0.176 vol. % 8 10–30

Jiang et al. [438] CNT–R-113 Temperature
303 K 0.2–1.0 vol. % 15–80 1.5–10

Peng et al. [439] CNT–POE–R-113 Heat Flux
10–80 kW/m2 0.1–1 wt % 15–80 1.5–10

Ahmadpour et al.
[440]

MWCNT–mineral
oil–R-600A

Heat Flux
– 0.1-.3 wt % 5–15 50

Kumaresan et al. [441] MWCNT–EG–water Temperature
273–313K 0.15–0.45 vol. % 30–50 10–20

Baskar et al. [443] MWCNT–propanol +
isopropyl alcohol

Temperature
273–303K 0.15–0.3 vol. % – –

Wang et al. [444] Graphene–EG Temperature
328–333K 0.01–1 wt % – 5–15

Lin et al. [445] MWCNT–R-141b – 250–750 mg/L 15–80 1.5–10

Alawi and Sidik [446] SWCNT–R-134a Temperature
300–320 K 1.0–5.0 vol. % 20 –

Dalkilic et al. [447] MWCNT–POE Temperature
288–323 K 0.01–0.1 wt % 10–30 –

6.3.2. Influence of Carbon-Based Nanofluids on the COP and Overall Cooling Performance
of AC&R Systems

A limited number of studies are available on how ND, graphene, and CNTs improve
system COP and cooling capacity, which can be summarized in Table 11.

Abbas et al. [449] examined CNT mixed with POE oil in an R-134a refrigeration unit.
They found that the system COP increased by 4.2% with nanoparticle concentration of
0.1 wt %. The experiment was infeasible beyond this concentration because the main
challenge was with the agglomeration due to the strong Van der Waals interactions during
the preparation phase. Jalili et al. [450] mixed various concentrations of MWCNT with
water to assess the cooling performance of the secondary fluid in the evaporator of the
refrigeration system. The transient analysis results showed that the evaporator’s inlet
temperature increased by 6.5% while the outlet temperature decreased by 14.5% when
the water contains 2000 ppm of MWCNT. The significant enhancement in evaporator
outlet temperature confirmed the tremendous increase in heat transfer coefficient with
MWCNT. According to Kruse and Schroeder [451] and Cremaschi [452], the existence of oil
lubricant in heat exchangers acted as insulation and resulted in heat transfer coefficient
reduction. However, if the addition of nanoparticles enhanced the oil lubricant, the heat
transfer coefficient would be compensated in the heat exchangers due to the improved
overall thermophysical properties. Vasconcelos et al. [453] examined MWCNT–water as a
secondary fluid in a 4–9 kW refrigeration unit with R-22 as a refrigerant. Due to the high
thermal conductivity of the nanofluid, the cooling capacity increased up to 22.2% at the
coolant’s inlet temperature range of 30–40 ◦C. Vasconcelos et al. [453] found no significant
reduction in the total power consumption. However, the increase in cooling load helped
the compressor power consumption to relatively reduced because of the relative increase
in evaporation pressure, and therefore the COP increased up to 33.3%. Kamaraj and Manoj
Babu [454] replaced the POE oil with POE–mineral oil nano lubricants containing CNT
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particles with the amount of 0.1 and 0.2 g/L in a R-134a refrigerator. Besides the reduction
in cooling time using the new nanofluids by approximately 40%, the COP was improved
by 16.7% for 0.2 g/L of CNT using mineral oil. This is mainly due to the enhancement
of the heat transfer coefficient in the evaporator without any significant reduction in the
compressor power. Yang et al. [455] analyzed graphene nanosheets blended with SUNISO
3GS refrigerant oil in a R-600a refrigerator/freezer. The authors found that the cooling
rate freezing rate improved by approximately 5.6% and 4.7%, respectively. The energy
analysis yielded that the three concentrations nanolubricants (10 mg/L, 20 mg/L, and
30 mg/L) helped in reducing the compressor discharge temperature by 2.5%, 3.8%, and
4.6%, and dropping the energy consumption by 14.8%, 18.5%, and 20.4%, respectively.
Hence, the energy saving was estimated to be up to 20% compared to using pure refrigerant
oil. Indeed, the addition of graphene nanosheets with lubricant oil helped to decrease
compressor friction losses. However, using graphene nanosheets as nanolubricant required
additional surfactants (dispersants), which might increase the compression power because
surfactants increase the viscosity and reduce the thermal conductivity at higher operating
temperatures. Pico et al. [456] investigated two mass concentrations of ND–POE in a
17.6 kW vapor compression refrigeration system that used variable-speed compressor and
refrigerant R-410A. The results showed that the compressor power consumption remained
the same due to the type of compressor (i.e., hermetic scroll). On the other hand, the
discharge compressor temperature reduced by approximately 3 ◦C and 4 ◦C, while the
cooling capacity increased by 4.2% and 7%. Therefore, the overall system COP increased
by 4% and 8% at 0.1% and 0.5% mass concentrations, respectively. Furthermore, Pico
et al. [457] experimentally investigated the same ND–POE nanolubricant with R-32 as a
substitute for R-410A. The results showed that for 0.5% mass concentration of diamond
nanoparticle added to POE lubricant, the cooling capacity increased by 2.4% and the
discharge compressor temperature decreased by approximately 2 ◦C, and hence the COP
enhanced by 3.2%. The reduction of ND–POE performance with R-32 compared to R-410A
can be justified with the low mass flow rate, which affected the oil circulation rate of the
system operating with R-32.

Table 11. List of studies related to carbon-based nanoparticles effect on AC&R systems performance.

Ref. Nanofluid
Nanoparticle Compressor

Discharge
Temperature

Compressor
Power

Cooling
Capacity COPConcentration Diameter

(nm) Length (µm)

Abbas et al.
[449]

CNT–POE–
R-134a

0.01–0.1 wt
% – – – Reduced by

2.2% – Improved by
4.2%

Jalili et al.
[450]

MWCNT–
water 0–2000 ppm 10–20 5–15 – – – –

Kamaraj and
Manoj Babu

[454]

CNT–POE–
mineral

oil–R-134a
0.1 and 0.2

g/L 13 – Negligible
reduction

Negligible
reduction

Improved by
16.7%

Improved by
16.7%

Vasconcelos
et al. [453]

MWCNT–
water–R-22

0.035–0.212
vol. % 1–2 5–30 – Negligible

reduction
Improved by

22.2%
Improved by
27.3–33.3%

Pico et al.
[456]

ND–POE–R-
410A

0.1 and 0.5
mass % 3–6 – Reduced by

3–4 ◦C
Negligible
reduction

Improved by
4.2–7%

Improved by
4–8%

Pico et al.
[457]

ND–POE–R-
32

0.1 and 0.5
mass % 3–6 – Reduced by

1.2–2 ◦C
Negligible
reduction

Improved by
1–2.4%

Improved by
1–3.2%

Yang et al.
[455]

Graphene–
SUNISO

3GS–R-600a
10, 20, and
30 mg/L 100–3000 – Reduced by

2.5–4.6%
Reduced by
14.8–20.4%

Improved by
5.6% –

Rahman et al.
[458]

SWCNT–R-
407c 5 vol. % – – – Reduced by

4% – Improved by
4.3%

7. Environmental Consideration and Potential Health Issues

In addition to the studies that focused on the thermal enhancement that nanofluids can
provide to energy systems, researchers have also explored the environmental impact and
the potential hazardous towards human health from using these kind of suspensions [459].
In terms of environmental concerns, Meyer et al. [460] proposed an exergoenvironmental
analysis method for designing an energy conversion system with an as low as possible
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environmental impact. Furthermore, an Eco-indicator 99 life cycle impact assessment
approach was employed by the scholars to evaluate the environmental impact in a quan-
titative manner. They obtained the ecoindicator point through undertaken a series of
analyses such as the exposure and effect analysis, resource and fate analysis, and damage
analysis. One of the main element in determining the fate analysis is the toxicity evaluation
of the nanomaterial(s) that form(s) the nanofluid. However, the criteria for measuring the
level of toxicity is still not clear, and as such uncertainty always exist [461]. In order to
resolve the previous issue, Card and Magnuson [462] came with a two-step approach for
evaluating the toxicity of nanomaterials in an objective manner. In the first step, the authors
collected the available literature that are related to the toxicity of nanomaterials, after which
they started to evaluate and rank these studies according to the suitability of the design,
documentation of adopted approach, materials used, and research outcome to produce the
reliability ‘study score’. As for the next step, the fulfilment of the physicochemical charac-
terization of the nanomaterials is assessed in every study, which is then used to generate
a ‘nanomaterial score’. In general, the optimum way to reduce the environmental impact
is to lower the utilization of resources and the resulting gas emissions during operation
condition. For systems the utilize nanofluids, this can be achieved through enhancing
their thermal efficiency, reducing their overall system size, and/or reducing the number of
nanomaterials used. The reader is guided to the following sources [463–471] for further
details on the aforementioned.

On the other hand, users dealing with nanofluids are always under high health
risk [472]. This is because in the preparation process of these suspensions there is an
inevitable contact between the user and the nanomaterials used, which can therefore en-
ter their blood streams and/or organisms through skin absorption, inhalation, and/or
ingestion of these toxic materials. It is important to note that almost all carbon-based nano-
materials, including CNTs, NDs, and graphene, are toxic and that the level of their toxicity
increases with the decrease in their size [473]. Moreover, it is important that the reader
distinguish between the safety aspect of nanomaterials that are used as medication (or for
inner body diagnostic) and those used for other non-medical applications [110,474–477].
The first are safe and non-toxic when transferred to the human body in the appropriate way,
whereas the second have high health risks and should be dealt with safety precautions.
Some of the studies that were mainly devoted towards evaluating the harm that nanomate-
rial can cause to human health can be found in the following literature [473,474,478–482],
where the material type, shape, size, surface characteristics charge, curvature, free energy,
and functionalized groups were taken into account. Although using personal protective
equipment and following the safety handling procedures can lower the user health risks, it
is believed that part of the problem associated with commercializing nanofluids is due to
the increasing concerns from the potential stakeholders and a lack of sufficient research
studies [472,481].

8. Discussion and Future Directions

This review article has covered carbon-based nanofluids, from the fabrication stages of
the raw nanoparticles materials (i.e., ND, graphene, and CNT) and up to their employment
in some of the commonly known thermal applications in the energy industry. In addition, it
was shown how dispersions made of carbon allotropes possess the most favorable thermal
properties and, when well handled, physical properties compared to any other type of
nanofluids or conventional fluids. This is because these carbon-based materials, when
dispersed in a base fluid attain unique features such as high thermal conductivity and spe-
cific heat capacity, high heat transfer rate, and lower pressure drop in the working system
compared to other types of dispersed nanomaterials. Furthermore, the aforementioned
suspensions cause the least corrosion and erosion effects on the hosting device [483], all
of which are crucial parameters for the operation cycle. Moreover, the influence of the
stability of these suspensions on their thermophysical properties was also highlighted
along with the development in these properties prediction correlations. Nevertheless, there
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are still some challenges and gaps in the scientific knowledge that need to be tackled for
further advancement in the field and the possible industrial viability of such advanced
fluids. Some of these issues are pointed out in this section.

8.1. Challenges in Carbon-Based Nanofluids

Carbon allotropes in the nanoscale have shown to be promising in enhancing the
thermal performance of liquids when homogeneously dispersed, and their products are
commercially available through a wide range of companies. Nevertheless, these powders
are very expansive from an economic perspective compared to other sorts of nanomaterials,
which makes their utilization quite questionable in the sense of their feasibility towards the
targeted application [484]. Therefore, one of the challenges that need to be focused on is how
to fabricate large quantities of these nanopowders at minimal production cost. In the current
situation and before even introducing such type of nanofluids to the industry, researchers
need to initially evaluate the gained performance enhancement and economic benefits of
carbon-based nanofluids for each selected application before hands, and hence more work
is needed in this area. Some scholars have proposed combining carbon-based nanomaterials
with other cheaper types of nanoparticles (e.g., Cu, Al, and Fe) to form hybrid nanofluids
containing carbon allotropes, and thus reducing the suspension cost [485–488]. However,
the feasibility of such an approach remains limited, and the consideration of such types
of hybrid nanofluids remains in the exploration stages. As it is well-known by now
that the favorable thermophysical properties of nanofluids have made such a category
of working fluids beneficial when used for enhancing the system performance of many
thermal applications. Yet, the stability of the dispersed particles remains a major drawback
and thus limiting the widespread of these suspensions. This is because, in an unstable state,
the particles tend to cluster into larger forms of agglomerate, and therefore the benefits of
the high surface area of the nanoparticles losses its optimum effectiveness on the exposed
host (i.e., base fluids). For such a reason, it is essential that any proposed nanofluid to
the industry maintains its long-term stability. This is where the preparation phase of the
product plays a critical role. In order to overcome this difficulty, scientists have suggested
using physical approaches (e.g., sonication) and/or chemical methods, such as surfactants
and surface functionalization. Although this can help solve the aggregation problem, the
changes caused to the surface of the dispersed particles remain another uncertainty that
needs to be understood. In addition, further exploration on combining the two stabilization
methods (i.e., physical and chemical routes) need to be conducted. Moreover, a joint
international standard database on the thermophysical properties and physical stability of
different types of nanofluids, their dispersed nanomaterial(s) concentration, and fabrication
approach is strongly needed [198]. This is because even after more than 25 years from the
first discovery of nanofluids, scientist are still reporting different thermophysical properties
and physical stability for similar synthesized suspensions. In terms of properties prediction,
it was shown previously that both effective thermal conductivity and effective viscosity
lacks universal correlations and can only be determined through experimental means.
However, artificial neural networking that is based on data mining has started to show
good accuracy in predicting these properties, but further research is still required in this
area [489–492].

8.2. Limitations in Parabolic Trough Solar Collector Systems

In PTSCs, the main challenge is that most of the studies shown in the literature were of
pilot-scale tests, and thus further investigations are needed on the real-life application itself.
Moreover, systematic studies are required to understand and standardize the influence
of operational parameters such as high pressure, high temperature, flow rate, particles
concentration, and suspension thermophysical properties on the system performance. Fur-
thermore, there is still a need for a better understanding of the fouling build-up mechanism
that is commonly associated with the use of nanofluids in systems of elevated tempera-
tures as this newly introduced thin-film is likely to change the wettability behavior of the
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surface, and with it the dynamics of the flow [493–495]. Knowing this can open the door
for introducing systematic washing routines, whether online, offline, or both, that can help
in extending the heat transfer efficiency of the PTSC. Other aspects such as the friction
factor and pressure drop should also be considered and explored intensively due to the
nature of nanofluids having higher effective viscosity than conventional fluids.

8.3. Limitations in Nuclear Reactor Systems

As with most heat transfer systems, nuclear reactors were shown to have potential
performance benefits from replacing their working fluids with nanofluids. Although on
some occasions, certain types of nanofluids cannot compile with such application require-
ments (e.g., gold and platinum), due to the high temperature nature of such systems and
the presence of emitted radiations that effects the dispersed particles [496]. Nevertheless,
carbon-based materials have shown the capability of being an acceptable candidate for
these systems. Despite that, the common challenge with almost every application that uses
this category of suspensions remains rounded on the feasibility of such fluids and their
particles clustering issue within the hosting system. When focusing on nuclear reactors,
these systems design, sizes, and mechanisms can be seen changing rapidly throughout
the past 20 years [308,312,497]. While this shows how this area of science is advancing, it
also constrains the exploration capability of researchers working in the field of nanofluids.
Thus, scientists specialized in nanofluids cannot investigate the performance enhancement
caused by their suspensions on pre-existing reactors. Still, at the same time, they need to
take into account the operation lifetime of the facility and understand how the isotopes
build up and decay within these systems. This is because such changes in these isotopes
could cause different behaviors when exposed to the dispersed particles. In addition, the
fact that some of the dispersed particles may deposit on the nuclear fuel surface needs
to be also considered and evaluated with respect to the possible corrosion development
on the outer surface of the fuel. Moreover, studies on the long-term physical stability of
nanofluids, when employed in nuclear reactors, remain unknown and need to be inves-
tigated. In addition, further work is needed to determine the effect of surfactants, when
used as stabilizers, on the heat transfer rate in such application. This is because most (if not
all) of these chemicals cannot withstand high temperature operating conditions. In terms
of LOCA scenarios, nanofluids can help stop (or reduce) the level of damages that the
fuel of elevated temperature may cause to the facility, but the method in which the newly
introduced waste can be dealt with remains questionable and needs to be solved. This
is because, unlike conventional liquids, the dispersed particles conserve more radiations,
and hence remain radioactive for a very long time before they decay and stabilize. When
it comes to pool boiling during quenching, to the best of our knowledge, there is still
no existing literature that covers the effect of nanofluids on the minimum film boiling
temperature (Tmin) such as what was presented in Section 6.2.2. In general, there is a
lack of studies about the impact of nanofluids on Tmin during quenching. Owing to the
importance of Tmin, various types, concentrations, and sizes of nanofluids should have
experimented with to investigate their effects on this parameter in specific. Furthermore,
most of the investigations that are concern the effect of nanofluids on the CHF uses block
plates, flat plates, or wires. However, research work on other geometries is crucial because
it is evidence that the CHF will strongly be influenced by it. In addition, the currently
employed models (e.g., Zuber’s correlation) fails to accurately predict CHF when using
thin wires [498], and therefore scholars need to focus more into developing a universal
model that can withstand such limitation.

8.4. Limitations in Air Conditioning and Refrigeration Systems

Based on the research conducted by Hu et al. [499], it was shown that some carbon-
based nanomaterials need surfactant(s) to ensure long-term stability and avoid agglom-
eration when they are mixed with the oil–refrigerant in the AC&R system. Additionally,
surfactant might help to increase the performance of the AC&R system because it enhances
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the nucleate pool boiling heat transfer coefficient. However, this improvement is only
attained under limited conditions because it is highly dependent on certain specifications
(e.g., nanoparticle type, nanoparticle size, nanoparticle concentration, surfactant type,
surfactant concentration, nanolubricant concentration, base fluid type, and heat flux). In
addition, Cheng and Liu [500] recommended further investigation on nucleate pool boiling
and flow boiling for refrigerant based-nanofluids. Therefore, further investigations must
be conducted toward carbon-based nanofluids with refrigerant–oil–surfactants for AC&R
applications. According to Bahiraei et al. [501] and Dalkılıç et al. [502], nanofluids helped
to improve the heat transfer coefficient in heat exchangers (i.e., spiral-type and double-type
heat exchangers). However, due to the increase in the nanofluid’s viscosity, the pressure
drop can be escalated, especially for low mass flow rates [503,504]. In AC&R systems,
the pressure drop is an important factor that needs to be incorporated during the system
design phase because any additional increase in the pressure drop in the heat exchangers
during the operation of the AC&R system will result in significant degradation in the
system COP performance as reported by Sunardi et al. [505] and Tashtoush et al. [506]. Yet,
pressure drop due to a carbon-based nanofluids additive has not been studied in AC&R
systems and needs to be further investigated. In fact, engineers need robust software tools
to design AC&R systems with nanofluid additives. Some studies provided correlations
for all thermophysical properties of the nanofluids (heat transfer coefficient, friction factor,
thermal conductivity, viscosity, etc.) [507–510]. However, computational models integrat-
ing component models (as employed in Bahman et al. [511] and Loaiza et al. [512]) and
the influence of carbon-based nanofluids in AC&R systems are still lacking. In addition,
those kinds of models might have the potential to predict the overall system performance
and ensure optimal operations. Furthermore, experimental investigations were limited to
a specific concentration amount of nanofluids. The optimal concentration for maximum
AC&R performance can be obtained numerically with the formerly mentioned computa-
tional models. Moreover, the determination of the optimal amount of concentration has not
been proposed yet in the literature for carbon-based nanofluids in AC&R systems. In the
AC&R system, nanofluid additives ultimately enhance the viscosity of the lubricating oil.
Conversely, this might relatively increase the compressor power consumption. Therefore,
it is vivid to find the relationship between nanofluid viscosity and compressor pumping
power for AC&R application [513–515]. A limited number of research employed energy
and exergy analysis on carbon-based nanofluids applied in AC&R systems. They have
shown that there is a high potential for decreasing the irreversibility with carbon-based
nanofluids due to their higher thermal conductivity compared to oxide materials [516].
Therefore, more compressive studies similar to Bahman and Groll [517] are required to
identify the AC&R components with major irreversibility when employing nanofluids.
Moreover, the literature is scarce in techno-economic analysis for nanofluids in AC&R
applications. Although Bhattad et al. [518] showed that nanofluids could result in a higher
payback period than the AC&R’s components (i.e., heat exchangers), however, further stud-
ies need to be conducted on carbon-based nanofluids because by optimizing the number of
nanoparticles with respect to operating condition and stability, it can be more cost-effective.
Finally, AC&R systems combine several components, as nanofluid pass through these
components, it would be compressed, expanded, or changed phases. All these processes
may lead to the possibility of getting nanoparticles to be separated from the carrier fluid
during long-term operation and probably degrade the system performance. Therefore,
the long-term operating performance of the nanorefrigerant (and nanolubricant) must be
investigated.

9. Conclusions

This paper provides a comprehensive state-of-the-art review on carbon-based nanoflu-
ids, including the initial synthesis methods used for producing carbon nanotubes, graphene,
and nanodiamonds, and up to the employment of their dispersions into thermal energy
applications, namely; parabolic trough solar collectors, quenching systems, and air condi-
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tioning and refrigeration systems. It was shown how some of these nanomaterials could
only be fabricated in a dry form, such as high purity nanodiamonds, whereas graphene,
for example, can be produced as a dry powder or a suspension. Thus, when selecting the
nanofluids’ preparation approach containing these nanomaterials, the available options
can be narrowed from two routes to only a single process. Furthermore, the main equations
used in calculating the volume concentration that are commonly required for the nanofluid
two-step production method were provided. Moreover, the physical stability of the sus-
pension, which is considered as one of the most influential aspect that can dramatically
affect the thermophysical properties of any nanofluid, was discussed in terms of its forma-
tion mechanism and evaluation approaches. Although there are many advanced ways to
characterize the dispersion stability, it was concluded that the photographical capturing
method remains the most reliable approach due to its capability of determining both short-
and long-term dispersion stability of the mixture in real-time and at high accuracy. Never-
theless, this method is very time-consuming to conduct, especially when the characterized
sample is of high state of stability. In addition, chemical methods, such as surfactants
and surface functionalization; and physical approaches, namely, ultrasonication, magnetic
stirring, homogenizer, and ball milling, were also discussed and shown in how they can be
employed to improve the level of particles dispersion within an instable suspension. It was
concluded that, unlike the chemical approaches, using physical methods for enhancing the
dispersion stability is a better option when it comes to conserving the optimum possible
effective thermal conductivity of the nanofluid and that between the available physical
routes, the homogenizer can provide the best outcomes. In general, the stability of the
suspension does not affect the mixture density nor its specific heat capacity but rather
influences both the effective thermal conductivity and effective viscosity of the nanofluid.
These two properties were seen to degrade gradually with time due to the nanomaterial’s
agglomerations and their sediment formation. Many methods were shown to determine
these two properties (i.e., effective thermal conductivity and effective viscosity), either by
experimental means or through pre-existing correlations. Still, up to today, the scientific
field has failed to provide a universal formula for both of these two properties, and hence
the only reliable approach is through experimental analysis. When it comes to replacing
conventional working fluids with carbon-based nanofluid in thermal applications (i.e.,
parabolic trough solar collectors, nuclear reactor systems, and air conditioning and refriger-
ation systems), it was proven, at least at the lab and pilot-scale, that such advanced fluids
are very beneficial in terms of enhancing the overall performance of these systems, and can
therefore be seen as strong candidates for such industries when their associated challenges
are solved and fully understood.
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Nomenclature

A Area (nm2)
AC Air conditioning
AC&R Air conditioning and refrigeration
AG Arabic gum
ALWR Advanced light water reactor
ANL Argonne National Laboratory
BAC Benzalkonium chloride
BWR Boiling water reactor
CR.M. Nanoparticle random motion velocity (nm/s)
CF Self-crowding factor
CFD Computational fluid dynamics
CHF Critical heat flux (W/m2)
CNT Carbon nanotube
COP Coefficient of performance
Cp Specific heat capacity (J/kg·K)
CSPP Concentrated solar power plant
CTAB Cetyltrimethyl ammonium bromide
CVD Chemical vapour deposition
DASC Direct absorber solar collector
db f Diameter of the base fluid molecule (nm)
DND Detonation nanodiamond
DNI Direct normal irradiance
dnp Nanoparticles mean diameter
DSC Differential scanning calorimetry
DSDMAC Distearyl dimethyl ammonium chloride
DWCNT Double-walled carbon nanotube
DX Direct expansion
EG Ethylene glycol
fm Maximum attainable concentration
fp Packing fraction of the particles
fV Particles volumetric fraction
FVM Finite volume method
GCR Gas-cooled reactor
GO Graphene oxide
HFC Hydrofluorocarbon
HPHT High-pressure and high-temperature
HTC Heat transfer coefficient (W/m2·K)
IPH Industrial process heat
kpj Equivalent thermal conductivity of the ellipsoids particle (W/m·K)
kB Boltzmann constant (1.381 × 10−23 J/K)
kH Huggins coefficient
Km Matrix conductivity (W/m·K)
kpe Equivalent particle thermal conductivity (W/m·K)
`b f Mean-free path of the base fluid molecule (nm)
LOCA Loss-of-coolant accident
m Mass (Kg)
MCRT Monte Carlo ray tracing
MSR Molten solid cooled reactor
MWCNT Multiwalled carbon nanotube
ND Nanodiamond
Nu Nusselt number
PHWR Pressurized heavy water reactor
POE Polyolester oil
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Pr Prandtl number
PTSC Parabolic trough solar collector
PVA Polyvinyl alcohol
PVP Polyvinylpyrrolidone
PWR Pressurized water reactor
r Volume ratio
Rb Impact of interfacial resistance (Km2/W)
rc Particle apparent radius (nm)
RGO Reduced graphene oxide
Re Reynolds number
Rk Kaptiza radius (8 × 10−8 m2 K/W)
rm Radius of the fluid medium particles (nm)
SANSS Submerged arc nanoparticle synthesis system
SDBS Sodium dodecyl benzenesulfonate
SDS Sodium dodecyl sulfate
SEM Scanning electron microscopy
SWCNH Single-walled carbon nanohorn
SWCNT Single-walled carbon nanotube
T Temperature (K or ◦C)
To Reference temperature (273 K)
Tm Mean temperature (K or ◦C)
Tmin Minimum film boiling temperature (K or ◦C)
tnl Thickness of the nanolayer surrounding the particle (nm)
to Starting time (s)
tf Finishing time (s)
TEM Transmission electron microscopy
TWCNT Triple-walled carbon nanotube
V Volume (m3)
VERSO Vacuum evaporation onto a running oil substrate
vol. % Volume percentage
WCR Water-cooled reactor
wt % Weight percentage
Greek letters
β Ratio of the nanolayer thickness to the particle radius
∆ Difference
η Average flatness ratio of the graphene nanoplatelet
[η] Intrinsic viscosity
µ Dynamic viscosity (kg/m·s)
n Empirical shape factor
ν Kinematic viscosity (m2/s)
ψ Particle sphericity
ρ Density (kg/m3)
k Thermal conductivity (W/m·K)
Subscripts
amb Ambient
b f Base fluid
CNT Carbon nanotube
e f f Effective
min Minimum
n f Nanofluid
np Nanoparticles
sat Saturated
sup Super-heated
w Water
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