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Abstract—Recently, convolutional neural network (CNN) dom-
inates the ground-based cloud image segmentation task, but
disregards the learning of long-range dependencies due to the
limited size of filters. Although Transformer-based methods could
overcome this limitation, they only learn long-range dependencies
at a single scale, hence failing to capture multi-scale information
of cloud image. The multi-scale information is beneficial to
ground-based cloud image segmentation, because the features
from small scales tend to extract detailed information while
features from large scales have the ability to learn global
information. In this paper, we propose a novel deep network
named Integration Transformer (InTransformer), which builds
long-range dependencies from different scales. To this end, we
propose the Hybrid Multi-head Transformer Block (HMTB) to
learn multi-scale long-range dependencies, and hybridize CNN
and HMTB as the encoder at different scales. The proposed
InTransformer hybridizes CNN and Transformer as the encoder
to extract multi-scale representations, which learns both local
information and long-range dependencies with different scales.
Meanwhile, in order to fuse the patch tokens with different scales,
we propose Mutual Cross-Attention Module (MCAM) for the
decoder of InTransformer which could adequately interact multi-
scale patch tokens in a bidirectional way. We have conducted
a series of experiments on large ground-based cloud detection
database TLCDD and SWIMSEG. The experimental results show
that the performance of our method outperforms other methods,
proving the effectiveness of the proposed InTransformer.

Index Terms—ground-based cloud image segmentation, CNN,
Transformer.

I. INTRODUCTION

CLOUDS are composed of water droplets, ice crystals,
or a mix of them [1]–[3]. As a common natural phe-

nomenon, clouds promote the earth’s energy balance and the
global hydrological cycle. Hence, accurate cloud observation is
necessary for many applications such as weather forecasting,
climate modeling, etc. There are two main ways for cloud
observation: ground-based and satellite-based [4]–[6]. Local
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Fig. 1. Comparison of Transformer-based methods. (a) converts the input
image into patch tokens, and (b) converts CNN’s high-level feature maps into
patch tokens. (c) learns long-range dependencies from multiple scale feature
maps. The red curves denote the long-range dependencies among the patch
tokens at the same scale, and the blue curves indicate cross-scale interaction.
For simplicity, we only show a fraction of interaction among the patch tokens.

weather research and local environmental monitoring require
ground-based cloud observation because it learns more infor-
mation about the bottom of local clouds than satellite-based
cloud observations [7], [8].

The WMO requires ground-based meteorological stations to
record cloud data [9], and nowadays ground-based cloud ob-
servation heavily relies on human observers, whereas manual
observation is subjective and may obtain inconsistent results
from different observers for the same cloud image sample.
Meanwhile, since shapes, structures and boundaries of clouds
are variable, ground-based cloud observation is the challeng-
ing task. Hence, automatic ground-based cloud observation
methods are eagerly needed. The existing ground-based cloud
observation methods are roughly classified into three kinds
according to their targets, i.e., cloud cover estimation [10]–
[12], cloud type classification [13]–[15] and cloud base height
measurement [16]–[18]. In this paper, we focus on cloud
cover estimation, which is a key step of cloud observation [9].
The accurate cloud cover estimation is beneficial to weather
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prediction and climatic conditions understanding. Moreover,
cloud cover evaluation also plays a guiding role on flight
planning and aviation [19].

In order to implement cloud cover estimation, many seg-
mentation methods are proposed so as to obtain the seg-
mentation mask. The segmentation mask possesses the same
resolution with the corresponding cloud image, and each pixel
of the segmentation mask indicates that the corresponding
pixel of the input image is cloud or sky as so to estimate
the cloud cover [1], [20]. Since the rayleigh scattering of
light causes the sky to be predominantly blue and the clouds
to appear white, many traditional methods for ground-based
cloud image segmentation [21]–[23] extract color information
as the features for segmentation. Although these traditional
methods are likely to improve performance, they still do not
satisfy the actual demand.

Nowadays, various segmentation methods [24]–[26] based
on convolutional neural network (CNN) [27]–[29] were pro-
posed, because CNN has powerful representation capability.
For example, Cheng et al. [30] proposed a novel two-branch
deconvolutional network that can improve network perfor-
mance and reduce computational complexity compared with
traditional deconvolutional networks. These methods typically
consist of an encoder-decoder architecture. The encoder ex-
tracts the representation features from the input image, and
the decoder generates segmentation masks by enlarging the
representation features. But because of the limited size of
CNN filters, the learned representation features usually lack
global contextual information, which is crucial for cloud image
segmentation. To overcome this limitation, some methods
directly modify the convolution filters including dilated con-
volution [31], convolution filter size increase [32], and spatial
pyramid features [33]. Meanwhile, some other methods [34]–
[36] combine shallow features with deep features to learn
contextual information. However, these methods are difficult to
model long-range dependencies because of the intrinsic local
property in convolution filters.

Recently, researchers introduce Transformer [37], [38] into
the computer vision field, which could learn long-range de-
pendencies among image patches. As for image segmentation,
some methods [39], [40] convert the input image or the
high-level feature maps of CNN into patch tokens, and then
learn long-range dependencies as shown in Fig. 1(a) and (b).
However, these Transformer-based methods [41]–[43] only
learn long-range dependencies at single scale, which results
in insufficient dependency modeling for cloud images.

In this paper, we propose a novel method named Integration
Transformer (InTransformer), which builds multi-scale long-
range dependencies for ground-based cloud image segmenta-
tion as shown in Fig. 1(c). InTransformer is designed as an
encoder-decoder architecture. The encoder of InTransformer
consists of the CNN stage and the Transformer stage, which
takes full advantage of CNN and Transformer to simultane-
ously learn local information and long-range dependencies
at different scales. In the CNN stage, the cloud image is
extracted by multiple convolutional layers to obtain feature
maps with different scales. In the Transformer stage, we
first transform the feature maps at each scale into the patch

tokens. Many Transformer-based methods apply multi-head
self-attention (MSA) for learning long-range dependencies,
which is weak in mining multiple scale information. To
overcome this limitation, we propose the Hybrid Multi-head
Transformer Block (HMTB) to learn the multi-scale long-
range dependencies, which its inputs are patch tokens with
different scales.

After obtaining multi-scale patch tokens from the output
of the encoder, the decoder of InTransformer aims to fuse
them so as to mine cross-scale information. The cross-attention
mechanism [44], [45] is usually applied to learn the interaction
between different scales. However, it only learns the inter-
action in a unidirectional way, which results in insufficient
interaction between different scales. Hence, we propose Mu-
tual Cross-Attention Module (MCAM) to adequately interact
different scale patch tokens in a bidirectional way. Specifically,
the patch tokens from one scale are treated as Value (V)
and Key (K) and the patch tokens from the other scale are
regarded as Query (Q) and vice versa. To fuse the patch tokens
from three scales, we design three MCAMs in the decoder of
InTransformer. Finally, with the output of the last MCAM, we
generate the segmentation mask.

The contribution of the proposed method is mainly conclud-
ed in three aspects:

1) We propose InTransformer for ground-based cloud image
segmentation, which hybridizes CNN and HMTB as the en-
coder to learn long-range dependencies from multiple scales.

2) We propose MCAM in the decoder to adequately mine
cross-scale information for accurate ground-based cloud image
segmentation.

3) The proposed InTransformer outperforms other methods
on the large-scale cloud detection database TLCDD [46] and
SWIMSEG [47], which demonstrates the effectiveness of our
method.

II. RELATED WORK

A. Ground-based cloud image segmentation

As the growing demand for ground-based cloud image seg-
mentation, many approaches are introduced based on various
hand-crafted features. Long et al. [21] proposed the color-
based fixed threshold method, which utilizes the ratio of red
to blue (R/B) of pixels. Afterwards, Heinle et al. [48] replaced
R/B with R-B as the color-based fixed threshold for cloud
image segmentation task. For single-peaked and two-peaked
cloud image segmentation, Li et al. [22] proposed a hybrid
method with fixed and adaptive thresholds. Liu et al. [49] first
generated high-confidence labels as hard-constrained seeds.
Afterwards, graph cut was employed to segment cloud image.

Recently, many approaches are proposed to learn deep fea-
tures using CNN for ground-based cloud image segmentation.
Dev et al. [50] presented CloudSegNet which employs con-
volution, maxpooling and upsampling as a light architecture
for daytime and nighttime cloud image segmentation. Xie et
al. [51] proposed SegCloud by introducing pooling indices in
the upsampling operation, which effectively restores the loss
caused by pooling. Shi et al. [26] proposed EFCN to apply
the skip connection and the histogram equalization in order
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to improve the segmentation performance. Zhang et al. [1]
integrated the attention mechanism and the multi-scale strategy
into the encoder-decoder structure so as to learn discriminative
information for segmentation performance improvement. Zhou
et al. [52] proposed TL-DeepLabV3+ to offset a limited
number of training cloud images by using transfer learning
for cloud segmentation.

B. Transformer

Vaswani et al. [37] proposed Transformer which has a
powerful ability to learn long-range dependencies, so it shows
excellent performance in natural language processing (NLP).
Recently, researchers introduce Transformer to computer vi-
sion tasks [53], and Transformer-based methods achieve com-
parable performance with CNN-based methods in image seg-
mentation [39], [54], [55], object detection [56], classifica-
tion [57], [58] and so on.

The performance of Vision Transformer (ViT) [38] in image
classification demonstrated that Transformer-based methods
can outperform state-of-the-art CNN-based methods. Zheng et
al. [41] utilized sequence-to-sequence prediction to handle the
segmentation task and proved the feasibility of Transformer for
the segmentation task. Petit et al. [45] inserted Transformer
into U-Net to obtain long-range dependencies. Furthermore,
Hatamizadeh et al. [43] applied Transformer as the encoder
and designed the corresponding decoder for 3D medical image
segmentation.

Different from the above methods which learn long-range
dependencies from single scale, we apply CNN and Trans-
former to learn the long-range dependency information from
different scales. For multi-scale tokens from the encoder out-
put, we design MCAM as the decoder to effectively enhance
their interaction for adequately mining cross-scale information.

III. APPROACH

In this section, we first clarify the motivation of the pro-
posed InTransformer. Afterwards, we present the overview of
the proposed InTransformer. Finally, we introduce the encoder
and the decoder of InTransformer in detail.

A. Motivation

The blurred boundaries and irregular shapes of clouds
cause considerable challenges for ground-based cloud image
segmentation. Recently, many CNN-based methods achieve
promising performance because of powerful representation ca-
pability, but disregard the long-range dependencies. As shown
in Fig. 2 (b), they mainly focus on local areas. Transformer-
based methods only learn long-range dependencies at a s-
ingle scale by using self-attention, and the visualization of
Transformer-based methods is shown in Fig. 2 (c). Such design
fails to capture multi-scale information.

The multi-scale information is beneficial to cloud image
segmentation, because the features from small scales tend to
extract detail information and the features from large scales
learn global information. Hence, we propose InTransformer
to build long-range dependencies from different scales for

Fig. 2. Visualization of different methods. (a) a ground-based cloud image,
(b) CNN-based methods, (c) Transformer-based methods with single scale,
(d) our method.

capturing more information. The visualization of our method
is shown in Fig. 2 (d), where our method focuses on more
cloud regions.

B. Overall Framework

The main framework of InTransformer is shown in Fig. 3.
1) Encoder: The encoder of InTransformer consists of the

CNN stage and the Transformer stage. In the CNN stage, we
extract multi-scale feature maps from the ground-based cloud
image. In the Transformer stage, we first transform the feature
maps at each scale into the patch tokens. Afterwards, we
employ HMTBs to build multi-scale long-range dependencies.

2) Decoder: We design MCAM as the decoder to fuse the
patch tokens from different scales. The MCAM adequately
interacts these patch tokens in a bidirectional way. We perform
three MCAMs to yield cross tokens. Finally, we reshape the
cross tokens, and then apply the convolution operations and
the upsampling operations to generate the segmentation mask.

C. Encoder

The encoder is employed to extract the representation
features from input cloud image. The representation features
greatly effect the performance of the segmentation mask. The
proposed InTransformer learns multi-scale representations via
the CNN and the Transformer stages in the encoder, thereby
mining local information and long-range dependencies, simul-
taneously.

1) CNN stage: In the CNN stage, we adopt stacked con-
volutional layers to learn multi-scale information from the
ground-based cloud image. Specifically, we apply ResNet-
50 (BiT) [38] as backbone to extract the feature maps with
different scales. The structure of ResNet-50 (BiT) is shown in
Table I. The size of the ground-based cloud map is H×W×3,
where H , W and 3 are the height, the width and the channel
number, respectively. Then, we obtain the feature maps with
different scales f i ∈ R

H

2i
×W

2i
×256·2i−1

(i = 1, 2, 3), i.e.,
f1 ∈ RH/2×W/2×256, f2 ∈ RH/4×W/4×512, and f3 ∈
RH/8×W/8×1024 corresponding to Stage1, Stage2, and Stage3.
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Fig. 3. The framework of the proposed InTransformer. We extract multi-scale feature maps in the CNN Stage, and then feed them into the Transformer
stage to build multi-scale long-range dependencies. Afterwards, we interact the patch tokens with different scales generated by the encoder via MCAM and
yield cross tokens for adequately mining cross-scale information. Finally, we generate the segmentation mask.

TABLE I
THE STRUCTURE OF RESNET-50 (BIT).

Name Output Size Filters Padding

Conv1 H
2
× W

2
[7× 7, 64], stride = 2 (3, 3)

Stage1 H
2
× W

2


1× 1, 64

3× 3, 64

1× 1, 256

× 3


(0, 0)

(1, 1)

(0, 0)

× 3

Stage2 H
4
× W

4


1× 1, 128

3× 3, 128

1× 1, 512

× 4


(0, 0)

(1, 1)

(0, 0)

× 4

Stage3 H
8
× W

8


1× 1, 256

3× 3, 256

1× 1, 1024

× 9


(0, 0)

(1, 1)

(0, 0)

× 9

2) Transformer stage: Due to the intrinsic properties of
convolution, CNN tends to gradually reduce the resolution of
feature maps in order to enlarge the receptive field size, which
yields the feature maps with different scales. However, these
multi-scale feature maps usually contain local information and
lack long-range dependencies. Hence, we learn long-range
dependencies in the Transformer stage from the feature maps
with different scales via self-attention [38].

We first transform the feature maps at each scale extracted
from the CNN stage into the patch tokens in the Transformer

stage as shown in Fig. 4. Specifically, we first uniformly
partition f i into L patches and the patch size is P

2i−1 × P
2i−1 .

Therefore, we use different size P
2i−1 × P

2i−1 patch for feature
maps with different scales. Here, P

2i−1 × P
2i−1 represents the

patch size with the i-th scale, and P is a constant which
controls the patch size and it is set to 16. We employ different
sizes of patches for the feature maps from different scales,
we obtain the multi-scale patch tokens with the same L =
(H2 ×

W
2 )/(P × P ). A patch-level feature map with the size of

P
2i−1 × P

2i−1 ×256 ·2i−1 is obtained by the patch on the feature
maps.Then, we flatten it to a one-dimensional vector with the
size of 1× P

2i−1 · P
2i−1 · 256 · 2i−1. We employ the linear layer

to project the dimensionality of the vector into D. Hence, we
obtain the multi-scale patch tokens Ei ∈ RL×D, where L
and D are the length and hidden channel size of the patch
tokens, respectively. When the feature maps are transformed
into patch tokens, there is loss of pixel position information,
and to compensate for the loss we add the learnable position
embedding Gi ∈ RL×D into the patch tokens at each scale:

Ei = Ei +Gi (1)

Nowadays, many Transformer-based methods apply multi-
head self-attention (MSA) for learning long-range dependen-
cies. MSA concatenates the outputs of multiple SAs, and
each SA operation is performed on single scale patch tokens.
Hence, MSA is weak in mining multiple scale information. To
overcome this limitation, we propose the Hybrid Multi-head
Transformer Block (HMTB), which could learn the multi-
scale long-range dependencies. The HMTB consists of N
hybrid multi-head transformer layers. The hybrid multi-head
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Fig. 4. The flowchart of transforming the feature maps into the patch tokens.

transformer layers for the i-th scale take patch tokens from
three scales as input, where the i-th scale patch tokens are
used as the main branch. Patch tokens at each scale perform
different number of SA operations.

We take the second scale as an example, and Fig. 5 shows
the structure of one hybrid multi-head transformer layer at
the second scale. The output of the n-th hybrid multi-head
transformer layer at the second scale is formulated as:

Y 2
n =MLP (LN(A2

n−1)) +A2
n−1 (2)

A2
n−1 = HMA(Z2

n−1) + Z2
n−1 (3)

Z2
n−1 =Cat(SA1(LN(Y 1

n−1)); ...;SAα(LN(Y 1
n−1));

...;SAβ(LN(Y 2
n−1)); ...;SAγ(LN(Y 3

n−1)))
(4)

M = α+ β + γ (5)

where Y 1
n−1, Y 2

n−1, and Y 3
n−1 are from three different scales

of patch tokens, Cat () represents the concatenation operation,
HMA represents the hybrid multi-head attention mechanism,
α, β, and γ represent the head number of Y 1

n−1, Y 2
n−1, and

Y 3
n−1 respectively, and M is the total number of independent

SA operations. Here, layer normalization (LN) is applied to
normalize the patch tokens to accelerate the model conver-
gence, multilayer perceptron (MLP) is used to reduce the
number of parameters, the residual connections could alleviate
the gradient vanishing or exploding problem.

The MLP consists of two fully connected (FC) layers with
the neuron number of 3096 and 768, respectively. The first FC
layer is followed by the Gaussian error linear units (GELU)
and the dropout operation, and the second one is only followed
by the dropout operation.

Furthermore, we propose hybrid multi-head attention mech-
anism to utilize spatial and multi-head information in order to
selectively emphasize informative features and suppress less
useful ones. Fig. 6 shows the framework of HMA. Here, g
represents the decay factor, and g is a constant which controls
the channel number and it is set to 4.

The m-th SA operation in the n-th hybrid multi-head
transformer layer at the i-th scale is defined as:

SAm(Zin−1) = softmax(
QimK

i
m
T

√
d

)V im (6)

Fig. 5. The structure of hybrid multi-head transformer layer at the second
scale.

Fig. 6. The framework of HMA.

Qim = Zin−1W
i
qm,K

i
m = Zin−1W

i
km, V

i
m = Zin−1W

i
vm (7)

where W i
qm,W

i
km,W

i
vm ∈ RD×d are three independent train-

able linear projection for the m-th SA operation.

D. Decoder
The outputs of the encoder are the patch tokens with differ-

ent scales, and therefore the decoder is designed to fuse these
patch tokens to obtain the segmentation mask. Although the
existing cross-attention [44], [45] could fuse the patch tokens
from multiple scales, this operation performs the unidirectional
interaction, that is the patch tokens from one scale only treat
as V , K or Q. This results in insufficient multi-scale fusion.

To solve the above limitation, we propose Mutual Cross-
Attention Module (MCAM) in the decoder of InTransformer
which could model the bidirectional interaction of the patch
tokens from two scales. We design three MCAMs in the
decoder of InTransformer as shown in Fig. 4. The first two
MCAMs are used for the fusion of multi-scale patch tokens,
and the last MCAM is used to interact their outputs.

Fig. 7 shows the framework of MCAM. The output of
MCAM at the i-th MCAM (i = 1, 2) is defined as:

MCA(Y iN , Y
i+1
N ) = Cat(CA1(Y

i
N , Y

i+1
N ); ...;

CAM (Y iN , Y
i+1
N ))W i

d

(8)

CAm(Y iN , Y
i+1
N ) = softmax(

Qi+1
m Ki

m
T

√
d

)V im (9)
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Fig. 7. The framework of MCAM.

Qi+1
m = Y i+1

N W i+1
qm ,Ki

m = Y iNW
i
km, V

i
m = Y iNW

i
vm (10)

where W i
d ∈ RM ·d×D is the trainable linear projection, and

W i
qm,W

i
km,W

i
vm ∈ RD×d are three independent trainable

linear projection for the m-th CA operation. Q, K and V
are from the patch tokens with different scales and are bidi-
rectionally interacted via the two-stream structure of MCAM,
so that the multi-scale information can be adequately mined.

We feed Y 1
N and Y 2

N into first MCAM to generate cross
tokens C1 ∈ R2L×D. Meanwhile, Y 2

N and Y 3
N are fed into

another MCAM to yield cross tokens C2 ∈ R2L×D. Finally,
C1 and C2 are fed into MCAM to obtain the final cross
tokens C ∈ R4L×D. We change the cross tokens C to
obtain the segmentation mask by using reshaping, convolution
and upsampling operations. Finally, the binary cross-entropy
(BCE) loss is used as the optimization objective, which forces
the predicted distribution to gradually approximate the ground
truth distribution. It is formulated as:

Loss = − 1

H

H∑
i=1

[uilog(gi) + (1− ui)log(1− gi)] (11)

where H is the total number of pixels in the cloud image. ui
and gi indicate the ground-truth and predicted labels on the
i-th pixel, respectively.

IV. EXPERIMENTS

In order to comprehensively evaluate the performance
of InTransforme, we conduct a series of experiments on
the TJNU Large Scale Cloud Detection Database (TLCDD)
and Singapore Whole sky IMaging SEGmentation Database
(SWIMSEG). Firstly, we present the database and details of
the implemented experiments. Afterwards, we demonstrate
the effectiveness of InTransformer with different experiments,
i.e., ablation studies and comparison experiments with other
methods. Finally, we analyze several essential parameters of
InTransformer.

A. Databases

TLCDD [46] consists of 5000 ground-based cloud images
and corresponding ground-truth segmentation masks, which
are carefully captured and annotated by professional techni-
cians, i.e., meteorologists and cloud-related researchers. It is

often used in the cloud image segmentation task. All images in
the database are collected over two years in Tianjin, Hainan,
Liaoning, Jiangsu, Sichuan, Gansu, Shandong, Hebei, and
Anhui. This shows the diversity of cloud image samples,
which provides convincing experimental results. The vision
sensor captures the cloud images, and then we reshape the
resolution to 512×512. There are 4208 cloud samples and 792
cloud samples on TLCDD for training and testing, respective-
ly. Some ground-based cloud images and the corresponding
ground-truth segmentation masks in TLCDD are shown in
Fig. 8.

The SWIMSEG [47] dataset contains 1013 ground-based
cloud images and the corresponding ground-truth segmenta-
tion masks, which were released by National University of
Singapore.

B. Implementation Details and Evaluation Criteria

Before feeding the ground-based cloud images into InTrans-
former, we first preprocess these samples. The preprocessing
operations include horizontal flipping, normalization, and ran-
dom gaussian blur. Specifically, horizontal flipping is imple-
mented with a probability of 0.5, normalization is performed
by means and standard deviation values, and random gaussian
blur is conducted with a probability of 0.5.

As for the optimizer, we employ stochastic gradient descent
(SGD) [59]. The initialized learning rate and the momentum
are set to 0.01 and 0.9 respectively, and the weight decay
is set to 0.001. In the experiments, the epoch number is
150. Furthermore, we use the “poly” learning rate decay
strategy [33], [60] to update the learning rate. Notably all
experiments adopt the same parameter settings and the same
data augmentation methods for fair comparison.

We treat ResNet-50 (BiT) [38] as backbone of the CNN
stage. We set the total number of independent SA operations
M in hybrid multi-head transformer layer to 16 and the
number of independent CA operations of MCA to 12.

To quantitatively evaluate the performance of different
methods, we adopt F-score (F), Recall (R), Precision (P),
Accuracy (A) and intersection over union (IoU) evaluation
metrics, which are commonly used in the image segmentation
task.

C. Experimental Results

1) Ablation Studies: The advantages of the proposed In-
Transformer are that the encoder learns multi-scale long-
range dependencies and MCAM is designed as the decoder
to mine cross-scale information. To demonstrate their roles in
InTransformer, we perform ablation experiments.

The C-C version. C-C only utilizes the CNN in the
encoder and decoder. Its architecture is similar to U-Net [61].
Specifically, we use ResNet-50 (BiT) [38] to extract multi-
scale features in the encoder, and then utilize high-scale
features to obtain the segmentation mask in the decoder by
skip connections.

The C+T-C version. We design C+T-C as the encoder-
decoder architecture, which utilizes single scale patch tokens
to build long-range dependencies. Specifically, we extract

Integration transformer for ground-based cloud image segmentation 
 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

Fig. 8. Some cloud images and the corresponding ground-truth masks.

TABLE II
COMPARISON WITH DIFFERENT ABLATION METHODS

Methods F R P A IoU
C-C 68.26 79.99 63.35 74.95 59.33

C+T-C 70.02 80.98 66.38 84.68 60.93

C+H-CA 75.25 82.13 74.33 88.07 68.17

C+T-MCAM 78.67 83.12 77.60 91.38 71.63

InTransformer 79.34 83.67 79.27 92.15 73.84

multi-scale feature maps in the CNN stage, and then apply
the transformer layer to build long-range dependencies on
the last scale CNN feature maps. Afterwards, we utilize
reshaping, convolution and bilinear interpolation operations to
obtain the segmentation mask. The architecture is similar to
TransUNet [45], except that there is no skip connection.

The C+H-CA version. We implement C+H-CA to learn
multi-scale long-range dependencies by using the encoder of
InTransformer including the CNN stage and the Transformer
stage. Meanwhile, we apply the CA module in the decoder to
fuse the output of the encoder. Finally, the segmentation mask
is generated.

The C+T-MCAM version. We design the C+T-MCAM
encoder-decoder structure. The structure is similar to In-
Transformer, except that we replace the hybrid multi-headed
transformer layer with the transformer layer to learn multi-
scale long-range dependencies in the encoder.

Table II presents the experimental results of different abla-
tion methods on TLCDD. We can draw some conclusions in
the table. Firstly, the proposed method achieves the best per-
formance in all five evaluation criteria, which demonstrates the
effectiveness of different components in InTransformer. Sec-
ondly, all Transformer-based methods, i.e., C+T-C, C+H-CA,

C+T-MCAM and InTransformer, outperform C-C. It indicates
that learning long-range dependencies by using Transformer
is beneficial for ground-based cloud image segmentation.
Thirdly, C+H-CA, C+T-MCAM and InTransformer surpass
C+T-C, which verifies multi-scale long-range dependencies
could improve the segmentation performance. Fourthly, the
performance of InTransformer is better than that of C+H-
CA because MCAM adequately mines cross-scale information
in the decoding process. Finally, InTransformer outperforms
C+T-MCAM, demonstrating that the proposed HMTB can
effectively mine scale information and perform multi-head
feature recalibration.

2) Comparisons with Other Methods: We compare In-
Transformer with other methods. In order to comprehensively
evaluate the performance, comparison methods are composed
of traditional methods and deep learning methods. The tradi-
tional methods mainly apply color features as thresholds, i.e.,
R/B (0.6) [21], (B-R)/(B+R) (Otsu) [23], B-R (Otsu) [23], and
B/R (Otsu) [23].

Deep learning methods consist of CNN-based methods
and Transformer-based methods. CNN-based methods include
FCN [62], CloudSegNet [50], U-Net [61], SegCloud [51],
PSPNet [33], and FLA [63] which are widely used in the
segmentation task. For Transformer-based methods, we apply
TransUNet [45], DC-Swin [64], and UNetFormer [65] as
comparison methods.

As shown in Table III, the performance of the proposed
InTransformer outperforms other methods on all evaluation
criteria on TLCDD. Specifically, it exceeds the second best ex-
perimental result by 6.56%, 1.95%, 6.88%, 5.68%, and 9.83%
in Precision, Recall, F-score, Accuracy, and IoU, respective-
ly. Furthermore, deep learning methods usually outperform
traditional methods because deep learning employs multi-
layer networks to mine discriminative features of ground-
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TABLE III
COMPARISON WITH OTHER METHODS ON TLCDD

Methods F R P A IoU
R/B (0.6) [21] 46.12 51.59 69.47 71.76 36.48

B/R (Otsu) [23] 57.26 77.48 55.98 67.72 45.39

B-R (Otsu) [23] 50.80 61.47 57.91 66.92 38.34

(B-R)/(B+R) (Otsu) [23] 59.11 69.60 63.00 73.61 47.23

FCN [62] 57.00 73.77 63.20 66.49 46.75

CloudSegNet [50] 57.79 77.61 64.46 64.59 47.78

U-Net [61] 67.32 80.43 68.80 74.13 58.16

SegCloud [51] 66.95 81.50 68.35 73.06 57.76

PSPNet [33] 67.00 77.75 68.74 78.64 57.43

FLA [63] 71.62 81.04 71.49 86.47 63.39

TransUNet [45] 70.37 81.03 72.39 84.93 64.01

DC-Swin [64] 71.06 81.49 70.53 85.52 62.55

UNetFormer [65] 72.78 81.72 69.67 85.68 63.87

InTransformer 79.34 83.67 79.27 92.15 73.84

based cloud images. Transformer-based methods are generally
better than CNN-based methods due to building the long-range
dependencies.

To demonstrate the generalization ability of the proposed
InTransformer, we conduct a series of comparison experiments
on SWIMSEG. The results of different comparison experi-
ments are listed in Table IV. From the table, we can see
that our method achieves the best results in all five metrics
compared with state-of-the-art methods, which demonstrates
the superiority of our method. Furthermore, many methods
have lower performance on TLCDD than that of SWIMSEG,
which indicates that TLCDD is more challenging for ground-
based cloud image segmentation.

Furthermore, we analyze the computational complexity,
training time, the number of parameters and the running time
of different methods on TLCDD as shown in Table V. The
Floating Point Operations (FLOPs) is usually applied to mea-
sure the computational complexity. Note that the traditional
methods do not acquire the training time and do not compute
the number of parameters due to the lack of training phases.

From table V, we can see that the training time generally
increases with the number of parameters. The running time of
CNN-based methods are more than those of the traditional
methods. It is because CNN-based methods require large
number of parameters to learn deep features. The Transformer-
based methods have more running time than the CNN-based
methods because the self-attention interacts all patch tokens
to obtain the attention matrix.

The proposed InTransformer processes a ground-based
cloud image with a running time of 72.06ms, that is our
method could process 13 ground-based cloud images per
second. It takes about 2 minutes for the acquisition device
to collect a ground-based cloud image in the weather sta-
tion. Hence, the proposed method could satisfy the actual
application demand. It is reasonable to apply the proposed
InTransformer for ground-based cloud image segmentation

TABLE IV
COMPARISON WITH OTHER METHODS ON SWIMSEG

Methods F R P A IoU
R/B (0.6) [21] 73.28 74.01 81.07 74.37 65.36

B/R (Otsu) [23] 74.59 76.58 77.41 79.16 67.44

B-R (Otsu) [23] 78.89 78.38 84.60 80.95 67.42

(B-R)/(B+R) (Otsu) [23] 79.35 74.26 82.18 81.91 69.82

FCN [62] 78.38 80.17 76.42 82.31 73.88

CloudSegNet [50] 78.36 83.41 83.24 86.99 75.06

U-Net [61] 84.05 81.43 85.34 86.11 74.24

SegCloud [51] 84.86 86.13 84.89 86.88 76.29

PSPNet [33] 85.26 84.58 86.47 88.09 78.52

FLA [63] 81.56 83.71 87.94 85.97 72.44

TransUNet [45] 86.31 81.03 87.59 88.19 77.93

DC-Swin [64] 86.78 88.58 88.06 88.21 78.45

Unetformer [65] 86.53 88.09 89.95 89.01 79.60

InTransformer 88.39 90.28 91.64 91.31 82.97

when trading off the performance and the running time. Note
that the running time analysis of all comparison experiments
is performed on a workstation equipped with NVIDIA RTX
3090Ti GPUs.

3) Visualization: We visualize some segmentation results
of different methods as shown in Fig. 9. From the figure, we
can see that our method generates more accurate segmentation
masks than other methods, especially for illumination regions,
thin clouds, thick clouds, etc.

Illumination is challenging for the ground-based cloud im-
age segmentation task. From the red rectangle in the first
row of the figure, we can see that InTransformer is more
robust to illumination than other methods. The purple and
green rectangles in Fig. 9 represent thick and thin cloud areas,
respectively. The thick cloud areas appear darker due to the
stacked cloud distribution. From the purple rectangle in the
second row of the figure, the proposed InTransformer identifies
complex thick clouds more easily than other methods. Thin
cloud refers to a form of cloud that is light and somewhat
transparent with low optical depth. Thin cloud has relatively
low contrast between cloud and sky, and therefore it is
challenging for segmentation. In terms of the green rectangles
in the last four rows from Fig. 9, we can see that the proposed
InTransformer could segment the thin cloud areas correctly
compared to other methods. In a word, InTransformer could
handle the hard segmented cloud pixels effectively.

4) Parameters Analysis: We study the influence of two
important parameters on the performance of InTransformer in
this section.

a) Number of HMTBs: We employ the HMTBs in the
encoder to build long-range dependencies at each scale. We
conduct the experiments with different number of HMTBs, and
the results are shown in Fig. 10. From this figure, we can see
that the performance increases with the number of HMTBs.
Hence, the number of HMTBs is 3.

b) Number of Hybrid Multi-head Transformer Layers: We

Integration transformer for ground-based cloud image segmentation 
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TABLE V
THE TRAINING TIME, COMPUTATIONAL COMPLEXITY, NUMBER OF PARAMETERS, AND RUNNING TIME COMPARISON OF DIFFERENT METHODS

Methods Training time (h) Parameters (M) FLOPs (G) Running time (ms)
R/B (0.6) - - - 10.57

B/R (Otsu) - - - 12.12
B-R (Otsu) - - - 11.84

(B-R)/(B+R) (Otsu) - - - 13.25
FCN [62] 3.1 13.15 60.93 35.48

CloudSegNet [50] 4 15.46 57.31 39.73
U-Net [61] 4.6 17.27 160.51 49.54

SegCloud [51] 5.3 33.75 168.73 50.89
PSPNet [33] 6.7 46.70 184.73 52.26

FLA [63] 12.5 66.99 451.37 68.94
TransUNet [45] 16.9 107.48 60.87 73.53
DC-Swin [64] 18 111.72 51.72 76.15

Unetformer [65] 16.3 96.85 69.96 68.59
InTransformer 17.4 109.87 167.58 72.06

Fig. 9. The segmentation results of different methods. (a) Ground-based cloud images. (b) Ground-truth segmentation masks. (c) R/B (0.6). (d) (B-
R)/(B+R)(Otsu). (e) FCN. (f) U-Net. (g) SegCloud. (h) TransUNet. (i) FLA. (j) DC-Swin. (k) InTransformer. The figure is best viewed in color with PDF
magnification.

Fig. 10. The performance of InTransformer with different number of Hybrid
Multi-head Transformer Blocks.

Fig. 11. The performance of InTransformer with different number of hybrid
multi-head transformer layers.

Integration transformer for ground-based cloud image segmentation 
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TABLE VI
THE PERFORMANCE OF DIFFERENT METHODS WITH

DIFFERENT NUMBER OF TRAINING EPOCHS ON TLCDD

Epochs Methods F R P A IoU

130

SegCloud 65.87 81.38 68.24 72.75 56.95
FLA 70.11 80.13 70.54 84.89 62.47
Unetformer 72.19 81.23 68.11 83.28 62.83
InTransformer 78.15 82.81 77.93 90.76 71.91

140

SegCloud 66.95 81.50 68.35 73.06 57.76
FLA 71.12 80.87 71.12 85.92 63.18
Unetformer 72.78 81.72 69.67 85.68 63.87
InTransformer 78.83 82.98 78.65 91.49 72.82

150

SegCloud 66.35 81.38 68.23 72.83 57.24
FLA 71.62 81.04 71.49 86.47 63.39
Unetformer 72.34 81.56 68.50 84.08 63.11
InTransformer 79.34 83.67 79.27 92.15 73.84

160

SegCloud 66.10 81.26 68.12 72.15 57.09
FLA 71.23 80.93 71.34 86.23 63.21
Unetformer 71.79 81.05 67.68 83.03 62.58
InTransformer 78.95 83.43 78.87 91.83 73.12

170

SegCloud 65.41 80.12 67.35 71.92 56.15
FLA 70.85 80.38 70.79 85.53 62.98
Unetformer 70.74 80.66 66.21 83.08 61.65
InTransformer 78.38 83.24 78.32 91.21 72.31

study the number of hybrid multi-head transformer layers for
each HMTB. The experimental results are shown in Fig. 11,
where we can see that the performance is best when the
number of hybrid multi-head transformer layers is set to 2.

c) Influence of Different Loss Functions: We compare the
influence of different loss functions on the performance of the
proposed InTransformer, as shown in Fig. 12. From the figure,
we can see that the proposed InTransformer achieves the best
performance when the BCE loss is treated as the loss function.

Fig. 12. The performance of InTransformer with different loss functions.

d) Number of Training Epochs: We evaluate the effect
of different training epochs on the performance of different
methods. As shown in Table VI, we can draw some conclu-
sions. Firstly, the proposed InTransformer achieves the best
performance when the training epoch is set to 150. Secondly,
the performance of all methods decreases with increasing
number of training epochs after reaching the peak.

e) Number of Training Samples: Table IV-C4 shows the
performance of different methods with different proportions
of training samples. From the table we can draw some
conclusions. Firstly, the proposed InTransformer achieves the
best performance on 100% training samples. Secondly, the

TABLE VII
THE PERFORMANCE OF DIFFERENT METHODS WITH

DIFFERENT NUMBER OF TRAINING SAMPLE PROPORTIONS
ON TLCDD

Training Samples (%) Methods F R P A IoU

60

SegCloud 59.68 74.68 53.65 61.63 49.66
FLA 63.76 78.65 59.12 70.95 55.18
Unetformer 64.13 78.75 59.82 72.36 55.89
InTransformer 69.72 81.53 63.95 81.82 60.54

70

SegCloud 62.01 78.26 58.85 69.36 52.98
FLA 66.98 79.58 63.15 75.58 57.25
Unetformer 67.22 80.42 62.23 77.14 57.36
InTransformer 73.78 81.78 68.75 85.76 65.18

80

SegCloud 65.35 79.05 63.84 71.92 55.35
FLA 70.26 80.07 69.95 83.89 61.12
Unetformer 68.96 80.76 66.26 78.98 59.58
InTransformer 75.35 82.55 72.13 88.08 68.18

90

SegCloud 66.04 80.19 64.86 72.65 56.03
FLA 70.89 80.56 70.92 85.13 62.86
Unetformer 70.35 81.56 68.98 81.34 60.56
InTransformer 77.25 82.92 77.26 90.86 71.12

100

SegCloud 66.95 81.50 68.35 73.06 57.76
FLA 71.62 81.04 71.49 86.47 63.39
Unetformer 72.78 81.72 69.67 85.68 63.87
InTransformer 79.34 83.67 79.27 92.15 73.84

TABLE VIII
THE PERFORMANCE OF INTRANSFORMER WITH DIFFERENT RATIOS OF α,

β , AND γ IN HYBRID MULTI-HEAD TRANSFORMER LAYER.

α:β:γ F R P A IoU
1:1:1 78.28 82.20 77.76 91.06 71.20
1:2:1 79.34 83.67 79.27 92.15 73.84
1:4:1 78.15 82.67 77.22 90.88 71.11

performance of all methods improve with the increase of the
number of training samples. Finally, the proposed InTrans-
former achieves the best performance in the same training
sample proportion.

f) Different Ratios of α, β and γ in the Hybrid Multi-head
Transformer Layer: α, β and γ represent the head number of
Y i−1
n−1, Y in−1, and Y i+1

n−1, respectively. In order to investigate the
influence of the performance of InTransformer with different
ratios of ,,and in the hybrid multi-head transformer layer,
we perform experiments, and the results are listed in Table
VIII. From this table, we can see that the performance of
InTransformer is best when the ratio of α, β, and γ is set to
1 : 2 : 1.

V. CONCLUSION

In this paper, we have proposed InTransformer for ground-
based cloud image segmentation. Specifically, the encoder of
InTransformer consists of the CNN stage and the Transformer
stage. We propose HMTB to replace the tansformer layer in
Transformer stage, which allows the proposed InTransformer
to take full advantage of CNN and Transformer to simulta-
neously learn local information and long-range dependency
information at different scales. Meanwhile, we design MCAMs
as the decoder of InTransformer to fuse the multi-scale features
from the encoder and mine cross-scale information. Finally,
we apply the convolution and upsampling operations to obtain
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the segmentation mask. We have conducted the experiments
on TLCDD and SWIMSEG, and the experimental results have
demonstrated the effectiveness of the proposed InTransformer.
In the future, we will apply the proposed InTransformer to the
satellite-based observation to demonstrate the generalization
ability of the proposed method. Furthermore, we will study
the lightweight Transformer-based model so as to reduce the
complexity for ground-based cloud image segmentation.
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