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A B S T R A C T   

We describe the out-of-plane bending of kerf chiral fractal lattices metamaterials by using a combination of 
theoretical models, full-scale finite elements and experimental tests representing the flexural behaviour of 
metamaterial beams under three-point bending. Good agreement is observed between the three sets of results. 
Parametric analyses show a linear log-log relation between bending modulus and aspect ratios of the unit cells, 
which are indicative of the fractal nature of the metamaterial. The ratio between the bending and in-plane tensile 
moduli of these chiral fractal metamaterials ranges between ~ 5 and ~ 34 and is linearly proportional to the 
square of the ratio between length and width of the ribs of the chiral unit cells at different fractal orders. These 
properties suggest that the class of chiral fractal lattice metamaterials offer metacompliance properties between 
the flexural and in-plane stretching behaviours, which can be tailored by the adoption of the fractal scales.   

1. Introduction 

Topologies related to mechanical metamaterials largely involve the 
use of lattices and/or multiphase composites, as well as applying pat-
terns of perforations to convert conventional materials substrates into 
architected materials. Examples of classes of metamaterials systems 
include hexagonal lattices [1], rotating rigid units (rotating squares, 
rectangles, parallelograms, rhomboidal, triangles, cubes, and hierar-
chical mixed topologies) [2–13], chiral pattern formations [14], as well 
as re-entrant configurations [15]. Regular or random slits/cuts have also 
been adopted to generate unusual mechanical behaviour in mechanical 
metamaterials [16–19]. Many two-dimensional metamaterials have 
been studied. Relatively little work has however been performed on the 
out-of-plane behaviour of metamaterials. Examples involve the design 
and testing of a hybrid auxetic foam/perforated plate structure [20], in 
which the static bending stiffness of the hybrid auxetic composite is 
modelled using analytical and finite element (FE) approaches bench-
marked against three-point bending experimental tests. Another 
example is the evaluation of the out-of-plane bending and energy 

dissipation of chiral perforated lattices beams under quasi-static and 
large deformations three-point (3P) bending [21]. 

Chiral cellular structures with rotational symmetry are a subset of 
auxetic (i.e., negative Poisson’s ratio) solids. Chiral hexagonal config-
urations have been first made, measured, and analysed in the pioneering 
works of Lakes’ group, in non-affine deformations [22] and later further 
developed into an in-plane chiral hexagonal topology [23]. Other groups 
have explored the homogenized properties of hexachiral and tetrachiral 
lattices, using micropolar and other elasticity-based methods (for 
example, [24,25]). The through-the-thickness properties of chiral 
structures are significant for the multifunctional behaviour of sandwich 
panels. Some of these mechanical characteristics involve the flexural 
stiffness, energy absorption, resistance to wrinkling as well as sound and 
electromagnetic insulation [26]. Ref [27–29] have described the elastic 
buckling behaviour of hexagonal and tetrachiral honeycombs under 
flatwise compressive loading. Lorato et al. [30] have investigated the 
out-of-plane linear elastic mechanical properties of trichiral, tetrachiral 
and hexachiral honeycomb configurations, and developed finite element 
models to identify the dependence of the transverse shear stiffness 
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versus the gauge thickness of the honeycombs. Alderson et al. [31] have 
evaluated the out-of-plane bending deformation of four types of hon-
eycombs with trichiral, anti-trichiral, re-entrant trichiral as well as re- 
entrant anti-trichiral configurations by finite element simulations. 
Chen [32,33] developed theoretical models for evaluating the flexural 
rigidity and torsional rigidity of an open honeycomb. The models 
involved the identification of a torsion coefficient for an equivalent thin 
plate in bending by using a generalized variational principle. Constraint 
conditions on the edges of a unit cell plate were considered, as a part of 
the analysis related to the torsional deformation occurring during the 
out-of-plane deformation of the honeycomb. Hou et al. [34] have 
described the bending and failure of polymorphic honeycomb auxetic 
topologies consisting of gradient variations of the horizontal rib length 
and the cell internal angles across the surface of the cellular structures. 
Ha, Plesha and Lakes [35] have also developed and modelled chiral 
three-dimensional cubic lattices with rigid cubical nodules using finite 
elements. The 3D chiral lattices exhibit stretch-twist coupling, which 
cannot happen in a classical elastic continuum, but occur in a chiral 
Cosserat solid [36]. Huang et al. [37] have presented a series of 
analytical models, finite element simulations and experimental tests to 
evaluate the bending performance of zero Poisson’s ratio (ZPR) cellular 
structures made from the tessellation of hexagons and thin plates. 

Another interesting set of mechanical metamaterials is the one that 
features architected cuts, either periodically tessellated, hierarchical, or 
fractal. Those metamaterials are often labelled under the term of kerfing, 
which indicates the cutting/carving technique used to produce the ar-
chitectures. Indeed, chiral fractal perforated configurations are some-
times classified within metamaterials manufactured via kerfing 
techniques [38,39]. The chiral fractal configuration described in this 
work has been evaluated using analytical, Finite Element and experi-
mental tests by some of these Authors [40] in a 2018 paper, with a 
particular emphasis about the in-plane engineering constants bench-
marked against experimental results extracted from kerfed PMMA 
samples and according to ASTM standards. Kerf lattices to be used in 
semi-structural configurations for overall out-of-plane deformations and 
architectural acoustics have also been discussed by Holterman in his 

Master Thesis [41]. We also notice that in Holterman’s thesis (and other 
following works), the kerfed lattice considered in this work is sometimes 
named as Archimedean meander or spiral [39]. In Holterman’s work, 
bending deformations were evaluated by assembling large scale chiral 
fractal cells with beam elements, and by assessing the equivalent central 
displacement of a kerfed assembly under uniform distributed loads. 
Chen et al. [42] evaluated the bending of kerfing Archimedan patterns in 
square and hexagonal configurations. In that paper, Chen et al. also 
provided an analytical approach to express the in-plane and bending 
stiffness of cells with both square and hexagonal tessellations and 
benchmarked the analytical and Finite Element findings against exper-
iments on kerfed unit cells and assemblies made of MDF. Quite inter-
estingly, Chen et al. indicate in their paper that the uniaxial (in-plane) 
stiffness of the kerf lattices is larger than the bending one, for the same 
type of meander pattern. Chiral fractal patterned deep beams in Ref [21] 
have shown to undergo internal deformation mechanisms involving 
visco-hyperelasticity of the core material and contact friction through 
the thickness, when subjected to large displacements. The synergy be-
tween these two different dissipation mechanisms provides tailoring and 
control of the loss factor during hysteretic bending cycles. Kerfed 
metastrips have also recently shown some remarkable bandgap tuning 
capabilities under extreme out-of-plane deformations [43]. 

This paper describes the out-of-plane bending mechanical properties 
of a chiral fractal perforated metamaterial using theoretical models 
benchmarked with finite element results and experimental three-point 
bending tests. Bending is an important mechanical metrics for these 
architected metamaterials, because of their out-of-plane shape morph-
ing and potentially useful applications for lightweight constructions in 
architecture and acoustics [41]. 

The analytical and finite element models describing the homoge-
nized flexural modulus of the kerf chiral fractal metamaterials presented 
in this work are related to equivalent thin plates/beam configurations. 
Those configurations are different from the deep beams described in Ref 
[21]. The chiral fractal kerfed beams manufactured and tested in this 
work follow ASTM-type three-point tests differently from some of the 
shapes evaluated in [42]. The generalised analytical model of the 

Fig. 1. (a) Geometric parameters of a chiral fractal lattice unit cell (a). The four fractal configurations evaluated in this work (b).  

W. Zhang et al.                                                                                                                                                                                                                                  



Composite Structures 318 (2023) 117068

3

flexural modulus of the chiral fractal metamaterial presented in this 
work is based on applying Castigliano’s theorem 3D beam formulations 
explicitly related to Bernoulli and Timoshenko formulations, and out-of- 
plane torsional beams to cater for the different deformation mecha-
nisms. Quite significantly compared to other works in the field, we relate 
here the homogenized bending modulus of the fractal configurations of 
the kerf chiral lattices to the specific deformation mechanisms occurring 
at the different iterations of the kerf meander, by exploring four fractal 
scales. Another novelty of this work compared to other works [21,41,42] 
is that we also demonstrate that the chiral fractal metamaterial config-
uration provides a bending to axial stiffness ratio from 6 to 35, 
depending upon the fractal order considered. This behaviour is also 
consistent with the one shown by scaling laws in other lattice meta-
material configurations, although the fractal nature (or meander itera-
tion) of the kerf chiral lattice is the one responsible here for the bending 
to axial stiffness ratio. 

The paper is organized as follows: a theoretical bending model of the 
unit cell of the chiral hinge lattice will be firstly presented, followed by 
the description of the setup of the experimental tests and the related full 
finite element simulations. After that, the effective bending modulus 
obtained from the theoretical, numerical, and experimental data are 
compared in detail. The effects of the different aspect ratios of the kerf 
chiral fractal metamaterial are also discussed. 

2. Theoretical bending model of the chiral fractal metamaterial 

Fig. 1 shows the square unit cell of the kerf chiral fractal meta-
material with parameters a, b, t and h; the stress contour of the related 
finite element model is representative of the out-of-plane bending 
deformation of the metamaterials. The geometry of the metamaterial 

and the related nomenclature of the cell parameters are based on the 
lattice configuration presented in [40]. The architecture of the chiral 
fractal metamaterial consists in self-similar generations of a series of cuts 
like the first iteration of a Peano’s curve [44]. The in-plane mechanical 
properties of the metamaterial are dictated by the in-plane bending, 
stretching and transverse shear of the ribs. Within the geometry of this 
class of metamaterials, the parameter a represents the whole length of 
unit cell, b is the elementary width of the ribs, which is equal to 2 mm in 
the test cases of this paper. The term h is the out-of-plane thickness of the 
unit cell and t is the width of the slit. The total length of the unit cell is a 
= n×(b + t), where n is an even integer (10 in cell represented in Fig. 1). 
The ratio a/b is critical to determine the homogenised in-plane Young’s 
and shear moduli of the metamaterial, with in-plane stiffness decreasing 
by almost an order of magnitude when passing from a/b = 6, to a/b = 10 
[40]. The analytical bending model proposed does not consider the 
presence of the gap t. The same gap is however equal to b/10 in the finite 
element models used here and consistent with the cutting parameters 
adopted in the fabrication of the experimental samples made via laser 
cutting. 

The simplifications and assumptions under out-of-plane loading are 
like those used in the previous work related to the in-plane mechanics of 
the chiral fractal metamaterial [40]. The single unit cell of the chiral 
fractal metamaterial is represented by a series of Timoshenko beams 
(36, in the case of the a/b = 10 configuration shown in Fig. 1). For the 
out-of-plane bending loading, the boundary conditions are six degrees of 
freedom fixed on the left-hand corner [32,37] and a uniform load dis-
tribution qz applied to the right area adjacent to the neighbour unit cell 
(Fig. 2 (a)). The mechanical properties of the unit cell are therefore 
simplified by evaluating the deformation behaviour of an equivalent 
closed, sequential, and statically indeterminate beam structure with 

Fig. 2. Schematic illustration of the out-of-plane theoretical modelling of the unit cell a = 10b: (a) geometric solid model of the cell with distributed uniform bending 
loading qz; (b) simplification of the solid model into a meander of beam-like structures clamped at one end of the cell and subjected to a concentrated bending load Pz; 
(c) equivalent statically determinate structure of the beam meander with complementary conditions. 
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cross-section parameters b and h, with the uniform loading qz replaced 
by an equivalent concentrated force Pz (Fig. 2 (b)). The left corner be-
tween the beam components 1 and 36 is further cut open to solve for the 
internal forcesFz, T and M in the beam element 1, with complementary 
conditions δz

1 = δφ
1 = δθ

1 = 0 (Fig. 2 (c)). 
The signs of the internal forces in each beam element under out-of- 

plane loading are defined in the following way. The positive direction 
for the shear force Fzi is parallel to the cross-section area of the beam and 
along the z axis. The positive rotation direction for bending moment Mi 
and torque Ti is along x, y axis based on the right-hand rule, respectively. 
Similarly to the derivation of the in-plane internal force equations for 
chiral lattice metamaterials [40], the calculation of the internal forces 
firstly begins from beam element 1, as follows: 

M1(x1) = Fz × x1 +M Fs1(x1) = Fz T1(x1) = T 0⩽x1⩽l1 (1) 

Then, the other beam elements can be represented by their previous 
elements correspondingly. For the beam element i(i = 2..18,18a..36), 
the torque Ti(xi) and shear force Fsi(xi) can be represented by the out-of- 
plane bending moment Mi− 1(li− 1) and shearing force Fsi− 1(li− 1) of beam 
element i-1: 
{

Fsi(xi) = Fsi− 1
Fs19(x19) = Fs18a + Pz

{
Ti(xi) = Mi− 1(li− 1)

T19(x19) = T18a
i = 2..18a, 20..36 (2) 

The out-of-plane bending moment equations of the other beam ele-
ments can be expressed asMi(xi) = Ti− 1(li− 1) ± FSi− 1 × xi,i = 2..36. The 
sign here has following conventions: (1) when the beam i is turning 
downwards or turning right towards the beami + 1, the sign in the ith 

bending equation is negative; (2) when the beam i is directing upwards 
or turning left towards beami + 1, the sign in the ith equation is positive 
(Fig. 2 (c)). Consequently, the out-of-plane bending moment equations 
of the other 35 + 1 beam elements are rewritten as: 

⎧
⎨

⎩

Mi(xi) = Ti− 1 − Fsi− 1 × xi →or↓

M19(x19) = M18a(l18a) − Fs18a × x19 − Pz × x19

Mi(xi) = Ti− 1 + Fsi− 1 × xi ←or↑

(3) 

The effective flexural modulus of the chiral fractal metamaterial 
structure is then calculated by applying Castigliano’s second theorem 
[45]. In one unit cell, each element undergoes out-of-plane bending 
momentMi(x), torque Ti(x) and shear loadingFsi(x). The total strain en-
ergy of one unit cell structure is therefore defined as: 

U =
∑

Ui =
∑n

i=1

(∫ li

0

M2
i (x)

2EcI
dx +

∫ li

0

T2
i (x)

2GIP
dx + k

∫ li

0

F2
Si(x)

2GA
dx
)

(4) 

WhereEc,G = Ec/(2(1 + ν)) are the Young’s and shear moduli of the 
core material and ν is Poisson’s ratio of the same core solid. The 
parameter k is the shear coefficient factor for a Timoshenko beam, 
defined as k =

10(1+ν)
12+11ν [46]. The cross-section area of each element isA =

hb, while I = bh3/12 is the second moment of area. The polar moment of 
inertia of a solid with a rectangular cross section is 

IP =
hb3

16

(
16
3

−
3.36b

h

(

1 −
b4

12h4

))

, h > b [45]. 

Substituting Eq. (1)-Eq. (3) to Eq. (4), the total strain energy of the 

Fig. 3. Experimental setup of the three-point bending tests (a) and two types of specimens used in the tests: (b) unit cell a = 6b, (c) unit cell a = 10b.  
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chiral fractal lattice cell under a concentrated out-of-plane loading Pz is 
then obtained as: 

U =
P2

z

Ech
×

∑8
i=0

(
αiνi ×

∑35
j=0βj

(
b
h

)j
)

∑7
i=0

(
γiνi ×

∑33
j=0ζj

(
b
h

)j
) (5) 

Whereαi,βj, γi and ζj are constants. From Eq. (5), the displacement δz 

under the out-of-plane bending loading Pz is: 

δz =
∂U
∂Pz

=
2Pz

Ech
×

∑8
i=0

(
αiνi ×

∑35
j=0βj

(
b
h

)j
)

∑7
i=0

(
γiνi ×

∑33
j=0ηj

(
b
h

)j
) (6) 

The effective flexural modulus of a cantilever beam structure for unit 
cell can be therefore calculated as: 

Ef =
Pl3

3wI
=

Pz(10b)3

3δz ×
(
10bh3/12

) = Ec ×

∑7
i=0

(
ciνi ×

∑35
j=0dj

(
b
h

)j
)

∑8
i=0

(
eiνi ×

∑35
j=0gj

(
b
h

)j
) (7) 

Whereci,dj,ei and gj are constants. From Eq. (7), it is possible to 
evince that the non-dimensional effective bending modulus Ef/Ec is 
dependent upon the ratio of width to out-of-plane thickness b/h of the 
unit cell and the Poisson’s ratio of the core material v alone. 

3. Manufacturing and experimental tests 

All kerf chiral fractal metamaterial samples used in this paper have 
been manufactured using a laser cutting facility applied to PMMA sub-
strates (World Lasers LR1612 laser cutter with a 40 W CO2 laser). The 
elastic properties of the PMMA plastic have been determined by dog- 
bone specimens according to the standard test method (ASTM D638- 
08) in our previous work [40]. Two types of samples with unit cell a 
= 6b and a = 10b of 280 mm × 60 mm × 3 mm were manufactured for 
three-point bending experiment. The samples had at least 12 × 3 cells 
along the main × and y directions (Fig. 3). The Young’s modulus of the 
PMMA is Ec = 2.23 ± 0.26 GPa, with a Poisson’s ratio of ν = 0.37 ± 0.02. 
Those data have been used in the theoretical and finite element simu-
lations. According to the ASTM D790 standard test, the 280 mm long 
specimens allow for 50 mm overhanging at each end, which is at least 
10 % of the support span and sufficient to prevent the specimen from 
slipping through the supports. A support span of 180 mm is used for 
these specimens, which has a span-to-depth ratio of 60:1 to eliminate 
shear effects when the data are used to identify the equivalent flexural 
modulus. Three-point bending tests of the chiral fractal metamaterial 
samples have been performed using a Instron 3343 test machine with a 1 
KN load cell and a constant displacement rate of 5 mm/min. The tests 
were stopped when the central point deflection reached 10 mm. 

The tangent flexural modulus in the linear elastic regime is obtained 
as following: 

Ef =
L3m
4wh3 (8) 

Where Ef is the modulus of elasticity in bending, L is the support 
span, w is the width of beam tested, h is the out-of-plane depth of tested 
beam, and m is slope of the tangent to the initial straight-line portion of 
the load–deflection curve. 

4. Finite element simulations 

The numerical simulation of the chiral fractal lattice under three- 
point bending tests have been performed using ABAQUS version 6.14 
implicit. The full-size geometric dimensions and the material properties 
of the finite element models were the same as those of the experimental 
specimens described above. Three discrete rigid shells were placed on 
the top and bottom of the chiral fractal metamaterial plate, regarded as 
one indenter and two supporters (Fig. 4). The metamaterial plate was 
meshed with linear hex-dominated 8-node bricked solid elements 
(C38DR) and the three rigid shells were then meshed with a 4-node 3D 
bilinear rigid quadrilateral element (R3D4). An element size of t/4 = 0.5 
mm with sweep technique meshing was applied to guarantee the nu-
merical convergence of the results. The simulations involved static with 
nonlinear geometric deformations options. A general contact model 
based on the Coulomb friction and defined as All* with self was applied, 
with a frictional penalty coefficient of 0.2 along the tangential di-
rections, as well as a hard normal contact [47,48]. The two lower sup-
port shells were constrained with fixed boundary conditions without 
motion and rotation, the upper indenter was applied with a constant 
loading displacement of 10 mm. As it will be evinced from the experi-
mental results, this displacement load is within the linear elastic regime 
behavior of the kerf metamaterials samples. The equivalent bending 
modulus was then calculated by using Eq. (8). 

5. Results and discussion 

5.1. Comparisons of the effective bending modulus Ef amongst theoretical, 
finite element and experimental data 

The results from the theoretical, numerical simulation and experi-
mental tests related to the flexural modulus are shown in Table 1. The 
analytical bending modulus of the chiral fractal metamaterial with the 
configuration a = 6b differs from the numerical result by 6.6 %; the 
related three-point bending experimental results are 4.5 % higher and 
2.0 % lower than those from the theoretical and finite element pre-
dictions, respectively. The metamaterial with a unit cell a = 10b shows 
an experimentally derived flexural modulus that is 4.7 % and 0.3 % 
lower than the one provided by the analytical and numerical models. 
The discrepancy between the analytical and finite element model pre-
dictions for the chiral fractal lattice with unit cell a = 10b is 4.4 %. The 
differences observed here have various explanations. The analytical 
model of the unit cell is based on an equivalent and continuously 
unfolded cantilever beam, while the full-scale finite element models and 
experimental samples are based on simply supported beams. The effect 
of using the Timoshenko beam with a shear coefficient in the analytical 
model also needs to be considered. The chiral fractal unit cell with a =
6b is described by beam elements, all regarded as Timoshenko beams. 
The transverse shear stiffness of those beams tends to increase the 
compliance under bending; as a result, the analytical model predicts an 
effective bending modulus lower than the one provided by the full-scale 
finite element model and the experimental tests. The finite element 

Fig. 4. Finite element model of the chiral lattice with unit cell a = 6b under 
three-point bending test. 

Table 1 
Comparison between theoretical, finite element and experimental results of the 
effective bending modulus for the chiral lattice structure with unit cells a = 6b 
and a = 10b.  

Ef (MPa) Analytical FE Experiment 

a = 6b  215.62  229.78 225.25 ± 3.89 
a = 10b  48.86  46.07 45.94 ± 1.89  
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model provides only a slightly more accurate prediction compared to the 
experimental results, indicating that the analytical solution without the 
contact model is still valid for small out-of-plane bending deformations, 
and the contact friction on the interfaces does not have a significant 
influence on the deformation of the thin chiral lattice structure. When 
the presence of a Euler-Bernoulli beam was considered in the analytical 
model only, the resulting analytical bending moduli for the unit cells 
with a = 6b and a = 10b were 221.70 MPa and 49.29 MPa, respectively. 
Fig. 5 shows the sensitivity of the bending modulus with the different 

analytical beam models versus the FEM and the experimental results for 
the two metamaterial configurations tested. It is worth noticing that the 
Euler-Bernoulli beam model here gives a very slightly stiffening effect 
compared to the Timoshenko, Finite Elements, and experiments, 
showing that for that fractal configurations with slightly slender beams, 
some contribution from the transverse shear compliance of the beams 
cross-sections is present. At it will be more discussed in Paragraph 5.2, 
higher fractal orders are less susceptible of this effect. 

Force-displacement curves of the chiral fractal metamaterial with 
unit cell a = 6b and a = 10b from finite elements and experiments are 
displayed in Fig. 6 (a) and (b). The curves again demonstrate the good 
agreement between numerical and experimental results. It is worth 
noticing that the force–displacement curves do not show any hard 
stiffening nonlinearity, as might be expected if the contact between ribs 
occurred. This is likely due to the deformation being too small to cause 
contact. The experimental force–displacement curves of experiments 
show a clear elastic response followed a slight softening with the in-
crease of the displacement. Force-displacement curves of the chiral 
fractal metamaterial with different unit cells and an integral plate, all 
made with the same PMMA substrate, are further compared within the 
same controlled displacement range (Fig. 6(c)). As it will be further 
discussed in the following paragraphs, the bending stiffness of PMMA is 
10 times and 51 times larger than that of chiral fractal metamaterial 
with unit cells a = 6b and a = 10b having the same dimensions, 
respectively. 

The deformations of the finite element models representing the 
chiral fractal mechanical metamaterial beam with unit cell of a = 6b 
under three-point bending are shown in Fig. 7. The maximum von Mises 
stress of the metamaterial is only 17.5 MPa when the central displace-
ment U2 reaches 20 mm; this indicates that the rotationally symmetric 
patterns of the slits in the unit cells of the metamaterial extend the 
overall linear elasticity stage of the PMMA substrate of the chiral 

Fig 5. Effect of the use of the Timoshenko beam model versus the Euler- 
Bernoulli and FEM and against the experimental results for the two kerf 
fractal lattice metamaterials. 

Fig. 6. Force-displacement curves of chiral fractal metamaterial with unit cell a = 6b (a) and a = 10b (b), as well as the PMMA integral substrate with same di-
mensions (c). 
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structure (Fig. 7(a)). The experimental test did not reach failure of the 
metamaterial beam. Fig. 7(b) to Fig. 7(g) show the contours of all the 
stress components along the three directions. The σ11 stress along the x 

direction is at least twice larger than the other stresses along the y and z 
directions, which makes that stress the main contributor to the bending 
deformation (Fig. 7(b)-(d)). Similarly, the shear stress σ13 in the xz plane 

Fig. 7. Numerical results of chiral fractal metamaterial beams with unit cell a = 6b under three-point bending under a central displacement U2 of 20 mm: (a) von 
Mises stress, (b) σ11, (c) σ22, (d) σ33, (e) σ12, (f) σ23, (g) σ13 (Stresses are in MPa). 
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is 1.5 times higher than the other shear stresses in the yz and xy planes, 
respectively (Fig. 7(e)-(g)). The maximum shear force σ13 in one unit cell 
occurs on the diagonal ends of the beam elements and along 45 degree 
(Fig. 7(g)). 

5.2. Effect of the aspect ratio a/b 

The magnitude of the in-plane engineering constants of the chiral 
fractal lattice metamaterial is strongly dependent upon the aspect ratio 

Fig. 7. (continued). 

Fig. 8. Three types of representative unit cells (RUC) with different aspect ratios of slit to ribs: (a) a/b = 6, (b) a/b = 10, (c) a/b = 14.  
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a/b between internal slits and ribs (Fig. 8) [40]. This is also true for the 
flexural modulus, as confirmed by the parametric analysis from the 
analytical model and the finite element simulations. We first look at the 
non-dimensional effective bending modulus Ef/Ec(with Ec being again 

the modulus of the solid substrate) versus the ratio between the unit cell 
width to out-of-plane thickness b/h, for the different slit to ribs aspect 
ratios a/b (Fig. 9). These parametric results are extracted from the 
analytical model. For a constant value of b/h, the nondimensional 
flexural modulus Ef/Ec decreases rapidly with the increasing numbers of 
slits a/b. Fig. 9(a) shows that when b/h is less than 1, Ef/Ec increases 
drastically for small values of a/b. The curves in Fig. 9(a) shown in solid 
lines represent the cases for which a minimum slenderness ratio of 5 is 
considered, to make the equivalent beam of the unit cell satisfying the 
minimum requirements to be a Timoshenko beam. This condition is 
imposed by the relation a/b × b/h = 5. When b/h = 1, the non- 
dimensional bending modulus for the unit cell with a = 6b is almost 5 
times larger than the one of the unit cells with a = 14b. However, the 
ratio b/h has almost no effect on Ef/Ec for different values of a/b when 
b/h > 5 (Fig. 9(b)). The nondimensional flexural modulus the chiral 
fractal lattice metamaterial with a = 6b varies between 0.156 and 0.161, 
while it is between 2.39 × 10-2 and 2.46 × 10-2 when the unit cell has a 
= 14b. The variation of Ef/Ec between unit cell with a = 10b and a = 14b 
is lower, compared to those existing between unit cells having a = 10b 
and a = 6b. 

The effects on the effective bending modulus provided by the torque, 
bending moment and shearing force present in the ribs of the chiral 
fractal metamaterials have been also investigated for different aspect 
ratios a/b. The comparison between the theoretical and the full-scale 
finite element results are shown in Fig. 10. In the analytical results, 
we differentiate the contribution from the torque (T), bending (B) and 
shear (S) induced deformations in the ribs. All the analytical models - 

Fig. 9. Theoretical non-dimensional effective flexural modulus Ef/Ec versus the ratio between width and out-of-plane thickness b/h for different aspect ratios of slit 
to ribs:(a)1⩾b/h > 0; (b)b/h > 5. 

Fig. 10. Comparisons between theoretical and finite element results related to 
the nondimensional flexural modulus Ef / Ec for different slit/ribs length ratios 
of chiral fractal metamaterials. The theoretical models consider different 
micromechanical mechanisms: TB stands for torque/bending, TS for torque/ 
shear, BS for bending/shear and TBS for torque/bending/shear. The graph in 
the inset shows the nondimensional flexural modulus versus a/b in logarith-
mic scale. 

Fig. 11. (a) Ratio between effective bending and tensile (Young’s) moduli Ef / Ex versus the different slit/rib length ratios of the chiral fractal metamaterials. (b) 
Linear dependence of the ratio between bending and tensile stiffness (finite element data), and the square of a/b. 
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except the one including the combined bending and shear loading (BS) - 
provide consistent results with the high-fidelity numerical simulations 
for the different aspect ratios a/b. The shear deformation within the ribs 
contributes significantly to the equivalent bending modulus, especially 
for metamaterials with unit cells having the lowest aspect ratio a/b = 6. 
The bending modulus increases 3.4 times compared to the finite element 
case, when the torque-induced deformation is neglected. Similar to the 
in-plane mechanical properties [40], high aspect ratios a/b lead to a 
decrease of the bending stiffness. Quite interestingly, the relation of Ef/

Ec versus a/b in the log–log scale shows a good linearity, especially for 
the highest fidelity models. Linearity in log–log scales of fractal entities 
versus systems parameters has been already observed, for example, in 
diffusion coefficients associated with stochastic ensembles of moving 
particles [49], and in disordered-averaged entropy systems with fractal 
entanglement scales [50]. 

It is notable to observe the variation of the ratio between the out-of- 
plane effective bending modulus Ef to the in-plane effective Young’s 
modulus Ex [40] for different aspect ratios a/b (Fig. 11(a)). The results 
from the theoretical models combine all the microstructure mechanisms 
considered acting within the unit cell of the chiral fractal metamaterials 
(BAS: in-plane Bending moment, Axial and in-plane Shear force under 
in-plane tension; TBS: Torque, out-of-plane bending Moment and Shear 
force for out-of-plane bending). All the models also agree well with finite 
element data representing full-scale tensile and bending tests. The tor-
que and out-of-plane bending moment, as well as the axial and in-plane 
bending moment, all provide the most important contributions to the 
ratio between effective bending and tensile moduli of the chiral fractal 
metamaterial with different slit/ribs length ratios a/b. The ratios be-
tween moduli vary from ~ 5 for a/b = 6, to ~ 34 for a/b = 18. Archi-
tectures like double-twill carbon/flax fabric and epoxy laminates have 
shown ratios between flexural and tensile moduli up to ~ 4.1 [51]. 
Cactus fibres, which have a fractal and tree-like configuration, have 
ratios between equivalent bending and tensile moduli up to ~ 6.7 [52]. 
These values are large and allow tuning by variation of the fractal ge-
ometry: changing the aspect ratio changes the number of loops in a unit 
cell. By contrast, the difference between bending and tensile stiffness in 
hexagonal honeycomb [32,33] depends only on the thickness t of the 
cell walls in relation to their length L, as expressed by the ratio t/L. 
Bending stiffness is proportional to t/L by contrast to the well-known 
axial in plane stiffness proportional to (t/L)3. The analogous for the 
kerf chiral fractal metamaterials of the ratio t/L is (a/b)-1. The chiral 
fractal metamaterials show indeed a linear proportionality between the 
bending to axial moduli ratio and (a/b)2, as it can be evinced from the 
R2 = 0.99 fitting of the numerical results (Fig. 11(b)). This is like the (t/ 
L)-2 linear dependence of the flexural to tensile stiffness in lattices and 
honeycombs. Large effects of the order of 30 were observed in lattices, 
even non chiral ones [53]. Also, designed lattices exhibit strong size 
effects in bending and torsion [54]; slender specimens in which gradi-
ents are large are a factor 29 to 36 stiffer than in the absence of gradi-
ents, corresponding to pure tension or pure shear. The kerf chiral fractal 
metamaterial described here shows however that large bending to axial 
tensile moduli ratios can be achieved by purely tuning the fractal order 
of the architecture. 

6. Conclusions 

This work has focused on the out-of-plane bending of kerf chiral 
fractal lattice perforated metamaterials with the use of theoretical and 
finite element models, together with experimental tests. Like its in-plane 
tensile modulus, the flexural modulus of these chiral fractal meta-
materials decreases with the increase of the fractal parameter of the cells 
a/b, with an almost linear dependence in terms of log–log scales, simi-
larly to other fractal systems shown in open literature. The parametric 
analysis performed shows that, within the limit of the use of Euler- 
Bernoulli and/or Timoshenko beams to represent the components of 
the internal architecture of the chiral fractal units, the overall bending 

modulus is almost independent from the transverse thickness of the cell. 
Large bending to axial moduli ratios that depend on the fractal order are 
observed; these metamaterials show therefore the possibility of being 
used as platforms to design architected structures with differential 
bending to axial stiffness properties, by tailoring the topology of the 
metamaterial using a suitable fractal order. 
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