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A B S T R A C T

This paper presents a novel agent-based, stochastic model, which uses game-theoretic principles to simulate
Contract for Difference (CfD) auctions. The framework has use cases and implications for policymakers and
renewable generators alike, and can be used by developers to prepare bidding strategy and for policymakers
to empirically test auction design. The model is demonstrated through replication of the offshore wind CfD
Allocation Round 3 (AR3) pot, and utilises high-level cost modelling distribution data to estimate bid prices
for the competing projects. The model produces a distribution of most likely results which better categorises
uncertainty, and through comparison of AR3 and simulation results, demonstrates how outcomes can be
predicted with reasonable confidence by developers. Analysis show that the transmission network and grid
connection charges are a significant barrier for projects in some geographical regions to be awarded a CfD
contract, potentially hindering renewable deployment in those areas. Moreover, this paper demonstrates how
players can use probability theory to select an optimum bidding strategy which maximises expected profit
while factoring the uncertainty inherent in CfD auctions. Results show that a 1200 MW wind farm development
can increase potential profits by £135 million over the CfD contract length in exchange for a 25 p.p. chance
reduction in being awarded a subsidy.
1. Introduction

For countries worldwide to meet their energy targets, such as the
UK aiming to cut carbon emissions by 68% by 2030 [1] and achieving
net-zero by 2050 [2], governments are encouraging the adoption of
renewable energy technologies. To achieve this, governments have
implemented policies to expand the market penetration of renewable
electricity and promote its deployment [3]. Such approaches enable
governments to achieve ambitious renewable energy targets and thus
reduce their carbon emissions. The UK government’s primary subsidy
support mechanism for supporting the deployment of new low-carbon
electricity generation is through the Contracts for Difference (CfD)
subsidy scheme [4]. CfD subsidies are awarded in increasingly com-
etitive auction processes. The contract guarantees developers a fixed
rice (£/MWh) for the electricity they generate. From a developer’s
erspective, being awarded a CfD protects them from volatile market
lectricity prices and provides revenue certainty. Revenue certainty

∗ Corresponding author at: Industrial Doctorate Centre for Offshore Renewable Energy, The University of Edinburgh, Edinburgh, UK.
E-mail address: n.kell@ed.ac.uk (N.P. Kell).

reduces project risk and so decreases the cost of project financing. For
many developers of renewable energy technologies, the award of a CfD
contract is the most viable route to market.

To maintain competition and ensure value for money for electricity
consumers, CfD auctions have a limited subsidy budget. Therefore,
many developers bidding for a subsidy at auction are unsuccessful [5].
Developers who fail to win a contract will likely incur project de-
lays as they wait for the next allocation round. On the contrary, a
contract-winning developer who does not quantify its costs properly
may experience the winner’s curse. Developers can experience the win-
ners’ curse in CfD auctions because of bidding too low for the capacity
on offer and so regret the award of a contract at the resultant price
obtained. This can potentially lead to the non-realisation of projects
or reduce the profitability of developments [6]. For these reasons,
it is crucial that developers properly consider the uncertainty while
developing their bidding strategy.
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For developers to formulate an optimum bidding strategy, genera-
tors must perform financial and strategic analyses. Financial analysis
is related to all known factors (e.g. leasing costs). Strategic analysis
is associated with assessing uncertainties (e.g. level of competition,
competition costs, forecast wholesale electricity market prices). This
strategic element is crucial and is considered non-negligible [7]. In
existing auction-theoretic literature, when the auction concerns several
homogeneous items, the dominant strategy of players is not to bid at
cost, as players may be incentivised to engage in different forms of
strategic bidding [8]. Therefore, to determine an optimal bid, bidders
must understand the auction dynamics to identify the best bidding
strategy. One way of achieving this is through auction simulation.
Auction simulation allows testing of dominant strategies in varying
bidder configurations, valuations and uncertainty [9].

This paper introduces a novel numerical framework for studying
CfD auctions. To the best of our knowledge, there are a number of
novel elements associated with the model which do not feature in the
few studies conducted on Renewable Energy Subsidy (RES) auctions
or in adjacent auction modelling literature. The closest model present
in existing literature can be seen in work produced by Anatolitis
et al. [10]. However, this work differs from the presented model for two
key reasons. Firstly, this model is stochastic, which allows for better
categorisation of the uncertainty experienced by auction participants.
For example, the model samples from stochastic input data to generate
stochastic auction bid prices from an empirical distribution of cost data
and forecast future revenue streams. Generated bid prices are then used
to obtain a stochastic output made up of many thousand auction simu-
lations, which estimates the most likely auction outcomes. Secondly, it
incorporates elements of game theory and probability theory to allow
auction participants to test various bidding strategies. For example,
the model can determine a bid price for auction participants, which
maximises the expected profit for players.

The methodology described can aid decision-making for policymak-
ers and renewable developers looking to bid in the CfD auction. The
model can test for optimum bid strategies, conduct sensitivity analy-
sis on key inputs, make predictions for future auctions, analyse past
auctions, or explore auction rule design changes for policy recommen-
dations. The model is demonstrated by re-creating and analysing AR3.
A previously validated proprietary stochastic cost modelling tool gener-
ates cost data for each participating wind farm project. The results from
the simulation are compared to the actual results of AR3 to test auction
allocation efficiency and assess how accurately developers can predict
auction outcomes prior to the auction. To the best of our knowledge,
there is no published literature which has used auction simulation to
analyse a past CfD auction result. Simulating past auctions is useful for
both developers and policymakers; it allows to test whether the auction
was efficient at allocating resources and will enable developers to test
hypotheses which can be used to inform future bidding strategies.

The remainder of this paper is structured as follows: Section 2 dis-
cusses the CfD auction design and allocation process. Section 3 reviews
the theoretical background and the state-of-the-art of renewable energy
subsidy auction simulation techniques. Section 4 details the approach
nd methodology of the present work. Section 5 outlines the AR3 case
tudy and discusses the modelling assumptions. Section 6 then discusses
he results before concluding.

. CfD auction design and allocation process

.1. CfD background

In the UK, a CfD is a 15-year contract between developers of
enewable projects and the Low Carbon Contracts Company (LCCC),
government-owned company. Generators with a CfD agreement are
aid the difference between a strike price agreed at auction and a
eference price. The generator sells electricity under a Power Purchase
greement (PPA) to a supplier or trader into the energy market at a
2

Table 1
Budgets are available for each delivery year as set out by the Secretary of State for
Energy in a budget notice [15–17]. The results shown are for offshore wind only. Only
delivery years which procured offshore wind are shown. The yearly budgets shown in
the above Table are for total spending for all successful projects for that allocation
round rather than for spending on projects which start generating in a particular
delivery year.

AR 1 (2015) AR 2 (2017) AR 3 (2017)

Delivery year 17/18 18/19 21/22 22/23 23/24 24/25
Budget available (M£) 260 260 290 290 65 65
Volumes procured (MW) 714 448 860 2336 2600 2854

live reference price. If this reference price is below the strike price,
the generator receives a top-up from the LCCC. On the contrary, if the
strike price is above the reference price, then generators pay back the
difference to the LCCC [4]. This means that the generator is guaranteed
to sell the electricity at the fixed strike price [11]. CfD’s provide long-
term stabilisation of electricity prices generated by low-carbon sources,
protecting consumers from high electricity prices which can occur on
energy markets.

The CfD auction scheme was introduced to the UK in 2014 as part
of the Electricity Market Reform. Since its inception, over 25 GW of
renewable generation has been subsided [12]. It is one of the UK’s
primary subsidy support mechanisms for supporting low-carbon energy
generation and an essential tool for reaching net zero. Since 2014 there
has been a dramatic decrease in the strike price awarded at CfD for
offshore wind, shown in Fig. 1.

The monetary budget for supporting renewable generation is an-
nounced before the auction. This budget issued by the UK government
is divided into different technology pots. The government uses the pot
classification to support its policy decisions. For example, from the
end of 2015 until 2021, the government excluded onshore and solar
as eligible technologies, halting their deployment for several years in
the UK. The pots for the latest CfD round, AR4 are Pot 1 — Onshore
wind and solar, Pot 2 — ‘‘Less established’’ such as floating wind and
remote island wind, and Pot 3 — Offshore wind projects. Capacity
minima and maxima caps, in addition to the pot definitions, control
the type of different renewable generation technologies connecting to
the electricity grid. If the capacity cap is not the limiting factor in de-
termining volumes procured, then the monetary budget will determine
the quantity procured.

Budgets are capped annually, meaning that the winning bid’s total
cost must fit within that delivery year’s budget cap. Delivery years
give a choice to the renewable generator as to which year they expect
their renewable asset to generate electricity. For offshore wind, there
are typically two delivery years available to generators, as shown in
Table 1, which also illustrates the budget available and the amount of
offshore wind procured for each past auction. The budget impact of a
project is calculated based on the submitted capacity, the annual load
factor, the strike price agreed at auction, and the reference electricity
price set by BEIS [14]. The volume of capacity procured is determined
by a monetary budget, which signals to developers how much capacity
is tendered. Developers then convert this monetary budget into an
estimated amount of capacity auctioned, using the same budget impact
equation and an estimated strike price.

2.2. CfD allocation methodology

The allocation process for CfD contracts is as follows: the process
begins with National Grid ESO inviting eligible applicants to bid for
the available budget in each pot. Bidders must first satisfy several pre-
qualification criteria to compete in the allocation process. They must
have obtained all the necessary consents for their site, including a grid
connection agreement. Furthermore, if the site’s total capacity exceeds
300 MW, then a supply chain plan must be submitted. The plan must
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Fig. 1. UK contract for difference allocation round results for offshore wind [13].
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outline how the project will promote competition, innovation, and skills
in the supply chain.

Developers submit bids that include the technology type, the price,
capacity, and the delivery year of the project. A total of four varying
flexible bids can be submitted to the auction by applicants. These are
sealed bids with differing capacities and Target Commissioning Dates,
of which no more than two bids may have a Target Commissioning date
in the same Delivery Year [18]. National Grid ESO then ranks all the
submitted projects in the same pot based on their bid price, regardless
of the delivery year. A project’s flexible bids are considered if its costs
exceed the budget cap when added to the cost of already awarded
projects. If the flexible bids of this project also result in a budget breach,
then the delivery year is closed, and no other bids are considered for
that delivery year. Allocation can continue to the other delivery year
until a second breach of budget. As a result, a clearing price is set for
each delivery year breach. This is the basis for allocating the budget
for AR3, which the case study in this paper is based upon. However,
the auction methodology can differ between allocation rounds. For
example, in AR4, a budget breach in any delivery year results in the
whole auction closing. As a result, only one clearing price is set across
the auction [19].

If the total applications do not result in a budget breach, then all
pplicants will be offered a CfD, non-competitively, at the ASP (Ad-
inistrative Strike Price). The auctioneer sets the ASP, the maximum
ossible price awarded to a technology. Further information on the
K implementation of CfDs for renewable energy can be found on the
overnment website. It also provides information on how the ASP is
et [20].

. Theoretical background and literature review

It is important to consider the relevant auction theory to understand
he UK CfD auction and its dynamics. The auctions have a multi-unit,
ealed-bid, uniform price (pay-as-cleared) format. A multi-unit auction
s where several homogeneous items are sold [21]. A uniform price
ormat means that all successful bidders of the same delivery year
eceive the same remuneration, determined by the highest successful
id. In the CfD auction, this bid sets the strike price as it determines
he remuneration bidders receive for each unit (£/MWh) of electricity
enerated. In uniform pricing auctions, such as the CfD, players can
ither receive the highest accepted bid (which may be their own) or 0.
The pay-off for player 𝑖, represented by 𝜋𝑖, for a particular bidding

trategy for a uniform price auction can be represented by Eq. (1). Let
3

s

≡ (𝑏𝑖, 𝑏𝑗 ) denote a bid profile of submitted bids into the auction
rom two players 𝑖, 𝑗. Let 𝑞𝑖 indicate the quantity of capacity units from
layer 𝑖, which is subsided by the auctioneer. 𝐶 is the total capacity
emanded, 𝑐𝑖 is the marginal cost of player 𝑖 producing a unit of
lectricity. The remuneration received by player 𝑖 is interdependent
ith the bid prices submitted by other players. For more theoretical
nalysis on multi-unit, uniform price auctions see, for example, Ausubel
t al. [8].

𝑖 =

{

[𝑏𝑗 − 𝑐𝑖] ⋅ 𝑞𝑖(𝐶;𝐁), if 𝑏𝑖 ≤ 𝑏𝑗
[𝑏𝑖 − 𝑐𝑖] ⋅ 𝑞𝑖(𝐶;𝐁), otherwise

(1)

Bidders face significant uncertainty whilst preparing their project
ids. The CfD contract only covers a wind farm for the first 15 years.
s a wind farm’s operational lifetime can be more than 25 years,
evelopers are faced with years of exposure to wholesale electricity
arket prices. Bidders, therefore, are presented with two significant
lements of uncertainty. First, they must predict their project lifetime
osts for a project that starts generating in 4–5 years and has a lifespan
p to 30 years, and also future electricity market prices; only then
an they calculate a CfD bid which optimises profit over the lifetime
f the project. As all projects are participating in the same market,
hey are subject to the same future wholesale electricity market prices
nd similar cost components (e.g. turbines, cables, foundations) [22].
s players have these two significant common value components,
layers’ costs are interdependent, meaning that estimating competitors’
rivate value for the auctioned goods is possible [23]. Any variations
n valuation between players can largely be attributed to different
ite characteristics, technology differences, risk appetites, and strategic
artnerships with OEMs (original equipment manufacturers).
There are also implications for policymakers and consumers due

o the uncertainty that bidders face at the CfD auction. During the
uction, there is a potential economic risk of auction inefficiency [5].
his is where projects that are awarded contracts do not have the
owest generation costs when compared to unsuccessful projects. For
xample, this could occur when awarding a contract to a project with
ntrinsically poor site characteristics but with very high optimistic
ssumptions regarding future wholesale electricity market prices. Op-
imistic assumptions mean that when calculating future revenues and
ptimising a CfD bid price, the developer underestimates the CfD bid
rice it requires. As a result, developers with more economically viable
rojects but a more conservative outlook on future prices do not get

ubsidised [22].
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Game theory is an important strand of literature to consider for the
present analysis; it studies mathematical models of strategic interaction
among rational decision-makers. For example, the CfD auction is a
game, as the auction outcome depends on the actions of two or more
decision-makers (players). Each player must consider their strategy in
the auction to maximise their pay-off. Game theory has been previously
applied extensively in energy economics, particularly in grid manage-
ment or electricity markets. A review of such work has been produced
by Bajo-Buenestado [24]. For example, Wu et al. [25] proposed a
static game model to utilise car batteries to help integrate wind power
into a smart grid. Further work by the same author has used game
theory to optimise demand-side management for consumers wishing
to reduce their electricity bills. This study creates a game between
rational consumers as each player is attempting to optimise usage at
the same time [26]. Mei et al. [27] use game theory to devise an
algorithm to help identify incentives for coalitional operation and help
microgrids in a network trade with one another to meet their power
requirements while achieving higher expected utility. Lin et al. [28]
utilise game theory to test the effect different bidding strategies have
on the P2P solar transactive energy markets. Finally, Liu et al. [29]
use signalling game theory to study the main bidding mechanisms in
electricity auction markets.

Game theory is often used alongside auction theory to explain auc-
tion dynamics. Wilson et al. [30] were the first to formalise the multi-
unit auction. They noted that an offer is made according to a private
value and was one of the first to write about bid-shading in strategic
bidding. Ausbel & Cramton [8] found that the optimal/dominant strat-
egy is not simply to bid one’s own cost in a multi-unit auction. Instead,
larger bidders have an incentive to bid-shade. Bid-shading is where one
player bids higher than their valuation to increase their pay-off. The
incentive to bid shade depends on the number of units demanded.

The final strand of literature concerns similar work where models
have been used to simulate RES auctions. Anatolitis et al. [10] used an
ABM (agent-based model) to simulate onshore wind power auctions in
Germany and compare the efficiency of pay-as-bid and uniform pricing
auctions. Welisch et al. [31] used an adapted version of this model to
model the UK CfD auction and assess the impact that penalties issued
for the non-realisation of projects would have on bidders’ behaviours
and prices. Welisch et al. produced another paper using ABM to analyse
bidding behaviour in the German PV pilot auction [32].

To the best of our knowledge, there is currently no published
academic literature that simulates CfD auction dynamics to select op-
timum strategies. The literature survey suggests that there have been
some recent attempts to simulate renewable energy auctions to un-
derstand auction dynamics better and ensure the efficient design of
auctions to meet governmental policy. Several features and phenomena
of a real-life auction are not considered by existing literature on this
subject. Firstly, there has been no attempt to enhance agents’ utility
functions by assigning agents to real and non-theoretical projects.
Secondly, no published literature has re-created and analysed previ-
ous auctions using accurate cost data for each project. Thirdly, no
model has incorporated game-theoretic phenomena to optimise bidding
strategy.

4. Model methodology

The numerical framework recreates the CfD allocation mechanism
as outlined in Section 2, through the utilisation of the Python frame-
work for agent-based modelling (ABM), Mesa [33]. ABM is useful to
model the intended problem as it simulates the actions and interactions
of autonomous agents acting in the same space while quantifying
the effect on the environment. Therefore, this modelling approach is
well suited to a CfD auction as non-cooperative developers act in the
same auction space, and their actions directly affect the outcome of
4

the others. Additionally, ABM allows agents with different levels of
intelligence to be modelled, which introduces additional dynamics and
allows for game-theoretic phenomena to be studied.

To properly model the CfD allocation framework, the model allows
for up to four flexible bids to be submitted per project and can model
two delivery years in one auction run. Bids for each player are de-
termined by analysing the costs and revenue streams of an individual
project over its lifetime. The present framework considers stochastic
inputs for one simulation; therefore, each complete simulation typically
contains over 20,000 auction runs. One auction run contains two main
stages: Bid preparation and Allocation mechanism, illustrated in Fig. 2.
The methodology behind these two stages is described in this Section.
In Fig. 2, there are two types of players shown in the model: smart
and other. The smart player has added capabilities, which allow it to
optimise a bid price (explained in Section 4.2.4).

4.1. Model set up

The ceiling strike price and the total capacity of electricity to be
procured are specified in order to initiate the auction. Setting a capacity
budget reduces the complexity of the auction procedure without sacri-
ficing too much detail of the auction design. This is because a maxima
technology cap was set for Offshore Wind in AR3, and it was this cap
which was the limiting factor in determining the amount of capacity
procured [18]. Although a monetary budget was issued by BEIS, the
reference used meant that each accepted project had a limited budget
impact, resulting in the capacity cap acting as the limiting factor [18].
Regardless, BEIS issues a monetary, annually capped budget for each
pot of the allocation round. For a player to understand what proportion
of the budget their project is represented by, auction participants are
required to estimate the total amount of capacity available from the
monetary annually capped budget. This calculation allows for agents
to scale the monetary budget to what they expect for the amount of
capacity tendered. Then they can assess how much competition they
have for the budget. The same procedure is already performed for each
agent in the model, as this monetary budget is transformed into an
available amount of MW in each delivery year. Scaling uses the official
valuation formula found in the 2014 allocation framework [14]. This
slight simplification of CfD simulation models is in line with previous
literature produced by Welisch et al. [6]. This is appropriate for the
case study demonstrated due to the maxima cap being the limiting
factor in determining the volume of capacity procurement, as explained
previously.

4.2. Bid preparation

The bid preparation stage converts input project data into a CfD
bid price, 𝑏𝑖, for a player 𝑖. The bid function 𝑏𝑖(𝑐𝑖, 𝑟𝑖) is a function of
one’s total discounted costs 𝑐𝑖 and also the total expected discounted
revenue 𝑟𝑖 generated by a project. Costs and revenue streams are
discounted to determine a 𝑏𝑖 which gives discounted equity return (fur-
ther explained in Section 4.2.2). Calculating cash flows of renewable
generating projects in order to determine a bid price is consistent with
previous analysis on this topic [34].

As described in Section 1, bidders are faced with significant un-
certainty while bidding at auction. The uncertainty associated to their
𝑏𝑖 is captured by the uncertainty associated to the cost component
𝑐𝑖(𝑠𝑖𝑐) and the revenue component 𝑟𝑖(𝑠𝑖𝑟). Where 𝑠𝑖𝑐 and 𝑠𝑖𝑟 differ for
each player and are empirical distributions on an interval [−𝑠, 𝑠]. The
ealisation of 𝑠𝑖𝑐 and 𝑠𝑖𝑟 are unknown prior to the auction, but it can
be assumed that the distribution for each variable reduces over time as
developers certify procurement contracts and confidence in wind farm
power outputs is increased. Therefore, the bid function of participants
when uncertainty is considered can be represented by 𝑏𝑖(𝑐𝑖, 𝑠𝑖𝑐 , 𝑟𝑖, 𝑠

𝑖
𝑟).

This function represents the bid price which needs to be achieved at
auction for their project to meet the set investment criteria. Let 𝑃

denote the strike price achieved at auction, 𝑞𝑖 represent the quantity
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Fig. 2. High-level flow diagram illustrating one auction run process.1 Highlights the optimum bid price range to test, which is user input and gives the smart agent added flexibility
to deviate from the calculated CfD bid price. The range provided allows the smart player to test the success of a range of bids given the competition it expects.2 Stochastic cost
ata includes the DEVEX, CAPEX, OPEX and DECEX.
T

f capacity procured by the auctioneer from player 𝑖, then the pay-off
or a winning player 𝑖, who bids truthfully into the auction is shown
n Eq. (2).

𝑖(𝑐𝑖, 𝑠𝑖𝑐 , 𝑟𝑖, 𝑠
𝑖
𝑟) = 𝑞𝑖 ⋅ (𝑃 − 𝑏𝑖) (2)

The pay-off for the player is dependent on the uncertainty com-
onents 𝑠𝑖𝑐 and 𝑠𝑖𝑟, which reduce over time. Therefore, the winning
idder’s profit might become negative, i.e., the bidder incurs a loss
f realising the project. For this reason, there is value in categorising
hese uncertainty components 𝑠𝑖𝑐 and 𝑠𝑖𝑟. Therefore, the model has
nbuilt stochasticity, which makes uncertainty explicit, allowing ranges
nd likely outcomes to be quantitatively analysed. The advantage for
trategy teams is that they can determine an estimated success rate of
selected bidding strategy and quantify the downside risk associated
o the uncertainty parameters 𝑠𝑖𝑐 and 𝑠𝑖𝑟.
As the inputs to the model are stochastic, for every single auc-

ion run, each project will have a different CfD bid calculated for it.
herefore, every auction run involves calculating a new bid price via
he bid preparation stage. A complete simulation comprises 15,000
uction runs to average over stochastic values. The bid preparation
tage consists of four main components, which are outlined in Fig. 2
nd described in this subsection: (a) Project cost data assigned to each
layer (b) Cash flow generated (c) CfD bid price calculated and mapped
o each agent (d) Game-theoretic deviation from CfD bid price.

.2.1. Project cost data is assigned to each agent
Example inputs for one participating agent in the model are illus-

rated in Table 2. A previously validated proprietary stochastic cost
odelling tool generates cost data for each wind farm. The cost model
as been developed by Mora et al. [13]. The model uses the publicly
vailable site and project-specific data (such as mean wind speed, foun-
ation type and water depth) to generate project cost estimates rapidly.
he costs generated from this costing model have been validated to an
ccuracy of ± 15%. It produces stochastic outputs based on uncertain-
ies associated with the individual cost parameters. Stochastic values
rawn from this model are used to derive an empirical distribution of
osts rather than assuming a specific distribution shape. Fig. 7, shown
n Section 5, illustrates the empirical distribution of costs and capacity
actor generated by the cost modelling tool.
The distributions created by stochastic cost modelling represent the

ncertainty experienced by players, where the true value lies some-
here on this distribution. The bid function can be represented by
𝑖(𝑐𝑖, 𝑠𝑖𝑐 , 𝑟𝑖, 𝑠

𝑖
𝑟), which includes the cost and revenue streams and their

ssociated uncertainty. Monte Carlo sampling from the distributions for
he cost and revenue stream components (discussed in Section 4.2.2),
hich together make up the uncertainty represented by 𝑠𝑖𝑐 and 𝑠𝑖𝑟,
5

llows multiple estimates of 𝑏𝑖 to be calculated. This produces an
Table 2
Illustrative inputs for one participating agent and the stochastic inputs in the model.
The stochastic cost data generated by the cost model is empirical, meaning that the
data does not fit a specific family of distributions. Importantly, the cost data inputs
are interdependent. For example, for each CapEx value selected by the model, there is
a corresponding capacity factor and OpEx value selected.
Input Example data SD of stochastic inputs

Project name Alpha
Capacity (MW) 1000 –
Capacity Factor 0.55% 0.025%
DevEx (£m) 100 –
CapEx (£m) 1000 23
OpEx (£m /year) 15 0.175
DexEx (£m) 75 –
Discount Rate 8% –
Electricity forecast Curve 3 –
Delivery Year 1 –
Location Zone 7 –

empirical distribution of 𝑏𝑖 values for each player, spread over [−𝑆, 𝑆].
herefore, the following relationship depicted in Eq. (3) highlights
the basis for Monte Carlo sampling from cost and revenue component
distributions to characterise the inherent uncertainty.

𝑏𝑖(𝑆 𝑖
𝑏) = 𝑏𝑖(𝑐𝑖, 𝑠𝑖𝑐 , 𝑟𝑖, 𝑠

𝑖
𝑟) (3)

As there is a trade-off between the number of auction runs and
computational time, only the project costs that significantly affect the
final cash flow value have been made stochastic. Therefore, the model
only changes the inputs on each auction run for the capacity factor,
capital expenditure (CapEx) and operational expenditure (OpEx). The
development expenditure (DevEx) is not stochastic, as this total cost
is small compared to the other project costs. The same applies to
the decommissioning expenditure (DecEx); which has a small nominal
value and is incurred at the end of a project lifetime and therefore is
heavily discounted. Therefore, DecEx has a negligible impact on the
cash flow. This is a simplification, as in reality, DecEx and DevEx are
stochastic values. Project capacities are not assumed to be stochastic;
this is because the costs generated by the cost model are reliant on a
deterministic capacity value.

As the model assumes a 15-year period of exposure to market elec-
tricity prices, agents are required to forecast future wholesale market
electricity beyond the CfD contract period. Forecasting allows agents
to consider revenues across the lifetime of a project to optimise a
minimum CfD bid. Due to difficulties in predicting future electricity
prices, the model has three different scenarios ranging from optimistic
outlooks (high future prices), central outlooks and pessimistic outlooks
(low future prices), see Fig. 3. Typically, different electricity price
curves are derived by modelling different scenarios. Factors such as
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Fig. 3. Illustration of the three wholesale electricity market price curves used in the
model. The curves are proprietary, so some information has been redacted.

renewable energy penetration, total demand, technological advances,
load factors, and carbon fuel costs make up these different scenar-
ios [35]. For example, a risk-averse player with a negative outlook
on future electricity prices would be assigned Curve 1. This would
result in a higher calculated CfD bid as the agent would attempt to
generate most of the project’s revenue in the first 15 years covered by
the CfD contract. This would mean that if wholesale market prices at
the end of the CfD contract are low, then most of the revenue for the
project is already secured. However, having a negative outlook relative
to other participants on forecast wholesale electricity market prices will
reduce the probability of being awarded a CfD. Past bidding behaviour
by specific participants can be used as an indication of risk appetite
concerning future electricity price predictions.

The model considers the geographical spread of the agents by con-
sidering a wider TNUoS (Transmission Network Use of System) charge.
Similarly to predicting forecast wholesale electricity market prices, it is
impossible to estimate TNUoS charges for the duration of a project. This
is because charges are dependent on the electricity make-up of the grid
and the geographical spread between supply and demand [36]. For an
electrical system as complicated as the UK, the exact figure cannot be
estimated for a 40-year time horizon. National Grid ESO currently only
gives forecast prices up to 5 years in advance [37]; therefore, to gain
estimates for the entirety of the project, an inflation multiple of 3%
(UK’s Consumer price index inflation value [38]) is applied each year.
Eq. (4) illustrates the equation for calculating the cost of transmitting
electricity over the National Grid. Transmission cost is added to the
project’s total cost, 𝑐𝑖, which is used to calculate a bid price 𝑏𝑖. The
quation is found on National Grid ESO’s TNUoS documentation [37].
hese charges are levied on generators to reflect the transmission cost
f connecting at different locations and to recover the total allowed
evenues of transmission owners. The cost is calculated per MWh of
lectricity produced. The equation is derived by taking into account the
ower produced by the wind farm and transmitted on the electricity
rid; this is represented by multiplying the equation by the capacity,
, and the capacity factor, 𝐶𝑓 . 𝑌 𝑅𝑆𝐸 represents the Year-Round-
hared Element, the proportion of transmission network costs shared
ith other zones. 𝑌 𝑅𝑁𝑆𝐸 represents transmission costs specific to
articular zones. 𝐴𝐸 represents the adjustment element, which adds
non-locational charge to the Wider TNUoS tariff to ensure that the
orrect amount of aggregate revenue is collected from generators as
whole. 𝑌 𝑅𝑆𝐸, 𝑌 𝑅𝑁𝑆𝐸 and 𝐴𝐸 are location-dependent and are
ublished by the National Grid ESO. 𝐶𝑓 and 𝐶 are known parameters
nd vary between wind farms.

= 𝐶 × ((𝑌 𝑅𝑆𝐸 × 𝐶𝑓 ) + 𝑌 𝑅𝑁𝑆𝐸 + 𝐴𝐸) (4)
6

𝑖,𝑇𝑁𝑈𝑜𝑆 t
.2.2. Generation of cash flow
Each auction simulation round assesses every project’s costs and

evenue stream. The cost streams include capital, operational, decom-
issioning, development, rent, interest payments, tax and grid charges.
evenue streams include CfD payments, contracted power, and whole-
ale revenues. Fig. 4 illustrates the life stages and their respective
lengths used to calculate each project’s cash flow. The model assumes
the same cash flow life cycle for all projects and all bids.

The DevEx cost is spread equally across the Development Period.
The CapEx cost is spread equally across the construction phase. The
DecEx cost is incurred entirely within the end of life phase. An OpEx
(Operational Expenditure) annual estimation which includes wider TN-
UoS charges, is also included in calculating the cash flow. A discount
rate applied to calculate each cash flow is user input and can vary
between projects, which estimates a player’s WACC (Weighted Average
Cost of Capital). The discount rate varies accordingly to the perceived
risk appetite of a player. The model includes a 2% [39] charge on
revenue as a leasing cost for seabed access applied to developers of
offshore wind projects. Additionally, a 19% corporate tax is levied on
all revenues [40].

Revenue is calculated using the generation (MWh/year) from the
project’s capacity, the hours in a year, and the capacity factor. The
lifetime of the wind farm 𝑇 , is assumed to be 42 years for all agents,
with no agents considering the possibility of re-powering. The oper-
ational lifetime consists of two main stages of 15 years; CfD years,
𝑡𝑏, which in principle would be covered by a potential CfD contract,
and the merchant price exposure years, 𝑡𝜃 . The two periods utilise
different electricity prices when multiplying the generation to calculate
the yearly revenue. While the merchant years use the forecast wholesale
electricity market price at year 𝑡, represented by 𝜃𝑡, the CfD years use
the unknown variable, referred to as the minimum CfD bid, represented
by 𝑏𝑖, and calculated in Section 4.2.3. The revenues, as well as costs,
are discounted by the WACC specified at the input stage. Therefore,
where 𝑋𝑡 is the total electricity in MW generated in a year, where 𝑡 is
the year, Eq. (5) represents how 𝑅𝑡 the net cash flow is calculated for
CfD years, which is 𝑡 ≤ 15, and during merchant years which is 𝑡 > 15.

𝑅𝑡 =

{

𝑋𝑡 ⋅ 𝑏𝑡 − 𝑐𝑖,𝑡(𝑠𝑖𝑐 ), ∀𝑡 ≤ 15
𝑋𝑡 ⋅ 𝜃 − 𝑐𝑖,𝑡(𝑠𝑖𝑐 ), ∀𝑡 > 15

(5)

In corporate finance theory, one should undertake a project if it
gives a positive or zero NPV value [41]. Therefore, one can calculate
a minimum acceptable 𝑏𝑖 using Eq. (6), which gives discount equity
return 𝑁𝑃𝑉 = 0, as this is the minimum financial threshold required
for projects to be undertaken [42]. The discount rate is represented by
𝑑.

𝑁𝑃𝑉 (𝑏𝑖) =
𝑁
∑

𝑡=0

𝑅𝑡
(1 + 𝑑)𝑡

(6)

.2.3. Generation of CfD bid for each project
Once a CfD bid price is calculated for a player, it is then mapped

o each agent, and agents then submit their bids 𝐁(𝐶, 𝑏,𝐷𝑌 ) to the
uction. Bids consist of a capacity 𝐶 in (MW), a price 𝑏𝑖 in (£/MWh),
nd a specified delivery year 𝐷𝑌 . The four flexible bids agents are
llowed to submit must vary by different 𝐶 or 𝐷𝑌 . As discussed in
ection 4.2, 𝑏𝑖(𝑐𝑖, 𝑠𝑖𝑐 , 𝑟𝑖, 𝑠𝑖𝑟) calculated for each player is a function of
he total costs 𝑐, the total revenue generated 𝑟 and their respective
ncertainty 𝑠𝑖𝑐 and 𝑠𝑖𝑟.
Using the theory described in this Section, and the life cycle stages

llustrated in Fig. 4, an overall equation for deriving the minimum
fD bid for a player 𝑖 can be derived, shown in Eq. (7). The equation
onsiders four main states of an offshore wind farms life cycle, which
s construction, generation under CfD contract, generation after expiry
f CfD contract (explained in Section 4.2.2), and decommissioning of
he wind farm. In each auction simulation, Eq. (7) is computed and
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Fig. 4. Life stages and respective years 𝑡𝑥, of each project modelled [39].
Table 3
Table demonstrating the knowledge and capabilities of each category of agent in the
model.
Capability/knowledge Smart Other

Competitor bid prices and capacity Yes No
Number of competing projects Yes No
Total capacity to be auctioned Yes No
Deviate CfD bid Yes No
Optimisation of 𝐸[𝑋] Yes No

solved for 𝑏𝑖 for each player, assuming 𝑁𝑃𝑉 = 0. The auction is run
many times to compute many different 𝑏𝑖 values for varying 𝑠𝑖𝑐 and
𝑖
𝑟, giving 𝑏𝑖(𝑆 𝑖

𝑏), which characterises the uncertainty experienced with
ach players project costs.

𝑃𝑉 (𝑏𝑖) =
𝑡𝑁𝐺
∑

𝑡=0

−𝑐𝑖,𝑡(𝑠𝑖𝑐 )
(1 + 𝑑)𝑡

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
No Generation

+
𝑡𝑏
∑

𝑡=𝑡𝑁𝐺+1

𝑟𝑖,𝑡(𝑋𝑡, 𝑏𝑖, 𝑠𝑖𝑟) − 𝑐𝑖,𝑡(𝑠𝑖𝑐 )
(1 + 𝑑)𝑡

+
𝑇−1
∑

𝑡=𝑡𝑏+1

𝑟𝑖,𝑡(𝑋𝑡, 𝜃𝑡, 𝑠𝑖𝑟) − 𝑐𝑖,𝑡(𝑠𝑖𝑐 )
(1 + 𝑑)𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Operational

+
−𝑐𝑖,𝑇 (𝑠𝑖𝑐)
(1 + 𝑑)𝑇
⏟⏞⏞⏟⏞⏞⏟
End of life

(7)

here 𝑡 is the year, 𝑇 represents the lifetime of the wind farm that is
ssumed to be 42 years, 𝑡𝑁𝐺 is the non-generation lifetime assumed to
e 11 years, and 𝑡𝑏 is the CfD generation period assumed to be 15 years
see Fig. 4). 𝑟𝑖,𝑡 is the revenue received by bidder 𝑖 for their offshore
ind project in year 𝑡, 𝑐𝑖,𝑡 is the cost of offshore wind project for bidder
in year 𝑡, 𝑑 is the discount rate assumed with a constant value of 6.3%
or all players and years (see Section 5.1) and 𝜃𝑡 is the annual average
rice received by bidder 𝑖 by selling electricity from its offshore wind
roject to the market in year 𝑡.

.2.4. Game-theoretic deviation from mapped CfD bid for the smart player
There are two types of players characterised by the model: a smart

layer and others. The players differ based on their knowledge and
apabilities, as shown in Table 3. The other players in the simulation bid
truthfully and reveal their costs to the auctioneer. Bidding truthfully is
how auction designers and policymakers would hope all players would
act. However, the added capability that the smart player possesses
allows optimisation of a bid price 𝑏𝑖 based on increasing the expected
value of its profits, 𝐸[𝑋], in £/MWh. The uncertainty means many
possible probabilistic outcomes are feasible, and given the uncertain
outcome, 𝐸[𝑋] gives a basis on which to select bidding strategies.

𝐸[𝑋] is defined as the arithmetic mean of a large number of inde-
endently selected outcomes of a random variable. It can be defined by
random variable 𝑋 with a finite list of possible outcomes (𝑥1,… , 𝑥𝑘),
7

each of which has a probability (𝑝1,… , 𝑝𝑘) of occurring [44], as
shown in Eq. (8). The outcomes and their probabilities can be summed
together (shown in Eq. (9)) to obtain an expected value.

E[𝑋] = 𝜋1𝑝1 + 𝜋2𝑝2 +⋯ + 𝜋𝑘𝑝𝑘. (8)

E[𝑋] =
∞
∑

𝑖=1
𝜋𝑖 𝑝𝑖 (9)

The above equations are adapted to calculate the 𝐸[𝑋] of different
bid prices. In the context of one auction simulation, 𝜋 refers to the
auction pay-off (calculated using Eq. (2)), and 𝑝1 is either 0 or 1,
dependent on whether the smart player was awarded a contract for
that auction simulation or not. However, as 𝐸[𝑋] is probabilistic, the
auction is repeated many thousand times, as competitor inputs are
stochastic, so 𝑝1 and 𝜋 will vary with each auction run. Therefore,
calculating 𝐸[𝑋] involves averaging over many thousand simulations.
The number of simulations selected is determined from a convergence
study, which is discussed in Section 5.

Therefore, to test for a bid price which maximises the 𝐸[𝑋] for the
smart player, it deviates from the calculated 𝑏𝑖 by a specified 𝑥 amount,
shown in Eq. (10). The model mechanics of determining a bid price
which optimises E[X] is shown in Fig. 5.

𝑏𝑥 = 𝑏𝑖 − 𝑥 (10)

The model collects information on the strike price, 𝑃 , and whether the
project was successful for each auction run. The smart player is able
to predict 𝑃 using its additional capabilities as highlighted in Table 3,
it is then used to determine the auction pay-off. After simulating the
auction thousands of times, the mean probability of being awarded a
contract defined as𝑊 %, at bid price 𝑏𝑥, can be computed. The expected
value of auction profit can be calculated using Eq. (11).

𝐸(𝑏𝑥) =
∑

𝑥
[𝑃 (𝑏𝑥) − 𝑏𝑖] ⋅𝑊 %(𝑏𝑥) (11)

The 𝐸[𝑏𝑥] of various different bid prices are tested, in line with the
user input testing range. To determine 𝐸[𝑏𝑥]𝑚𝑎𝑥 the success of every
bid price in its bid-test range is tested. Refer to Fig. 11(a) in the results
section for a sample output.

4.3. Allocation mechanism

After completion of the first bid preparation stage, the allocation
framework assesses the bids of all players. In this second stage, the
model ranks bids in ascending order based on the bid price before
accepting the required amount of capacity up to the maximum capacity
specified in the Model Set Up stage (as described in Section 4.1). The
process of ranking and sorting by the model (as shown in Fig. 2) is the
same as described in Section 2.2; however, an overview of the model’s
allocation mechanism is given here.

The model replicates the uniform price auction format (as described
in Section 3), assessing bids one at a time. If a bid is accepted, it
elevates the clearing price of that delivery year to the price of the
last accepted bid. All previously accepted bids will have their payment
price elevated, which ensures that all successful bids of that delivery
year receive the same price. Once the total maximum capacity for
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Table 4
High-level overview of some of the publicly available site/project-specific input data which was used to generate cost estimations. A portion of
the Seagreen project (360 MW) is connected to Cockenzie, the remaining to Tealing [43]. This split is represented in the calculation of wider
TNUoS charges.
Project Capacity

(MW)
Average
Depth
(m)

Mean wind
speed @ hh
(m/s)

Distance to
port
(km)

Foundation
type

Substation
location

Doggerbank CB A 1200 23 10.68 200 Monopile Creyke Bank
Doggerbank CB B 1200 26.5 10.68 185 Monopile Creyke Bank
Doggerbank Teesside 1200 26 10.68 260 Monopile Lackenby
Sofia 1400 28 10.68 220 Monopile Lackenby
Seagreena 1075 54 10.58 65 Jacket Cockenzieb
East Anglia 3 1200 36.5 10.23 75 Monopile Bramford
Inch Cape 1000 52 9.97 45 Jacket Cockenzie
Moray West 800 45.5 10.12 70 Jacket Blackhillock

aOnly 454 MW of the project was awarded a CfD contract. The total capacity of the project is therefore used to generate cost estimates.
bLocation is used to calculate TNUoS charges.
Fig. 5. Simplified flow diagram illustrating simulation for the smart player.
that delivery year is exceeded, then the bid which causes the capacity
breach is rejected. A rejected bid results in the delivery year closing and
removal from the bid stack of all bids submitted to that delivery year.
The model can continue accepting bids for the second delivery year,
accepting bids and updating the clearing price for that delivery year
as described above. Once a bid is assessed and breaches the maximum
capacity budget, the second delivery year also closes. Closure of the
two delivery years results in the entire auction closing.

The outputs from one auction run of the model are as follows: A
clearing price for each delivery year, successful projects, all project
bids, and total capacity procured. From this, it is possible to draw out
significant insights, as demonstrated in the results section.

4.4. Verification of model

There is limited value in using past auction results for validation
purposes of this model. Currently, only the strike price and winners are
published in the auction results [16,17]. No information is available
on individual bids or details of what flexible bids may be submitted.
Therefore, the model has undergone a systematic verification process
to sufficiently test the model. During verification, testing fictitious
test cases allows one to see if the model’s outcome is as expected.
The complexity of these test cases has increased until the required
confidence in the model is achieved. Additionally, the model outputs
are verified further through conversations with industrial and academic
partners.

5. Case study and results

In this Section, a designed case study demonstrates the model’s out-
puts. The case study described replicates Pot 2 of AR3, which concluded
in 2019. This pot concerned offshore wind, remote island wind, and a
small amount of biomass conversion technologies. First, Pot 2 of the
auction is recreated and then the simulation results are compared to the
actual auction results. The simulation does not consider non-offshore
wind technology, as less than 5% was awarded to the other renewable
technologies [17]. An additional case study (Case 2) is investigated
8

to determine whether a project was able to win due to utilising more
optimistic underlying assumptions than competitors. Therefore, we test
the impact of modelling this project with a more optimistic view of
future electricity prices. Forecasts are an important underlying assump-
tion required in bid preparation and can significantly affect CfD bid
values according to the literature [22]. Therefore, Case 2 assumes a
10% increase in this project’s future electricity price forecast. All other
parameters are kept constant.

5.1. Model set-up and case study assumptions

To demonstrate the game-theoretic nature of the model, East Anglia
3 acts as the smart player. According to post-auction analysis, this
project may have narrowly lost out on being awarded a contract (see
Fig. 8(a)). It is, therefore, interesting to explore if optimisation of their
bid, based on estimations of competition, could have helped this project
succeed. This project will therefore have additional capabilities and
knowledge of other competitors’ bids. It can thus use this competence
to test for the existence of an optimum bid price that maximises 𝐸[𝑋].

For each project participating in AR3, the aforementioned cost
modelling tool described in Section 4.2.1 generated 1000 empirical
stochastic cost values. This number of total cost values is chosen as
there is a strong convergence of results after 1000 simulations per
bid price (see Fig. 6). This cost data was then input into the model.
The range of bid prices tested is [−3,5], with an interval of 0.5. This
range was chosen as it considers a wide possible bid range which also
identifies a peak in the 𝐸[𝑋] graph (see Fig. 11(a)). The selected test
range means that, in total, the smart player tested 17 bids. As there
are 1000 auction simulations for every bid price tested by the model
meaning that the output graphs are averages of 17,000 auction sim-
ulations. The projects modelled utilise publicly available site-specific
and project-specific data to generate cost inputs from a stochastic cost
modelling tool. Table 4 illustrates a high-level overview of the inputs
used to generate the cost data. The generated cost data for each project
is shown in Table 5, and the distributions for the stochastic inputs are

shown in Fig. 7.



Applied Energy 334 (2023) 120645N.P. Kell et al.

s

s
r
p
d
W
a

Fig. 6. Convergence of strike price results for the first delivery year, with varying
imulation numbers.

The following assumptions are the author’s own and are used to
imulate the case study described in this paper. The assumptions are
equired to reduce the complexity surrounding unknowns of the auction
rocess and do so without sacrificing too much detail of the auction
esign. For example, one cannot accurately guess what forecasts or
ACC each player uses. Therefore, keeping these figures the same for
ll players is sensible.

1. All players use the same forecast wholesale electricity mar-
ket prices — Future wholesale electricity prices 30 years into
the future are extremely difficult to predict. Therefore, forecasts
can vary significantly between developers and impact CfD bids
significantly. All players use the same curve to keep calculations
relative, with an average market price forecast of £55 MWh for
the next 30 years.

2. Agents do not submit flexible bids — Although the model
can handle flexible bids, it is not considered for simplification
purposes. In reality, players can submit variations of their pri-
mary bid by varying the total amount of capacity in their bid.
However, the actual flexible bids submitted by each player for
each project cannot be predicted with significant confidence.
Doing so would only increase the uncertainty associated with the
inputs. Therefore, only two bids per player are submitted (one
for each delivery year), with the capacity of this bid equal to
either the entire size of the consented project (for unsuccessful
projects in AR3) or the amount of subsidy awarded (for projects
which were successful in AR3). However, for Seagreen Phase 1,
which achieved a partial capacity award, bids submitted are for
454 MW; however, the full capacity of the site determines the
CfD bid price.

3. Total capacity budget available is 5500 MW — Based on the
total amount of awarded subsidy for the AR3 offshore wind
pot, this is likely to be a close estimate of the total capacity
budget available at AR3. This budget is split evenly between two
delivery years, assuming that policymakers would like to evenly
stagger the amount of capacity that comes online between two
delivery years. A capacity budget is used instead of a monetary
budget for the reasons described in Section 4.1

4. Exclusion of Remote island wind projects — Remote island
wind was able to compete against the offshore wind in AR3.
These projects were awarded 275 MW of capacity, significantly
smaller than the total budget. Therefore, these projects have
been excluded from this simulation, and the available budget is
slightly adjusted to account for this.

5. The discount rate assumed for all players is 6.3%— Discount
rates used by different players are likely to vary based on risk
9

appetite and business models. Variation between players cannot
be predicted; therefore, all players use the same central discount
rate, based on official 2020 BEIS estimates [45].

6. Each player submits the same bid into both delivery years
— In CfD auctions and therefore represented through this simu-
lation, each delivery year is essentially a separate auction, with
each delivery year attempting to procure a certain amount of ca-
pacity. Therefore, to maximise the possibility of being awarded a
subsidy, players are likely to submit bids into both delivery years
to maximise the subsidy for which they compete. Furthermore,
as delivery year options are only one year apart, cost degression
resulting in CfD bids decreasing in the second delivery year is
considered negligible. Therefore, the CfD bid submitted for all
players for both delivery years is the same for both capacity and
price.

7. An administrative ceiling price set at £56 MWh— This is the
same as the ASP published by the UK government prior to AR3
concluding [20].

In Case 2, the Seagreen project uses a 10% increase in forecast
wholesale electricity market prices. Case 2 tests the hypothesis that
Seagreen was awarded a subsidy in AR3 and could do so by utilising
more optimistic underlying assumptions, despite potentially higher
generation costs.

5.2. Simulation results

Fig. 8 illustrates the most likely clearing prices predicted by the
stochastic simulations. The figures show the most likely clearing price
for the 23/24 delivery year, with a 22.5% probability of occurrence
is £38/MWh. The most likely clearing price for the 24/25 delivery
year with a 22.5% probability of occurrence is £42/MWh. There is
approximately a 10% increase in strike price predicted from the first
delivery year to the second. Additionally, the range of clearing prices
obtained from the simulation is £30.31/MWh to £43.77/MWh, with a
standard deviation of 1.78 for delivery year 23/24. For delivery year
24/25 the range is £34.89/MWh to £50.24/MWh, and with a standard
deviation of £1.98/MWh for 24/25.

In Case 2, Seagreen modelled with a 10% increase in forecast whole-
sale electricity market prices. Fig. 9 demonstrates that the predicted
clearing price is largely unchanged, and the most likely outcome is a
strike price of £38/MWh and £42/MWh for delivery years 23/24 and
24/25, respectively. The simulated clearing price range for Case 2 is
between 30.65 and 44.64, with a standard deviation of 1.77 for delivery
years 23/24 and a range of between 34.90 and 50.54, with a standard
deviation of 1.98 for 24/25.

Fig. 9 illustrates the spread of bid prices submitted by each project.
The figures are in ascending order, sorted by the median bid price; this
demonstrates the merit order of projects. In both cases, the Doggerbank
projects have the lowest bid prices. Conversely, the three Scottish
projects have a significantly higher spread of bid prices. Between these
two projects, there is a spread of close to £10 - £20 MWh in median
bid prices.

For Case 2, seen in Fig. 9, Seagreen’s median bid price decreases
from £53.15 MWh to £50.52 MWh. This is a 5% reduction in the
median bid price. As a result, it goes up one place higher in the merit
order of projects.

The translation of median bid prices into the probability of being
awarded a subsidy is seen in Fig. 10. Sofia, Doggerbank A and Dogger-
bank B are predicted to be successful with high certainty (>92%). On
the other hand, the three Scottish-based projects with the highest bid
prices have a very low chance of success (<1%). Fig. 11(b) shows the
effect that an increase in forecast electricity prices has on the proba-
bility of success. Increasing this assumption by 10% for the Seagreen
project increases the probability of success by 5 p.p.
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Fig. 7. Distributions of stochastic inputs for each player in case study.
Fig. 11(a) identifies an optimum bid for the smart player based on
he objective function, which is 𝐸[𝑋]. 𝐸[𝑋] is calculated based on the
mart player’s perception of the level of competition and competitors’
roject costs and assumptions, as outlined in Section 4.2.4. The peak on
he graph is evidence of the highest 𝐸[𝑋] and, therefore, the optimum
bidding strategy according to E[X]. According to 𝐸[𝑋], the optimum
10

bidding strategy is for East Anglia 3 to increase its minimum CfD
bid price by + £2.5/MWh. In monetary terms, this would lead to an
increase in expected profits of approximately £9 million per year for
the 1200 MW site and £135 million additional expected profit during
the 15-year contract length of the CfD and £135 million in additional
profits during the 15-year contract length of the CfD. There is an
obvious trade-off, as the resultant increase in expected profit results

in a decrease in the probability of winning by 25%. The estimated
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Fig. 8. Histogram illustrating the expected clearing price for the two delivery years of AR3 based on empirical stochastic cost data.

Fig. 9. Box diagram illustrating the merit order of projects which bid into the offshore wind AR3 pot, in ascending order. For Case 2: Seagreen, the project is based on the
Seagreen project, but modelled with a 10% increase in forecast electricity market price.

Fig. 10. Percentage win rate of different projects estimated by the stochastic simulations.
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Fig. 11. 11(a) Graph illustrating how expected value changes with deviations from cost. When bid price signal deviation is equal to zero, the smart the player is considered to
e bidding at cost. 11(b) Graph illustrating the linear relationship between the increase in the bid price and the probability of being awarded a subsidy.
Table 5
Overview of cost input data used to generate a bid price for each player.
Project Capacity

(MW)
DEVEX
(£m)

CAPEXa
(£m)

OPEXa
(£m/year)

DECEX
(£m)

Capacity factora

Doggerbank CB A 1200 80.1 2398.0 21.8 76.4 0.555
Doggerbank CB B 1200 104.5 2410.9 21.9 76.7 0.555
Doggerbank Teesside 1200 86.4 2506.5 22.1 76.5 0.554
Sofia 1400 120.9 2775.9 25.6 90.5 0.554
Seagreen 1075 68.3 2242.6 18.9 60.3 0.505
East Anglia 3 1200 79.8 2321.1 20.9 80.2 0.527
Inch Cape 1000 60.2 2039.0 14.8 58.4 0.505
Moray West 800 55.5 1645.9 14.0 52.0 0.532

aInputs marked, show the median data for stochastic inputs, distribution of stochastic data is shown in Fig. 7.
percentage chance of East Anglia 3 being awarded a subsidy at a +
£2.5/MWh price deviation from the minimum calculated bid price
is 36%. It is an operational decision by developers to analyse on a
case-by-case basis to assess their appetite for risk.

5.3. Comparison of auction results and numerical prediction results

There are two main auction results to analyse and then discuss.
The first is determining whether the strike prices agreed at auction
align with simulation results. Strike prices from AR3 were lower than
analysts anticipated, a 30% reduction compared to the lowest clearing
price achieved in AR2. Secondly, does the award of subsidies in AR3
follow the estimated merit order of projects? In other words, was the
allocation process at AR3 efficient in allocating subsidies to the projects
with the lowest generation cost?

To compare the simulation results to the actual outcome of AR3,
which concluded in AR3, a short overview of the auction results is given
in Table 6. There is currently no published literature which has been
analysed using simulation of the described case study (AR3) or a CfD
auction results. For this reason, comparison with previously available
work is not possible. AR3 procured 5775 MW of capacity across all pots,
with 95% of capacity awarded to offshore wind. For a full results list,
refer to the UK government announcements [17]. A total of 3034 MW
of eligible Offshore Wind projects were unsuccessful in obtaining a CfD
in AR3. The likelihood is that the unsuccessful projects: East Anglia 3,
Inch Cape, and Moray Firth West, will re-attempt to win a CfD subsidy
by participating in AR4.

The two strike price results agreed at auction for AR3 are £39.650
/MWh and £41.611/MWh for the delivery years 23/24 and 24/25,
respectively. The model replicates these results well. The model pre-
dicts these clearing price outcomes for each delivery year with a 14%
and 22% probability (see Fig. 8). These outcomes are some of the
12

ighest probabilities as predicted by the simulation, which has a large
possible strike price range due to the high level of stochasticity of
the inputs to the model. As predicted by the simulations, the mean
price for both delivery years is £37.675/MWh and £41.495/MWh, a
5% margin of AR3 results. Suggesting that developers, through the
utilisation of cost modelling tools and publicly available information,
are likely to be able to predict the clearing price with some confidence
before entering the auction. Predictions of clearing prices will help
formulate a bidding strategy. For example, a risk-averse bidder could
adjust their bid to below the central expected clearing price to increase
their chances of winning. However, developers must have confidence
in their predictions and must be able to make reasonable assumptions
on competition, project costs, and future wholesale electricity market
price predictions.

The outputs of the model suggest that the CfD auction is reasonably
efficient at awarding subsidies based on a merit order (as highlighted in
Fig. 9). The model predicts three of the winning projects (Doggerbank
CB A, Doggerbank CB B, and Sofia) to win with high certainty. This
is because all three sites have preferable site characteristics (e.g. high
mean wind speeds, mean depths) and low grid charges and therefore
are likely to have the lowest generation costs. All three Scottish projects
(Moray Firth West, Inch Cape, and Seagreen) are unlikely to win. As the
site characteristics modelled for the Scottish and Doggerbank projects
are similar, it would appear that a key differential to the merit order of
projects appears to be the geographical spread of wider TNUoS charges.
Transmission costs are significantly higher in unsuccessful projects.
Fig. 12 supports this statement, as it highlights the sensitivity of lo-
cation on CfD bid price. A one-at-a-time sensitivity analysis generates
outputs for this graph, as all input parameters are kept constant with
varied locations. TNUoS is calculated in the model as described in
Section 4.2.1. Fig. 12 shows that CfD bids are significantly higher in
Scotland than in England & Wales as a result of the higher TNuOS
charges. This example utilises the inputs for the Seagreen project as
highlighted in Table 4. Due to the importance of winning a CfD contract



Applied Energy 334 (2023) 120645N.P. Kell et al.

v

f
t

a
S
p
o
w
a
b
c
t
£
p
c

b
i
p
c

Fig. 12. Effect of geography on CfD bid as a result of transmission charges, which
ary significantly by geography.

Table 6
A high-level overview of AR3 Pot 2 auction results. Successful projects are shown with
a strike price. Successful Remote Island Wind projects have been excluded.
Project Owner

(s)
Capacity
(MW)

Strike price
(£/MWh)

Doggerbank CB A SSE & Equinor 1200 39.650
Doggerbank CB B SSE & Equinor 1200 41.611
Doggerbank Teesside SSE & Equinor 1200 41.611
Sofia Innogy 1400 39.650
Seagreen SSE 454a 41.611
East Anglia 3 Scottish Power 1400 –
Inch Cape Red Rock Power 754 –
Moray West EDP Renewables 850 –

aOnly 454 MW of capacity was awarded for a total project size of 1075 MW [17].

or developers, this is evidence that TNUoS charges may act as a barrier
o the delivery of renewable projects in Scotland.
Considering the significant impact TNUoS zones have on CfD bids

nd the merit order as highlighted in Fig. 9, it is surprising that
eagreen was awarded a subsidy. In Case 1, Seagreen was only ex-
ected to win in 0.4% of simulations. This is potentially an example
f auction inefficiency, where a project low down on the merit order
as able to be awarded a subsidy ahead of East Anglia 3, which has
lower estimated generation cost. This auction inefficiency should
e mitigated by the auctioneer to generate better value for electricity
onsumers. Its position on the merit order can be attributed largely to
he higher TNUoS charges. The analysis shown in Fig. 12 results in an
11.25/MWh increase in CfD bid price when comparing the Seagreen
rojects to Doggerbank A&B. This represents approximately 70% of the
ost difference between the projects.
Several potential rational answers explain how Seagreen may have

een awarded a subsidy. Firstly, Seagreen may have strategically bid
nto the auction by bidding significantly below cost to gain subsidy for a
roportion of the consented project. Secondly, the developer may have
hosen more optimistic bid assumptions considerably. Thirdly, SSE, the
13
owner of this project which secured a CfD for 2254 MW of projects in
which they have equity, was able to realise significant savings during
procurement (e.g. cables, turbines) due to economies of scale. Lastly,
inaccuracy in site assumptions and the cost modelling tool used to
cost the Seagreen project could have underestimated its position on the
merit order of projects.

Due to uncertainty in understanding Seagreen’s exact project cost,
it cannot be said with any definitive confidence whether they were
successful in bidding strategically or if economies of scale impacted
their success. However, results show that utilising more optimistic un-
derlying bid assumptions such as forecast wholesale electricity market
prices can increase the probability of winning. For example, doing this
with Seagreen resulted in the median bid price of the project decreasing
by £2.2/MWh, although it did not move substantially up the merit or-
der. However, the percentage chance of Seagreen winning increases to
5.2%. Therefore, it is feasible that Seagreen could have been awarded a
subsidy by using more optimistic assumptions; however, the probability
is remote. In this simulation, more drastic changes in the Seagreen
underlying bid assumptions are required to position itself higher up the
merit order and increase the likelihood of winning.

The results from the simulation are close to the actual AR3 results
while assuming in the simulation that players bid at cost. However,
one cannot conclude that it is typical for players participating in CfD
auctions to bid at cost. This is because the actual cost of players is
difficult to determine (due to the number of bid assumptions required,
e.g. WACC and forecast wholesale electricity market prices). One would
have to obtain from each developer their underlying cost value and bid
assumptions to determine whether players bid truthfully and bid at cost
at AR3.

6. Conclusion

This paper has introduced and described the methodology behind
a novel stochastic, game-theoretic modelling approach, which provides
insights into the CfD auction and assists bid preparation. The model
utilises a proprietary cost modelling tool to generate stochastic cost
estimations for projects which competed in the offshore wind pot of
AR3. Several assumptions, such as discount rate, forecast wholesale
electricity market prices and TNUoS forecasts, have been assumed for
all players. Assessment of revenue and cost streams over a project’s
lifetime allows for the optimisation of a CfD bid price for each player.
Finally, based on a smart player’s additional capabilities and knowledge
of the competition’s projects, it has attempted to optimise its bid price
based on E[X].

The simulation of this CfD auction has demonstrated that developers
would have been able to predict the strike price of the auction with
reasonable confidence prior to bidding. This means that they would
have been able to adjust their bids according to their risk appetite. A
method of quantifying this risk-reward trade-off through optimisation
of expected profits has been demonstrated. Analysis shows projects
could increase their total profits by £135 million over the length of
the CfD in return for a decrease in the probability of winning by 25
pp. The results show that the allocation of subsidies in AR3 does not
strictly follow the merit order of projects. Auction inefficiencies may
suggest that some projects were successful in strategically bidding into
the auction.

Three projects in Scotland had a significantly higher mean CfD bid
of approximately £15/MWh on average, thus hindering the probability
of success at auction. This is largely attributed to the higher TNUoS
charges incurred by Scotland-based projects. Transmission charges ac-
count for an extra £11.25/MWh on generation costs compared to the
transmission charges incurred by Doggerbank A&B. This is likely to be a
notable barrier for Scotland-based projects to be awarded CfD subsidies
in future auctions.

Interesting model expansions could include increasing the smart
game-theoretic capabilities to all players and observing what effect it
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will have on the auction outcome if all players attempt to optimise
based on E[X]. Finally, further research could assess the impact of
human behavioural processes and the effect this has on individual
players and the auction outcome as a whole.
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