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Abstract: The subject of damaged stability has greatly profited from the development of new tools
and techniques in recent history. Specifically, the increased computational power and the probabilistic
approach have transformed the subject, increasing accuracy and fidelity, hence allowing for a univer-
sal application and the inclusion of the most probable scenarios. Currently, all ships are evaluated for
their stability and are expected to survive the dangers they will most likely face. However, further
advancements in simulations have made it possible to further increase the fidelity and accuracy of
simulated casualties. Multiple time domain and, to a lesser extent, Computational Fluid dynamins
(CFD) solutions have been suggested as the next “evolutionary” step for damage stability. However,
while those techniques are demonstrably more accurate, the computational power to utilize them for
the task of probabilistic evaluation is not there yet. In this paper, the authors present a novel approach
that aims to serve as a stopgap measure for introducing the time domain simulations in the existing
framework. Specifically, the methodology presented serves the purpose of a fast decision support
tool which is able to provide information regarding the ongoing casualty utilizing prior knowledge
gained from simulations. This work was needed and developed for the purposes of the EU-funded
project SafePASS.

Keywords: damage stability; case-based reasoning; machine learning; flooding; decision support
systems; SafePASS; survivability

1. Introduction

The maritime industry plays a crucial role in the global economy, with ships transport-
ing a large proportion of goods and raw materials across the world. The safety of ships
and their crew is of paramount importance, and damage stability is one of the key factors
that determine the survival of a ship in the event of an accident. In this paper, we present a
novel approach for the real-time prediction of damage stability outcomes using Case-based
Reasoning (CBR) and Machine Learning (ML) models. CBR is a problem-solving approach
that uses prior experience to solve new problems [1,2], while ML models are used to make
predictions based on data after being trained on a relevant dataset. Our approach combines
these two techniques to provide an accurate and efficient method for predicting damage
stability outcomes in real-time, enabling crews to take appropriate action in the event of
an emergency.

There are several existing real-time decision support tools for damage stability analysis
in the maritime industry, including traditional methods such as rule-based systems and
simulation models. Examples of traditional methods include relevant prepared paperwork
such as damage stability plans, quick reference floodable length charts (used to judge
survivability based on compartments damaged) or other rule-based standing orders and
procedures. Since these items have physical properties and/or are focused on specific
cases, they are not easily adjusted to evolving situations, especially if they deviate from the
expected. An example of this can be found in the recent sinking of the Helge Ingstad, where
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non-continuous damages were evaluated by a carpet plot derived with the assumption of
continuous damage [3]. Non-continuous damages and generally incomplete or erroneous
understanding of the situation have contributed to various accidents [4].

A decision support tool that can assist during the emergency needs to assess the
risk accurately and quickly. The proposed approach can forecast how the flooding will
propagate and how the vessel will be affected in future instances while satisfying those two
objectives. The most crucial functional requirements for the application of the proposed
methods are:

(i) the ability of the approach to receive and process ‘live data’ of the critical influencing
parameters for the assessment of the risk, and

(ii) to have a framework/tool/algorithm in place which can produce predictions and
make projections within a short enough period of time so that it can be meaningful
for on the spot crisis management support.

The accuracy is inherently linked with the capacity of the approach to make correct
predictions; however, the challenge becomes significantly more demanding when you have
to factor in the processing time of the analysis.

Flexible, computerized tools have been developed that normally use onboard sensor
data to provide decision support [5–7]. While there are differences in each application, all
methods share several processes. Namely, multiple sensor data are needed that are then
used to estimate the breach size and location, populate and then solve a hydraulic model
to predict the flooding extent and provide corrections to previous time-step solutions in
a feedback loop. The individual parts of such a process have been studied extensively;
including flooding models [8–17], the effect of non-watertight doors [18], sensors [19–21]
and decision support systems [5,6,22,23]. Experimental investigations have also attempted
to capture the underlying phenomena and validate tools for predicting the dynamics of the
vessel-floodwater-seaway interaction [17,24–27]. In short, an ideal decision support system
is able to use sensor data accurately to initialize a flooding simulation which is then run
in the presence of external forces, and whose results can then be interpreted in a decision
support framework and display useful data to the decision maker. The elusive part of
this process has always been the accurate and timely capture of the physical phenomena
involved. On one hand, fluid dynamics are exceedingly complicated at that scale and,
similarly, the marine environment, especially in significant waves, is a chaotic and aleatoric
amalgam of fluid-air interactions in various regimes.

Along the same lines, the EU-funded project SafePASS [28,29] strives to revolutionize
the process of evacuation on large passenger ships. While the project’s many partners
developed various technological solutions such as dynamic routing, augmented reality [30],
smart lifejackets and wristbands [31], programmable exit signs and others [32], a critical
piece of information is needed. Knowledge of the risk level of the current situation and,
more importantly, the future end state, is crucial in determining whether to initiate an
evacuation or not [33]. The flooding risk is of course dependent on the details of the loading
of the vessel and its stability, as well as the extent of the damage to it. While many physical
phenomena are captured by different methods, a tool that can evaluate the risk swiftly and
robustly has to rely on a database of cases.

The methodology presented below was created to satisfy this need in real-time, with
simplicity for the end user. Two distinct but ultimately similar methods are presented below:
Case-Based Reasoning and Machine Learning, that independently can provide predictions
based on “analyzing” the database. In this way, the lengthy and costly computations
that describe the actual phenomena can be bypassed. At first, it would appear that this
approach is simplistic or naïve, as it appears to disregard the physical events. While
first principles methods rely on mathematical equations and physical laws to predict
outcomes, machine learning can automatically learn patterns and relationships from data
to make predictions or decisions. Additionally, machine learning can adapt and improve
its predictions over time. Furthermore, increasing the data supplied to the model will also



J. Mar. Sci. Eng. 2023, 11, 890 3 of 30

improve its capabilities. Case-based reasoning is also similarly able to utilize a database to
create robust observations.

The methods are presented below with regard to their fundamentals as well as to the
formulation adopted for the task at hand. A demonstrative implementation in simulated
real-life scenario(s) is also added to showcase the performance and practical application of
the methodology. The results suggest that this methodology warrants further study and
experimentation.

2. Materials and Methods
2.1. Architecture

The architecture of the methodology largely follows two paths that have common
starting and ending points. To be precise, both methods of obtaining predictions on the
risk from flooding incidents originate from the same database and, after their respective
processes, arrive at the same variable predictions. Their results can be isolated or examined
in a combined manner. The following figure (Figure 1) demonstrates the major steps of
the methodology.
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All of the processes and algorithms are created in code using the Python language in
an extensive script containing the following parts:

1. Database creation and pre-processing (see Section 2.2)
2. CBR methodology (see Section 2.4) including:

a. Similarity calculation (see Section 2.4.1)
b. Adaption of selected case data to a prediction (see Section 2.4.3)

3. ML methodology including (see Section 2.6):

a. Model fitting and stacking
b. Model comparison and tuning
c. Model evaluation and selection
d. Prediction using ML.
e. Prediction using CBR.

4. A time-loop accepting new data for every time step and providing a new outcome.

2.2. Database

In this stage, the data stored in Excel sheets is retrieved and merged with the results
of the static and numerical simulations. Data pre-processing is performed to align the
data with the problem at hand, including capping values at reasonable maximum values.
For example, the maximum roll angle was capped at 60 degrees to eliminate physically
implausible data points. Finally, the database used comprises 2518 unique cases.

Additionally, a copy of the input variables was prepared to reflect the expected use
case, where the tool will be used as a part of a risk modelling tool and will accept inputs
from onboard sensors or crew entries. To accommodate this, several variables were adapted,
as shown in the accompanying table (Table 1). This adaptation process was a crucial step in
ensuring that the tool accurately reflects the projected use case.

Table 1. Main feature variables used after pre-processing.

Feature Adapted Range Comments

Length As is

Location −10–+10
1 to 10 according to location on vessel with 5 being

midships, 1 stern, and 10 bow. Positive for starboard and
negative for port

Penetration 1–3 Incremental increases in penetration up to a maximum of 3,
which corresponds to B/2 penetration.

Z centre (height of damage centroid) 1–4 Distributed evenly across the depth of the ship

Z height (Height of damage opening) 1–5 According to limits (0, 2, 4, 6, 8)

Rooms N/A Names of rooms known to be open to the sea in
the simulation

Motions

Heel (static & time-domain) 0–30 Capped to prevent erroneous data.

Roll 0–60 Capped at 60 to prevent large numbers due to capsizing.

Draft As is

Trim As is

Survival factor (SFAC) 0, 1 Adapted to reduce the problem to classification. The
threshold used ranges from 0.7 to 0.9.

GZMAXR As is Max GZ from equilibrium to downflooding angle

Range effective (RANGEF) As is Effective range of positive stability from equilibrium to
downflooding angle
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The above process, although it reduces the accuracy of the models as there is no
distinction between close cases, is necessary for this approach in order to be able to be
directly applicable in a scenario where the information is not exact (see also Table 2).

Table 2. Example of full database entry (used variables) for one case.

BreachIndex 9703 BreachIndex 9703

SIDE SB Location −106.684

T 6.480678 Location_side 6

TR 1.019261 Z_centre 3

HEEL −11.5121 Z_height 5

GZMAXR 0.026673 Roll at End Sim Time 175.371

GZMAXSOL 0.026673 Sim End Time 53.196

RANGEF 5.023143 Time at Max Roll Angle 53.196

SFACSOL 0.786584 Max Roll Angle 60

PFAC 0.0008 Max Roll within 3 min 60

Breach Side −1 Time at Max Roll within 3 min 53.196

BreachXc 106.6844 Capsize 0

Length 26.13059 HEEL (abs) 11.51213

Pen 1 Location(abs) 6

Zmin 3.956142 Max Roll within 3 min (no capsize) [ ]

Zmax 18.37559 TTC 53.196

IntT 6.209 TTC True 53.196

Rooms
[‘AC020301’, ‘R150401_N’, ‘SL1_L’, . . . ]

Adjusted TTC
145.5538

2.3. CBR Fundamentals

Case-based reasoning, or CBR, is a problem-solving approach that relies on relevant
past cases to find solutions to emerging situations [1]. CBR works by searching for similar
situations that have happened in the past, and uses the experience gained from those
situations to solve new problems. The problems and their solutions are represented by
cases, and these cases are generally stored in a dynamic database (or case base). CBR is
an effective method for solving problems because it leverages past experience to make
quick decisions, and it is especially useful when the underlying causes of a problem are not
well understood.

Central to CBR is the idea of experience. Experience in this sense is stored in cases,
hence the term “case-based”. This experience, if devolved or deconstructed, is simply a
combination of inputs and outputs; it is how a system responds to specific inputs. Using
this “black box” approach, many problems can be solved based on past experience. This is
a function that humans frequently use and is the basis for many sciences, as it is directly
linked with concepts such as empiricism. For example, medicine is largely based on using
symptoms (evidence/input) to discover the condition that a patient is affected by, and then
an appropriate set of treatment options is used to cure that condition based on what has
been shown to work. Doctors routinely reach a diagnosis by recollecting a past case that
had similar symptoms. They can then rapidly apply what worked, or avoid what did not,
using their experiences. The formal (computerized) implementations of CBR in medicine
are also numerous [34].

In summary, the use of Case-Based Reasoning (CBR) in this problem is motivated by
the need for speed in decision-making during emergency situations involving damaged
ships. CBR provides swift answers and can be updated with new information to predict the
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behavior of the vessel in the future. This information is critical in supporting evacuation or
rescue operations, as the time it takes to capsize or sink can mean the difference between
mass casualties or no casualties. The time to capsize or sink, if known, can give rescuers
and the ship’s crew a time window to plan operations within. For example, if sinking is
imminent, passengers should evacuate immediately, while if the time to sink or capsize is
large, then safer rescue operations could be planned, such as towing the vessel to port or
waiting for external assistance (using rescue boats or helicopters) to transfer the passengers
to land or to another vessel. Although human-based CBR has been used in the past to make
such decisions, the use of CBR based on first-principles calculations can provide a higher
degree of certainty. In [35], the CBR approach is used for a similar damage stability purpose.
The time and resources needed for detailed simulations are not practical in emergency
situations, making CBR a valuable solution.

The approach of CBR for the case of a damaged ship will be based on pre-calculated
cases, similar in detail to what naval architects are accustomed to in case studies, but through
the process of CBR, a multitude of cases will allow for the extrapolation of a new, emerging
case from the calculated ones. This will necessitate an able amount of precalculated cases
to be run along with an appropriate organizational and procedural regime (indexing). The
structure of this approach will be presented in detail in the following sections.

2.4. CBR Implementation
2.4.1. Similarity Functionality

The similarity calculation is a process that is undertaken on the pairs of emergent case
data/database case data for the purpose of determining which cases from the database are
closest to the emergent one.

The similarity score is broken down into two individual scores:

1. Room similarity
2. Damage similarity

Each of the individual scores is added to create the similarity aggregate
(
Similarityagg

)
.

Similarityagg = w1 × similarityroom + w2 × similaritydamage (1)

where w1, w2 are weighting factors. The factors’ selection is an involved process; a high
room similarity weighting factor makes sure that the high factuality data from sensors or
crew regarding damaged rooms is given precedence over the damage variables. On the
other hand, too high a value degrades the robustness of the comparison if it is based on
only one of the two streams of information. In this implementation, values of 0.6 and 0.4
are used, respectively, which is found to satisfy the above rationale.

The similarity scores for the rooms are based on Jaccard similarity. Jaccard similarity
measures the similarity between two sets of data and is often used in that function.

J(A, B) =
|A ∩ B|
|A ∪ B| (2)

For the room similarity, the Jaccard similarity is applied straightforwardly. The Jaccard
similarity measures the similarity between two sets of data by dividing the size of the
intersection of the sets by the size of their union.

In the case of damage, a custom metric was developed. The metric uses a series of
functions, each of which is tailored to a specific damage variable and calculates a “closeness”
metric ranging from 1 for complete similarity to 0 for complete dissimilarity. The functions
are different for each damage variable, as the physical meaning of the damage variables
varies. Additionally, each damage variable has a unique weight assigned to it, reflecting its
relative importance in the calculation of the damage similarity.

Similaritydamage =
n

∑
i=0

Smvari × wi (3)
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where n is the number of damage variables. Each damage variable also has a custom
difference/similarity function that describes what is classified as similar in terms of value
difference. For example, two cases of 2 and 2.5 deg heel are considered similar for the heel,
but a difference of 0.5 for the survival factor is completely dissimilar.

2.4.2. Retrieval of Cases

The similarity function is applied to all cases to find the cases that are most similar
to the emergent case. Each case is then assigned a similarity score based on the similarity
function. The resulting database is sorted in descending order of similarity scores.

To reduce computational time, only the most promising cases are considered. A
percentile value is used to determine the similarity score cut-off, which shifts based on the
distribution of similarity scores. An example of this function can be seen in Figure 2. In
the following figures, a histogram is first presented showing the number of cases for each
similarity score bin, whilst in the bottom subplot, the Probability and Cumulative Density
functions (PDF/CDF) are drawn for the same distribution. Similarly, the same template is
used to plot other values, such as the survival factor (SFAC) or heel, etc.
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In this case, the 92nd percentile is used as the cut-off for selecting cases. This choice
is made because it includes the highly similar cases, while avoiding large clusters of less
probable cases. As seen in Figure 3, the higher concentration of high scores shifts the cut-off
to a higher similarity score, as expected.

After the selection process, data is extracted from the relevant cases in an appropriate
manner. This can include any of the values stored in the database, such as the response of
the vessel to the damage (described by the damage variables).
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Additionally, the probability of correctly predicting the case can also be incorporated
into the analysis. The database already contains the a priori probability of each case in the
form of the “p factor”. Some cases are more probable to occur due to the distribution of
damages considered in SOLAS. To incorporate this knowledge into the similarity factor,
Bayesian inference is used to form a probability that the specific case is taking place. This
is achieved by using Bayes’ rule, similar to a sensor fusion problem. Bayes’ rule lies at
the heart of most data fusion methods and provides a means of making inferences about
the state, x (in this case, which case from the database is occurring/evolving), based on
an observation, z, (the similarity metric). The joint probability is obtained using Bayes’
rule [36].

P(x|z) = P(z|x)P(x)
P(z)

(4)

The conditional probability P(z|x) serves the role of a sensor model, as it describes
the likelihood that a specific z observation is obtained conditioned on the state of x. This
value has been evaluated for each case (x) by using the “sensor” similarity score applied
to variables of x. This term is also denoted as the likelihood function in the literature.
The denominator, P(z), is the marginal probability and is used to normalize the posterior
probability, P(z|x) by ensuring that the sum of all conditional probabilities sums to 1.
Finally, P(x), contains all prior beliefs on the state of x, irrespective of observation. The a
priori distribution is the p factor based on the SOLAS formulation.

According to the above formulations, the probability of a case being the one really
happening is given as the posterior probability P(x|z). Where P(x|z) is:

P(x|z)i = C× Similarityaggi × p f aci (5)

where:
C = 1/∑n

i=0 P(x|z)i (6)

where n is the number of cases in the database.
In conclusion, the prior belief contained in the a priori distribution of probability (p

factor) helps to give more weight to cases that are more frequent and less weight to rare
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cases. This is useful when the sensing accuracy is low, as the prior belief becomes the main
source of information for the algorithm.

2.4.3. Adaptation

The result of the previous step is now a probability density function (that integrates to
1) for not only the similarity of the cases, but also for every value linked to the cases. For
example, see Figures 4 and 5 below:
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Figure 4. Analysis of heel data from selected cases. (CDF is not valid for the heel as depicted). The
yellow dotted line in the top subplot is the value that corresponds to the percentile value from the
cases that were selected using the similarity score. In the bottom subplot the corresponding percentile
of that value compared to the full set is plotted again using the same yellow dotted line.

The yellow line in the case of variables is defined by the mean value and the corre-
sponding cumulative density function (CDF) of that value in the bottom graph. Note that
the average extracted here assumes that all the selected cases are equal in weight. In Table 3
the different methods of extracting a singular value as the prediction are found.

Below is an example with a randomly generated case (Figure 5) that demonstrates
the different prediction methods. The similarity aggregate can be used instead of the
probability for “an uninformed a priori” prediction (see Table 4).

Table 3. Output prediction types.

Name Sample Method

Simple average Selected cases (by percentile
similarity cut-off)

∑n
i=0 vari

n

Weighted similarity average Selected cases (by percentile
similarity cut-off)

∑n
i=0 vari × Similarityi

∑n
i=0 Similarityi

Weighted posterior
probability average

Selected cases (by percentile
similarity cut-off)

∑n
i=0 vari × P(x|z)i

∑n
i=0 P(x|z)i

Top case Top case by similarity Top case feature value
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Figure 5. Analysis of Survival factor (SFAC) data of selected data. The yellow dotted line in the top
subplot is the value that corresponds to the percentile value from the cases that were selected using
the similarity score. In the bottom subplot the corresponding percentile of that value compared to the
full set is plotted again using the same yellow dotted line.

Table 4. Example of different predictions with relevant to Figure 5.

Name Value

Simple average 0.96

Weighted similarity average 0.9669

Weighted posterior probability average 0.990

Truth 1

The simple average will be less specific and more conservative. The same effect is
replicated if the percentile selected is lower or higher. A higher percentile will narrow the
scope to the most similar cases, while a lower one will encapsulate more cases, thus being
more conservative and less specific.

2.5. Machine Learning Fundamentals

Machine learning (ML) is a field of computer science that uses specialized algorithms,
techniques, and processes for generating solutions to complicated problems that are hard to
tackle with conventional programming approaches. Most importantly, in machine learning
the programmer does not design the program to solve a problem explicitly in predefined
steps, but instead sets up a framework of rules and functions that can achieve that by
“learning”. This “learning” is possible given a labelled dataset that essentially contains
examples of input-output pairs that the algorithm then “learns” to reproduce for new input
data and provide correct results. This is called supervised machine learning. ML algorithms
can solve many complex problems using this generic approach [37].

2.5.1. Performance Metrics

There are several metrics that can be used to quantify the performance of a machine
learning application. Classification and regression problems both have specific metrics that
can apply. While several of them were used to create those models, there will not be an
extensive discussion on their formulation or on other metrics that were not used. Similarly,
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the implementation of the ML process pertains more to computer science, and as such it
will not be discussed extensively, nor is the author claiming that it is properly optimized.
The main objective is to show how this approach works and to demonstrate its potential
for this particular problem. The metrics as presented below are formulated and used as
part of the Python scikit-learn (sklearn) library [38] for the purposes of evaluating each
trained model.

2.5.2. Classification

As explained earlier, in classification a class has a binary nature, hence the performance
metrics are adapted to depict this reality.

2.5.3. Accuracy

Accuracy is a simple metric that is defined as the sum of correct predictions divided by
the total number of predictions. For example,[

Predictions
Truth

]
=

[
1 1 0 0
0 1 0 0

]
Accuracy =

[
0 1 1 1

]
= 3/4

(7)

In the above example, there are matching predictions with truth in three cases out of a
total of four, hence the score comes out to 75%. It is an easy way to see if the classifier is
working and how good it is at correctly identifying the class. However, it can be misleading
on its own, especially in cases where the classes are imbalanced. For example, if 90% of the
data is positive, then a classifier that only returns positive data will be accurate at 90%.

2.5.4. Precision

Precision is given by:

Precision =
Truepos(

Truepos + Falsepos
) (8)

where Truepos is the number of true positives and Falsepos is the number of false positives.
Positive and negative here refer to the possible states of the binary classifier. The precision
metric provides insight into the classifier’s ability to not generate false positives. This
metric can be very important depending on how the problem is formulated. In this present
application, the positive label is given to correspond to a survival factor of 1, hence a false
positive would mean that a dangerous prediction is returned. The ideal value is 1, while
the worst is 0.

2.5.5. Recall

Recall is a metric that captures the ability of the classifier to find all the positive samples.
It is given by:

Recall =
Truepos(

Truepos + Falseneg
) (9)

where Falseneg are the number of false negative predictions, or predictions that are positive
but are misclassified. The ideal number is once again 1, and the worst is 0.

2.5.6. F1 Score

The F1 score, also known as the F-score or F-measure, combines precision and recall in
one metric by taking their harmonic mean. It is useful to compare two different classifiers
by evaluating precision and recall together.

F1 = 2 × (Precision× Recall)
(Precision + Recall)

(10)
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Again, the best value is 1 and the worst is 0. The F1 score is useful in cases where the
accuracy is not as robust. This is primarily for imbalanced datasets that were discussed.
Furthermore, it can better capture the difference in consequences of a false positive/false
negative. For example, for a cancer recognition application, a false negative is many times
more costly than a false positive (considering that follow-up investigations will reveal it to
be false).

2.5.7. Regression

Regression performance metrics revolve around the idea of fitting a curve to a cloud of
data points and associated metrics that can be generally found in mathematics and statistics.

2.5.8. R2 Coefficient of Determination

In statistics, the coefficient of determination is routinely used to explain how well the
statistical model replicates the observed data points. Similarly, in ML it captures how well
the model can predict the data given, and as such a high value is sought.

2.5.9. Mean Absolute Error

Mean absolute error (MAE) is also found in statistics, and captures the average of the
absolute errors for pairs of prediction-ground truth data.

2.5.10. Root Mean Square Error

Root mean square error (RMSE) or root mean square deviation is another tool very
commonly found in statistics that once again captures errors, but in contrast to MAE, each
error has a different effect, especially for the outliers.

2.6. Machine Learning Implementation

Machine learning, as introduced earlier, is an approach that has been used in this
case to get similar results to the case-based approach. More specifically, using ML, models
are trained on the data in the database and then used to extract predictions as in the
CBR approach.

The implementation of ML methods happens in parallel to the CBR approach in the
same script, relying on the Python library, scikit-learn [38]. The objective is to utilize the
information found in the dataset to provide predictions for an emergent case. In contrast to
the CBR approach, many of the functionalities of how this happens are not distinct, and are
defined by each model’s internal logic as well as pre- and post-processing steps.

The steps followed for each ML implementation are:

1. Provide database of cases (pre-processed).
2. Select features from the database and the target feature (objective to be predicted).
3. Select a machine learning model, e.g., RandomForestClassifier.
4. Choose whether to binarize the target feature.
5. Choose the threshold for binarization.
6. Choose whether to standardize the data.
7. Search for best hyperparameters (grid search).
8. Train model.
9. Perform K-fold cross validation and display mean and std. of performance metrics

(r2, accuracy etc.).

Initially, the script manages the steps of splitting the dataset to train and test the
sets. The split used is 0.3, meaning 30% of data is kept for the testing/validation step.
It is common practice to take random slices of the data for training and testing to avoid
overfitting and to get accurate validation results. The process of cross-validation goes
one step further. In cross-validation, the splits of train-test data are done multiple times
each time, measuring the performance of the model. After a number of runs, the data can
be collated.

The model is trained on the data after the split is done correctly.
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Lastly, the trained model passes through an evaluation function where several of its
performance metrics are computed, as well as other outputs. Some are also printed as
below (Figure 6):
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This process is repeated for a large selection of relevant ML models, and the best are
selected automatically each time they are trained. See Section 3.

Note that the values are returned as the mean and the standard deviation in parenthe-
ses since the model is evaluated across all folds or splits of data (typically 10).

2.7. Classification

There are no features of the damage cases that fit the description of a binary classifier.
However, with some adjustments several can be created. For example, the most important
classifier feature that was adapted is the survival factor. While normally SFAC ranges from
0 to 1, the extremes are what is seen most of the time. In addition, values lower than 1
but not zero usually represent a “degraded” survival, usually one with a large heel angle.
Hence, cases with a value larger than 0 are generally survival cases, albeit marginal ones.
Consequently, by choosing a threshold value in the range of 0 to 1 and then binarizing
the SFAC, it is converted to a classification output. For example, considering 0.7 as the
threshold, then all entries with a value higher than 0.7 will become 1, and those lower will
become 0. A high threshold will generate more non-survival cases from the marginal ones,
while a lower one is the inverse of this. The threshold value used is 0.7 in the code. A
“binarizer” function carries out the procedure across the database.

Another possible classification target is a new feature named “Capsize” that is gener-
ated by interpreting the data already found, such as heel and trim, etc.

2.8. Regression

Regression refers to the direct prediction on a continuous variable. There are several
possible target features with different ranges. For example, the heel is quite important, as
is the range of positive stability and GZ. SFAC is also a continuous variable that can be
predicted. A very similar approach is followed by first comparing the models or regressors.
Of course, the continuous nature of the data changes several ways of approaching the
regression problem compared to the classification.

In this study, the performance is basically evaluated similar to the way of fitting a
curve to data. The model attempts to explain the true data as a function of other data. A
successful regression model will have a high coefficient of determination or R2, and low
errors between the predicted and measured data points.

3. Results

The models are divided into classification and regression models, and each are trained
in turn, and the best model is kept and used for the predictions. This process takes
approximately 13 min and needs to be run only once, as the models are automatically
saved. The training regime uses 10-fold cross validation on the basis of 70–30 % training-
test/validation data. For deployment, the model should then be trained on the whole
dataset available. The SFAC classifier can evaluate 40 sets of input data per second, thus
complementing a standard normalized set of 400 cases per given input data every 10 s.
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3.1. Classifier Comparison

In order to compare the performance of several trained models, a function was devel-
oped to compare their results. The graph in Figure 7 visualizes the classifiers’ predictions
by plotting the data points with a coloured background. Each data point represents a case,
and its colour corresponds to the SFAC value of the case (blue for 1 and red for 0). The
location of the data points is based on the two most important features: length an location,
as determined by analyzing the feature importance of the models (see Figure 8. For plotting,
only these two features can be used, as the plot is 2D.
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Figure 8. Permutation feature importance for predicting SFAC. Bars denote range of values across
multiple runs with orange bar being the average.

The background of the graph represents the predictions of each model, with the
intensity of blue and red hues indicating a higher or lower probability of predicting 1 or 0.
The accuracy score of each classifier is also shown at the bottom right of the figure, with the
stacked classifier being a combination of all the other classifiers. In general, all classifiers
have similar performance, as does the stacked model.

Table 5. Accuracy scores of the classifier models tested.

Model Accuracy Score

Nearest Neighbors 0.82

HistGradient 0.84

Linear SVM 0.81

Neural Net 0.83

AdaBoost 0.85

Naive Bayes 0.81

RBF SVM 0.81

Decision Tree 0.84

Random Forest 0.83

QDA 0.82

Stacked model 0.83

3.2. Calibration of Models

The calibration of the models was performed to adjust the output probability to match
the ratio of positive classes in the relevant set. The calibration process was visualized using
the calibration curve, which plots the mean predicted probability against the fraction of
positive classes. The goal is for the data points to lie on the y = x diagonal. Figures 9 and 10
show the uncalibrated and calibrated calibration plots for all classifiers.
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Receiver Operating Characteristics and Discrimination Threshold

A useful way to visualize the effect of differing discrimination thresholds can be
afforded by a graph known as the receiver operating characteristic graph (ROC), see
(Figure 11).
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The result for the default 0.5 threshold for the calibrated classifier is printed below
(Figure 12):
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3.3. Regressor Comparison

A comparison of various regression models was conducted to determine the best
model for predicting heel, GZMAXR, and others. The comparison was performed by
fitting the models to the same data and plotting the results. In these plots, the perfect fit is
represented by a diagonal line, where the predicted value equals the measured value, with
the predicted values on the y-axis and the true values on the x-axis.

Among the regression models, the best performers were found to be Gradient Boosting
and Random Forest. Although a stacked model combining all the individual models was
also computed, it was not found to be superior to the individual models. After careful
evaluation, the Gradient Boosting model was selected as the final model for predicting heel,
due to its high R2 and low mean absolute error (MAE) relative to the other models.

The same model was also found to be the best for predicting GZMAXR & heel
(Figures 13 and 14).
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3.4. Uncertainty Quantification for Input Variables

A sensitivity analysis was performed in order to assess the effect of uncertainties in
the input variables on the predictions of interest. The input variables of concern are the
damage variables, such as the length and location of a breach, which are critical for the task
at hand.

The uncertainty of these damage variables is quantified using a normal distribution
centred around the measured value. The standard deviation, which reflects the degree
of variability of the measurement, is determined for each variable based on its inherent
characteristics. For example, the location of the damage is discretized into tenths of the
ship, and a measurement of 4 would result in a normal distribution with a mean of 4 and a
standard deviation of 0.7. This deviation was chosen to capture the probable measurements
that could be obtained from a human observer.

In the case of the length of the damage, the deviation of 1.5σ corresponds to 87% of the
measurements of a normal distribution. It is important to note that the standard deviations
were selected based on logical considerations, but without the use of specific data.

It is worth mentioning that due to the discrete nature of the values, the resulting
density bars may not follow a normal distribution (Figures 15 and 16).
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To analyze the impact of the uncertainties in the damage variables on the prediction, a
Monte Carlo simulation was performed in the study. Initially, 400 instances were randomly
selected from the normal distributions of each variable and shuffled into a list of cases.
These cases are essentially possible permutations of the variable distributions shown above,
and were then evaluated using machine learning models to obtain predictions.

Additionally, the original case was also evaluated and considered as the “exact”
prediction. The results from the 400 predictions and the exact prediction were plotted to
visualize their distribution.

This Monte Carlo simulation provides a robust assessment of the effect of uncertainties
in the input variables on the prediction, allowing for a comprehensive understanding of
the potential outcomes and their associated uncertainties. The results of the simulation can
be used to make informed decisions and to assess the robustness of the prediction models.
The following graphs contain 400 random cases evaluated in that way (Figures 17–19).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 23 of 33 
 

 

 

Figure 17. A survival factor histogram from 400 different sets of data of random cases. Frequency 

vs. SFAC. The red shaded area contains the median plus or minus one standard deviation. Lines are 

the exact prediction value for blue and the median prediction from the Monte Carlo simulation for 

red. 

In the Monte Carlo simulation described above, the results indicated that most of the 

data was concentrated between 0.9–1.0, and that this region also contained the exact value. 

The spread of the density of the data provides an indication of the uncertainty in the pre-

diction. In this particular case, the spread of the data was relatively low, as indicated by 

the low standard deviation. 

Furthermore, the mean and exact predictions were found to be close, suggesting that 

the exact prediction was relatively robust in this scenario, and was not greatly affected by 

the uncertainties in the input data. 

In Figure 18, the spread is even lower, and the mean and exact predictions coincide 

even more. The shaded area is also narrow, meaning that the uncertainty is low. 

 

Figure 18. Survival factor histogram from 400 different sets of data of a random case. Frequency vs. 

SFAC. Example 2. Lines are the exact prediction value for blue and the median prediction from the 

Monte Carlo simulation for red. 

Figure 17. A survival factor histogram from 400 different sets of data of random cases. Frequency vs.
SFAC. The red shaded area contains the median plus or minus one standard deviation. Lines are the
exact prediction value for blue and the median prediction from the Monte Carlo simulation for red.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 23 of 33 
 

 

 

Figure 17. A survival factor histogram from 400 different sets of data of random cases. Frequency 

vs. SFAC. The red shaded area contains the median plus or minus one standard deviation. Lines are 

the exact prediction value for blue and the median prediction from the Monte Carlo simulation for 

red. 

In the Monte Carlo simulation described above, the results indicated that most of the 

data was concentrated between 0.9–1.0, and that this region also contained the exact value. 

The spread of the density of the data provides an indication of the uncertainty in the pre-

diction. In this particular case, the spread of the data was relatively low, as indicated by 

the low standard deviation. 

Furthermore, the mean and exact predictions were found to be close, suggesting that 

the exact prediction was relatively robust in this scenario, and was not greatly affected by 

the uncertainties in the input data. 

In Figure 18, the spread is even lower, and the mean and exact predictions coincide 

even more. The shaded area is also narrow, meaning that the uncertainty is low. 

 

Figure 18. Survival factor histogram from 400 different sets of data of a random case. Frequency vs. 

SFAC. Example 2. Lines are the exact prediction value for blue and the median prediction from the 

Monte Carlo simulation for red. 

Figure 18. Survival factor histogram from 400 different sets of data of a random case. Frequency vs.
SFAC. Example 2. Lines are the exact prediction value for blue and the median prediction from the
Monte Carlo simulation for red.



J. Mar. Sci. Eng. 2023, 11, 890 21 of 30

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 24 of 33 
 

 

Figure 19 is an example where there is a large spread of values for the prediction. 

This variance suggests high uncertainty in the prediction as well. The shaded area also 

has a large range. In this case, the uncertainty of the prediction is high. 

 

Figure 19 Survival factor histogram from 400 different sets of data of a random case. Frequency vs. 

SFAC. Example 3. Lines are the exact prediction value for blue and the median prediction from the 

Monte Carlo simulation for red. 

It is obvious that each case can have a different uncertainty associated with it. In order 

to evaluate the general effect that input variable variation can have on the end result, a 

Monte Carlo simulation was carried out. The same 400 permutations on the distribution 

of input variables are computed for 1000 random cases picked randomly from the data-

base. The prediction on SFAC is used to compare the results. For every case, the percent-

age as well as the root mean square error of the 400 predictions against the exact prediction 

on the case without transformation are kept, see Figures 20 and 21. The standard deviation 

is also kept, as is the coefficient of variation. The purpose of this is to generate a histogram 

and a CDF showing how the end prediction is affected across the cases of the database. 

The prediction is done through the ML models generated and calibrated according to the 

previous chapter. 

 

Figure 20. Percentage error of 1000 random cases across 400 permutations each. 

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40 45 50 0.5+

C
D

F

Fr
eq

u
en

cy

% error (bin upper limit)

Percentage error MC 1000 rnd cases

% error

CDF

Figure 19. Survival factor histogram from 400 different sets of data of a random case. Frequency vs.
SFAC. Example 3. Lines are the exact prediction value for blue and the median prediction from the
Monte Carlo simulation for red.

In the Monte Carlo simulation described above, the results indicated that most of
the data was concentrated between 0.9–1.0, and that this region also contained the exact
value. The spread of the density of the data provides an indication of the uncertainty in the
prediction. In this particular case, the spread of the data was relatively low, as indicated by
the low standard deviation.

Furthermore, the mean and exact predictions were found to be close, suggesting that
the exact prediction was relatively robust in this scenario, and was not greatly affected by
the uncertainties in the input data.

In Figure 18, the spread is even lower, and the mean and exact predictions coincide
even more. The shaded area is also narrow, meaning that the uncertainty is low.

Figure 19 is an example where there is a large spread of values for the prediction. This
variance suggests high uncertainty in the prediction as well. The shaded area also has a
large range. In this case, the uncertainty of the prediction is high.

It is obvious that each case can have a different uncertainty associated with it. In order
to evaluate the general effect that input variable variation can have on the end result, a
Monte Carlo simulation was carried out. The same 400 permutations on the distribution of
input variables are computed for 1000 random cases picked randomly from the database.
The prediction on SFAC is used to compare the results. For every case, the percentage as
well as the root mean square error of the 400 predictions against the exact prediction on
the case without transformation are kept, see Figures 20 and 21. The standard deviation is
also kept, as is the coefficient of variation. The purpose of this is to generate a histogram
and a CDF showing how the end prediction is affected across the cases of the database.
The prediction is done through the ML models generated and calibrated according to the
previous chapter.

This process is quite computationally intensive, as there are a total of 401,000 predic-
tions that need to be made, as well as the generation of random input variable tables.

The resulting data is plotted as histograms to better visualize the density of the shift.
The results of the Monte Carlo simulation reveal that the methodology and input

variable discretization are robust, as the expected variation in accuracy in the input variables
does not significantly affect the prediction accuracy compared to the exact prediction. The
ML models also appear to not be overfitting to the database cases, as new cases around
those cases are evaluated similarly. The 90th percentile of the root mean square error is 0.25,
meaning that in 90% of the cases the error is less than 0.25. The percentage error histogram
is also plotted, but it should be noted that care should be taken when interpreting the
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results, as the same percentage error can have different implications for the different values
of SFAC predicted.
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Figure 20. Percentage error of 1000 random cases across 400 permutations each.
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Figure 21. Root mean square error of 1000 random cases across 400 permutations each.

4. Discussion

A high-level overview of the methodology presented is found in Figure 1. Below are
some examples of how the predictions are returned for various variables.

4.1. Predictions of Selected Variables

The predictions are printed along with the rest of the output from other models, and
the CBR approach is in the following format (Figure 22 and Table 6).
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Figure 22. Printout for case 9847.

Table 6. Tabulated results for case 9847.

CBR Approach ML Truth

Similarity weighted
predicted

Posterior probability
weighted

Machine learning
prediction

Heel 0.66 0.12 1.21 −0.02

GZMAXR 0.3 0.33 0.32 0.29

SFAC classifier 0.94 0.98 0.79 0.98

SFAC continuous 0.94 0.98 0.67 0.98

The above process can be followed for all features found in the database. Several cases
were evaluated in this way in order to validate the methodology.

4.2. Prediction on Time to Capsize

The survival factor is an obvious prediction; however, the prediction of the time to
capsize is also very important.

Due to the small scale of the database, TTC times cannot be evaluated directly. Note
that since the TTC is based on data that are 30 min long, an adjusted TTC is used to expand
the range of predictions instead. This adjusted TTC is the result of multiplying the TTC with
two exponentials to the power of the predicted survival factor. In short, the survival factor
is used to extend the range of the TTC artificially based on the idea that a high survival
factor indicates a safe case (TTC→ inf), while a lower survival factor indicates a sinking or
capsizing case.

TTCadj = a× TTCind ×
(

ebS f ac + ec(S f ac−0.7)
)
/3600, hours (11)

where a = 0.45, b = 1.5, c = 12. The function can be visualized below (Figure 23).
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Figure 23. Adjusted TTC function 3D map.

Following the logic of the function, high TTC values basically denote survival. The
indicated TTC is taken directly from the regressor for predicting TTC. If a case has no
capsizing in 30 min of simulation, then the TTC is returned as 3600 s (1 h).

Using the above formulation, the CBR and ML methodologies can be made to produce
TTC predictions.

Several scenarios of damage were created and simulated through the inputs to demon-
strate the code functions and performance.

4.2.1. Rapid Capsizing

In this damage scenario, input data is provided 10 times. Initially, the damage is
thought to be small and localized, which is proven to be false as time passes. This is
reflected only in the data provided by sensors or crew (Table 7).

Table 7. Ten damage updates given sequentially.

Index Length Pen Z_Centre Z_Height Location_Side

1 5 1 2 2 −5

2 5 2 2 2 −4

3 5 2 2 2 −6

4 7 1 2 2 −5

5 15 1 2 3 −5

6 21 1 2 3 −5

7 30 2 2 3 −6

8 35 3 2 3 −6

9 40 3 2 3 −6

10 53 3 2 3 −6

Generally, as time passes, the real extent of the damage becomes clear, with the
last update corresponding to the damage variables stored in case #6907 of the numerical
simulation database for flooding. The rooms that are found to be flooded are also given in
a separate table. This information is used by the CBR methodology to find similar cases.
Many cases share similar rooms, so an increase in the number of passed rooms invariably
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makes the prediction more accurate, as less and less cases share the same rooms. The rooms
passed do not influence the ML methods.

From the two data streams provided, it is clear that as time passes the accuracy is
expected to rise. In the first five sensor updates, the rooms passed are found in multiple
cases, many of which are survival cases. Starting from the sixth update, the rooms involved
point more and more towards a rapid capsize case (#6907). However, the total amount of
rooms is never passed as sensor input, as can be expected in a real case that spans large
spaces. The code then prints and updates the following plot with the predictions from the
CBR and ML methodologies in real time (here presented at the last time step, see Figure 24).
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The histograms (see Figure 25) also provide valuable information on the distribution
of the CBR cases. Up to update #6, a significant number of cases had high TTC values, and
at update #7 the new data reshapes the landscape, now giving much higher density in the
low region. It is becoming more evident that there is roughly an equal chance of either
capsizing or surviving.
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After update #10, which includes the best information found, the predictions from all
sources converge substantially. See above how the CBR methodology basically converges
to a substantially low TTC. Furthermore, the “noise” or variability introduced in the ML
method seems to have little effect on the result, as similar cases also have similar outcomes,
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and the deviation in the 400 random cases evaluated by the ML method is very low, see
Figure 26. The confidence bands are also tight around the ML median.
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Figure 26. Predictions across the 10 min of data update.

Finally, two out of three metrics used here suggest a TTC of 20–30 min, with enough
data to support the accuracy of these predictions. The CBR approach is largely affected
by other survival cases, and thus has a higher weighted value. It is also useful to note
that any safety system should inherently be conservative, and hence the appearance of
several possible cases that lead to sinking would require a fast response on board in order
to minimise the perceived risk.

In the case of a rapid capsizing, it is very important to quickly identify the situation
as critical so that the evacuation process or other active crisis management measures (e.g.,
intentional grounding) can be taken. It was demonstrated how such an event would be
dealt with in the case above.

4.2.2. Slow Capsize

Case #1918 is used to demonstrate a slow capsize case, see Figure 27. Case #1918 is
evaluated in the time domain, showing a large angle of heel but no capsize in 30 min of
simulation. In that situation, this case can easily go either way if external forces are added,
etc. It was also demonstrated here how the distribution of damages can be used even when
the exact prediction may be favourable.
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Due to the low criticality of the damage information given, the initial 5–6 ML pre-
dictions suggest a non-capsize case with high confidence (narrow deviation band). Here,
the decision maker should focus on the uncertainty of the indicated large TTC and the
delicate balance between survival and capsize/sinking, as well as the top cases having high
similarity but also low TTC times. This data should indicate that action is definitely needed
and that an orderly evacuation is possible. This decision can also be strongly influenced by
the estimated time to exceed the maximum heel (and trim) angle that is compatible with
the safe deployment of LSAs (e.g., 20 degrees).

The scenarios shown above demonstrate how the crew onboard can quickly get
an evaluation of relevant data without needing to consult any other tool. Traditionally,
seafarers would have to retrieve and examine the trim & stability booklet or a special
damage stability booklet, where they would try to use precalculated aids, revolving around
the ideas of reserve buoyancy and final floating position for continuous damages. Instead,
using the proposed methodology, the crew is only responsible for providing the input
variables while the scope of the damages is as broad as the database). If the present
methodology was to be adapted directly, that would mean that the input of damage
characteristics in the scales presented in Table 1. and specifically, those of length, location,
penetration, height, and center height. The inclusion of flooded rooms is optional, but
greatly improves the CBR prediction. In mere seconds the models can compare the emergent
situation with the precalculated ones and immediately display information that can inform
decisions in an uncertain environment. It has been shown, for example, how uncertainty is
also displayed as an output and should therefore also influence decisions. Most importantly,
the models do not need to have been trained on the same case that is happening in order to
provide good results. The approach is also modular; it can include more and more cases,
but is also robust to uncertainty; as shown in the Monte Carlo simulation.

5. Conclusions

The authors have presented an extensive methodology, integrating two reasoning
methods that build upon pre-calculated databases. Both parts of the methodology have
been processed and evaluated to be valid in real-time evolutions of damage scenarios.
For example, the variable inputs are easily obtained with low complexity and technology
means. The input considered is adjusted to represent the expected sources of information
during a casualty, namely crew optical assessment. The uncertainty introduced due to the
data type and source has also been computed and represented to inform any prediction of
the presence of uncertainty. The methodology has been shown to produce logical results
with good results in predicting important variables, especially the survival factor. The
representation of the prediction is also discussed, as is how important information can be
extracted from the multitude of data points provided. Finally, the two methods are shown
working in parallel; both provide similar results, and their comparative advantages have
been discussed.

The application of machine learning or other reasoning systems in damage stability
should be investigated further as a real-time solution that is able to provide a dynamic risk
assessment that is useful and lacking in most ships. In addition, and in contrast to other
solutions, the relative simplicity of installation and good, robust results further promote
this methodology. This implementation does not require high-quality data fed from sensors
that will need to be installed, or especially powerful computation, although it can benefit
from their presence. A large part of the methodology’s success rests on the extent and
depth of the pre-calculated damage cases that will need to be run once for each vessel.
Hence, their computational cost can be acceptable.

The contrast of the methodology presented with the largely static and inflexible
damage stability tools afforded in most cases is stark; even with lower accuracy, the
reasoning afforded by computational models using vast databases is orders of magnitude
better than human intuition or the evaluation of singular data streams or perceptions.
Weather, non-continuous damages, actual loading, and others can all be captured in this
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database-based approach. This increase in fidelity does not come at the cost of crew
resources, as the information required is simple and can be directly supplemented by
sensor data.

Finally, as part of a decision support tool [39], this methodology can provide valuable
information regarding the predicted evolution of a flooding casualty that can be used to
further inform decisions around active measures, evacuation, or other consequential actions
that the crew will need to take in a high-stress, low-information situation. This integration
with other tools has been carried out in project SafePASS, creating a computational frame-
work that integrates data from various systems that comprise the dynamic environment
surrounding an evacuation.

As a final note, it is clear to the authors that there are various aspects of the methodol-
ogy presented that can be greatly enhanced. A larger database containing new data would
be very worthwhile in enhancing and extending the capabilities of the trained models.
Integrating other logic processes can also be very worthwhile; for example, a hydraulic
“connectivity” model could independently predict which rooms are expected to be flooded
without needing sensor data. Lastly, improvements regarding the model formulation,
setup and interaction can also improve the performance of the entire method without
considerably increasing the computational.
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