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A B S T R A C T

Image processing methods for automated concrete crack detection are often challenged by binary noise. Noise
removal methods decrease the false positive pixels of crack detection results, often at the cost of a reduction
in true positives. This paper proposes a novel method for binary noise removal and segmentation of noisy
concrete crack images. The method applies an area threshold before reducing the pixel groups in the image
to a skeleton. Each skeleton is connected to its nearest neighbour before the remaining short skeletons in the
image are removed using a length threshold. A morphological reconstruction follows to remove all elements
in the original noisy image that do not intersect with the skeleton. Finally, pixel groups in close proximity to
the endpoints of the pixel groups in the resulting image are reinstated. Testing was conducted on a dataset of
noisy binary crack images; the proposed method (Skele-Marker) obtained recall, precision, intersection over
union, and F1 score results of 77%, 91%, 72%, and 84%, respectively. Skele-Marker was compared to other
methods found in literature and was found to outperform other methods in terms of precision, intersection over
union and F1 score. The proposed method is used to make crack detection results more reliable, supporting
the ever-growing demand for automated inspections of concrete structures.
1. Introduction

Traditional human visual inspections of structures are unsafe and
produce inconsistent results [1,2]. To improve safety and efficiency,
efforts have been made to automate both the physical inspection of
the structure [3] and the detection and segmentation of any dam-
age [4]. Techniques such as conventional image processing (so called
‘‘white-box’’ techniques) and less transparent artificial neural network
approaches (black-box techniques) are replacing human analysis ef-
fort [5]. White-box techniques have the advantage of being computa-
tionally inexpensive, traceable, transparent and they do not require a
large dataset for training. Despite the success of black-box techniques
in concrete crack detection and classification, there is still a place
for white-box techniques and their development. Hybrid or ‘‘grey-box’’
approaches that utilise both techniques can perform better at pixel-level
segmentation tasks [6].

Various white-box methods can be used to segment an image of
a crack into a binary cracked and uncracked pixel image. Algorithms
broadly fall into the categories of edge-based (e.g. Canny edge detec-
tor or Wavelet transform), and threshold-based (e.g. Otsu threshold-
ing) [7]. Despite their effectiveness, these methods also detect many
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false positives in the form of noise; this reduces the accuracy of crack
detection results.

In this work, we demonstrate a novel white-box approach dubbed
‘‘Skele-Marker’’, for enhancing noise removal and segmentation. This
improved method can increase the accuracy and positive prediction
rate of crack detection, and could allow for the use of images that would
have otherwise been disregarded for having excessive binary noise.
Following a brief review of noise removal methods in Section 2, the
Skele-Marker method is outlined in Section 3. We subsequently curate
a concrete data set of over 2,000 images, and use this to: (i) optimise
Skele-Marker’s parameters; and (ii) benchmark its performance against
other noise removal techniques from the literature (see Sections 4 and
5). To our knowledge, this is the first direct comparison of binary noise
removal methods in concrete crack images.

2. Review of noise removal methods

Table 1 summarises the common causes of noise in binarised con-
crete crack images. Other surface defects such as markings, spalling and
delamination are considered as noise as they are false positives in terms
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Table 1
Factors that produce noise in binary crack images.

Noise type Example causes

Environmental • Non-uniform and dark lighting conditions.
• Rough and uneven concrete surface.
• Air voids on concrete surface.
• Other surface defects (e.g. markings,

spalling and delamination).

Hardware • High sensor sensitivity to light, commonly
referred to as GAIN or ISO (International
Standards Organization).

• Non-uniform lighting (e.g. camera flash).

Post-processing • Image contrast enhancement.
• Image compression (e.g. JPEG, PNG).

of crack detection. Other detection methods (white-box or black-box)
should be employed to detect these defect types.

Noise in binary images can be minimised with modifications to the
hardware and post-processing techniques used in image acquisition.
However, remaining noise and noise resulting from the environment
relies on algorithms for removal.

White-box algorithms for noise removal methods typically employ:

• blurring;
• morphological operations;
• connected component analysis;
• gravitational attraction;
• area thresholding; and
• gap connection.

These methods and their drawbacks are briefly reviewed in the
following subsections.

2.1. Blurring

The typical approach to noise removal in white-box techniques is
applying a global Gaussian or median blur to a grayscale image [8];
often prior to a Laplacian filter, which smooths out the pixels that
would result in noise before any segmentation occurs. However, these
techniques are destructive to edges in images, which could distort or
even remove cracks in our application.

2.2. Morphological operations

Opening morphological operations are also commonly used [9–
11]. This erodes the pixel groups to remove noise before dilating to
return remaining pixel groups (cracks) to their original size. Similar to
blurring, this method heavily distorts the crack.

2.3. Connected component analysis

Another strategy for binary noise removal is to apply a connected
components size threshold, where groups of positive pixels smaller than
the fixed threshold size are removed. Authors in Dorafshan et al. [12]
proposed a method where the area threshold value adapts to the image;
in this approach, the area threshold value is taken as the standard
deviation of all areas of connected components in the image. While
the area threshold method is effective at removing small noise-pixel
groups, there are significant drawbacks: (i) large noise-pixel groups
remain in the image; and (ii) small pixel groups that are true positives
are removed.

2.4. Gravitational attraction

Sorncharean and Phiphobmongkol [13], proposed a unique
technique based on Newton’s law of gravitational attraction. The
2

gravitational attraction of each positive-pixel group to every other
positive-pixel group is found. If a positive-pixel group has high vari-
ability in gravitational attraction, it is assumed to be a crack; with low
variability, it is defined as noise. While novel, the performance of this
method is unclear; testing was only conducted on two images, and other
researchers have not yet adopted the technique.

2.5. Area thresholding and gap connection

Another technique is to apply a large area threshold so that all noise
and smaller elements of a crack are removed. A ‘‘gap connection’’ algo-
rithm is then used to reinstate the removed crack pixels. The method
for connecting gaps varies across crack detection literature. Authors
in Huang and Zhang [14] developed a method that connects gaps
depending on the geometry of the two lines to be connected. Authors
in Song et al. [15] proposed a method that creates two images with dif-
ferent length thresholding values to connect gaps in the crack. In Song
et al. [15], stated performance is good; however, testing was conducted
on a very small dataset, and the methodology has gaps that make its re-
production challenging. Yet another technique, called ‘‘Region-growing
crack connection’’ [16], follows a similar geometry-based approach but
there is no evaluation of the method’s performance.

In general, gap connection methods are effective, but suffer from
many limitations.

• Elements may be incorrectly connected on cracks with branches
or other complex geometry.

• The gap connection pixels do not consider crack width.
• The gap connections will not follow the crack line if the initial

noise removal is too strong. If the noise removal is too weak, the
gap connections will incorrectly connect many elements together.

• A gap connection will not replace small pixels at the end of the
crack line.

2.6. Overview of noise removal methods for crack detection

Acceptable errors and tolerances are highly application dependent.
For example, in the detection of large road cracks, the errors resulting
from blurring, area thresholding and gap connection are acceptable,
as cracks below these tolerances are inconsequential. However, for
concrete structures, such as water-retaining structures which require a
crack detection limit of 0.1 mm, it is critical that reducing noise pixels
does not reduce the image’s true positive pixels.

3. The Skele-Marker method

Unlike other noise removal approaches, the Skele-Marker algorithm
described in this paper does not:

• remove small groups of pixels on the crack line that could easily
be mistaken for noise;

• connect components together that were unconnected in the im-
ported noisy image.

The Skele-Marker algorithm is summarised in Fig. 1 and described
in detail within the following subsections. Example image outputs at
each step of the process are illustrated in Table 2.

3.1. Image pre-processing

For this study, the noisy input images were obtained using con-
trast enhanced crack images and a Laplacian filter, as described in
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Fig. 1. Flowchart of Skele-Marker algorithm.

Section 4.1. However, the method will work with any binary crack
image.

The input image is loaded in uint8 format with pixels P(x,y) of
values 0 and 255. A pixel intensity of 0 (black) indicates uncracked
pixels 𝑈 , where the binary value, 𝑉 is 0. A pixel intensity of 255 (white)
indicates cracked pixels 𝐶, where the binary value, 𝑉 , is 1 i.e.:

𝑈 ∈ 𝑃 (𝑥, 𝑦), where 𝑃 (𝑥, 𝑦) = 0, (1)

𝐶 ∈ 𝑃 (𝑥, 𝑦), where 𝑃 (𝑥, 𝑦) = 255, (2)

𝑉 =
𝑃 (𝑥, 𝑦)
255

. (3)

It follows that the number of pixels in the image is:

𝑐𝑜𝑢𝑛𝑡(𝐶) + 𝑐𝑜𝑢𝑛𝑡(𝑈 ) = 𝑐𝑜𝑢𝑛𝑡(𝑃 (𝑥, 𝑦)). (4)

3.2. Connected components area threshold

Connected components analysis using eight-neighbour connectivity
yields 𝑁 connected groups of pixels, Gi = G1, . . . , GN, each with area
Ai = A1, . . . , AN. Pixel groups with an area less than an area threshold
Tarea are defined as ‘‘uncracked regions’’, and all pixels in that group
are assigned a binary value of 0, i.e.:

𝑉 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 (𝑥, 𝑦) ∈ 𝐺𝑖 if 𝐴𝑖 > 𝑇 area, (5)

𝑉 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 (𝑥, 𝑦) ∈ 𝐺𝑖 if 𝐴𝑖 < 𝑇 area. (6)

3.3. Skeleton marker creation

The remaining connected components are reduced to 1 pixel thin
using the Zhang–Suen thinning algorithm. This is an iterative process
that creates a skeleton of the crack by removing pixels with fewer than
eight neighbours [17].

Similar to Huang and Zhang [14], to account for small breaks in
the crack, the endpoints of every connected component skeleton are
detected, and each endpoint is connected to its corresponding nearest
endpoint. An endpoint will not be connected if no other endpoints are
available or an endpoint lies at the edge of an image. It can now be
assumed that the larger skeletons in the image are crack lines and
smaller skeletons are the result of noise. A length threshold of Tlength
pixels is applied, with skeletons shorter than this threshold erased from
the image to remove the smaller lines.
3

Table 2
Image processing steps of the Skele-Marker method.

Step Image

Import noisy binary image.

Apply connected components
area threshold Tarea.

Create skeleton and connect
each point to its
corresponding nearest end
point.

Apply skeleton length
threshold Tlength and reinstate
all pixels within radius Tradius
of all end points.

Use a morphological
reconstruction to keep all
connected components from
the original image that
intersect with marker image.

The endpoints of any remaining skeleton lines are found, and all pix-
els within a radius, Tradius, of these endpoints are reinstated back into
the marker image; this ensures that pixel groups close to the endpoint
of cracks are retained during the morphological reconstruction.



Automation in Construction 151 (2023) 104867H. Dow et al.
3.4. Morphological reconstruction

A morphological reconstruction is implemented to keep all pixel
groups in the original imported image that intersect with the skeleton
derived in Section 3.3; this process is illustrated in Fig. 2. MATLAB’s
imreconstruct function is used with a radius of 1, to create a 3 by
3 structuring kernel. The function requires two images as an input,
‘‘mask’’, the original noisy image, and ‘‘marker’’, the skeleton image.
The kernel is used to iteratively expand the marker image by per-
forming a morphological dilation. After each iteration, the expanded
image is combined with the mask using a bitwise AND operation. This
operation ensures that the expanded image only includes pixels that are
also present in the mask image. The function continues to iterate until
the expanded image no longer changes. Once this condition is met, the
final iteration image is returned.

4. Parameter optimisation and benchmarking method

Finding the optimum parameters of Tarea, Tlength, Tradius for the
Skele-Marker method and benchmarking this method against other
white-box techniques requires:

• acquisition and preparation of a dataset;
• ground truth definition of cracks at pixel-level;
• labelling of images as cracked or uncracked; and
• definition of sensitivity analyses and performance metrics.

4.1. Image acquisition and crack detection

The dataset consists of ten images captured from two large dam-
aged concrete slab samples, each with a total surface area of 1 m2.
As shown in Fig. 3a to increase noise, the concrete surfaces have
varying textures, colours and imperfections. The widths of the cracks
on these samples were measured manually using a magnified ruler;
crack width measurements ranged from 0.07 mm to 0.3 mm. Images
of the slabs were captured using a 1’’ sensor FLIR BFS-U3-200S6C-C
machine vision camera. The camera’s SONY IMX183 sensor was paired
with an 8 mm focal length lens. To ensure sharpness in the image,
the lens aperture was set to f8, and all images were captured with a
lens-surface distance of 250 mm. This provides a camera field of view
of approximately 402 × 269 mm. Distortion corrections are applied to
the camera using intrinsic and extrinsic parameters found through a
checkerboard calibration; these corrections ensure that the captured
images have minimal distortion and measurements are true to real-
world measurements. After distortion corrections, the captured images
have a resolution of 5429 × 3458 pixels.

Due to the circle of confusion, lenses perform better at the centre
of an image. In the captured dataset, blurring was present at the left
and right edges of the image. As such, the image 3:2 aspect ratio was
cropped to an aspect ratio of 1:1 to maintain sharpness. To encourage
noise, image contrast was increased. The images were then converted
to grayscale and convolved with a 3 × 3 Laplacian kernel to extract
the edges. To allow noise (and detail) to pass through into the binary
image, no Gaussian filter was applied prior to the Laplacian kernel con-
volution. To convert the Laplacian image to binary, a global threshold
T1 was applied, where T1 was defined using the pixel intensities of
the Laplacian image. The equation used by Dorafshan et al. [12] was
chosen, where T1 is found using the average of the pixel intensities,
μ𝐸 , and the standard deviation of the pixel intensities 𝜎E (see Eq. (7)).

𝑇 = 𝜇 + 3𝜎 (7)
4

1 E E
Fig. 2. Morphological reconstruction. (a) marker, (b) overlay of marker on original
noisy image (mask), (c) output of morphological reconstruction.

4.2. Ground truth definition

Cracks from the original images were manually identified and digi-
tally traced by hand. The tracing outline was then masked with a white
layer and placed onto a black background resulting in a ground truth;
this process was then repeated for each dataset image. The user-defined
ground truths will not be 100% accurate, but as tracing is conducted by
hand on a pixel-by-pixel level, it is a robust estimate of the true crack
size and location. Fig. 3 shows the captured image, Laplacian output
and ground truth for one of the dataset images.
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Fig. 3. Dataset image. (a) original image, (b) Laplacian output of image, (c) ground
truth of cracked pixels. The red box indicates a 224 × 224 pixels block used for image
segmentation in Section 4.3.

4.3. Image labelling

The Laplacian and ground truth images were split up into blocks
with resolutions of 224 × 224 pixels. The ground truth blocks were
then manually labelled as cracked and uncracked; these labels were
then applied to the corresponding Laplacian image blocks. The final
dataset is 2,083 images, each of size 224 × 224 pixels. 412 of these
images show cracked faces, and 1,671 showed uncracked faces.

This dataset was split into training and testing at a ratio of 17%–
83%. The training dataset is used to explore optimal parameters val-
ues for the Skele-Marker method during sensitivity study, outlined
in Section 4.5. The testing dataset is used to benchmark the Skele-
Marker method against other noise removal methods as described
5

Table 3
Performance metrics for a classifier.

Name Description Equation

True positive
rate (recall)
(TPR)

The estimated probability
that an actual positive will
test positive.

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

True negative
rate (TNR)

The estimated probability
that an actual negative
will test negative.

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

Accuracy (ACC)

The fraction of
classifications, both
positive and negative, that
were true.

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Positive
predictive value
(precision) (PPV)

The estimated probability
that a positive prediction
is a true positive.

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Negative
predictive value
(NPV)

The estimated probability
that a negative prediction
is a true negative.

𝑇𝑁
𝑇𝑁 + 𝐹𝑁

Intersection over
Union (IoU)

The ratio of the intersected
area of predictions and
ground truth to the
combined area of
predictions and ground
truth.

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

F1 score (F1) The weighted average of
recall and precision.

2𝑇𝑃
2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

in Section 4.6. To break any possible correlations between datasets,
the training and testing datasets were formed from different concrete
surfaces.

4.4. Performance metrics

When an image is compared to its respective ground truth, the
true positives (TP), false negatives (FN), false positives (FP), and true
negatives (TN) are found. These values allow the performance metrics
described in Table 3 to be calculated. All metrics range from 0 to 1,
with higher values indicating better performance.

The dataset’s class imbalance is the result of considerably more
uncracked pixels, U, than cracked pixels, C; this is expected as thin
cracks only account for a small area of the image. Regardless of crack
detection performance, all methods will have a high number of TN.
As such, the metrics of TNR, ACC, and NPV, which are all highly
sensitive to TN, will not show significant differences between the
different methods. However, TPR, PPV and IoU are not dependent on
TN values; they use TP values which makes them a more appropriate
crack detection metric, as results will be low if detection performance
is low.

A high recall (TPR) indicates that an algorithm does not miss many
cracks, a high precision (PPV) indicates that the algorithm does not
classify many U pixels as C. Both metrics are sensitive to the number
of TP pixels in an image, which is affected by crack size and shape. IoU
will be higher when C pixels are correctly classified as being within the
ground truth.

4.5. Sensitivity analysis of Skele-Marker method

A sensitivity analysis was conducted to obtain the optimal parame-
ters for the Skele-Marker method’s variables: Tarea, Tlength and Tradius.
For each cracked 224 × 224 block of the training dataset, the Skele-
Marker method was repeatedly applied with varying parameters. Each
output image was then compared to the corresponding ground truth to
allow TP, FN, FP and TN to be found.

After an initial trial and error approach, the parameter variations
shown in the testing matrix ( Table 4) were selected. T and T
area radius
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Table 4
Parameter variations for Skele-Marker method.

Tarea Tlength Tradius

Var1 4 25 4
Var2 6 30 6
Var3 8 35 8
Var4 10 40 10
Var5 12 45 12
Var6 14 50 14
Var7 55 16
Var8 60 18
Var9 65 20
Var10 22
Var11 24

have a small step size of 2 pixels as the results were found to be more
sensitive to these parameters.

For each parameter variation, the TP, FN, FP and FN results were
aggregated over all training examples. These aggregations were then
used to calculate the precision, recall and F1 score for each parameter
variation across the whole training dataset.

4.6. Benchmarking of Skele-Marker method

The Skele-Marker method, using parameter values for Tarea, Tlength
and Tradius found in the sensitivity analysis, was compared against:

• Dorafshan et al. connected components size threshold (Doraf-
shan) [12].

• Sorncharean & Phiphobmongkol gravitational attraction (Sorn-
charean) [13].

• Huang & Zhang gap connection (Huang) [14].

Similar to the sensitivity analysis in Section 4.5, the results of
each method were then compared to their corresponding ground truth,
allowing the performance metrics in Table 3 to be calculated for each
noise removal method.

For uncracked images, ground truths are set to V = 0 for all pixels,
meaning there are no true positives or false negatives. As such, only
true negatives and false positives were calculated for these images.

5. Results and discussion

5.1. Sensitivity analysis

Fig. 4 shows the precision recall curve for the training dataset
plotted with a Pareto front; this illustrates the extreme values in the
results with desirable high precision and recall.

The parameter variation with the highest F1 score (89%), shown
as a cross in Fig. 4, falls on the Pareto front of the precision recall
curve. This parameter variation has precision and recall values of 92%
and 86%, respectively. For the purposes of this study, the parameter
variation with the highest F1 score was chosen. If higher recall was
preferred, a value with greater recall and lower precision that lies on
the Pareto front could be selected.

Fig. 5 shows a typical data series of the general trend between F1
score and each parameter of the Skele-Marker method.

Tradius and Tlength show a quadratic dependence on F1, and Tarea
shows a fourth-order polynomial dependence. As such, multivariate
non-linear regression can be used to find a relationship between F1 and
the parameters Tlength, Tradius and Tarea. The full dataset and its non-
linear fits are shown in Fig. 6 for selected parameter values. The data
points in Fig. 6a were found by iteratively adjusting Tlength and Tradius,
with Tarea fixed at 6 pixels. The data points in Fig. 6b were found by
iteratively adjusting T and T ,with T fixed at 8 pixels.
6

length area radius
Fig. 4. Precision recall curve with Pareto front shown as a dashed line. The parameter
variation with the highest F1 score is shown as a cross.

Table 5
Eq. (8) coefficients and respective 95% confidence intervals.

Coefficient Value Lower bound Upper bound

𝑎1 8.0E−4 5.2E−4 10.1E−4
𝑎2 −5.8E−5 −7.3E−5 −4.3E−5
𝑏1 1.6E−3 1.5E−3 1.7E−3
𝑏2 −1.5E−5 −1.6E−5 −1.4E−5
𝑐1 1.4E−2 1.2E−2 1.5E−2
𝑐2 −1.5E−3 −1.7E−3 −1.3E−3
𝑐3 6.4E−5 5.6E−5 7.3E−5
𝑐4 −9.3E−7 −10.9E−7 −7.7E−7
D 0.795 0.791 0.800

The surface fits were found using multivariate non-linear regression
on the data points. Eq. (8) can be used to represent how the parameters
Tlength, Tradius and Tlength affect F1 score.

𝐹1 = 𝑎1𝑇 radius + 𝑎2𝑇 radius
2

+𝑏1𝑇 length + 𝑏2𝑇 length
2

+𝑐1𝑇 area + 𝑐2𝑇 area
2 + 𝑐3𝑇 area

3 + 𝑐4𝑇 area
4 +𝐷

(8)

Using multivariate non-linear regression, the coefficients in Eq. (8)
were populated using the Levenberg–Marquardt fitting method. Eq. (9)
shows the residual equation chosen to be minimised. The resulting
coefficients and their respective 95% confidence intervals are described
in Table 5.

𝑜𝑏𝑗 = (𝐹1 − 𝐹1m)2 (9)

The populated equation was then used with a range of Tlength, Tradius
and Tlength to generate F1 score values for the surface plots in Fig. 6.

The non-linear multivariate regression results in Fig. 6 show how
the F1 score of the Skele-Marker algorithm varies with its input param-
eters. The algorithm is very sensitive to Tarea, where too small or too
large a value will have a detrimental effect on results. These results
were used to find that the maximum achievable F1 score occurs at a
value of Tlength = 55 pixels, Tradius = 8 pixels and Tarea = 6 pixels. As
such, these values have been selected for the method benchmarking.

5.2. Noise removal method comparison

Fig. 7 shows the performance of all noise removal methods on the
testing dataset. An example output for the same binarised input image
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Fig. 5. Typical results of F1 score vs (a) Tradius (b) Tlength and (c) Tarea. The dashed line represents the curve fit for the current data series.
Fig. 6. Surface plots of Tlength vs (a) Tradius, with Tarea fixed at 6 pixels and vs (b)
Tarea, with Tradius fixed at 8 pixels.

is shown for each method in Fig. 8. The results for TPR, PPV, IoU and
F1 vary greatly between the noise removal methods showing that there
are performance differences between methods.
7

Fig. 7. Performance metrics of all noise removal methods across the testing dataset.
Abbreviations are described in Table 3.

The recall (TPR) of the noisy Laplacian image (labelled ‘‘input’’ in
7) is 90%. It is not 100% because the application of the Laplacian
filter sacrifices detail to acquire a binarised image. This value of 90% is
therefore the maximum TPR that the noise removal methods Dorafshan,
Sorncharean and Skele-Marker can achieve as they remove noise from
the images. As the Huang method adds pixels into the image, it could
technically produce a higher TPR than the noisy Laplacian image but
it has not done so. The Dorafshan noise removal method obtained the
highest TPR at 85%, with the Skele-Marker method achieving 77%. Due
to a high number of false positives created by the noise, the precision
(PPV) of the input binary image was extremely low at 22%. As such,
all noise removal methods increased precision as the number of false
positives was reduced. The same observation can be made for IoU,
where Skele-Marker obtained the highest value at 72%. The Dorafshan
method had the lowest precision of all noise removal methods at 45%.
The Skele-Marker method had the greatest precision and F1 score at
91% and 84%, respectively. The effects of the high precision of the
Skele-Marker method can be seen in Fig. 8, with minimal false positives
in comparison to other methods.

The outputs of the Skele-Marker algorithm when tested on various
noisy concrete crack images are shown in Appendix. These figures
highlight the algorithm’s ability to de-noise images with varying levels
of noise severity while maintaining TP pixels.

The false positives of each noise removal method on the uncracked
dataset were calculated as a percentage of all false positives in the input
binary image prior to noise removal. Subtracting these values from 100
yielded the percentage of noise removed. Fig. 9 shows these results.
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Fig. 8. Output of noise removal methods on a 224 × 224 dataset image.

Fig. 9. False positives remaining after noise removal on negative crack dataset. Results
are shown as a percentage of false positives in the input binary image.

The trend of noise removal performance on uncracked datasets
matches the findings from cracked datasets. Fig. 9 shows that the
Skele-Marker method removed 98.5% of the noise in the uncracked
testing dataset. In comparison, the Dorafshan method removed 35.3%
of noise. The Huang and Sorncharean methods achieved 96.8% and
95.3%, respectively. These results are high compared to Dorafshan but
still fall short of the Skele-Marker method.
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The Skele-Marker method has outperformed the other noise removal
methods on all testing metrics with the exception of recall (TPR)
on the cracked testing dataset, where the Dorafshan method scored
highest. Dorafshan’s high recall performance is due to the method
removing fewer pixels than other methods, with many false positives
remaining, as shown by its low precision. The sensitivity analysis results
in Section 5.1 highlights that the recall and precision trade-off of
the Skele-Marker method can be adjusted by varying the method’s
parameters; this allows higher recall (at the cost of precision) to be
achieved if preferred.

6. Conclusions and future work

This paper proposed a novel noise removal method for binary
images of concrete cracks. The method, dubbed Skele-Marker, thins a
noisy crack image to a skeleton, before using a morphological recon-
struction to remove all elements in the noisy image that do not intersect
with the skeleton. Training and testing datasets were formed using
concrete slabs with cracks of widths ranging from 0.07–0.3 mm, image
contrast was increased to create more noise in the binarised images.

A sensitivity analysis was conducted on the training dataset to
refine the method and tune its parameters. It was found that the
algorithms parameters Tradius, Tlength and Tarea should be set to 8, 55
and 6 pixels, respectively. These parameters were then used to test the
method on a separate cracked dataset and compare its performance to
three other noise removal methods in crack detection literature. The
Skele-Marker method outperformed the other methods, achieving high
recall, precision, intersection over union and F1 score. Testing was also
conducted on the uncracked dataset, which again, saw the Skele-Marker
method outperform other methods.

This method will make results from pixel-level segmentation of
concrete cracks more reliable and robust, improving methods for au-
tomated inspections of concrete structures.

The constants calculated from the sensitivity analysis are likely only
suitable for cracks of widths that match the dataset; future works should
investigate how these parameters vary on different crack sizes and
how the method could be adapted to other types of concrete defects
such as spalling, corrosion and exposed rebar. Further comparison with
other noise removal methods could also be made. The Skele-Marker
method should be tested with more challenging images that contain
additional noise-inducing elements; for example, a dataset of concrete
crack images captured from real-world structures and not a laboratory
setting.
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Appendix

A.1. Sample images

Table A.1 shows the outputs of the Skele-Marker algorithm on
binary images with noise levels ranging from low to very high.
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Table A.1
Inputs and outputs of Skele-Marker algorithm.

Noise severity Image area Binarised crack Skele-Marker output

Low

Moderate

Moderate

High

Very High
9
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