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Abstract
Regional climate models are essential for climate change projections and hydrologic modelling studies, especially in water-
sheds that are overly sensitive to changes in climate. Accurate hydrologic model development is a daunting task in data-
sparse regions where climate change’s impact on hydrologic and water quality processes is necessary for a well-informed 
policy decision on adaptation and hazard mitigation strategies. Novel approaches have been evolving that evaluated GCMs 
with the objective of improved parameterization to limit uncertainty and improve hydrologic model development. However, 
conclusions drawn should be purpose-driven based on intended usage. This study provides an overview of the state-of-the-
art Boruta random forest as a robust methodology in the performance evaluation of GCMs models for hydroclimatic study. 
Highlights from the assessment indicate that (1) there is consistency in replicating the three observed climate variables of 
daily precipitation, maximum and minimum temperature respectively, (2) better temporal correlation  (R2 = 0.95) in annual 
precipitation with a mean bias of 0.638mm/year, when compared to symmetrical uncertainty (SU)  (R2 = 0.82), and all models 
ensembles (AME)  (R2 = 0.88) with associated biases of 68.19mm/year and 10.57mm/year, respectively. Evaluation of the 
multi-year climate extreme indices, trends and magnitude reveal that there is a fair representation of basin-scale observed 
climate extreme events. However, the Boruta random forest approach exhibited a better statistical trend and magnitude of the 
extreme event in the basin. The findings of the study revealed enhanced GCM dataset evaluation and present a simple and 
efficient methodology to examine the limitations associated with the selected GCM ensemble for impact study in hydrology.

Abbreviations
AIS  Aggregate importance score
AME  All model ensemble
BRF  Boruta-random forest optimizer algorithms
CMIP6  Coupled model inter-comparison project phase 6
CPC  Climate prediction centre
EQM  Empirical quantile mapping
GCM  Global climate models or general circulation 

models
IS  Importance score

MBE  Mean bias error
PGF  Princeton University Global Meteorological 

Forcing
QM  Quantile mapping
SC  Similarity coefficient
SPEI  Standardized precipitation evapotranspiration 

index
SU  Symmetrical uncertainty

1 Introduction

To reduce observational uncertainty and the impact of pro-
jected changes in climate and catchment hydrologic vari-
ables on the availability of water resources for an accurate 
assessment of sustainability concerns at local, regional, and 
global scales, a successful hydro-climatic study requires 
accurate data with high temporal and spatial resolution. 
Therefore, future variations of global surface air tempera-
ture and precipitation are deemed important for climate 
change policy formulation, and hazard assessment which 
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may affect the human livelihood and regional economy, 
especially in developing economies (Akhter et al., 2017) 
and ensure proper mitigation and adaptation strategies 
are adopted for integrated water resources management 
(Ahmed, Sachindra, et al. 2019a).

Global energy balance has undergone periodic changes 
due to increased emission of atmospheric greenhouse 
gas owing to widespread fossil fuels usage and industrial 
activities across the globe (Chu et al., 2010; Huang et al., 
2011; Salman et al., 2018). The rise in the concentration 
of greenhouse gases has been noted to increase the Earth’s 
temperature at a rate of 0.15 °C/decade (IPCC, 2013), and 
has potentially a severe effect on the earth’s ecosystem and 
most notably in the tropical regions (Wang et al. 2014; 
Mohsenipour et al. 2018; Khan et al. 2019). (Mishra and 
Liu, 2014) observed that the impact of the variations of 
rainfall-induced by projected climate change would be 
more intense in the tropical regions of the world. This 
phenomenon has become a significant socio-economic and 
political issue (Alamgir et al., 2019).

General circulation models are the main tool for predict-
ing future changes in the global climate (Maraun et al., 2010) 
because they possessed the potential in replicating historical 
climatic changes as well as future changes considering the 
greenhouse gas concentration (Goyal et al., 2012) and other 
shared socio-economic pathways integrated into the recently 
developed coupled model inter-comparison project phase 
six models. Evaluating the performance of general circula-
tion models (GCM) outputs is instrumental for simulating 
the historical and future basin scale hydrologic cycles using 
hydrological models. The accuracy of the precipitation and 
temperature outputs from GCMs, when used as an input for 
hydrological modelling, affects the reliability of hydrologic 
variables prediction, and therefore the spatial and temporal 
performances as well as their seasonal variations need to be 
evaluated arising from natural and climate-induced radiative 
forcing in a multi-model context (Eyring et al. 2016; Gusain, 
Ghosh, and Karmakar 2020; Wang et al. 2021) to reduce 
uncertainties and enhance prediction accuracy for reliable 
policy planning of basin scale hydrology.

GCMs are developed to produce projections at a coarse 
spatial scale and could not resolve finer scale features such 
as clouds and land use change. Studies at the regional scale 
require that the output be downscaled to finer a resolu-
tion. The mismatch between the hydro-climatic informa-
tion required and the GCM output is a major cause for 
concern or obstacle in hydrologic impact studies (Willems 
and Vrac, 2011). Careful assessment of various downscal-
ing techniques is important to enable accurate prediction 
and a solution to the mismatch between regional hydro-
climatic information and GCM outputs at a spatial scale 
of between 5 and 50 km (Yang and Delsole, 2012). How-
ever, McSweeney et al., (2015) argued that downscaling the 

complete ensemble may not be desirable or necessary to 
produce a meaningful range of future climate conditions 
relevant to evaluate hazards associated with future climate 
change because high resolution downscaling is labour and 
computing resource intensive and therefore, various strate-
gies need to be explored to sample from the available CMIP6 
GCMs and their shared socio-economic pathways (SSPs) 
scenarios to generate projections relevant for water policies 
at catchment scale. The assessment process is to identify 
the challenges and opportunity to exclude models deemed 
unsatisfactory in the representation of key climate features.

These models have been utilized to simulate the histori-
cal and projected changes in climate at global (Sachindra 
et al., 2014; Wright et al., 2015), regional (Salman et al. 
2018; Ahmed, Sachindra, et al. 2019a; Abbasian, Moghim, 
and Abrishamchi 2019) and local basin scale (Akhter et al., 
2017; Hassan et al., 2020). However, over the years, six 
phases of the Coupled Model Inter-comparison Projects 
(CMIPs) have been developed by various modelling cen-
tres for climate change studies. Previous studies utilizing 
the fifth phase (CMIP5) GCMs indicated some significant 
improvements in simulated climate variables relative to 
the latter generation (CMIP3) models (Wang et al. 2016), 
due to improved knowledge of climate science. Studies that 
utilized CMIP5 GCMs have identified the Sahel region, 
tropical West Africa and Southern part of Africa as hot-
spot for severe impact of regional climate change (Diffen-
baugh and Giorgi 2012; Niang, ,Ruppel, Abdrabo, Essel, 
Lennard, Padgham 2014). Although studies are evolving 
utilizing CMIP6 models recently to understand their ability 
in replicating historical and future climate at the regional 
and global scale. There are notable differences between the 
CMIP6 GCMs and the earlier phases which integrate new 
specification for greenhouse gas concentration and emis-
sion scenarios, as well as land use scenarios (Gidden et al., 
2019). A limited number of studies utilizing the CMIP6 
GCMs indicated improvement and its robustness over ear-
lier phases in some regions, for example Australia (Grose 
et al., 2020); Africa (Almazroui et al., 2020; Ayugi et al., 
2021; Sian et al., 2021); Nigeria (Shiru and Chung, 2021); 
and South Korea (Song et al., 2020). The performances may 
vary from one region to another and therefore, necessitate 
the evaluation of their performance at any region of inter-
est, especially in data sparse catchments before adoption for 
proper representation of the climatic feature to avoid projec-
tions with large uncertainty range which may result to over 
confidence and poor adaptation (McSweeney et al., 2015).

Several techniques have been used to assess the per-
formance of climate models such as ensemble averaging 
(Giorgi and Mearns, 2002), combined statistical measures 
like root mean square error, mean bias error, mean absolute 
error, correlation coefficient into one performance index 
(Gu et al. 2015; Wu et al. 2017), relative entropy (Shukla 
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et al., 2006), probability density functions (PDF) (Perkins 
et al., 2007), Bayesian regression (Chandler, 2013), cluster-
ing (Knutti et al., 2013), correlation (Li et al., 2016; Xuan 
et al., 2017), and symmetrical uncertainty (Salman et al., 
2018) and often times the methods are quite cumbersome or 
produce inconsistent performance across climate variables 
that will require a multi-criteria decision tool for selection 
of appropriate GCMs for hydrologic impact studies.

However, based on previous studies, no consensus was 
made regarding the choice of GCM selection approach and 
McMahon et al., (2015) posited that no single criterion 
is accepted universally for GCM performance, although 
assessment at multiple time scales and the ability of a GCM 
capturing the spatial structure of a catchment’s key climate 
feature may give crucial information for water resource 
management accurately, especially at basins with high cli-
mate variability (Gleckler, Taylor, and Doutriaux 2008; 
Ahmed, Sachindra, et al. 2019a). The downside of the sta-
tistical metric is that they only assessed certain features of 
the time series data when compared to the observed data 
(McSweeney et al., 2015; Weigel et al., 2010), and often pro-
vide contradictory results across different metrics (Nashwan 
and Shahid, 2019; Raju et al., 2017).

Studies on GCM selection are grouped into the past per-
formance method (Biemans et al., 2013), where the models 
are selected based on their capability to replicate the his-
torical climate and the envelope method (Warszawski et al., 
2014) where the ensemble of GCMs are selected based on 
the ability to encompass the whole range of future projec-
tions. However, both of these approaches have weaknesses; 
for example the former method neglects agreement between 
GCMs to simulate projected future climate, while the latter 
method ignores the ability of GCMs to replicate the histori-
cal observed climate (Ahmed et al., 2019b).

Machine learning algorithms are gaining a lot of attention, 
especially filters and wrappers such as clustering (Knutti 
et al., 2013; Raju and Kumar, 2016), Bayesian weighting 
(Min and Hense, 2006), and weighted skill score (Maxino 
et al., 2008; Perkins et al., 2007). Furthermore, these tech-
niques are used to evaluate and select the GCMs using a sin-
gle performance index (Ahmadalipour et al., 2017; Fu et al., 
2013; Raju and Kumar, 2016; Wójcik et al., 2014). However, 
the techniques are found to have some inherent weaknesses 
such as the inability to capture the temporal variability of 
climate, and, the variation of frequency of climate extreme 
which is found to be an important factor in the assessment 
of model performance (Salman et al., 2018).

The major advantages of machine learning techniques are 
that, in feature selection where the dependent variables are 
analysed and ranked based on their importance or impact on 
the independent variable, and where features that are likely 
to decrease the efficiency of a model are screened out to 
reduce uncertainty in model development. It is important in 

machine learning application to have the observed data well 
represented and the information within the data series pos-
sessed the ability to be learnable for the modelling process, 
as this is critical for the final performance (Kursa, 2016).

In GCM selection for hydro-climatic study, the informa-
tion entropy based filter referred to as symmetrical uncer-
tainty (SU) (Witten et al., 2005) has gained the attention 
of researchers due to its ability to select variable without 
bias and reliably. The technique was used to rank GCMs 
according to their degree of similarity or otherwise with 
the observations for the entire time series data and it has the 
advantage of giving a universal metric for the relationship 
between dependent and independent features irrespective of 
the shape of the underlying distributions (Wu and Zhang 
2004) and has been used in various studies (Ahmed et al., 
2019b; Nashwan and Shahid, 2019; Pour et al., 2018; Sal-
man et al., 2018).

The technique has shown to be promising and possessed a 
similar or better skill for performance evaluation and selec-
tion of appropriate GCM dataset for hydro-climatic study as 
compared to other available methods such as compromise 
programming, wavelet-based skill score (WSS), statistical 
metrics which sometimes exhibits contradictory results 
and makes decisions on performance and selection difficult 
(Ahmed, Shahid, et al. 2019b), although most filter based 
classifiers are known to use single algorithms to integrate 
variable selection and modelling and often evaluate uni-
variate or very simple interactions between attributes and 
decisions, which affects the outcomes or performances of 
features (Kursa, 2016).

However, machine learning approaches are evolving, for 
example, the wrapper-based Boruta algorithms for feature 
selection in model building and has been applied in other 
disciplines such as, Kursa (2016) showed the relative skill 
or effectiveness of the methodology in feature selection of 
random ferns classifier, Ahmed et al. (2021) applied the 
technique for soil moisture estimation under global warm-
ing scenarios. Advancement in computational capabilities 
has ensured that machine and deep learning techniques are 
useful for accurate variable prediction due to their ability to 
extract, process and handle relatively large amount of com-
plex data with high degree of variable mapping skills and 
efficiency (Gong et al., 2019).

Numerous studies have successfully implemented differ-
ent feature selection algorithms such as information entropy 
(Shukla et al., 2006), Bayesian weighting (Min and Hense, 
2006), elastic net and ridge regression (Hammami et al., 
2012), artificial neural networks (Hajnayeb et al., 2011), 
support vector machine (Maldonado and Weber, 2009), 
random forest (Genuer et al., 2010), neighbourhood com-
ponent analysis for regression (Ghimire et al. 2019a), and 
iterative input selection algorithm (Prasad et al., 2017) for 
hydro-climatic studies. Among the techniques, symmetrical 
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uncertainty (SU) that is based on information entropy (Wil-
liam et al., 1996) is popular and has gain the attention of 
researchers (Kannan and Ramaraj 2010; Nashwan and Sha-
hid 2019; Ahmed, Shahid, et al. 2019b; Sa’adi et al. 2020). 
However, there are identified shortcomings of the various 
method such as, inter-dependencies among the models are 
ignored for a known feature which may result in the selec-
tion of inappropriate GCMs due to overfitting and some 
performance indices are based on the state of the climate 
as a whole and temporal variability is not considered which 
is critical in model performance assessment (Reichler and 
Kim 2008; Ahmed, Shahid, et al. 2019b; Hassan et al. 2016).

This study employed and pilot the use of Boruta-random 
forest algorithms (BRF) developed by Kursa et al., (2010) 
for performance evaluation and selection of appropriate 
CMIP6 GCM models to examined their individual capabil-
ity to accurately simulate observed daily historical climate 
variables in the basins due to its high sensitivity to climate 
change, and in this case, Lake Chad basin was adopted to 
examined the robustness of the methodology due in part 
to its highly skilled variable mapping as a requirement for 
input parameters required in hydrologic study, uniqueness 
and high climate variability across the basin of interest and 
this technique has been used and recommended based on 
previous study for example, Prasad et al. (2019) utilised BRF 
to predict soil moisture, Christ et al. (2016) applied BRF 
for industrial big data application in distributed and parallel 
time series feature extraction, Leutner et al. (2012) predict 
forest biodiversity and Lyu et al. (2017) applied the concept 
to forecast air quality, where these algorithms were used to 
define significant input parameters by comparing the real 
features or variables to those of random probes and all the 
studies have suggested a convincing outcome of model accu-
racy. However, the authors acknowledged that, this is first 
attempt to have applied the proposed technique for GCM 
evaluation and selection and to validate the methodology, an 
information aggregation approach was adopted to combine 
the ranks of the GCMs across the grid points in the entire 
basin to identify the best ensemble of the CMIP6 GCM for 
simulation of the above variables. The result of this approach 
will be compared with the well-established symmetrical 
uncertainty technique to understand the efficacy, applica-
bility and the inherent uncertainties of the model evaluation 
and selection approach.

Furthermore, earlier studies that utilized simulation based 
studies to investigate the impact of climate change on fresh-
water hydrology required data in the form of daily precipi-
tation and temperature series to drive various hydrological 
watershed models; however, the performance of the model 
is dependent upon the driving general circulation models, 
internal parameterizations and model domain configuration 
(Déqué, 2007).

Therefore, it is important to note that conclusions drawn 
from studies that evaluated and select GCM performance at 
monthly time scale (Salman et al. 2018; Abbasian, Moghim, 
and Abrishamchi 2019; Ahmed, Shahid, et al. 2019b) may 
well not be relied upon for studies that requires climate data 
at daily time step for hydrologic modelling processes, in 
order to reduce biases and observational uncertainties for 
realistic predictions of climate change impact, adaptation 
and resilience in hazard assessment. The performance of 
GCMs from BRF, SU and an all-ensemble average approach 
adopted in this study will be evaluated for a realistic assess-
ment of basin scale features and climate variable dynamics.

Finally, this study intends to propose and provide a robust 
approach that enhance and preserve climate signals’ internal 
parameterization exerted by re-gridding, downscaling and 
bias correction to realistically utilize the optimal amount 
of GCM dataset capable of assessing the complex interac-
tions within the Earth system (hydrologic) models which 
are essential for accurate understanding and forecasting of 
long-term changes of basin hydrology resulting from exter-
nal forcing which are not adequately addressed in previous 
research especially in data-sparse regions within an accept-
able level of uncertainty.

2  Case study area and data

2.1  Case study area

The Lake Chad Basin is one of the world’s largest endorheic 
basins, with an estimated area of ~2,500,000  km2, (Coe and 
Foley, 2001; Gao et al., 2011). It is situated at latitudes of 
5.20–25.30 N and longitudes of 6.90–24.50 E, in the transition 
zone between the Sahara and the Sudano-Sahelian regions 
of West Africa (Ndehedehe et al., 2018), (Fig. 1). The basin 
provides the primary source of freshwater for livestock graz-
ing, agricultural production, and fish farming (Buma et al., 
2016). The basin is divided into four climatic zones namely 
the Saharan, Sahelo-Saharan, Sahelo-Sudanian, and the 
Sudano-Guinean zone, with an annual precipitation range 
of < 100–1500 mm respectively, and has an average annual 
temperature of between 35 and 40 °C in the northern part 
to as low as 26.5 °C in the southern part of the basin (Nki-
aka, Nawaz, and Lovett 2018a) characterised by hot, wet 
and dry weather condition from March to June, from June 
to October, and from November to February, respectively 
(Mahmood et al., 2019). The basin is situated in an area with 
minimal relief, no surface outflow, and a spatial extent that is 
highly vulnerable to climate change, with elevations ranging 
from –330 to 3446 m (see Fig. 1), However, according to 
(Coz et al. 2009; Nkiaka, Nawaz, and Lovett 2018b), with 
the exception of few isolated hills, plateaus, and mountains 
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in the southern and northern regions, the basin is generally 
flat ground with an average slope of < 1.3%.

2.2  Gridded data and sources

Several gridded climate data sources were explored and 
analysed for suitable application in climate studies in the 
Chad Basin due to inadequate gauged based meteorological 
data in most part of the world Sub-Saharan Africa and the 
Mediterranean, in particular. This study utilized the daily 
gridded precipitation data of the US Climate Prediction 
Centre (CPC), optimal interpolation of station or gauged 
based records of GTS (Xie et al., 2007) and daily maximum 
and minimum temperature data of the Princeton University 
Global Meteorological Forcing PGF v.2 from forcing’s of 
NCEP-NCAR reanalysis and other global data by bilinear 
interpolation (Sheffield et al., 2006), from 1979 to 2012 and 
available at https://www.esrl.noaa.gov/psd/data/gridded/
data.cpc.globalprecip.html and http://hydrology.princeton.
edu/data.pgf.php respectively, as recommended by Lawal 

et al., (2021) to represent adequately the true climatic fea-
tures of the selected basin.

2.3  General circulation model data and sources

In this study, 16 coupled inter-comparison project phase 6 
(CMIP6) general circulation models at daily time resolution 
were considered. These are available at https://esgf-node.
llnl.gov/projects/esgf-llnl/CMIP6 for the period 1979–2012 
and consistent with the gridded data time scale for realistic 
performance evaluation. Details of the GCMs name, spatial 
resolutions, models’ development centres and country of ori-
gin are provided in Table 1. The first ensemble members of 
the GCM were adopted for fair assessment. The models were 
chosen because they have the requisite historical and future 
climate change emissions scenario data (SSP1–SSP5) at a 
daily timestep as an important requirement for a hydrologic 
modelling study. This is essential for understanding water-
shed projected hazards due to climate change and provide 
valuable information to policy makers for informed decision 
on integrated water resource management.

Fig. 1  Lake Chad basin showing elevation and climate stations for the proposed study

https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
http://hydrology.princeton.edu/data.pgf.php
http://hydrology.princeton.edu/data.pgf.php
https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6
https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6
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3  Research methodology

3.1  Methodology flow chart

The general procedure used for the evaluation of GCMs 
using gridded CPC and PGF climate data as surrogate for 
observed, selection, and further analysis of GCM ensemble 
is outlined in the methodology flow chart as shown in Fig. 2.

3.2  Statistical downscaling and bias correction 
of GCM

A multi-point statistical downscaling and bias correction 
approach was considered. The CMIP6 daily precipitation, 
maximum temperature and minimum temperature GCM mod-
els were interpolated to a common 2° × 2° grid and spatially 
downscaled using bilinear interpolation approach for smooth 
transformation of coarse to fine resolution as recommended by 
Fischer et al., (2014) resulting into 54 grid point (Fig. 1), that 
covered the entire study area.

The deviation of the interpolated climate data was cor-
rected to improve the GCM models agreement with the 

observed data (CPC precipitation and PGF temperature), 
and to provide enhancement in model output because 
direct GCM output cannot be relied upon for accurate 
assessment of watershed climate features at local and 
regional scale required for impact studies due to their 
coarse resolution.

This is achieved by combining features of local obser-
vation and simulations resulting in insignificant biases and 
higher resolution climate projections using three well-known 
bias correction approaches and the detailed methodologies 
can be found in the cited references namely delta change 
(Navarro-Racines et al., 2020), quantile mapping (Cannon 
et al., 2015) and empirical quantile mapping technique (U. 
Ghimire et al., 2019b).

The grid based bias correction performance was evalu-
ated using three statistical metrics e.g. correlation coef-
ficient, mean bias error and index of agreement to under-
stand the limitations of the various techniques to prevent 
misuse in selecting the best suited output relative to other 
method for further analysis and their detailed methodology 
can be found in (Taylor, 1997; Willmott, 1981; Willmott 
and Matsuura, 2005).

Table 1  Summary of CMIP6 models considered in this study

(Source: https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6)

Country Modelling centre Model name Resolution in arc
Deg. (Lon × Lat)

Model number

Australia Commonwealth Scientific and Industrial Research Organisation; ARCCSS 
(Australian Research Council Centre of Excellence for Climate System 
Science)

ACCESS CM2 1.875×1.25 M1

Australia Commonwealth Scientific and Industrial Research Organisation; ARCCSS 
(Australian Research Council Centre of Excellence for Climate System 
Science)

ACCESS ESM1-5 1.875×1.25 M2

China Beijing Climate Centre BCC CSM2-MR 1.10×1.10 M3
Canada Canadian Centre for Climate Modelling and Analysis CanESM5 2.81×2.81 M4
Sweden EC-Earth consortium EC-Earth3 0.70×0.70 M5
Sweden EC-Earth consortium EC-Earth3-Veg 0.70×0.70 M6
China Laboratory of Numerical Modelling for Atmospheric Sciences and Geophys-

ical Fluid Dynamics (LASG) modelling (Chinese Academy of Sciences)
F-Goals-g3 2.81×2.78 M7

China Laboratory of Numerical Modelling for Atmospheric Sciences and Geophys-
ical Fluid Dynamics (LASG) modelling (Chinese Academy of Sciences)

GFDL-ESM4 1.25×1.00 M8

Russia Institute of Numerical Mathematics of the Russian Academy of Sciences INM-CM4.8 1.12×1.12 M9
Russia Institute of Numerical Mathematics of the Russian Academy of Sciences INM-CM5.0 1.87×1.25 M10
France Institut Pierre-Simon Laplace IPSL-CM6A-LR 2.50×1.27 M11
Japan Centre for Climate System Research; Japan Agency for Marine-Earth Sci-

ence and Technology; National Institute for Environmental Studies
MIROC6 1.40×1.40 M12

Germany Max-Planck-Institut für Meteorologie MPI-ESM1.2-LR 1.875×1.875 M13
Japan Meteorological Research Institute (MRI) MRI-ESM2.0 1.125×1.125 M14
Norway Norwegian Climate Consortium NorESM2-LM 2.50×1.875 M15
Norway Norwegian Climate Consortium NorESM2-MM 1.25×0.9375 M16

https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6
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3.3  Performance evaluation and selection 
of appropriate GCM output by machine learning 
technique

The daily bias corrected CMIP6 GCM outputs adopted 
were evaluated by two machine learning approaches to 
discover the significant features of the GCMs relative to 
the observation data. This section gives a brief overview 
of the machine learning based symmetric uncertainty and 
Boruta random forest algorithms for performance assess-
ment and ensemble projections.

3.3.1  Symmetric uncertainty

Symmetric uncertainty was developed by William et al., 
(1996), and an entropy-based filter that assess pair-wise 
similarity between dependent and independent attribute 
irrespective of their probability distribution and interde-
pendency (Wu and Zhang, 2004). It measures the informa-
tion gain of the response random variable relative to the 
predictor and the lesser the entropy the greater the associa-
tion of the data. The bias in the measurement is corrected by 
dividing the information gain with the sum of entropies of 

the random features of the observation and GCMs precipita-
tion, maximum and minimum temperature respectively. The 
symmetric uncertainty (SU) was estimated according to Eq. 
(1). Detailed methodology of the approach can be found in 
(Ahmed et al., 2019b; Lawal et al., 2021).

In Eq. (1), MI(x, y) is the mutual information gain, H(x) 
and H(y) represent the entropies of the GCM and obser-
vation respectively. Symmetric uncertainty values range 
from 0 to 1 indicating no similarity to perfect similarity 
respectively.

3.3.2  Boruta random forest algorithm

Boruta feature selection was developed based on random forest 
algorithm (Breiman, 2001). The approach was introduced by 
Stoppiglia et al. (2003) to identify significant input parameters 
from a host of many dependent features to match the attrib-
utes of an independent feature. The algorithm computes the 
Z-score of all input predictors and the distribution determines 
the shadow features as well as the important variables of the 

(1)SU(x, y) = 2 ×
MI(x, y)

H(x) + H(y)

Fig. 2  GCM evaluation and selection for hydro-climatic study
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predictors based on the Z-score metrics (Kursa and Rudnicki, 
2010). The methodology adopted are shown below.

A duplicate or shadow random variable, q′
t
 for a particular 

vector, qt to increase randomness and correlation between 
predictors and target variable (Pt), for all group of discrete 
inputs (qt ∈ Rn), T and target variables (Pt ∈ R) for all inputs 
(n) and t = 1, 2, 3, …………T. The target variable is evalu-
ated for association using the shadow variable q′

t
 and actual 

variable qt.

• The variable importance measures or scores (mean 
decrease accuracy) for each predictor qt and shadow q′

t
 

attributes were computed for 500 iterations based on Eq. 
(2)., to achieve better accuracy (Hur et al., 2017).

I(•) is an indication function, OOB is out-of-bag pre-
dicted error in the training samples; Pt = f(qt) and Pt = f(qnt) 
are predicted values before and after permutation.

• The standard score (Z-score) of the predictor and shadow 
attributes relative to the observation are computed as:

Where, σ is the measured standard deviation of accuracy 
losses, the minimum, median and maximum Z-score of the 
shadow features is computed and analysed relative to the 
predictor variable importance distribution of all dependent 
features. When all input features are confirmed to be impor-
tant, or the iteration limit is achieved, the algorithm ends.

• The attribute is deemed important for a set iteration, if its 
variable importance score is higher than the maximum 
importance score of the shadow attributes.

3.4  Performance evaluation of selected GCM 
ensemble mean.

The weight or performance score of the two machine learn-
ing technique was used to rank the bias corrected precipi-
tation, maximum and minimum temperature at individual 
grid point and the ranking were aggregated based on multi-
criteria rating metrics using numerical averaging as recom-
mended by Raju and Kumar (2016) for the entire study area.

Multi-model ensemble mean of the GCMs was devel-
oped by selecting four best GCM relative to the observa-
tion based on the two machine learning approaches (BRF 
and SU) and that of the 16 GCMs here referred as all 
model ensembles mean (AME) to further evaluate spa-
tial and temporal changes in annual precipitation, maxi-
mum and minimum temperature changes, and extreme 

(2)VIM =
1

mtree

�mtree

m=1

∑
t∈OOB I

�
Pt = f

�
qt
��

−
∑

t∈OOB I
�
Pt = f

�
qnt

��

�OOB�

(3)Z − score =
VIM

σ

conditions of the basin climate. Analysis of individual 
model bias as seen in other studies may not necessarily 
translate to better performance. Here, the study focused 
on the ensemble mean of the GCM to better understand 
the uncertainty (spread) of the combined model ensemble 
mean features, which is important and sensitive in their 
usage for hydrologic impact studies and reliable future 
projections of water resources.

3.5  Validation of evaluation approach based 
on return period of drought

The evaluation approaches considered, i.e., BRF, SU and 
AME, were further validated by examining the influence 
of the ensemble mean GCM precipitation, maximum and 
minimum temperature on the severity and returned period 
of drought against observation across the four climatic 
zone of the basin by estimating the 12-monthly standard-
ized precipitation evapotranspiration index (SPEI) for the 
period of observation (1979–2012). The estimated SPEI 
time series were further used to assess the temporal pat-
tern in the trend and their significance by Mann Kend-
all trend test and Sen’s slope estimator at 95% level of 
confidence.

3.6  Standardized precipitation evapotranspiration 
index

Standardized precipitation evapotranspiration index is a phe-
nomenon that depicts water surplus or deficit within long 
climatic time scale that the difference between precipitation 
and potential evapotranspiration is calculated and then fit-
ted with probability density function to estimate the return 
period of flood or droughts in a catchment. The severity 
was classified as SPEI ≥ 2.0, 1.5 to 1.99, 1.0 to 1.49, 0.99 
to – 0.99, –1.0 to –1.49, – 1.5 to – 1.99 and SPEI ≤ – 2.0 to 
indicate extremely wet, severely wet, moderately wet, nor-
mal, moderate drought, severe drought, and extreme drought 
event respectively (Shekhar and Shapiro, 2019). Valida-
tion by SPEI captures the impact of temperature increase 
on water demand and natural variability of climate and its 
influence on climate change studies. Further evaluation to 
observe the trend and its significance was based on the meth-
odology by (Henry, 1945; Kendall, 1948) and (Sen, 1968) 
given in the given equations.

The Mann-Kendall statistics is:

For a n number of time series, xj and xk are consecutive 
data values. The series sgn is as follows:

(4)S =
∑n−1

k=1

∑n

j=k+1
sgn

(
xj − xk

)
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The mean E(S), variance V(S) and the Z statistics is 
evaluated as:

Because the nonparametric Sen's slope estimator is resil-
ient against outliers in time series analysis, it was used to 
calculate the size of the discovered trends in the time series 
data:

Where xi represents the data value at a time step i and xj 
represents the data value at time step j.

4  Results and discussion

4.1  Spatial and temporal downscaling and bias 
correction of CMIP6 GCMs

Figure 3(a–c) shows the example of post-corrected pre-
cipitation and maximum and minimum temperature data of 
GCM output ACCESS CM2 relative to the observations at 
grid point 1 (15.950, 6.310), for 1979–2014 and 1979–2012 
respectively, using delta change, quantile mapping and 
empirical quantile mapping technique.

The evaluation results across the 54 grid point that covers 
the study area of the downscaled and the daily bias corrected 
GCM outputs of precipitation, maximum and minimum tem-
perature indicated that delta change and empirical quantile 
mapping method is the most suitable for daily precipitation 
and maximum and minimum temperature with a recorded 
mean bias error, MBE = 0, mean correlation coefficient  R2 = 
0.8 and modified index of agreement, md = 0.86 at 94% and 
a MBE range of -0.01 – 0, mean correlation coefficient  R2 
= 0.92, and modified index of agreement md = 0.96 respec-
tively, relative to other evaluation method across all the grid 
points. However, according to Fig. 3c, there are difficulties 
of downscaling models to capture peak values of minimum 
temperature across all evaluation methods, especially in the 
Sahelo-Saharan zone but this might be attributed to scale 

(5)sgn
�
xj − xk

�
=

⎧
⎪
⎨
⎪
⎩

1 if xj > xk
0 if xj = xk
− 1 if xj < xk
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for S > 0

0 for S = 0
S+1√
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for S < 0

(8)SS = median

[
xj − xi

j − i

]
for all i < j

gap between GCM outputs and observations and such vari-
ations cannot be accounted for by the GCM outputs as cor-
roborated in Sachindra et al., (2014). Hence, GCM outputs 
from this evaluation technique were adopted for the next 
phase of analysis. The evaluation was limited to statistical 
downscaling because it was considered to be more flex-
ible than dynamical technique and its projections can be 
downscaled to point specific locations as corroborated in 
Martinez-García et al., (2021).

The merit of this approach is to provide a reference for 
evaluating the accuracy of precipitation and temperature, 
which are the two critical hydrologic model input param-
eters, to improve the predictions of future river basin hydro-
logic cycles. The bias correction technique performed much 
better in simulating the observation in the Guinean-Suda-
nian zone, with a cluster of grid points with almost perfect 
correlation relative to the observation. However, Saharan 
zone exhibit some inadequacies in replicating the observed 
climate features which may be due in part to poor climate 
signals of sparse precipitation events. In general, the result 
indicates some improvements of the CMIP6 GCM in cap-
turing the observation signals of the climate variables and 
has proven to restore the inter-station dependencies. The 
multi-site approach illustrated the capability in addressing 
the inequities of transitioning and interpolation of GCMs 
from coarse to finer resolution and vice versa to accurately 
reproduce observed multiple statistical properties of climate 
variable for improved hydrological climate change impact 
studies.

4.2  Performance evaluation and selection of CMIP6 
GCMs

The individual models were coded  M1,  M2, …...M16 to rep-
resent ACCESS CM2, ACCESS ESM1-5, …… NorESM2-
MM respectively, as appeared in Table 1, for ease of iden-
tification. The performance of the model across individual 
grid point was analysed based on the two machine learning 
approaches SU and BRF to investigate their significance 
in replicating the basin climatic features of precipitation 
and maximum and minimum temperature for the period 
1979–2014 and 1979–2012 respectively, which was a com-
promise and limitations between CPC, PGF and historical 
CMIP6 GCM based on world meteorological organisation 
climatological standard normal period of data range and 
availability.

The GCMs were ranked based on their symmetric uncer-
tainty (SU) coefficient (Section 4.2.1) and variable impor-
tance score (Section 4.2.2) at each grid point for all the 
climate variable to understand the degree of association or 
relative skill (importance) of the models with insignificant 
bias across the basin respectively. However, in BRF analy-
sis, a zero score was recorded for GCMs whose variable 
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importance score is less than that of the shadow attributes 
at any grid before aggregation and ranking for consistency.

4.3  Evaluation based on symmetric uncertainty.

The result of symmetric uncertainty for all the climate vari-
ables were aggregated across the 54 grid points considered, 
which was a fair representation of the basin as shown in 
Table 2. The rankings based on the coefficients indicated 
that GFDL-ESM4, MIROC6, INM-CM4.8, ACCESS 
ESM1-5, and MRI-ESM2.0 exhibit a better skill for precipi-
tation with coefficient in the range of 0.94–0.81, while MPI-
ESM1.2-LR, INM-CM4.8, EC-Earth3-Veg, and EC-Earth3 
are relatively better in simulating maximum temperature 
with coefficient in the range of 0.98–0.92 and finally, MPI-
ESM1.2-LR, MIROC6, NorESM2-MM and CanESM5 are 
relatively better in simulating minimum temperature with a 
recorded coefficients in the range of 0.84–0.85. However, all 

the CMIP6 GCMs exhibit an above average skill except for 
F-Goals-g3 which was quite poor for precipitation. Varied 
level of GCM performance was noticed which further com-
plicates evaluation and has been acknowledged by (McMa-
hon et al., 2015), that GCMs have strength and weaknesses 
in simulating different climate variables. Simulation result 
of CMIP6 GCM by symmetric uncertainty exhibits some 
improvement in contrast to earlier phase as in (K Ahmed 
et al., 2019a), which may be attributed to differences in time-
scale and timesteps of the chosen GCMs, improvement in 
model parameterizations and development and quality of 
observation data. This is corroborated in studies by (Ayugi 
et al., 2021; Grose et al., 2020; Wang et al., 2021).

4.3.1  Evaluation based on Boruta random forest algorithm

The performance of the GCM models was assessed based on 
its ability to iteratively identify the importance of the origi-
nal attributes (CMIP6 GCMs) with their randomised sets 
(shadow attributes) to truly replicate the observation data. 
The simulation and importance measure were generated, and 
the variables were ranked as shown in Fig. 4a–c for grid 1. 
The ranking indicates that model M9, M13, M10, M14, M4, 
M11 and M7 are quite important in simulating GCM daily 
precipitation with variable importance score in the range of 
4–22, while others whose important score are below that of 
the maximum importance score of the shadow attributes are 
considered poor in simulating the observed (CPC) daily pre-
cipitation. However, all GCMs exhibit a good skill in simulat-
ing maximum and minimum temperature with a significant 
difference in variable importance score in the range of 18.0 
54.2 and 19.1–44.6 respectively. The procedure was repeated 
across all grid points and attributes were filtered or rejected 
with a performance score below the shadow attributes. The 
variable importance score was aggregated across all points 
and were ranked based on descending order of mean impor-
tance score for all the variables as shown in Table 3.

The evaluation of the climate variables by the novel Boruta 
random forest revealed a consistent performance of the GCMs 
across the grid points which makes the technique quite effi-
cient in the ranking process and necessary for holistic assess-
ment where the minimal optimal set of GCMs might be more 
useful rather than the application of the entire set of available 
models which may be computationally intensive, require more 
resources and time and decrease model proficiency.

The rankings based on Boruta algorithm indicated the 
difficulty of a single GCM to reliably simulate the daily 
observed precipitation across all grid points satisfactorily, 
although some GCM have a relatively better performance 
and are quite consistent across the grid points for maxi-
mum and minimum temperature. Figure 5a–c showed the 
spatial spread of the GCM performance and the aggregated 
importance score in Table 3, indicated that INM-CM4.8, 

Fig. 3  Plot of bias-corrected GCMs and observed climate data using 
delta change, quantile mapping and empirical quantile mapping 
method in the Lake Chad basin. (a) Variation of GCM precipitation 
relative to observed CPC data. (b) Variation of GCM maximum tem-
perature relative to observed PGF data. (c) Variation of GCM mini-
mum temperature relative to observed PGF data

◂

Table 2  Summary of GCM SU coefficients of precipitation, maxi-
mum and minimum temperature relative to observation data

Note: the bold entries reflect models that best represents the climate 
features of the basin

Symmetric uncertainty

Precipitation Maximum temperature Minimum tem-
perature

Model SC Model SC Model SC

M8 0.94 M13 0.98 M13 0.85
M12 0.88 M9 0.94 M12 0.85
M9 0.81 M6 0.93 M16 0.84
M2 0.81 M5 0.92 M4 0.84
M14 0.81 M11 0.90 M6 0.83
M16 0.74 M16 0.90 M8 0.82
M13 0.72 M2 0.90 M5 0.81
M4 0.72 M12 0.89 M11 0.80
M3 0.71 M8 0.85 M9 0.80
M15 0.71 M4 0.83 M2 0.79
M11 0.65 M10 0.79 M15 0.77
M1 0.65 M14 0.78 M1 0.76
M10 0.65 M1 0.78 M14 0.75
M6 0.65 M15 0.76 M10 0.74
M5 0.62 M7 0.72 M7 0.73
M7 0.34 M3 0.70 M3 0.72
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Fig. 4  Box plot of variable 
importance score of GCMs 
relative to observed climate data 
using BRF. (a) Relative impor-
tance of GCM precipitation to 
observed CPC data. (b) Relative 
importance of GCM maximum 
temperature to observed PGF 
data. (c) Relative importance of 
GCM minimum temperature to 
observed PGF data
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MRI-ESM2.0, INM-CM5.0 and F-Goals-g3 exhibit a rela-
tively better skill in replicating observed precipitation, while 
INM-CM4.8, MPI-ESM1.2-LR, INM-CM5.0 and MIROC6 
for maximum temperature and INM-CM5.0, INM-CM4.8, 
MPI-ESM1.2-LR and MRI-ESM2.0 for minimum tempera-
ture respectively.

GCM models evaluated across the grid points indicated 
that a few are quite consistent in replicating the observation 
of the three climate variables; for example, INM-CM4.8 and 
INM-CM5.0 have shown to exhibit a better skill in simulat-
ing the observed daily precipitation at 24.1% and 18.52% of 
the grid points, while INM-CM4.8 and MPI-ESM1.2-LR 
at 35.19% and 16.67% for daily maximum temperature and 
finally INM-CM5.0 and MPI-ESM1.2-LR at 53.70% and 
25.93% for daily minimum temperature respectively.

4.4  Identification and evaluation of multi‑model 
ensemble mean of GCMs

The GCMs evaluated by the approaches considered were 
a precursor in understanding their skills necessary to 
match observations. However previous studies, for exam-
ple Kim et al., (2016) have shown that uncertainties in cli-
mate projection can be reduced by identifying and adopt-
ing GCMs with better performance for impact assessment 

studies. Earlier literature such as Weigel et al., (2010) and 
Miao et al., (2012) recommended the use of a collection of 
GCMs ensemble mean to optimize reliability in prediction 
and minimize uncertainty in climate variable assessment. In 
this study, four best GCM were selected after re-aggregation 
(Table 4), due in part to the significant difference observed 
in the aggregate importance score value between model M14 
and M12 in Boruta random forest evaluation to form the 
multi-model ensemble mean herein referred to as SU and 
BRF and a combination of the 16 GCM model referred as 
AME and were further analysed and validated for spatial 
pattern of precipitation and temperature and return period of 
drought for the study period and their implication for hydro-
logic modelling.

The result of the overall ranking indicated that MPI-
ESM1.2-LR, MIROC6, INM-CM4.8 and NorESM2-MM are 
quite suitable from symmetric uncertainty approach, while 
INM-CM4.8, INM-CM5.0, MPI-ESM1.2-LR and MRI-
ESM2.0 for Boruta random forest approach and are limited 
to four GCMs to others, due in part to the significant differ-
ence in their skills from the rating metrics scores in Table 4.

4.4.1  Spatial and temporal pattern of precipitation 
and temperature of GCM ensemble mean

The spatial correlation and pattern of the GCM ensemble 
mean annual precipitation and temperature was used to vali-
date and measure uncertainty range of the three different 
approaches relative to the observation as in Fig. 6a–b and 
Fig. 7a–b for the period 1979–2012. The result of the spatial 
correlation between the mean annual precipitation and tem-
perature indicated that BRF is consistent with the observa-
tion having a correlation value in the range of 0.641–0.9995 
(0.9991) and 0.4423–0.8345 (0.7136) respectively. Evalua-
tion from SU and AME is quite satisfactory; however, there 
are mismatches or poor correlation observed, especially in 
the Sahelo-Sudanian zone with a recorded spatial correlation 
as low as 0.15 and 0.19 for SU and 0.01 and 0.36 for AME 
relative to the observations for annual mean precipitation 
and temperature respectively.

The results obtained in the temporal assessment of 
the evaluated approaches have shown that the correlation 
between the ensemble mean temperature are similar and 
quite skilful with  R2 = 0.984 and a mean bias of 0.49 °C, 
0.49 °C and 0.50 °C for BRF, SU and AME respectively, 
however, the BRF approach indicated a better temporal cor-
relation of 0.95 and an annual mean bias of 0.638 mm/year 
as compared to SU and AME with spatial correlation of 
0.82 and 0.88 and annual mean bias precipitation of 68.19 
mm/year and 10.57 mm/year respectively. The biases are 
found to be significant and visible in the south-western part 
of the basin as seen in the grid-based analysis of the annual 

Table 3  Summary of GCM importance score of precipitation, maxi-
mum and minimum temperature relative to observation data

Note: the bold entries reflect models that best represents the climate 
features of the basin

Boruta algorithms

Precipitation Maximum temperature Minimum tem-
perature

Model IS Model IS Model IS

M9 4.68 M9 41.07 M10 32.03
M14 3.20 M13 39.44 M9 28.96
M10 2.88 M10 36.81 M13 28.86
M7 2.82 M12 34.10 M14 27.32
M4 2.68 M14 33.43 M16 27.18
M8 2.53 M2 32.25 M5 26.57
M13 2.12 M11 32.25 M7 26.50
M6 1.81 M7 31.36 M15 26.24
M12 1.33 M6 30.93 M6 26.17
M5 1.29 M16 30.87 M2 25.82
M1 1.20 M1 30.79 M1 25.52
M2 0.96 M3 29.89 M4 25.00
M11 0.75 M8 29.66 M11 24.92
M3 0.72 M5 29.62 M12 24.79
M16 0.31 M4 29.59 M8 24.53
M15 0.10 M15 27.56 M3 24.18
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Fig. 5  Spatial spread of 
GCMs performance relative 
to observed climate data using 
BRF. (a) Ranking of spatial 
spread GCM precipitation rela-
tive to observed CPC data. (b) 
Ranking of spatial spread GCM 
maximum temperature rela-
tive to observed PGF data. (c) 
Ranking of spatial spread GCM 
minimum temperature relative 
to observed PGF data
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precipitation in Fig. 8 shown below, where significant devia-
tions are noticed between grid point 1 to 10 for SU and 1 
to 26 for AME, while BRF showed almost a perfect match 
relative to the observation across the grid points.

4.4.2  Assessment of climate extremes events of GCM 
ensemble mean

The temporal analysis of climate extreme indices was 
assessed at 12-month time step by the BRF, SU and AME 
and compared to the observation at the four climatic zone 
of the basin to understand the relative skills in predicting 
the pattern and frequency of extreme event and shift in 
trend within the study period in the four climatic zones. 
The result indicates an inherent shift (Fig. 9a), relatively 
in wet climate (1980–1998) to a transition from mod-
erate to extreme droughts (1999–2012) in the Saharan 
zone with the frequency of SPEI values of the BRF, SU 
and AME approach consistent with the observation at 
53.3%, 45.5% and 48.9% of the time respectively. Results 
of the SPEI values of the approaches relative to the 
observation (Figure 9b–d), in the Sahelo-Saharan zone 
is 48.99%, 53.28% and 47.22%, Sahelo-Sudanian zone is 
45.2%, 45.96%, and 43.43% and Sudano-Guinean zones 
is 48.23%, 50.25% and 39.14% respectively. However, 
the statistical trends based on multi-year SPEI indices 

for the period 1980–2012 in the four climatic zones of 
the basin indicated that the BRF approach captured the 
extreme event direction quite accurately relative to the 
observation as seen in the z-statistic values within the 
same trend envelope Table 5, although all the approaches 
showed a satisfactory result in predicting the trend direc-
tion but there are under-estimation in the magnitude 
of the extreme event by the SU (− 0.0013) and AME 
(− 0.0033) approach in the Saharan zone which indicate 
an insignificant shift from wet to drought events (dry-
ing trend) as against the trend magnitude exhibited by 
the observation (− 0.0057) which is consistent with the 
BRF (− 0.0058) approach. The approaches showed dif-
ficulty in predicting magnitude of the trend in the Sah-
elo-Sudanian zone which indicated an over-estimation 
relative to the observation with statistically significant 
wetting trend and the magnitude in the order of 0.0031, 
0.0038 and 0.0057 for BRF, SU and AME respectively, 
as against observation (0.001). However, the deviation is 
more pronounce in the AME approach and it is observed 
that there is a frequent and consistent shift in trend from 
wetting to drying period across the climatic zone and is 
consistently captured by the BRF approach relative to 
the observation. Bold values in Table 5 indicate consist-
ent agreement between simulated GCM ensemble mean 
and observation that better represent the basin climatic 
features and the outcome will be suited to limit the mag-
nitude of uncertainties and accurate hydroclimatic hazard 
representation in impact studies.

A trade off was created in the evaluation process to justify 
the selected model performance using the two techniques 
irrespective of climate variable of interest and a varied level 
of performance was noticed from one grid point to another. 
The ensemble mean approach was quite essential because it 
led to reduced biases and their combinations emphasizing 
on few models with good performance are required and this 
is particularly important in watersheds with sparse observed 
climate data and high climate variability.

The BRF approach has shown to be promising in the 
evaluation with a recorded lower bias in the temperature 
and precipitation and a more accurate representation 
of the magnitude, pattern, and trends of extreme event. 
Overestimation or considerable bias was observed by 
the SU and AME approaches in the southwestern part of 
the basin. The associated uncertainties can be evaluated 
further by considering the sensitivities of ensemble with 
alternative metrics or combination of approaches. How-
ever, the BRF approach has shown to be quite robust in 
evaluating the integrity of the regionalisation of GCMs 
over different timescale that exhibit good performance 
during the baseline period and their combination may 

Table 4  Summary of GCM 
overall ranking based on 
aggregated SU and IS of climate 
variables relative to observation 
data

Note: the bold entries reflect 
models that best represents the 
climate features of the basin

Symmetric 
uncertainty

Boruta  
algorithms

Model SC Model AIS

M13 0.89 M9 60.22
M12 0.87 M10 45.13
M9 0.85 M13 29.54
M16 0.83 M14 15.11
M6 0.80 M12 10.43
M8 0.80 M16 8.54
M4 0.80 M7 8.49
M5 0.78 M2 8.14
M11 0.78 M5 6.75
M2 0.78 M6 6.52
M14 0.78 M11 6.49
M15 0.75 M1 5.18
M1 0.73 M15 5.15
M10 0.73 M4 4.52
M3 0.71 M8 4.36
M7 0.60 M3 3.97
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likely be valid to represent the future period under climate 
change scenarios with certainty. The weighing scheme 
developed in this study is an exploratory framework that 
can be tested in various watersheds of interest for better 
water policy planning.

5  Conclusion

General circulation models are important and provides a 
pathway for simulation and assessment of the perceived 
impact of climate change on local, regional, and global 
hydrology. However, the choice of GCM input data, inter-
polation and downscaling method, timescale and timesteps 
are essential and critical for effective and accurate repre-
sentation of the past, present, and future basin hydrologic 

process for fair and equitable river basin management and 
policy planning for sustainability.

Earlier studies suggest that most evaluations ignored 
the inter-dependencies among models of a known variable 
and could create over-fitting problems. This study is based 
on an ensemble of 16 CMIP6 GCMs at daily timestep 
evaluating the efficacy and robustness of the state of the 
art Boruta random forest algorithm technique has shown 
this to be a viable tool for selection of relevant models 
to reduce redundance, complexity and over-fitting prob-
lems associated with climate models to ensure sufficient 
overlap of chosen models ensemble mean with observa-
tions, seeking to limit the drawbacks encountered from 
existing techniques such as but not limited to inability to 
analyse complicated inputs, stochastic aspects, and cli-
matic and hydrologic properties that are intricately inter-
related, reduce the transfer of uncertainties into hydrologic 

Fig. 6  Comparison of spatial 
correlation of GCM ensemble 
mean performance relative 
to observed climate data. 
(a) Annual precipitation. (b) 
Annual temperature



Application of Boruta algorithms as a robust methodology for performance evaluation of CMIP6…

1 3

processes and address critical temporal and spatial behav-
iour of the climate variables as a precursor for reliable and 
accurate predictions.

Highlights from the study revealed that there are inher-
ent weaknesses associated temporal and spatial downscal-
ing techniques and multiple techniques should be tried 
and examined to limit uncertainty range and inadequa-
cies of GCMs, because exploring different multi-site 

downscaling techniques is very important in increasing 
the effectiveness of GCMs performance, combination of 
appropriate GCMs can enhance spatial and temporal vari-
ability to accurately reproduce observed multiple statisti-
cal properties of climate variables for improved output and 
reduced uncertainty in hydrologic modelling at regional 
and local basin scale. The selected models from Boruta 
random forest technique adequately have the capability 
in reducing biases in precipitation compared to the other 
approaches, although similar performances were observed 
in terms temperature and can capture the trends, patterns, 
and magnitude of extreme events within the accepted con-
fidence limit.

The findings associated with this study are generally 
not meant to be a process to identify viable GCM dataset 
suitable for hydroclimatic study, but also to present a 
simple and efficient methodology to examine the limita-
tions associated with the selected GCM ensemble for 
impact study. Therefore, the methodology proposed is not 
unique and therefore be explored to other basins for relia-
ble representation of catchment climatology, representing 
a key step forward in GCM ensemble impact research.

Fig. 7  Comparison of the spatial pattern of GCM ensemble performance relative to observed climate data. (a) Annual precipitation. (b) Annual 
temperature

Fig. 8  Variation of the temporal pattern of mean annual precipitation 
across grid points for 1979–2012
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Fig. 9  Temporal variations climate extreme event of GCMs ensemble mean performance of relative to observation using BRF, SU and AME 
approach in the Lake Chad basin. (a) Saharan zone. (b) Sahelo-Saharan zone. (c) Sahelo-Sudanian zone. (d) Sudano-Guinean zone
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Fig. 9  (continued)
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