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Abstract
Spot pricing is often suggested as a method of increasing demand‐side flexibility in
electrical power load. However, few works have considered the vulnerability of spot
pricing to financial fraud via false data injection (FDI) style attacks. The authors consider
attacks which aim to alter the consumer load profile to exploit intraday price dips. The
authors examine an anomaly detection protocol for cyber‐attacks that seek to leverage
spot prices for financial gain. In this way the authors outline a methodology for detecting
attacks on industrial load smart meters. The authors first create a feature clustering model
of the underlying business, segregated by business type. The authors then use these
clusters to create an incentive‐weighted anomaly detection protocol for false data attacks
against load profiles. This clustering‐based methodology incorporates both the load
profile and spot pricing considerations for the detection of injected load profiles. To
reduce false positives, the authors model incentive‐based detection, which includes
knowledge of spot prices, into the anomaly tracking, enabling the methodology to ac-
count for changes in the load profile which are unlikely to be attacks.

KEYWORD S
cyber‐physical systems, data analysis, data privacy, embedded systems, security of data, smart cities, smart
meters, smart power grids, telecommunication security

1 | INTRODUCTION

The contemporary power network is a cyber‐physical system
consisting of modern communication technologies working in
conjunction with sophisticated power electronics. Up until
recently, most of the power system innovations in real‐time
monitoring occurred at the transmission layer. However, the
recent introduction of smart metering offers exciting oppor-
tunities for distribution level consumers and system operators
to optimise their consumption of power. The increased gran-
ularity offered by load profile data offers new ways to reduce
costs and encourage demand‐side flexibility [1, 2]. Increasingly,
variable tariffs are becoming popular which offer intraday
variation in the electricity consumption price. These tariffs
make utility level spot prices directly available to industrial
consumers themselves [3]. Exposure to these spot curves of-
fers some consumers an opportunity to save money. As con-
sumers can now receive cheaper prices to consume power

during non‐peak hours, they can save cash if they act to adjust
their demand curves. These advantages can also extend to the
system operators in terms of potential benefits from lower
intraday volatility in consumption which may increase network
stability.

1.1 | Motivation

However, the introduction of spot prices also brings potential
issues. Fraud is already a well‐known issue in the modern
distribution network. This is especially true in developing
markets wherein upto 20% of the produced power might be
stolen or consumed by customers committing fraud [4]. In
the past, fraud has been limited to bypassing or stealing
electricity. However, the advent of smart metering and vari-
able tariffs will introduce new risks into the framework which
are not currently considered. On one hand, smart meters can
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enable consumers to use spot pricing, which unlocks rewards
for proactive consumers; on the other hand, the large
intraday volatility of spot pricing means there is a direct cash
incentive for malicious actors with the capabilities to bypass
the relatively basic smart‐metering cyber‐infrastructure. These
cash incentives are amplified for industrial users for whom
electricity demand far outstrips the average consumer. In view
of this, it is necessary to begin considering how users may try
and exploit the system. In this work, we aim to provide a
methodology for detecting smart meter attacks which take
advantage of spot pricing. We are motivated by the risk of
smart meter load profiles to financial fraud and seek to
provide a detection methodology in order to protect them.
The scope of this work is based around smart meter load
profiles and the ability to detect changes in the smart meter
profile via cyber‐attack.

1.2 | Categorisation of load profiles

With the growing ubiquity of smart metering, researchers are
increasingly investigating how to effectively utilise the data
they capture. Load profile categorisation, either via clustering
or using other techniques, has also become a popular sub‐
field in the area of smart meter profile analysis. In the
past, almost all studies involving smart meter load profiles
have focussed on residential smart meter data. This is likely
due to the relative availability of data compared with their
industrial counterparts. Several works examine consumer
data. For example, in Ref. [5] the authors explored a seg-
mentation strategy for households using hourly data. A
clustering approach for consumer smart meter data was
examined in Ref. [6] and behavioural demand profiles were
identified using smart meter data in Ref. [7]. In Ref. [8] a C‐
Vine Copula mixture model for clustering of residential data
is examined. A non‐Gaussian residual is used to model intra‐
day forcasting at the feeder level in Ref. [9] while in Ref. [10]
novel approaches for load profiling using smart meter data
are explored. Again load profiles are used to cluster consumer
profiles in Ref. [11]. In Ref. [12] Stephen et al presented
several Linear Gaussian (LG) load profiling techniques. These
were embedded within a mixture model framework, which
allowed multiple behaviours to be considered with the most
probable used for categorisation. The prior focus on con-
sumer data is likely attributable to the relative availability of
this data in comparison to industrial load flow profiles.
However, some works have addressed non‐residential flows.
For example, in Ref. [13] self‐organising maps are used to
classify industrial loads. Previous works have also used
customer‐specific data to create use profiles [14] and analysed
industrial electricity consumption with respective to behav-
ioural dynamics [15]. The authors in Ref. [16] introduced a
general scheme for analysing load patterns, while an overview
of clustering techniques was presented in Ref. [17], which
summarises and evaluates methods for load pattern classifi-
cation. Often, these works stop short of finding a use case

for the profiling. In Ref. [18], the authors applied a
clustering‐based framework for building energy‐based
benchmarks. Data extracted from smart meter load profiles
were used to categorise buildings according to their opera-
tional characteristics. In Ref. [19], the load profiles of su-
permarket chains were predicted using machine learning. In
Ref. [20] a novel probabilistic approach was proposed that
utilises similar principal components. Hu et al. used inter-
pretable feature extraction to categorise load profiles based
on a combination of statistical and temporal features [21].
The authors in Ref. [22] examined load profiling and its
applications in relation to demand response. An anomaly
detection scheme for big industrial data sets is applied in Ref.
[23]. A review of electric load classification in smart grids is
available in Ref. [24].

1.3 | Attacks against metering infrastructure

Before the use of smart meter infrastructure, bypassing an
electricity meter was a common method of defrauding utility
operators. However, from the perspective of utility providers,
direct bypass attacks are easy to identify using data driven
methods as they are effectively a string of zeroes. In the case of
smart meter infrastructure, while some commentators initially
believed that smart meters would provide additional security,
they have been proven to susceptible to hacking [25]. The
available evidence suggests that in the future, smart meter at-
tacks may aim to change the transmitted load curve completely,
thereby reducing the cost of power consumption. In the past,
these types of attacks have been called False Data Injection
(FDI) attacks and have usually been suggested at the trans-
mission layer.

FDI attacks began to gain consideration for power systems
in Ref. [26]. Power system style (transmission layer) FDI at-
tacks require the altering of system measurements in a very
specific manner, dictated by network topology in order to
corrupt a network operator's state estimation process [27]. This
corruption can cause blackouts, line outages or indeed even
hide outages on the network [28].

FDI attacks by their nature are ineffective if discovered.
The principle aim of an FDI attack is to fool the SO about the
current network state. As a result, stealthiness is key. In the
power system, FDI attackers compete with the SO's state
estimator which provides a bad data check. Initially, this meant
that FDI attacks on power systems had a high knowledge
component. However, later works invalidated this assumption
[29–31]. Comprehensive reviews on FDI for power systems of
this attack type can be found in Refs. [32, 33]. Indeed, the
authors have explored these type of attacks previously in Refs.
[34–36] in case studies where FDI attackers alter system
measurements to spoof the transmission‐level state estimation
processes. However, while FDI style attacks on transmission
level infrastructure have received significant research attention,
limited research has examined the impact of these attacks on
distribution‐level systems such as smart meter load profiles.

2 - HIGGINS ET AL.

 23983396, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cps2.12057 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A putative advantage of the FDI approach is that these attacks
can utilise distributed and poorly protected measurements
rather than attacking a well‐defended central system operator.
This is especially true for distribution‐level attacks against
metering infrastructure as these devices are usually decoupled
from operational processes and not monitored in real‐time by
utility providers. Also, modern smart meter infrastructure has
also been shown to suffer from several vulnerabilities, which
can be exploited by motivated attackers [37]. Some works have
explored detection of FDI attacks using predictive or analytic
methodologies. In Ref. [38], the authors examine a prediction
algorithm to enhance grid resilience with reference to wide area
monitoring and control systems. In Ref. [39] a median
regression based state estimation approach is taken to protect
the system against data‐driven cyber‐attacks. While Inayat et al
examine a learning‐based method for cyber‐attack detection in
Ref. [40]. We also consider that at the distribution level, state
estimation processes cannot be relied upon for identifying bad
data. Therefore, in this work we consider new data driven
approaches for detecting attacks against smart meter load
profiles.

1.4 | Contributions

While many papers have addressed the categorisation or
clustering of load profile data, few demonstrate the utility that
results from this categorisation. In this report, we propose
both a methodology for grouping load profile data and also an
application for this process within the realms of cyber‐attacks.
This work introduces an incentive‐weighted detection model
for cyber‐attacks against smart meter infrastructure. Where
previous works in the past, have looked at clustering of smart
meter load flow data, few have analysed smart meter data sets
under attack from an adversary.

The main contributions of this work are as follows:

� To start, the work introduces a new methodology for the
clustering of load profile data. This methodology involves a
two‐step process that incorporates both clustering and
silhouette scoring to establish a set of base models within
each industry type. We use 20 features for this approach,
which include a combination of global statistical, index and
quartile statistical features.

� We use these average cluster groups to produce a scoring
model for new inbound datasets. This scoring model in-
corporates both model departure and spot prices to present
an incentive‐weighted model of fraud detection in load
profiles. We apply, for the first time, an ’incentive‐weighted’
approach to anomaly detection. This incentive‐weighted
detection uses the weighted spot price to identify when at-
tackers maybe trying to change profiles for financial gain as
well as the core anomaly model itself.

� We then introduce several adversary models based around
FDI attacks against smart meter infrastructure. We intro-
duce these adversary models into our dataset and evaluate
our anomaly detection approach on them.

� Finally, we develop our model, using real load profile data
and real‐life spot price data (not simulated data) to ensure
our model is viable in real‐world data‐sets. This dataset is
substantial (profiles for 12,055 businesses) and representa-
tive of actual network operation.

The next section presents the base model methodology
used to build the average cluster models.

2 | BASE MODEL METHODOLOGY

2.1 | Input data

The input data were obtained as part of the Energy Demand
Research Project (EDRP) and consists of industrial load flow
profiles for 12,055 businesses operating over a 2‐year period.
The EDRP aims to understand and model how load user
flexibility changes as consumers develop an awareness and
understanding of their energy consumption. Within these
businesses, we categorised business data, and took a subset of
the businesses under the branch of consumer entertainment
industrial parks. The reason we opted for this subset is that
these businesses offer distinct business models that are easily
interpretable, at a conceptual level, to the average user. The
profiles consist of 48 consumption periods, with each period
corresponding to 30‐min power consumption windows within
a given 24 h day. Within this, we focus on summer profile data
sets (June through September) to maintain consistency in the
underlying data. We believe it important to operate with a real
rather than similar data as this helps validate the model in a
realistic environment.

2.2 | Data pre‐processing

In this subsection we outline the process of data cleaning,
preparation and normalisation we have taken prior to imple-
menting the anomaly detection. We deemed normalisation of
the data set important as while some businesses may share
similar relative statistical properties, the magnitude of energy
consumption within business of the same type may vary
considerably. When building our groupings, we intend to
identify businesses based on the shape of operation and rela-
tive properties rather than straight magnitude. Therefore, for
each individual business, we perform a max‐min normalisation
of the load profile data using the following equation:

zi ¼
xi − minðxÞ

maxðxÞ − minðxÞ
ð1Þ

In this max‐min normalisation equation, x = (x1, …, xn)
represents an array of length equal to the number of load
consumption measurements for a given business line. The
normalisation enables us to capture departures from expected
operation demand curves. Simple changes in consumption
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magnitude (such as a bypass attack) are typically easy to identify
via conventional means, and so we focus on relative model
departure. We also apply a ‘low touch’ data cleaning strategy,
which aims to remove corrupted or incomplete data to the
greatest possible extent, while minimising the discarded data. It
is often tempting to be overzealous when cleaning data, but as
we are working with a real‐world data sample we wish for our
model to incorporate as much actual data as possible.

2.3 | Feature‐based clustering

We use feature‐based clustering to establish the base models
for our anomaly detection and incentive‐weighted anomaly
detection system. We use a set of 20 different features con-
sisting of global statistical features, quartile statistical features,
and index‐based features. Table 1 summarises the features used
in our clustering algorithm. The approach employed is similar
to the one outlined in Ref. [21], with the exception that we also
incorporate quartile statistical values.

2.4 | Hierarchical clustering

This subsection outlines the proposed combination of clus-
tering and scoring used to establish the average profile

groupings and cluster numbers. After data pre‐processing, we
perform agglomerative hierarchical clustering on the respective
industrial load business types. Hierarchical clustering is also
known as AGNES (agglomerative nesting) and refers to a
bottom‐up approach to clustering wherein each observation
starts in a cluster on its own and clusters are slowly merged.
The steps involved in AGNES are as follows:

1. The proximity matrix for each point within the dataset is
calculated.

2. The algorithm then considers each element as a cluster
consisting of a single element cluster.

3. The two closest clusters are merged and the new proximity
matrix is recalculated for the dataset.

4. Steps 1–3 are then repeated until the desired number of
clusters is reached.

As we are using an unsupervised learning approach, we
opted for this methodology to avoid manually inputting a
cluster number for the algorithm to use and utilise an auto-
mated approach. Therefore, we incorporate an automatic
cluster number selection feature, which utilises silhouette
scoring.

2.5 | Silhouette coefficient

The silhouette coefficient is a method of quality checking and
validating cluster consistency within groups. The coefficient
measures the similarity of an object with respect to its given
cluster. Each data point within a series is assigned a silhouette
value. This silhouette value of an individual data point is given
by the following:

sðzÞ ¼
bðzÞ − aðzÞ

maxðaðzÞ; bðzÞÞ
; ð2Þ

where s(z) is the silhouette score for a given data point z, and b
(z) is the average minimum distance between z and the clusters
that z is not located within and a(z) is the average distance
between z and all the other data points with the cluster z is
located within.

The silhouette coefficient is then given by finding the
maximum value of the mean silhouette score for a given
number of clusters k such that

SC ¼max
k
sðkÞ; ð3Þ

where sðkÞ is the mean silhouette score across the entire
dataset.

In this work, we employ a short loop. This compares the
silhouette coefficient under different cluster numbers (up to 5)
and selects for the maximum coefficient value. In turn, this is
used to define the number of clusters involved in hierarchical
clustering.

TABLE 1 List of features used in clustering model.

Feature No. Feature description Feature type

G1 Mean Global

G2 Standard deviation Global

G3 Max Global

G4 Min Global

G5 Range Global

G6 Sum Global

G7 Skew Global

G8 Kurtosis Global

Q9 Sum 1–12 Quartile

Q10 Sum 12–24 Quartile

Q11 Sum 24–36 Quartile

Q12 Sum 36–48 Quartile

Q13 Standard deviation 1–12 Quartile

Q14 Standard deviation 12–24 Quartile

Q15 Standard deviation 24–36 Quartile

Q16 Standard deviation 36–48 Quartile

I17 Max time period Index

I18 Min time period Index

I19 Index > Mean Index

I20 Index < Mean Index
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3 | INCENTIVE‐BASED ANOMALY
TRACKING

Attackers will usually have a reason for an attack dictated by an
aim or goal. These goals are often financial. Historically,
anomaly tracking in energy systems has been based on the
analysis of simple departures from expected models. However,
within the context of cyber‐attacks, model departure is only an
indication and not a guarantee of foul play. We consider that
departure from a model is not merely an indication of a cyber‐
attack. Anomalous measurements do occur amid routine
operation. We also consider that in a scenario considering
financial or cost lowering attack, the attacker is unlikely to
inject an attack vector which will increase his overall cost.
Therefore, we can use considerations about the attack vector
incentive as a method of reducing false positives. In this way
we create an ’incentive‐based’ anomaly detection which con-
siders the cash incentive of the attack as well as the direct
anomaly.

3.1 | Detection model

Here we outline the detection model for the incentive‐
weighted anomaly detection. The steps involved are as follows:

1. The outlined hierarchical and silhouette scoring clustering
model are leveraged to model expected behaviours in load
profiles for respective industry types.

2. Unexpected departures from the underlying models in new
inbound data are identified for the respective company
groups. Also, a score is created based on how different
these groups are, which is referred to as the violation
scoring.

3. We then use the weighted average spot price to produce an
incentive based scoring model which indicates whether a
profile is financially preferable.

4. The scores are then combined to establish the incentive‐
weighted violation score to identify potential FDI attacks
based on model difference and potential financial gain.

3.2 | Violation score

We consider a metric, dubbed a violation score, used to assess
how different a new incoming dataset is compared to the
previous model. The violation score is based on how often
these inbound measurements violate a confidence interval of 2
standard deviations when compared to the average model for
the business group. We start with the following equation:

VSDn ¼ 2ASD − k
�
znnew − AC

��
�; ð4Þ

where VSDp is an array of length t that contains the respective
violation decisions for a given consumption interval, AC is an

array of length t representing the average cluster profile, ASD
is an array of length t representing the standard deviations for
the respective consumption periods, and znew is an array of
length t that represents the new measurement set which is
being checked. Also, n refers to the number of days in the set.
A violation is recorded if VS is a negative value such that

VSCnt ¼

(
1 if VSDnt < 0
0 if VSDnt > 0

ð5Þ

In turn, this is presented as a percentage of the number of
periods recorded:

VSP ¼
Xn

n¼1

Xt

t¼1

�
VSCnt
nt

�

; ð6Þ

where VSP is the violation score. This score gives an initial
indication as to whether there is a significant departure from
the previously established cluster groups. A high violation
score indicates that the model varies significantly from the
average cluster model established by the clustering algorithm.
We consider that a simple departure from the underlying
model is not necessarily an indication of foul play and that we
must also consider the impact of an attack.

3.3 | Incentive score

We consider incentive as a product of the relative gain that a
change from the average profile gives to a customer. To do
this, we incorporate the weighted average spot price WSP
versus flat price to identify regions where there may be an
incentive to change the input profile. The weighted spot price
array is calculated as below:

WSP¼
ðCSP − FPÞ

FP
; ð7Þ

where WSP is an array of length t that represents the number
of prices in the period (in this case, 48 half‐hourly periods), and
FP is an array of length t consisting of the flat price FP. The
weighted spot price is then used to score the incentives given
by the departure from the model, such that

ISC ¼ kznnew − AC ⋅ WSPk; ð8Þ

where ISC is the incentive score, znew is an array of normalised
load profile measurements of length t. This gives an initial
indication as to whether there is a significant departure from
the underlying model. A high violation score indicates that the
model varies significantly from the average cluster model
established by the clustering algorithm.
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3.4 | Incentive‐weighted violation score

Finally, we consider the weighted incentive‐based violation
scoreWIVS as a simple product of the violation score and the
incentive score such that

WIVS ¼ ISC ⋅ VSP ð9Þ

This yields a simple metric for each given business, with
which it is possible to assess the likelihood of financial fraud.
In the following section, these metrics are tested with existing
business types and FDI profile sets to verify the effectiveness
of the approach.

3.5 | Algorithm overview

The algorithm implementation is outlined in Figure 1. To
surmise, the detection methodology takes 2 sets of inputs
namely the consumption data and spot prices. One of these
inputs is the consumer consumption data. The consumption
data is used to create base models of which future consump-
tion are compared. The spot pricing is used to create incentive

models whereby it can be confirmed if a new inbound data set
looks profitable for a consumer. Both of these are combined to
create the incentive‐weighted detection model as an output.
This model allows us identify those profiles which are both
anomalous and potentially valuable to an attacker.

3.6 | Approach rationale

This particular approach offers many advantages against other
methodologies. One of the main advantages of hierarchical
clustering is the ease of understanding. Hierarchical clustering
provides significant explainability of the underlying groups.
The ease of understanding, implementation and delivering data
outputs were fundamental in our decision to use the algorithm.
The relative data accuracy of hierarchical clustering was also a
consideration. We also consider that the unsupervised nature is
desirable for the application as the algorithm was required to
run semi‐autonomously without the need for arbitrary cluster
selection from the user (which would be the case in other
popular algorithms such as K‐means). It is true that hierar-
chical clustering has drawbacks. The main one being relative
time complexity. However, we consider that the time
complexity while not ideal was acceptable for the purposes
outlined in this report Ref. [41]. We also note, that this
methodology could be later augmented to bring complexity
down to O (n2) under certain circumstances. However we note
that while running this method on an Intel Core i7‐7820X
CPU with 64 GB of ram running a Windows 10 system the
entire data processing and results took less than a minute to
process. We also note these time complexity issues are com-
mon with other alternative approaches and significant re-
ductions are usually only viable in specific use cases. There are
dimension reduction alternatives such as PCA clustering [42]
which might allow for additional time savings by reducing the
48 point dataset into 2 or 3 dimensions. However, the flip‐side
of this is reduction in data accuracy as we reduce a data of 48
points into 2 or 3. This would reduce the overall effectiveness
of the anomaly detection approach while offering only mar-
ginal benefit when dealing with a dataset of this size. The
combination of global statistical, quartile statistical elements
and index elements was crucial to developing an effective
clustering model and this precluded many alternative models.
Hence hierarchical clustering which allowed us to have a high
numbers of dimensions for our feature selection which was
essential.

4 | RESULTS

In this section we outline the results for the clustering tech-
nique, average profiles and the incentive‐weighted detection
algorithm. We initially show the results of the average profile
model and then go onto examine the results of the anomaly
detection algorithm on a combination of future load profile
data and injected red team profiles.F I GURE 1 Overview of the incentive weighted detection algorithm.
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4.1 | Weighted spot price calculation

For the weighted spot price calculation, we used data pro-
vided by Octopus energy prices. As model building relies on
using summer data, we employ equivalent summer data to
build our weighted spot price. The Octopus data is split into
14 sub‐regions accounting for regions within the UK, such as
London, East England, and Midlands. We note that despite
these regions being split into groups, the level of inter‐
regional price volatility is low. For simplicity, we take a sim-
ple mean average of all these regions combined, which is
used as the basis for our weighted spot price. This average
spot price per consumption period is shown in Figures 2
and 3.

4.2 | False data injection profiles

We introduce two FDI style profiles into the load datasets. One
profile is a simple meter bypass, which is typical of the current
state of play in physical attacks; in meter bypass, the profile is

simply replaced with a set of zeroes representing no load. We
also introduce a more sophisticated reduced‐cost spot attack
(RCSA) profile. This RCSA profile represents an attacker
attempting to create a non‐zero load profile to attain significant
reductions via the spot price. The RCSA profile is shown in
Figure 4.

4.3 | Industrial cluster groups

Figure 5 shows the individual measurement sets for the
cluster groupings, while Figure 6 presents the average cor-
responding model. These models are built using the 2009
summer data set. We note that although there are various
industrial business models, we often see a trend towards a
limited number of common models not dissimilar to the
typical consumer load. We also illustrate this in 4 which
shows the time dynamics and relative density of the respec-
tive profiles in 3D (Figure 7).

In Cinema cluster 1, we observe a consumption peak at
approximately 12:00, which falls off after around 16:00. This
shape is somewhat unusual as we might expect typical a
cinema business to continue into the late evening. However,
it may be necessary to distinguish between ‘mom‐and‐pop’
style cinemas, which might shut relatively early, and large
cinema corporations that run into the night. Cinema 2 re-
sembles a more typical consumer load flow profile, with a
broad consumption peak running from 08:00–20:00.
These relationships can also be seen via the histograms in
Figure 7.

The most atypical business grouping in the dataset is
Club cluster 1. Where the other businesses have the ex-
pected peaks around the common spot peak consump-
tion times, Club cluster 1 exhibits a later peak at around
the 20:00 mark, which gradually increases into the night.
This is consistent with the nature of business, given that
the main hours of operation for nightclubs are during the
night.

F I GURE 2 Incentive weighting for each consumption period.

F I GURE 3 Average spot price for each consumption period.

F I GURE 4 Reduced cost red‐team profile for each consumption
period.
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Hotel cluster 1 exhibits a notable peak at 06:00, which is
potentially attributable to breakfast preparations. Curiously, a
similar peak does not occur for lunch, but we do see it for the

dinner menu at approximately 16:00. Clubs cluster 2 is also
atypical in that it has a low range between the midday peaks
and the overnight operation. Similar to other groups Hotels

F I GURE 5 All data points for respective industry clusters. Based on weekend profile data during summer 2009.
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cluster 2 and Pubs cluster 1 exhibit similar patterns to a resi-
dential consumer load profile. However, we note that, gener-
ally, industrial profiles have broader operation periods, which is
reflected in the peak and intraday consumption windows.

4.4 | False profile detection

The performance of the detection model is shown in Fig-
ures 8,9,10‐12, indicating the violation score, incentive weight,

F I GURE 6 Average cluster based on weekend profile data during summer 2009.
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and incentive‐weighted violation score for both identified hotel
cluster types. The initial cluster models for each respective
business were built using the 2009 summer weekend dataset
through a combined clustering and scoring approach. They are
then cross‐compared with the 2010 summer weekend dataset

using the anomaly detection technique. In each of these figures,
the last two data points are the bypass vector and RCSA attack,
respectively. Consistent detection levels were observed for the
RCSA attack for all three types of detection. Incentive scoring
adds a heavy weighting to detection for the RCSA attack. For

F I GURE 7 3d histograms of all data points for
respective industry clusters. Based on weekend profile data
during summer 2009.
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both clusters 1 & 2, incentive‐weighted detection for the RCSA
attack was clear and present. We note a similar result in Fig-
ures 9,11,12, with consistent incentive‐weighted detection for
the RCSA style of attack. However, we note that the incentive‐
weighted detection is not as effective for the bypass attack. The
bypassed data is not easily identified using the incentive‐
weighted approach. However, there are already several
methods for identifying a bypass style string of zeroes. Indeed,
we do see generally higher than average scoring for the bypass
vector in some cluster groups (e.g. clubs cluster 1). Generally,

however, this method of scoring for this type of attack is
undermined due to incentive weighting. As the bypass has no
clear incentive weighting, this reduces the impact.

5 | CONCLUSION & FUTURE WORK

Smart meters are a weakly defended, distributed infrastruc-
ture that represent an easy attacking opportunity for a
cyber‐attacker. Load profile altering attacks in spot price

F I GURE 8 Clubs label violations, incentive score, and weighted incentive score.

F I GURE 9 Restaurants label violations, incentive score, and weighted incentive score.
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markets can provide a highly lucrative financial incentive for
attackers with currently few methodologies to detect this
threat.

In this paper, we have examined an incentive weighted
detection model for FDI style attacks against load‐profile
datasets. Through feature‐based clustering, we examined
different groupings within industrial load profiles and created

an incentive‐weighted detection methodology to examine po-
tential fraud. This incentive‐weighted methodology in-
corporates spot prices to identify when an attacker might be
taking advantage of the spot curve. In short, this work has
investigated how to improve corporate fraud detection in
smart data through clustering and an incentive‐weighted
detection approach.

F I GURE 1 0 Hotel label violations, incentive score, and weighted incentive score.

F I GURE 1 1 Pubs label violations, incentive score, and weighted incentive score.
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In the first contribution of this paper, we examined how to
establish a combination of hierarchical clustering and silhou-
ette scoring base models for industrial load profiles. We
incorporated real‐life datasets and, for illustrative purposes,
analysed businesses from entertainment‐style industrial parks,
due to the general familiarity of the nature of these businesses.

We enhance this anomaly detection model using an
incentive‐weighted violation approach. This approach in-
corporates both spot pricing and the level of departure from
the expected model to detect attacks which try to gain financial
advantage from the spot curve.

To analyse the effectiveness of our model under attack, we
injected fraudulent profiles into the datasets. These were based
on two likely red‐team cases: first, a bypass profile representing
a common ‘direct bypass’ of the metering infrastructure; and
second, an RCSA profile, which attempts to exploit variations
in price resulting from spot pricing. We found our model had
consistently good detection rates.

In future work, dis‐aggregation of the modern additions to
the distribution network which influence load profiles which will
be useful ’future proofing’ of the model for contemporary po-
wer systems. These could include solar panels, heat pumps, and
storage devices. It would be worthwhile to understand how
these might impact the detection of attacks against load profiles.

NOMENCLATURE
a average minimum distance between z and other data

points
AC average cluster profile
ASD array of consumption period standard deviations
b average minimum distance between z and clusters
CSP array of average spot prices
FP array of average flat price

ISC incentive score
sz silhouette score for given point
SC silhouette coefficient
VSC the violation score for a given point
VSD the violation decision value for a given consumption

point
VSP the violation score
VSP array of violation decisions
WIVS incentive weighted violation score
WSP array of spot prices incentive weighted by flat price
xi load consumption measurement
z array of length t normalised load consumption point
zi normalised load consumption point
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