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Abstract 
There is currently a limited understanding of how climatic and anthropogenic factors affect 

atmospheric NO2 concentration, and how these factors are associated with air pollution over space 

and time. Using high-resolution TROPOMI satellite data, this study estimates both the degree of 

association between climatic and anthropogenic factors, and the spatiotemporal variability of NO2 

concentration over Bangladesh. Several linear mixed models were developed to isolate possible 

factors affecting the NO2 concentration values recorded between July 2018 and June 2019). This 

included monthly mean maximum temperature (MMAXT), rainfall, wind speed (WS), relative 

humidity (RH), enhanced vegetation index (EVI), population density, and distance from industrial 

activities. The study revealed that the very urbanized central region of Bangladesh experienced 

high NO2 concentrations, particularly from September through to March. Dynamic variables such 

as RH, MMAXT, RAIN, and WS can positively or negatively influence NO2 depending on the 

time of year. Areas with a high vegetation cover, a low population density, and located some 

distance from industrial areas tended to have low NO2 concentrations. This study concluded that 

policy measures such as transboundary air quality agreements, the introduction of a month-specific 

green tax, decentralization, industrial relocation, and increased urban tree plantation activities 

could all prove valuable in reducing NO2 pollution in Bangladesh. 
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1. Introduction
Air pollution is one of the main causes of premature deaths in human populations (Cooper et al., 

2020). In 2012, approximately seven million people died due to diseases associated with air 

pollution: one in eight of the total fatalities across the world in that year (WHO, 2014). Many 

policies and strategies at the global, regional, and local levels have been formulated to ensure 

environmental sustainability and healthy living by reducing pollution concentrations (Melamed et 

al., 2016). Nitrogen dioxide (NO2) is recognized as a significant pollutant by both the World Health 

Organization (WHO) and the United States Environmental Protection Agency (US EPA) (Herron-

Thorpe et al., 2010; Melamed et al., 2016). Various natural and anthropogenic factors are responsible 

for emitting NO2 into the air. This includes chemical reactions due to lightning, soil emission, 

industrial and vehicular burning of fossil fuel, use of natural gas without an outlet, kerosene, 

liquified petroleum gas (LPG) apparatus, tobacco, and wood-burning, (Spicer et al., 1993; Zhu et al., 

2019). Consistent exposure to NO2 can cause various health hazards such as cardiovascular disease, 

lung cancer, and other life-threatening respiratory diseases (Atkinson et al., 2018). A recent study 

had also noted a positive correlation between atmospheric NO2 and risks of COVID-19 infection 

(Zhu et al., 2020).  

Various environmental policies have been enacted in many countries to reduce NO2 levels and 

attempt to lessen the societal costs associated with these emissions (Ryu et al., 2019). Ongoing 

monitoring and characterization of NO2 concentrations are considered to be fundamental in any air 

pollution exposure assessment work and associated environmental policy formulation (Bechle et 

al., 2013; Li et al., 2020). NO2 has a short photochemical lifetime: 2 to 5 hours during the daytime 

in summer and 12 to 24 hours during winter (Goldberg et al., 2021). The highly variable nature of 

emission sources means the distribution of this pollutant varies both spatially and temporally 

(Cooper et al., 2020; Goldberg et al., 2021). High-quality in-situ measurements allow an accurate 

assessment of NO2; however, a lack of such measurement capability is evident in many developing 

countries (Bechle et al., 2013). The limited number of monitoring stations usually found in these 

countries usually results in a poor understanding of the actual spatiotemporal distribution (Lee and 

Koutrakis, 2014; Zhu et al., 2019). This can result in the formulation of environmental policies based 

on inadequate information, and can actually enhance disease burdens. The collection and use of 

accurate information is vital in supporting informed decision-making.     

Advances in remote sensing technology now enable researchers to efficiently trace atmospheric 

NO2 (Bechle et al., 2013; Zhu et al., 2019). Many studies now routinely use satellite data to monitor 

spatiotemporal changes of tropospheric NO2 (Biswal et al., 2020; Georgoulias et al., 2019; Ryu et al., 

2019; Shah et al., 2020; Wang et al., 2019; Xu et al., 2020; Zheng et al., 2018). The data allows the 
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assessment of long-term pollution trends, mapping at ungauged locations, prediction of future air 

quality scenarios and the detection of extreme air pollution events (Duncan et al., 2014). Currently, 

the European Remote Sensing (ERS-2) Global Ozone Monitoring Experiment (GOME), Envisat 

SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY), 

NASA’s Aura Ozone Monitoring Instrument (OMI), and Exploitation of Meteorological Satellites 

(EUMETSAT) Metop-A (GOME-2) (Duncan et al., 2014) are available to map and monitor NO2. 

The latest tropospheric vertical column of NO2 data provided by the European Space Agency’s 

(ESA) Sentinel 5P (commonly known as the TROPOspheric Monitoring Instrument (TROPOMI)) 

(ESA, 2018) accurately estimates NO2 emission values when compared with actual in-situ data 

recordings (Goldberg et al., 2021; Lorente et al., 2019; Omrani et al., 2020). The TROPOMI 

spectrometer has been collecting NO2 information since October 2017. The high spatiotemporal 

resolution and improved sensitivity and accuracy of TROPOMI datasets make them very useful in 

examining atmospheric NO2 over time and space when compared to previous satellite 

instrumentation suites (Dix et al., 2020; Goldberg et al., 2021). As a result, its use in monitoring 

emission products such as NO2 is increasing globally (Cooper et al., 2020; Dix et al., 2020; Goldberg 

et al., 2021; Shikwambana et al., 2020; Wu et al., 2021). Satellite overpass times differ between 

latitudes, so global-scale NO2 studies may be of little use in developing policies to curb increases 

in air pollution in a country experiencing a rapid growth of industries and anthropogenic activities 

(Bechle et al., 2013).     

The use of robust, spatial and temporal modeling is essential in any investigations of regional NO2 

pollution, and is critical in helping decision-makers formulate appropriate environmental policies 

(Vîrghileanu et al., 2020). Accurately analyzing the amount of atmospheric trace gases present at a 

location is important in characterizing air pollution (Aggarwal and Toshniwal, 2019; Cichowicz et al., 

2017; Nemet et al., 2010). As with other air quality indicators, the relative level of NO2 present is 

generally associated with a set of complex weather parameters (Davis and Kalkstein, 1990). Local 

and regional climate also play an important role in the spatial and temporal variability of this gas 

(Elminir, 2005). Anthropogenic factors such as industrial emission and population density, as well 

as the extent of vegetation cover, can also influence NO2 pollution patterns (Zhu et al., 2019).  

Many studies have focused on diagnosing NO2 concentrations using various combinations of 

explanatory variables and modeling approaches. Statistical modeling approaches include the use 

of cokriging (Ryu et al., 2019), geographically weighted regression (GWR) (Zheng et al., 2019), 

linear regression (ul-Haq et al., 2018), land use regression (LUR) (Lee and Koutrakis, 2014; Novotny 

et al., 2011), and linear mixed model (LMM) (Lee and Koutrakis, 2014). Machine learning techniques 

such as Random Forest (RF) (Zhu et al., 2019), support vector machines (SVM), artificial neural 
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networks (ANN) (Juhos et al., 2008), and space-time neural network (Li et al., 2020) are also used 

for measuring tropospheric NO2. Studies indicate that LMM has better predictive power in 

explaining spatial and temporal NO2 distribution as compared to classical linear regression 

approaches, e.g., multivariate model (Lee et al., 2011; Lee and Koutrakis, 2014). Though a linear 

regression model can establish an empirical relationship between dependent and independent 

variables, it disregards the variation among groups (e.g., month) (El-Assi et al., 2017). On the other 

hand, LMM considers grouping/clustering of variables; enabling a better understanding of the 

temporal changes of a dependent variable (Gelman and Hill, 2006; Magezi, 2015). The LMM 

application does, however, appear to have limited capability in regards the mapping and modeling 

of NO2 concentrations (Lee and Koutrakis, 2014).  

Various studies have measured the concentration of atmospheric NO2 in different geographical 

settings over time and space (Herron-Thorpe et al., 2010; Ryu et al., 2019; ul-Haq et al., 2018), however 

the majority of them have incorporated only a few factors in the modelling (Elminir, 2005; Zhou et 

al., 2012). Only a small number of studies have focused specifically on developing countries where 

station-based NO2 monitoring data is notably lacking (Azkar et al., 2012; Bechle et al., 2013). In these 

circumstances a comprehensive evaluation of NO2 is difficult to perform due to (i) lack of station-

based data (Bechle et al., 2013; Liu et al., 2016); (ii) spatial heterogeneity of the pollutant (Cooper et 

al., 2020; Goldberg et al., 2021); (iii) uncertainties in various statistical and machine learning-based 

models (Li et al., 2020; Zhang et al., 2016); and (iv) a lack of robust spatiotemporal modeling 

approaches (Bechle et al., 2013; Vîrghileanu et al., 2020). The aim of this research, using Bangladesh 

as the case study area, is twofold: (i) to model spatiotemporal distribution of NO2 concentration 

with high-resolution TROPOMI data; (ii) to isolate factors affecting its distribution through the 

use of spatial linear mixed models (LMMs).  

2. Materials and methods
2.1. NO2 pollution in Bangladesh 

Bangladesh is located between latitude 20º34′ and 26º38′ N, and longitude 88º01′ and 92º41′ E in 

South Asia (Figure 1) and has a population of 164.6 million people (BBS, 2019). The climate regime 

is sub-tropical, with persistent humidity and precipitation controlled by a monsoonal season 

(Mullick et al., 2019). The major cities are Dhaka, Chittagong, Rajshahi, Sylhet, Khulna, and Barisal. 

Ever-increasing city populations, as well as essentially uncontrolled urbanization, has resulted in 

many environmental issues. This includes heavy traffic congestion and severe air pollution (Rana 

and Khan, 2020). Almost 33% of total population of the country lives in cities, with a 2.92% decadal 

growth of urban population (DoE, 2018).  
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Bangladesh is considered one of the most polluted countries in the world (Kurata et al., 2020). Every 

year, it experiences a loss of approximately 200–800 million US$ due to air pollution, especially 

in the major cities (Azkar et al., 2012). Emissions from motor vehicles and industrial discharges are 

major sources of such pollution (Islam et al., 2020). The level of pollution is increasing every year, 

so damage to lives and resources has become a common feature. As a result, the country is 

struggling to meet widely accepted, WHO-defined air quality standards (Rana and Khan, 2020).  

Researchers commonly employ discrete methods to produce various air pollution scenarios. Salam 

et al. (2008) used in-situ observations to measure the distribution of gaseous pollutants in Dhaka 

city. To simulate the severity of air pollutants in Bangladesh, Azkar et al. (2012) used Weather 

Research and Forecasting (WRF) – Community Multiscale Air Quality Model (CMAQ) model, 

incorporating data from a limited number of stations. Sadia et al. (2019) measured PM2.5 and NO2 

concentrations in Dhaka using five locations. Rahman et al. (2019) used data from three monitoring 

stations to assess trace gases during different seasons. Islam et al. (2019) utilized OMI data to 

measure aerosol optical properties for more than 15 years. A recent study employed TROPOMI 

data to evaluate changes in four air pollutants (e.g., NO2, SO2, CO, and O3) in regard COVID-19 

lockdown policies (Rahman et al., 2020). 

There were only 11 Department of Environment (DoE) air quality monitoring stations operating in 

Bangladesh from 2012 to June 2019. The accurate observation of NO2 concentration is, therefore, 

very challenging (Azkar et al., 2012; DoE, 2018). Existing studies have used only a specific city, or 

a few sampling locations, to evaluate NO2 pollution (Rahman et al., 2019; Sadia et al., 2019), meaning 

that studies on spatiotemporal patterns of NO2 concentration at the national level, in relation to 

anthropogenic and environmental factors, are few and far between. Existing studies could also not 

quantify temporal variations in NO2 pollution (ul-Haq et al., 2018) due to the absence of high-

resolution data. This study attempts to rectify these shortcomings.  
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Figure 1 Location of air quality and meteorological measurement stations in Bangladesh 
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2.2. TROPOMI data 
This study used Sentinel 5P TROPOMI data to monitor spatial and temporal variations of NO2 

concentration. The tropospheric vertical column density (VCD) dataset of NO2 was obtained 

through the Google Earth Engine (GEE) platform (Gorelick et al., 2017). The dataset has a spatial 

resolution of 0.01 arc-degree. This study utilized preprocessed level 3 (L3) products, which were 

produced by Quality Assurance (QA) filtering (pixels with QA value <75% were removed) (Eskes 

et al., 2019). The L3 NO2 VCD data for 12 months (July 2018 - June 2019) were retrieved, based 

on periods common to both TROPOMI and the in-situ NO2 data. TROPOMI NO2 data are available 

for different times of the day. A reducer function was used (JavaScript code) in the GEE platform 

to batch-process time-series data for a month. This was then aggregated to derive the mean monthly 

VCD of NO2. In this function, a scale argument was used for co-registering all monthly grids. The 

images were subsequently exported to GeoTIFF for further analyses.  

Table 1 Datasets used in this study 

Variable Resolution Unit Data source 

Tropospheric NO2 
vertical column 
density 

0.01 arc degree mol/m2  Sentinel-5 Precursor Offline 
https://scihub.copernicus.eu/ 

Ambient NO2 
concentration 

- ppb Department of Environment (DoE), Bangladesh 
http://case.doe.gov.bd/ 

Enhanced vegetation 
index (EVI) 

1 km - MOD13A2
https://lpdaac.usgs.gov/products/mod13a2v006/

Windspeed 2.5 arc minutes m/s Monthly Climate Grid
http://www.climatologylab.org/terraclimate.html

Rainfall amount 0.1 arc degrees mm/hr Global precipitation measurement (GPM)
(v6)

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERG
M_06/summary

Maximum 
temperature 

- oC Bangladesh Meteorological Department (BMD)
http://live3.bmd.gov.bd/

Relative humidity - % Bangladesh Meteorological Department (BMD)
http://live3.bmd.gov.bd/

Population density 3 arc second people/grid WorldPop Global Project Population Data 
https://www.worldpop.org/ 

Location of industrial 
activity 

- - HOTOSM Bangladesh Buildings 
https://www.hotosm.org/ 
https://data.humdata.org/dataset/hotosm_bgd_build
ings 
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2.3. In-situ data  

Many studies have reported a strong correlation between satellite and ground-based NO2 

observations (Bechle et al., 2013; Li et al., 2020; Tzortziou et al., 2018). A short photochemical life 

makes atmospheric NO2 strongly associated with local emissions caused by anthropogenic forcing 

(Goldberg et al., 2021). For this study, air quality observation data from 11 monitoring stations was 

obtained from the Department of Environment (DoE) of Bangladesh and used to estimate the 

degree of alignment between the terrestrial and in-situ observations. The DoE had previously 

installed air quality monitoring stations across the country (Figure 1) as part of the Clean Air and 

Sustainable Environment (CASE) project. Three monitoring stations were located in Dhaka, two 

were in Chittagong, and Gazipur, Narayangonj, Khulna, Rajshahi, Sylhet, and Barisal each had 

one (DoE, 2018). These stations were installed in urban centers with a population in excess of 

500,000. The chemiluminescence method was used for evaluating the NO2 concentrations in the 

air. Monthly NO2 concentration was measured in parts per billion (ppb) (http://case.doe.gov.bd/).  

2.4. Indicators of NO2 concentration 

A variety of environmental and anthropogenic parameters influence the degree of tropospheric air 

pollution in any specific area (Bernard et al., 2001). Existing studies have used various combinations 

of indicators to examine the association between NO2 and factors (Cichowicz et al., 2017; Elminir, 

2005; Fallmann et al., 2016; Gorai et al., 2015; Kwak et al., 2017; Ryu et al., 2019; Zheng et al., 2019). 

This study has selected seven indicators based on an extensive literature review. These are: 

enhanced vegetation index (EVI), wind speed (WS), rainfall, maximum temperature, relative 

humidity, population, and distance to industrial locations (Table 1). Raster maps of the seven 

indicators were generated at a 1 km grid to align with the TROPOMI data.   

Ryu et al. (2019) indicated that an increase in vegetation cover can reduce NO2 concentrations. The 

MOD13A2 EVI product (Didan, 2015) was used in this study to examine this factor. Cloud-free 

EVI pixels were utilized to obtain monthly means. The local wind speed determines how fast 

pollutants are transported from their point of origin (Gorai et al., 2015). Monthly WS data were 

collected from TerraClimate (Abatzoglou et al., 2018). This has a resolution of 2.5 arcmin and is 

measured in meters per second (m/s). For this study the WS data was converted to kilometers per 

hour (km/hr). Kwak et al. (2017) concluded that fluctuations in rainfall intensity can either have a 

positive or negative effect on NO2, so monthly rainfall data at a spatial resolution of 0.1 arc-degree 

was acquired from GPM (Huffman et al., 2019) (Table 1). Monthly EVI, WS, and rainfall data over 

Bangladesh from July 2018 to June 2019 were retrieved using GEE. 
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Elminir (2005) showed that variations in temperature have an impact on NO2 pollution while relative 

humidity is negatively related, so temperature and RH data were collected from BMD (Table 1). 

The monthly mean of maximum temperature (MMAXT) and RH for all (e.g., 43) stations in 

Bangladesh were derived using an inverse distance weighted (IDW) function (Childs, 2004).  

Industrial activities and vehicular mobility can significantly influence NO2 pollution, while a dense 

population means increased anthropogenic forcing (Zhu et al., 2019). 2019 population density data 

was obtained from WorldPop (www.worldpop.org) (Table 1) and resampled to a 1 km grid using 

a nearest neighbor resampling method. The concentration of NO2 is greatest at the source of 

industrial emissions (Ryu et al., 2019), so all industrial locations within Bangladesh were retrieved 

from the HOTOSM (Table 1). Distance to industrial locations was subsequently calculated using 

a Euclidian distance function. 

2.5. Linear Mixed Models (LMMs) 

Several linear mixed models (LMMs) were developed for this study incorporating VCD of NO2 as 

a dependent variable. EVI, rainfall, WS, MMAXT, and RH were employed as dynamic variables, 

and population density and distance to industries were used as static independent variables. The 

values of all dependent and independent variables were then grouped by month.  

2.5.1. Multicollinearity testing 

The existence of multicollinearity among the independent variables needs to be assessed to ensure 

that values with high standard errors are not produced. As a check, the variance inflation factor 

(VIF) of all independent variables was estimated (Yu et al., 2015) using an R package (Fox et al., 

2018). VIF indicates the degree of variance if the estimated coefficients are inflated by 

multicollinearity. Values exceeding 2.5 are a cause of concern, while a value >10 indicates 

multicollinearity (Midi et al., 2010). In this study, the VIF value of all independent variables was 

estimated to be less than 2.1, indicating that the variables of interest were free from 

multicollinearity. 

2.5.2. Model development 

Three types of LMMs — base model, random intercept model, and random intercept and slope 

model — were developed (Table 2). The base model did not include any independent variables to 

estimate monthly changes in NO2. The two other models did incorporate independent variables in 

their development. The random intercept model allowed intercepts to vary by group (months), 

while the slopes remained fixed. In contrast, the random intercept and slope model allowed both 
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the intercepts and slopes to vary by group (i.e., months). Group-specific slopes and intercepts were 

obtained. The Maximum Likelihood (ML) method was used for coefficient estimation. Heck et al. 

(2013) recommended the use of the ML method when comparing different models, and where the 

number of observations is sufficient. An analysis of variance (ANOVA) (Rouder et al., 2016) was 

conducted to compare the performance of different LMMs. Satterthwaite's t-test was used to 

calculate statistical significance (p values) (Satterthwaite, 1946). An intra-class correlation 

coefficient (ICC) was also calculated to check how much clustering could be accounted for by each 

model (Thompson et al., 2012). 

Table 2 Structures of the LMM model, employed in this study 

Model Equation 

Base model 𝑦𝑖𝑗  = (𝛼00 +  𝛼0𝑗) + 𝑒 (i) 

Random intercept model 𝑦𝑖𝑗  = (𝛼00 + 𝛼0𝑗) + 𝛽1𝑀𝑀𝐴𝑋𝑇𝑖𝑗 + 𝛽2𝑅𝐴𝐼𝑁𝑖𝑗 + 𝛽3𝑊𝑆𝑖𝑗

+ 𝛽4𝑅𝐻𝑖𝑗 + 𝛽5𝐸𝑉𝐼𝑖𝑗 + 𝛽6𝑃𝑂𝑃𝑖 + 𝛽7𝐼𝑁𝐷𝑖 + 𝑒

(ii) 

Random intercept and slope 
model 

𝑦𝑖𝑗  = (𝛼00 + 𝛼0𝑗) + (𝛽1 + 𝜇1𝑗)𝑀𝑀𝐴𝑋𝑇𝑖𝑗 + (𝛽2

+ 𝜇2𝑗)𝑅𝐴𝐼𝑁𝑖𝑗 + (𝛽3 + 𝜇3𝑗)𝑊𝑆𝑖𝑗 + (𝛽4

+ 𝜇4𝑗)𝑅𝐻𝑖𝑗 + 𝛽5𝐸𝑉𝐼𝑖𝑗 + 𝛽6𝑃𝑂𝑃𝑖 + 𝛽7𝐼𝑁𝐷𝑖

+ 𝑒

(iii) 

where, 𝑦𝑖𝑗  = 𝑙𝑜𝑔[VCD of NO2]𝑖𝑗 is log of the tropospheric NO2 column number density

(normalized to 0-1 scale), observed in the ith grid in month j; 𝛼00 is the fixed intercept and 𝛼0𝑗 is

month specific random intercept; 𝑀𝑀𝐴𝑋𝑇𝑖𝑗, 𝑅𝐴𝐼𝑁𝑖𝑗, 𝑊𝑆𝑖𝑗, 𝑅𝐻𝑖𝑗 and 𝐸𝑉𝐼𝑖𝑗  are monthly mean of 

maximum temperature, rainfall, WS, RH and EVI observed in the ith grid in month j (normalized 

to 0-1 scale); 𝑃𝑂𝑃𝑖  = 𝑙𝑜𝑔[𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦]𝑖 is the ith grid (normalized to 0-1 scale); 𝐼𝑁𝐷𝑖 is

the Euclidean distance of the ith grid from nearest industrial activity (normalized to 0-1 scale); 

𝛽1~𝛽7 are fixed slopes for dependent variables; 𝜇1~𝜇7 are random slopes and they are month 

specific; and e represents residual error. 

All data were nested into 12 groups, each group representing an individual month. The primary 

database was initially used without any kind of data transformation, however some of the models 

failed to converge due to the high volume of data and the complexity of the models. Sauzet et al. 

(2013) had recommended the use of LMM in the modelling only when convergence was achieved. 

To resolve this issue, the highly skewed variables (e.g., NO2 and population) were log-transformed. 

Monthly mean rainfall data was converted to mm/day for ease of operation and normalization was 
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performed to rectify the issue of differing variable scales. Iterative trial and error operations were 

then conducted until all models converged.    

2.5.3. Model hypotheses  

The development of the models used multiple hypotheses to explain the relationship between 

potential factors and NO2 concentration. The hypotheses of this study were: 

1. An abundance of healthy vegetation reduces NO2 pollution.

2. The mean maximum temperature has a positive correlation. The relationship can also be

temporally negative.

3. An increase in the amount of rainfall reduces NO2 concentration.

4. The pattern of the relationship between wind speed and VCD of NO2 varies at monthly

scale.

5. Relative humidity is negatively correlated with the accumulation of tropospheric NO2.

6. The higher the population density, the greater the NO2 concentration is.

7. NO2 pollution tends to be lower in areas where distance to industrial locations is higher.

3. Results
3.1. Distributions of atmospheric NO2 and its indicators 

Density plots, descriptive statistics of atmospheric NO2 and the seven indicators are shown in 

Figure 2. The distribution of two variables (e.g., NO2 and population density) was positively 

skewed (Figure 2 a, g). The annual mean of NO2 was found to be 0.9 ×10-4mol/m2 for the whole 

of Bangladesh. The mean of maximum temperature and relative humidity was 31.05 oC and 

76.12%, respectively (Figure 2 c, e), indicating that a warm humid climate prevailed during the 

study period. Win speed variability was high, ranging from 0.36 to 15.84 km/hr (Figure 2 h). EVI 

ranged from -0.19 to 0.98 with a mean of 0.33 (Figure 2 b). In the case of monthly precipitation, a 

number of areas received a maximum rainfall of 1.51 mm/hr (Figure 2 d), while some areas did 

not receive any rainfall. The highest population density was found to be 1682 with a standard 

deviation of 25.65 people/km2 (Figure 2 g). A total of 680 industrial locations were recorded, with 

almost half of these located in the districts of Dhaka and Narayanganj. 
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Figure 2 Density plot and descriptive statistics of: (a) VCD of NO2; (b) Enhanced vegetation index; (c) 

Mean maximum temperature; (d) Rainfall; (e) Relative humidity; (f) Windspeed; (g) Population density; 

(h) Industrial locations
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3.2. Distribution of NO2 concentrations 

3.2.1. Monthly variation  

The spatial variability of NO2 concentration in Bangladesh in each month (July 2018 to June 2019) 

is shown in Figure 3. Elevated concentrations were observed between September 2018 and March 

2019. The central part of Bangladesh (particularly the capital city of Dhaka and its surroundings) 

was characterized by higher NO2 concentrations than the rest of the country. The district-wise 

tropospheric NO2 is shown in Figure 4. Pollutant concentrations were greatest in November 2018. 

The mean concentration was over 0.9 ×10-4mol/m2 in the 5% of the total country area, with the 

highest value being 5.03 ×10-4mol/m2 in the central region (Dhaka and Narayanganj districts) 

(Table S1, Figure 4).  

During July to August 2018, and in April 2019, however, the NO2 concentration was <0.3 ×10-

4mol/m2 over more than two-thirds of the country, with only 0.33% of the country recording more 

than 0.9 ×10-4mol/m2 NO2 in August 2018. It should be noted that NO2 concentrations in India 

influence the atmospheric conditions of western Bangladesh, particularly the Chapai Nawabganj 

and Rajshahi districts. Chittagong district, the commercial capital of the country, experienced only 

a moderate level of NO2 in the atmosphere in March 2019 (Figure 4).  
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Figure 3 Spatial distribution of tropospheric NO2 concentration over Bangladesh, 2018-2019 
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Figure 4 District-wise monthly mean NO2 concentration 
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3.2.2. Comparison between satellite and ground-based measurements  

Satellite-derived monthly observed NO2 was plotted against in-situ field data (see Figure 5). This 

yielded a coefficient of determination (r2) of 0.67, indicating a good correlation between the two 

datasets (i.e., in-situ versus satellite). This provides evidence that tropospheric NO2 can be used as 

a proxy for ambient NO2. 

Figure 5 Correlation between in-situ and TROPOMI-based NO2 

3.3. Factors influencing NO2 

A series of linear mixed models (LMMs) were developed to diagnose factors affecting variations 

in atmospheric NO2. Table 3 presents a comparative performance of six LMMs. Results show that 

14.4% of the variation of the dependent variable could be accounted for by the base model. In 

contrast, the ICC value increased to 0.174 in Model 2, suggesting that indicators showing clustering 

effects were more accurate in describing NO2. Results also showed positive intercept values for all 

months (Supplementary Table S2), indicating the presence of atmospheric NO2 across the year. 

This model did, however, produce a low value for various performance indicators (e.g., p-value) 

(Table 3). The relationship between monthly atmospheric NO2 concentration and environmental 

variables (e.g., MMAXT, RAIN, WS, RH, and EVI), (Supplementary Fig. S2-S6) was examined 

to identify variables for the random effect models. Supplementary Fig. S2 (a-d) shows the monthly 

changes in the relationship between NO2 and environmental factors. Models 3-6 were developed 
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to allow both intercepts and slopes to vary by month. The interaction between NO2 and EVI did 

not vary much by month (Supplementary Fig. S6), so other environmental variables such as RH, 

MMAXT, RAIN, and WS were added incrementally to model 3-6 Model 6 outperformed all others 

(see Table 3), as shown by the low residual standard deviation, so Model 6 was employed to 

determine the effects of various factors on NO2 distribution in the study area.   

Table 3 Performance of different LMM models with ANOVA 
Model ID Equation Performance indicators Indicator 

values 
Base specification Model 1 y ~ 1 + (1 | Month) N. parameters 3 

Log-likelihood 1945338 
AIC -3890670
BIC -3890633
ICC 0.144
chi-square

Fixed effect model with 
all independent 
variables included 

Model 2 y ~ 1 + MMAXT + RAIN 
+ WS + RH + EVI + POP
+ IND + (1 | Month)

N. parameters 10 
Log-likelihood 2358620 
AIC -4717221
BIC -4717097
ICC 0.174
chi-square 826565
ANOVA test vs Model 1 <2e-16 *** 

Random effect model 
with only RH slope 

Model 3 y ~ 1 + MMAXT + RAIN 
+ WS + RH + EVI + POP
+ IND + (1 + RH | Month)

N. parameters 12 
Log-likelihood 2389421 
AIC -4778818
BIC -4778670
ICC 0.805
chi-square 61601
ANOVA test vs Model 2 <2e-16 *** 

Random effect model 
with RH and MMAXT 
slope 

Model 4 y ~ 1 + MMAXT + RAIN 
+ WS + RH + EVI + POP
+ IND + (1 + RH +
MMAXT | Month)

N. parameters 15 
Log-likelihood 2419413 
AIC -4838796
BIC -4838611
ICC 0.858
chi-square 59984
ANOVA test vs Model 3 <2e-16 *** 

Random effect model 
with RH, MMAXT and 
RAIN slope  

Model 5 y ~ 1 + MMAXT + RAIN 
+ WS + RH + EVI + POP
+ IND + (1 + RH +
MMAXT + RAIN | Month)

N. parameters 19 
Log-likelihood 2436430 
AIC -4872822
BIC -4872588
ICC 0.807
chi-square 34034
ANOVA test vs Model 4 <2e-16 *** 

Random effect model 
with RH, MAMXT, 
RAIN and WS slope 

Model 6 y ~ 1 + MMAXT + RAIN 
+ WS + RH + EVI + POP
+ IND + (1 + RH +
MMAXT + RAIN + WS |
Month)

N. parameters 24 
Log-likelihood 2507269 
AIC -5014490
BIC -5014194
ICC 0.817
chi-square 141677
ANOVA test vs Model 5 <2e-16 *** 

Significant codes:  0 ‘***’   0.001 ‘**’   0.01 ‘*’   0.05   ‘.’   0.1 ‘ ’   1 
MMAXT = Mean maximum temperature; RAIN = Rainfall amount; WS = Windspeed; RH = Relative humidity; EVI = Enhanced 
vegetation index; POP = log of population density; IND = Euclidean distance from nearby industrial location 
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Table 4 summarizes fixed intercept effects of the differing factors. Of the seven independent 

variables, five were deemed to be statistically significant. Rainfall and WS were flagged as 

insignificant, indicating that the annual mean value of these parameters had a low level of influence 

on NO2. Among the significant variables, both MMAXT and population density had a positive 

influence, i.e., one unit increase in population density (log-transformed) is likely to increase NO2

by 3.83% [10*(exp(0.25)*100%-100%)/(10*Max value of log(POP))]. However, the negative 

coefficients of RH, EVI, and distance to industry indicated that an increase in these variables would 

decrease NO2. For instance, one unit increase in EVI could potentially decrease NO2 by 35.68% 

[10*(exp(-0.0356)*100%-100%)/Max value of EVI]. EVI represents vegetation condition, so an 

increase in healthy vegetation is likely to decrease NO2 pollution.  

Table 4 Fixed effects of different factors on NO2 
Term Coefficient Standard error p-value Confidence interval (95%) 

Low High 
Intercept 0.487 0.033 5.04e-09 *** 0.422 0.553 
MMAXT 0.148 0.083 0.098▪ -0.014 0.31 

RAIN 0.183 0.329 0.589 -0.462 0.827 
WS -0.054 0.065 0.425 -0.182 0.074 
RH -0.187 0.044 0.0011 ** -0.273 -0.101
EVI -0.036 0.0004 < 2e-16 *** -0.036 -0.035
POP 0.250 0.0005 < 2e-16 *** 0.249 0.251

IND -0.115 0.0004 < 2e-16 *** -0.115 -0.114
Significant codes:  0 ‘***’   0.001 ‘**’   0.01 ‘*’   0.05 ‘▪’    0.1 ‘ ’  1 

Estimates of the random effects of the four indicators (RH, MMAXT, rainfall, and WS) on NO2 is 

summarized in Table 5. Although annual mean values of rainfall and WS were statistically 

insignificant (Table 4), the monthly variation was significant and had a month-specific effect on 

the temporal change in NO2 (Table 5). Variation in RH and MMAXT was also evident with the 

deviations of RH positive in four different months (April, May, July, and August), and negative in 

other months (Table 5). 
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Table 5 Random effects of different factors on NO2 

Term Parameters Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 

Intercept 

Coefficient -0.244* -0.119* -0.001 0.026* -0.075* 0.005* 0.038* -0.006* -0.018* 0.003 0.212* 0.179* 
Standard error 0.004 0.005 0.006 0.003 0.002 0.002 0.001 0.002 0.002 0.003 0.004 0.006 

Lower bound (95%) -0.252 -0.130 -0.013 0.020 -0.079 0.002 0.036 -0.010 -0.021 -0.004 0.204 0.166 
Upper bound (95%) -0.235 -0.109 0.011 0.032 -0.071 0.008 0.041 -0.003 -0.015 0.010 0.221 0.191 

RH 

Coefficient 0.053* 0.048* -0.085* -0.271* -0.080* -0.003 -0.074* -0.045* 0.327* 0.233* 0.021* -0.125*
Standard error 0.005 0.004 0.004 0.003 0.002 0.002 0.002 0.003 0.002 0.003 0.004 0.006

Lower bound (95%) 0.044 0.039 -0.093 -0.276 -0.083 -0.007 -0.078 -0.051 0.324 0.227 0.012 -0.136
Upper bound (95%) 0.062 0.057 -0.076 -0.265 -0.076 0.001 -0.070 -0.040 0.330 0.239 0.029 -0.113

MMAXT 

Coefficient 0.318* 0.154* 0.054* 0.349* 0.561* -0.452* -0.308* 0.006* -0.136* -0.185* -0.220* -0.141*
Standard error 0.004 0.005 0.006 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.004

Lower bound (95%) 0.311 0.144 0.042 0.342 0.552 -0.458 -0.313 0.000 -0.142 -0.190 -0.225 -0.150
Upper bound (95%) 0.325 0.164 0.066 0.357 0.569 -0.446 -0.302 0.012 -0.130 -0.180 -0.215 -0.133

RAIN 

Coefficient -0.173* -0.343* -0.208* -0.050* -2.220* 2.550* 1.670* 0.492* -0.613* -0.590* -0.290* -0.233*
Standard error 0.002 0.002 0.003 0.003 0.039 0.045 0.085 0.005 0.010 0.006 0.002 0.002

Lower bound (95%) -0.176 -0.346 -0.214 -0.055 -2.300 2.470 1.510 0.482 -0.633 -0.601 -0.294 -0.236
Upper bound (95%) -0.169 -0.339 -0.202 -0.045 -2.140 2.640 1.840 0.503 -0.593 -0.578 -0.286 -0.230

WS 

Coefficient -0.053* -0.079* 0.068* -0.040* -0.488* 0.371* 0.425* 0.090* -0.041* -0.041* -0.174* -0.039*
Standard error 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.001 0.001 0.002

Lower bound (95%) -0.056 -0.082 0.064 -0.044 -0.494 0.367 0.422 0.085 -0.045 -0.044 -0.176 -0.042
Upper bound (95%) -0.051 -0.075 0.073 -0.035 -0.482 0.375 0.428 0.095 -0.037 -0.039 -0.172 -0.036

* Significant at 95% confidence level

Spatiotemporal dynamics of NO2 concentration with linear mixed models: a Bangladesh case study



20 

Table 6 Mixed effects of factors on NO2 concentration 

Month Intercept MMAXT RAIN WS RH EVI POP IND 
Jul-18 0.244 0.466 0.010 -0.107 -0.134 -0.036 0.250 -0.115
Aug-18 0.368 0.302 -0.160 -0.133 -0.139 -0.036 0.250 -0.115
Sep-18 0.486 0.202 -0.026 0.014 -0.272 -0.036 0.250 -0.115
Oct-18 0.513 0.497 0.133 -0.094 -0.458 -0.036 0.250 -0.115
Nov-18 0.412 0.709 -2.037 -0.542 -0.266 -0.036 0.250 -0.115
Dec-18 0.493 -0.304 2.737 0.317 -0.189 -0.036 0.250 -0.115
Jan-19 0.526 -0.160 1.855 0.371 -0.261 -0.036 0.250 -0.115
Feb-19 0.481 0.154 0.675 0.036 -0.232 -0.036 0.250 -0.115
Mar-19 0.469 0.012 -0.431 -0.095 0.140 -0.036 0.250 -0.115
Apr-19 0.491 -0.037 -0.407 -0.095 0.046 -0.036 0.250 -0.115
May-19 0.700 -0.072 -0.107 -0.228 -0.166 -0.036 0.250 -0.115
Jun-19 0.666 0.007 -0.051 -0.093 -0.312 -0.036 0.250 -0.115

The combined effects of environmental and anthropogenic factors on NO2 were also examined (see 

Table 6). Both fixed and random effects were integrated. In this study, the mixed effect is important 

mostly for MMAXT and RH, because they have shown a significant relationship. The combined 

effect of MMAXT is evident during the winter months of December and January and monsoon 

months of April and May, when MMAXT negatively influenced NO2, although the relationship 

was positive for other months. RH was significant as a fixed and random effect term (except for 

December). Examining the mixed effects, it can be noted that RH had a negative influence on NO2 

concentration when the annual average RH was greater than 71%. As the slopes of EVI, population 

density, and distance from the nearby industry do not vary, their coefficient values are the same 

for each month (Table 6). The relationship between rainfall and NO2 also varied throughout the 

study period with a negative correlation observed during the two monsoon months (July and 

October) and three winter months (December, January, and February). WS had a negative 

influence on NO2 concentration in most months. 

4. Discussion
In this study, several LMMs (linear mixed model) were developed to examine the spatiotemporal 

patterns of atmospheric NO2 and the factors influencing NO2 pollution. Results revealed good 

alignment between satellite-derived and in-situ-based NO2 values. This appeared primarily due to 

the fine resolution of the TROPOMI data. A similar result was observed in research undertaken in 

other areas (Cooper et al., 2020; Goldberg et al., 2021). The mixed-effect analyses showed that the 

month-specific relationships were statistically significant between NO2, and the differing climatic 

variables used. These findings are in accord with Elminir (2005), who reported that ambient 

temperature, in general, is positively correlated with NO2 concentration, though the correlation 

coefficients may vary temporarily. The mean maximum temperature across Bangladesh was less 
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than 28 oC during December and January, when the temperature was found to be negatively 

correlated with NO2. In an examination of the seasonality of air pollution, Cichowicz et al. (2017) 

found that a lower temperature in the winter months can lead to an increase in NO2 levels. Work 

by Kwak et al. (2017) showed that with an increase in rainfall, NO2 concentration can either increase 

or decrease. In the present study, results of the combined mixed effect models revealed that rainfall 

was positively correlated with NO2 in October but negatively correlated in November. Further 

investigation revealed the existence of a positive correlation, especially in large cities (e.g., Dhaka 

and Chittagong) during July when rainfall intensity is usually very high (Shahid, 2011). Kwak et al. 

(2017) showed that this feature may be related to city traffic volume which tends to increase with 

heavy rainfall events. In the case of three winter months however (December, January, and 

February), this variable also had a positive association, despite a lower rainfall intensity. In general 

an inverse relationship is apparent between precipitation and NO2 concentration during the summer 

and rainy seasons. This agrees with Ahmad et al. (2011). The relationship between NO2 

concentration and RH is also in accord with Elminir (2005). The contrasting relationship between 

RH and NO2, on the other hand, may be related to the area of interest, data and methods used.  

Zhou et al. (2012) observed that the relationship of wind speed with NO2 can vary, depending on 

the wind direction. In Bangladesh, the direction of wind fluctuates seasonally (Khan et al., 2004), 

so its influence on the dispersal of NO2 varies. In this study, wind speed (as a random term) was 

found to be significant. The month-specific relationship between wind speed and NO2 

concentration were obvious. The wind speed in winter is relatively low compared to the wind speed 

during summer (Khan et al., 2004). Low wind speeds result in the slow dispersal of pollutants, and 

therefore NO2 can be readily deposited within the emission source area. During winter, when wind 

speed slightly increases, pollutants in the wind get transported to nearby areas from industrial sites. 

As a result, wind speed showed a positive correlation during December, January, and February. 

This finding is in accord with Ryu et al. (2019).  

Sahsuvaroglu et al. (2006) detected a high level of NO2 pollution in the vicinity of industrial 

establishments in research conducted in Hamilton, Canada. This supports the findings in the current 

work. The greater the distance of an area from an industry, the lower is the concentration of NO2 . 

For instance, NO2 concentration over Mirpur area of Dhaka city was 3.22 ×10-4mol/m2 during 

November 2018. Relocating industries 500 m outward from their current position could reduce the 

mean monthly concentration of NO2 in the Mirpur area by 46%. Lamsal et al. (2013) reported a 

positive association between urban population size and NO2 concentration in the United States, 

Europe, China, and India. This also agrees with the current study. The present work noted that 

population density was positively related to NO2, and agrees with work by Ryu et al. (2019). This 
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research also noted that vegetation acts as a reduction factor in regards pollutants such as NO2.  

NDVI was used in this previous work. The current work uses EVI, due to the tendency for NDVI 

to saturate. EVI has a higher degree of sensitivity to the regional variation of green footprints 

(Zhang et al., 2016). Kumari et al. (2021) observed a negative correlation between NO2 and EVI which 

agrees with the current study results; that higher vegetation cover (denoted by EVI) played a strong 

role in reducing NO2 pollution. Indications are that a unit increase in EVI could reduce NO2

concentrations by 35.68%.  

5. Conclusion
In this study, space-time variations of tropospheric vertical column density (VCD) of NO2 over 

Bangladesh for the period July 2018 to June 2019 were examined using TROPOMI satellite data. 

The influence of environmental and anthropogenic factors on NO2 was investigated using linear 

mixed models (LMMs). Results indicated that the monthly variability in NO2 concentrations was 

associated with meteorological factors. Month-specific variability of maximum temperature, 

relative humidity, rainfall, and wind speed were used in modelling the NO2 concentration 

fluctuations. Monthly average maximum temperature and relative humidity were the main factors 

affecting monthly variations in NO2 readings. It was observed that an increase in rainfall during 

the monsoon season could result in either an increase, or a decrease, in observed NO2. Conversely 

during the winter, industrial and vehicular emissions seemed to affect the distribution of ambient 

NO2, possibly due to the effect of low rainfall. High maximum temperatures can either have a 

positive or negative relationship with NO2, and are dependent on the time of year. In general, NO2 

concentrations tended to decrease with an increase in temperature.  

This study has a number of limitations. There is likely to be a strong relationship between traffic 

volume and the accumulation of NO2. Gridded data on traffic volume throughout Bangladesh are 

not available, however, so it was not possible to include this variable in the current work. Updated 

data from DoE air monitoring stations were also not available. Lastly, wind direction as a variable 

was not considered. Further research is recommended. 

Despite the limitations noted above, several suggestions for reducing NO2 concentrations can be 

put forward as a result of this work. TROPOMI data can be used, as an alternative to ground-based 

measurements, to detect the monthly distribution of air pollutants such as NO2. Using monthly 

variations in the climatic variables noted, it may become easier to accurately predict NO2 

concentrations in the different regions. Public awareness can be raised, and citizens encouraged to 

adopt protective measures such as the use of face masks during the months when air pollution is 

predicted to be a problem. Air is ubiquitous, and is impossible to be contained by any bounding 
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structure. Emissions from neighboring countries can create a nuisance so transboundary air quality 

agreements should be in place. A month-specific green tax can be imposed on industries where 

pollutant emissions are high. Districts with high urbanization rates and high population density 

normally have high traffic volumes and associated high vehicle emissions. The current study 

indicates that a decrease in population density could reduce the extent of NO2 pollution. 

Decentralization can play two key roles in this regard. Firstly, decentralizing industries and 

associated activities from major cities could lower population pressure on their surroundings. 

Secondly, relocating industries from cities would also reduce pollutant concentrations. Increasing 

the green footprint in urban areas, and use of biophilic designs, can also result in decreased NO2 

pollution. These policy suggestions are applicable not only to Bangladesh, but also to other 

developing countries that have cities experiencing air pollution problems. 
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