Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Minimally invasive spectroscopic system for intraocular drug detection

Miller, Joe and Wilson, Clive G. and Uttamchandani, Deepak (2002) Minimally invasive spectroscopic system for intraocular drug detection. Journal of Biomedical Optics, 7 (1). pp. 27-33. ISSN 1083-3668

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A novel, minimally invasive measurement technique has been developed for the detection of drugs in the anterior chamber of the eye. Presently there is no satisfactory, real-time detection method available to the ophthalmic community. Accurate determination of drug concentrations in the eye would be of great value and assistance to researchers and manufacturers of ophthalmic drugs and ocular implants, to enable a better understanding of intraocular pharmacokinetics. At present researchers use techniques of direct sampling of the aqueous humor from laboratory animal eyes into which the drug has been introduced topically or systemically. Rabbit eyes are frequently used in this context. Sampling via paracentesis is invasive, and does not yield a continuous measurement. Our approach to addressing this measurement requirement is, in effect, to turn the eye into a cuvette and use optical absorbance spectroscopy measurements to detect drug concentrations. A novel contact lens has been designed using commercial, off-the-shelf, optical design software. The lenses have been optimized to direct light across the anterior chamber of a rabbit's eye. Practical demonstration and characterization of light propagation across the eye have been undertaken and are reported. Preliminary results of the identification of drug compounds introduced into model eyes are also reported.