
Citation: Umar, N.; Gray, A.

Comparing Single and Multiple

Imputation Approaches for Missing

Values in Univariate and Multivariate

Water Level Data. Water 2023, 15,

1519. https://doi.org/10.3390/

w15081519

Academic Editors: Venkatesh

Merwade, Adnan Rajib and Zhu Liu

Received: 4 March 2023

Revised: 4 April 2023

Accepted: 11 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Comparing Single and Multiple Imputation Approaches for
Missing Values in Univariate and Multivariate Water Level Data
Nura Umar 1,2 and Alison Gray 1,*

1 Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK;
nura.umar@strath.ac.uk

2 Department of Mathematics and Statistics, Umaru Musa Yar’adua University, Katsina 820102, Nigeria
* Correspondence: a.j.gray@strath.ac.uk

Abstract: Missing values in water level data is a persistent problem in data modelling and especially
common in developing countries. Data imputation has received considerable research attention, to
raise the quality of data in the study of extreme events such as flooding and droughts. This article
evaluates single and multiple imputation methods used on monthly univariate and multivariate water
level data from four water stations on the rivers Benue and Niger in Nigeria. The missing completely
at random, missing at random and missing not at random data mechanisms were each considered.
The best imputation method is identified using two error metrics: root mean square error and mean
absolute percentage error. For the univariate case, the seasonal decomposition method is best for
imputing missing values at various missingness levels for all three missing mechanisms, followed by
Kalman smoothing, while random imputation is much poorer. For instance, for 5% missing data for
the Kainji water station, missing completely at random, the Kalman smoothing, random and seasonal
decomposition methods had average root mean square errors of 13.61, 102.60 and 10.46, respectively.
For the multivariate case, missForest is best, closely followed by k nearest neighbour for the missing
completely at random and missing at random mechanisms, and k nearest neighbour is best, followed
by missForest, for the missing not at random mechanism. The random forest and predictive mean
matching methods perform poorly in terms of the two metrics considered. For example, for 10%
missing data missing completely at random for the Ibi water station, the average root mean square
errors for random forest, k nearest neighbour, missForest and predictive mean matching were 22.51,
17.17, 14.60 and 25.98, respectively. The results indicate that the seasonal decomposition method,
and missForest or k nearest neighbour methods, can impute univariate and multivariate water level
missing data, respectively, with higher accuracy than the other methods considered.

Keywords: data gaps; water level data; time series; univariate; multivariate; imputation

1. Introduction

Water level is a measure of water depth in rivers/basin/lakes within a given place
over time. Studying water level is important as it can provide warnings for flood risk,
which helps to limit the impact of flood disasters on the local population and is also crucial
for effective water resources management and for policy makers [1]. The study of water
level is also important for the health of a river, to determine the required level for plants
and animals to survive at various times of year [2].

Khalifeloo [3] states that recent extreme events globally, such as flooding, drought
and bush burning, among other natural disasters, were caused largely by climate change,
and these have attracted the attention of researchers to try to provide solutions. Accurate
prediction of such extreme events can allow mitigating measures to be implemented.
However, much water level/hydrological data is complicated by missing observations,
especially in developing countries [4,5], which makes accurate prediction very difficult.
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This data gap is a persistent and common problem faced by researchers in data mod-
elling [6,7] and the impact of missing data in modelling depends partly on the proportion
of missing data [8]. Imputation studies to minimise missing data in hydrological-related
areas have received considerable attention [9]. Various imputation methods providing
promising solutions, including regression-based imputation, expectation-maximisation,
and multiple imputations (MI), have been introduced to handle missing data [10]. How-
ever, selecting a particular imputation approach depends on the process generating the
original data; for instance, hydrological data very often exhibit variability due to spatial
and temporal phenomena [11,12]. Imputation methods based on statistical models can
account for such behaviours and may be used to fill in missing data in hydrological data
such as precipitation, streamflow and water level data.

Missingness in water level data, especially for developing countries, can arise for
various reasons, including electrical power outage or digital sensor issues, bad weather,
faulty data entry from operators, faulty instruments, security challenges and network
coverage [13–16]. Ignoring missing values in a dataset will amount to loss of information
and efficiency, and unreliable results, especially where there is a large proportion of miss-
ing data [6]. Further effects of incomplete data include complications in data handling,
computation and data analyses [17]. Finally, results of statistical analyses may be biased,
causing misleading conclusions [18,19].

Various approaches to missing data problems have been used, prominent among
which are data deletion (complete-case analysis or available-case analysis) and single
imputation [20]. The former approach is criticised because it reduces sample size and can
make statistical analysis difficult, especially for temporal data [7]. It also ignores the causes
of missingness [8]. However, the latter approach maintains the original sample size and
provides a basis for smooth statistical analyses [21].

Single imputation involves replacing each missing value with a single value [22],
whereas the alternative, MI, generates two or more values for each missing value [23]. A
few single imputation methods are mean, median, mode and random imputations. Despite
their usability, most single imputation methods underestimate variance or uncertainty
about the missing values, which yields invalid tests and confidence intervals since the
estimated values are derived from the ones present, and may also produce biased parame-
ter estimates [10,24,25]. They also ignore relationships between variables [26]. Therefore,
MI is preferred where applicable. The availability of these advanced methods in soft-
ware (especially MI) enables researchers to readily replace missing values with imputed
values [27].

The MI method was first proposed by Rubin [28] and simply replaces each missing
value by a vector of D imputed values, D ≥ 2. The D values are ordered in the sense that D
completed datasets can be created from the imputed vectors; replacing each missing value
with the first component in its vector of imputations creates the first completed dataset;
replacing each missing value with the second component in its vector creates the second
completed dataset, and so on [29]. In another definition [25], MI is said to be the act of
replacing the nonresponse item in the dataset with more than one value; as a result of
which, several datasets will be created from it. It has been argued that no single set of
imputations or methods of imputation can satisfy all missing data [6], which implies that
one method may be better than another method for a particular type of data.

Some more sophisticated single imputation methods for handling univariate time
series, comprising the seasonal decomposition, random and Kalman smoothing methods,
are available in the imputeTS package in the R software [30]. The authors recommended
Kalman smoothing and the seasonal decomposition methods for imputing complex uni-
variate time series data. Wijesekara and Liyanage [31] found Kalman smoothing to be the
best method for imputing air quality data. Kalman smoothing is robust for smaller datasets
and recommended for imputing high-resolution data [32–34]. The seasonal decomposi-
tion method was identified as the most effective for imputing univariate time series by
Moritz et al. [35].
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Other studies include Jadhav et al. [36], who compared imputation methods on five
numeric datasets and based on the root mean square error (RMSE) statistic found that k
nearest neighbour (kNN) imputation outperformed another six methods comprising mean,
median, predictive mean matching (PMM), Bayesian linear regression, linear regression
(non-Bayesian) and random methods. Alsaber et al. [37,38] identified missForest and kNN
as appropriate to impute both continuous and categorical variables, compared to Bayesian
principal component analysis, expectation maximisation with bootstrapping, PMM, kNN
and random forest methods for imputing rheumatoid arthritis and air quality datasets,
respectively, using RMSE and mean absolute error criteria.

In the last decade, the application of imputation techniques for missing data in hydro-
logical studies has received increasing interest. Ben Aissia et al. [39] recommend multiple
imputation rather than mean or interpolation imputation methods for multivariate missing
data in hydrological frequency analysis. Various imputation methods which can be used
for hydrological missing data, including the arithmetic mean, median and regression-
based methods, and imputation based on principal components and multiple imputation
were reviewed in Gao et al. [10], who recommended the use of autoregressive conditional
heteroscedasticity models for imputation, since these can produce accurate forecasts of
non-constant volatility and incorporate heteroscedasticity, which are synonymous with
hydrological data. Hamzah et al. [40] evaluated three methods for estimating missing
values of daily streamflow from the Langat River basin, namely robust random regression
imputation, kNN and classification and regression trees (CART); each of these methods was
combined with multiple linear regression (MLR), and based on RMSE and mean absolute
percentage error (MAPE) statistics, CART-MLR was said to be the best imputation method.
A similar follow-up study found hybridised CART-MLR to be best for all considered miss-
ing data percentages, followed by PMM-MLR based on Adj R2, root square error and
MAPE statistics [41].

To the best of our knowledge, these various approaches to imputation have not
been fully exploited in imputing missing values for hydrological data such as water level
discharge in Nigeria. However, the work in [13] for the first time introduced the concept of
MI for imputing annual peak river discharge, which is vital for flood frequency estimation.
The authors compared satellite radar altimetry and MI for five hydrological stations, namely
Baro, Lokoja, Umaisha, Onitsha and Taoussa stations. It was concluded that for a dataset
with 3 years or fewer missing values, both methods can be utilised. However, for data
with more than 3 years missing, radar altimetry was better. Oyerinde et al. [42] used the
PMM method to impute missing data from 22 water discharge stations with different
missing percentages from 2–70% and recommended PMM for imputing data gaps in data
from the Niger basin. However, these two studies failed to consider the missing data
mechanism/pattern, which is important for imputing missing data. In addition, they failed
to consider single imputation methods, which are frequently suitable for imputing complex
univariate time series [30].

This paper presents a comparative study of single and multiple imputation methods
for missing values in water level discharge time series data from four water stations on the
major rivers Benue and Niger in Nigeria, assuming three missing data mechanisms in each
case. The three single imputation methods used are Kalman smoothing and the random
and seasonal decomposition methods for the Kainji water station on the river Niger. Four
imputation methods comprising random forests, missForest, kNN and PMM were used
to impute missing data from the Ibi, Makurdi and Umaisha water stations on the river
Benue. The results should be helpful for selecting a suitable imputation approach in future
water level studies where data are missing and the probable missing data mechanism can
be identified.

A number of key abbreviations are used in this paper and these are summarised in
Abbreviations, for reference.
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2. Materials and Methods

This section will briefly describe the study area and the methodology for the analysis.

2.1. Study Area

The Kainji water station on river Niger, and Ibi, Makurdi and Umaisha water stations
on the river Benue (Table 1, Figure 1) were chosen as the study area. The two rivers cut
across various states in the northern part of Nigeria, with confluence at Lokoja in Kogi
state. There are 194 water monitoring stations currently in the country, mostly located
along the rivers and dams, to monitor the movements of water level discharges. From these
194 stations available, four water stations were selected as having more up-to-date data
than the rest, as some stations have no records from 1980 to date and some have 2 years of
records only, for example, as found from a summary of the Nigeria Hydrological Services
Agency (NIHSA) records. The main reasons for the data gaps at these water stations are
that some people in most communities close to the stations vandalised instruments and/or
there were faulty recording instruments.

Table 1. Characteristics of the selected water stations.

Water
Station State River Established

(Year)
Time

(Month)
Latitude

(Degrees)
Longitude
(Degrees)

Kainji Niger Niger 1980 2010–2016 10.0300 4.6000
Ibi Taraba Benue 1980 2011–2016 8.1800 9.7200

Makurdi Benue Benue 2010 2011–2016 7.7500 8.5300
Umaisha Nasarawa Benue 1980 2011–2016 7.9800 7.2000

Note: Source: NIHSA.
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The dataset from Kainji water station obtained from NIHSA is complete; hence, it
was used for the univariate imputation directly. However, Ibi, Makurdi and Umaisha
stations have 28, 49 and 23 missing observations in the monthly water levels, respectively,
or 39%, 68% and 32% missing data percentages, and the predictive mean matching (PMM)
imputation method was used first to impute these missing values for the purposes of this
study. To avoid influence of this choice on the results of this study, time series models
were fitted to these completed data and the datasets used for the multivariate imputation
were simulated from these fitted models. The seasonal autoregressive integrated moving
average models (4,0,1)(1,0,1); (2,0,2)(1,0,1); and (1,0,2)(1,0,1) were found to be the best fitting
models for Ibi, Makurdi and Umaisha stations, respectively.

Since the Ibi, Makurdi and Umaisha water stations are all located on the river Benue
and the observations are recorded at the same time-points for all three stations, we com-
bined these water level datasets to generate multivariate data, representing water levels
at three locations on the river, and data deletion and imputation were conducted on these
combined data. After imputation, the simulated (complete) data and the imputed data
were compared for each water station separately to obtain the two performance metrics.

2.2. Missing Data Mechanisms

Before imputing data, it is important to know the reason why the data are missing.
The three missing data mechanisms under which missingness occurs comprise missing
completely at random (MCAR), missing at random (MAR), and missing not at random
(MNAR) [43], reviewed briefly below.

2.2.1. Missing Completely at Random

A data value is said to be MCAR if the probability of missingness is the same for all
units in the sample. This implies that the cause of missingness in the data is independent
of the data itself. Following Santos et al. [44], suppose X is a data matrix of order n× p
and xi,j represents the (i,j)th element in X, where i = 1, 2, · · · , n represents the cases and
j = 1, 2, · · · , p represents the variables in the sample. Let X be divided into Xobs and Xmis
representing the observed and missing values, respectively, and suppose we also have an
indicator matrix R of order n× p, which indicates whether the element xi,j is missing or
not: if ri,j = 0, then xi,j is missing, otherwise ri,j = 1 implies xi,j is observed. Then the
probability distribution for MCAR can be written as in Equation (1):

P(R = 0|X, ω) = P(R = 0|ω), (1)

where ω is the parameters of the missing data in the model.

2.2.2. Missing at Random

Under the MAR mechanism, the probability of missingness may depend on the
observed data but not on the value(s) missing, as in Equation (2):

P(R = 0|X, ω) = P(R = 0|Xobs, ω). (2)

2.2.3. Missing Not at Random

The MNAR mechanism is present when the probability of missingness in a variable is
said to be dependent on the observed and unknown data, which implies that the missing
data may be associated with both Xobs and Xmis, as in Equation (3):

P(R = 0|X, ω) = P(R = 0|Xobs, Xmis, ω). (3)

2.3. Imputation Methods for Univariate and Multivariate Data

Imputation methods used here for univariate and multivariate data are briefly de-
scribed below.
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2.3.1. Imputation Methods for Univariate Water Level Time Series Data

Three single imputation methods are used, namely Kalman smoothing and the sea-
sonal decomposition and random methods. These methods, especially Kalman smoothing
and seasonal decomposition, were selected to impute univariate water level because they
frequently produce best results for longer and complex time series data [30].

All three of these methods were implemented here using the R package imputeTS
version 3.3, for univariate time series imputation.

Kalman Smoothing Method

The Kalman smoothing method operates on a basic structural model or the state space
representation of an autoregressive integrated moving average (ARIMA) model [30]. The
origin of Kalman smoothing may be traced back to R.E. Kalman, who introduced a recursive
solution to the discrete-data linear filtering problem in 1960, and over time the method
has received much interest, particularly in autonomous and assisted navigation [45]. A
Kalman filter, as defined by Maybeck [46], is an optimal recursive data processing algorithm
which utilises all available information, irrespective of precision, to estimate the variable
of interest. Welch and Bishop [45] defined the Kalman filter and smoother as a set of
mathematical equations which efficiently compute the posterior distribution over latent
states of a linear state space model given some observed data, and these equations do not
carry out any learning.

Kalman filters derive from Gaussian state space models [47]. These models involve
observation and state vectors, given in Equations (4) and (5), respectively.

yt = Axt + vt, vt ∼ N(0, Rt), (4)

xt+1 = Cxt + Dwt, wt ∼ N(0, Qt), t = 1, . . . , n, (5)

where yt is the vector of observations and xt is the state vector at time t and Qt and Rt are
the process and measurement noise, respectively, x1 ∼ N(µ1, Σ1). The matrices A, C and
D are assumed known, and vt and wt are assumed to be serially independent.

After some derivations using Equations (4) and (5) for initial state x1, with known
parameters, the Kalman filter is derived as in Equation (6):

vt = yt − Axt, Bt = AΣt A′ + Rt,
µt|t = µt + Σt A′F−1

t vt, Σt|t = Σt − Σt A′F−1
t AΣt,

µt+1 = Cµt + Ktvt, Σt = CΣt(C− Kt A)′ + DQtD′,
(6)

where Kt is called Kalman gain and given by Kt = AΣtC′F−1
t and where Ft is a non-

singular matrix.
If µt|t and Σt|t are computed, µt+1 = Cµt and Σt = CΣt|tC′+ DQtD′ can be used to

predict the state vector (x t+1
)

and its variance matrix.
Implementing the Kalman filter on the available dataset, the optimal estimates of the

states are obtained [48] and the data gap can be imputed using

ŷt = Axt. (7)

Seasonal Decomposition Method

The seasonal decomposition method removes (subtracts) the seasonal component from
the time series via the Seasonal Trend decomposition of time series by the Loess filtering
procedure and performs a chosen type of single imputation on the deseasonalised data,
after which the seasonal component is added back [30,49].

If the time series, and its trend, seasonal and remainder components are denoted by
Yv, Tv, Yv, and Rv, respectively, for v = 1, 2, · · · , N, then

Yv = Tv + Sv + Rv. (8)
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The default linear interpolation algorithm was used here from the options (comprising
mean, random, Kalman smoothing, weighted moving average, last observation carried
forward, and interpolation) and implemented in the imputeTS package to fill in the miss-
ing data.

Random Method

The random method is a univariate imputation method where each missing value
is replaced using a random sample from between two given bounds, where the default
bounds are the minimum and maximum value from the observed time series and the
method uses the uniform distribution to generate the random values to be selected [30].
This approach is very common in survey practice but has very limited literature to support
its use [29].

2.3.2. Imputation Methods for Multivariate Water Level

Four imputation methods were considered to impute water levels from Ibi, Makurdi,
and Umaisha water stations on the river Benue. Two single imputation methods (kNN and
missForest) and two multiple imputation methods (random forest and predictive mean
matching) were used, and are briefly described below.

k Nearest Neighbour Method

kNN imputation, or nearest neighbour imputation, is a donor-based learning algo-
rithm, in which the imputed value is obtained either as an observed value for another
variable from the record or as an average of the observed values [50,51]. One main feature
of this method [52], that is different from the other methods considered, is that the imputed
values are actually observed values, not generated values, drawn to replace the data gap.
kNN imputation is similar to hot-deck imputation, as data gaps are sorted and imputed
sequentially, but also differs from hot-deck imputation as kNN computes k (number of
neighbour) values which are the distances between the observed variables for all cases with
missing values and the k nearest possible observed donors [51]. The responses for these k
neighbouring values are averaged to provide the imputed value.

To identify the optimal value of k, the value of k = 1, 3, 5, 7, 9, 11 and 15 were
considered to implement the kNN imputation. It was evident that k = 7 and k = 15
consistently produced the best (lowest mean) results from either RMSE or MAPE to use in
imputations for the five percentages missing. In general, k = 7 is a good choice for these
datasets and it was used for imputation in this paper.

kNN imputation is implemented in the R VIM package [51] to find the distances to
identify the nearest neighbours. The authors extended the Gower distance [53], a general
coefficient to measure similarity between two sampling units and which can handle various
data types. The distance between two observations a and b is given as

da,b =
∑

p
j=1 ωjδa,b,j

∑
p
j=1 ωj

(9)

where ωj is a weight which indicates the importance of the variable j and δa,b,j is the
contribution of the jth variable, and can be obtained for continuous variables as

δa,b,j =

∣∣∣xa,j − xb,j

∣∣∣
τj

(10)

where xa,j and xb,j are the values of the jth variable for the ath and bth observations,
respectively, and τj is the range of the jth variable.



Water 2023, 15, 1519 8 of 21

Predictive Mean Matching Method

The name of this method was proposed by Little [6]. However, the initial idea was
conceived in the work of Rubin [54]. The idea of PMM largely depends on linear model
assumptions but with some modification on the residuals [6], as the method relaxes the
normality assumptions. The author considered single and multiple nonresponses. For
multivariate data, if y is the target variable to be imputed for a given case, the method
generates plausible values for y using other variables in the data as follows. An imputation
model is used to predict y from the other variables, for both complete and incomplete
cases. These values are predicted means from a fitted regression model. A completely
observed donor case is then identified for (matched to) each missing y value, as a case
whose predicted y (predicted mean) value is closest to the predicted y for the missing value
to be imputed.

That is, respondent l’s missing y value is imputed as the observed value for that closest
respondent as

ŷi = yj (11)

where
(
µ̂i − µ̂j

)2 ≤
(
µ̂i − µ̂q

)2 for all q, µ̂i is the predicted mean of Y for individual l, and
yj is the observed value of Y for respondent j [6]. This procedure is a way of adding noise
into the imputation with the aim of preserving the distribution of the y values. For multiple
imputation, several nearest matches are found and the observed values from a subset
of those is randomly sampled with replacement to provide multiple imputed values of
y. This procedure is repeated for all missing values. Bayesian implementation induces
greater noise in the imputations by drawing µ̂i in (11) from the posterior distribution of the
predicted mean for the missing value [6].

Van Buuren and Groothuis-Oudshoorn [55] describe the PMM method as simple and
widely used and highlight the procedures to follow when implementing PMM imputation
with the R mice package, which is used here for PMM imputation, and Bayesian PMM is
carried out via the Gibbs sampler. We use PMM for multiple imputation with five multiple
imputed values (m = 5) generated for each missing value and one of the five imputed values
was selected at random to replace the missing value. The method requires specification of
the number of iterations (maxit), which is important for the approximation to the posterior
distribution to converge. We used 1000 iterations, having observed no difference in the
results using 1000 iterations or more than 1000.

Random Forests Method

A decision tree has a tree-like structure with three parts, namely decision nodes, leaf
nodes and a root node (Figure 2). A decision tree algorithm divides a training dataset
into branches, which further divide into other branches via these nodes. This sequence
continues until a leaf node is attained and cannot be separated further. Decision nodes
provide a link to the leaves and are used for predicting the outcome of an observation.
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Random forests (RF) are a combination of tree predictors where each tree depends
on the values of a random vector sampled independently for that tree from the available
predictor variables and with the same distribution for all trees in the forest [56]. RF is a
machine learning algorithm utilising ensemble learning to provide solutions to complex
problems in regression and classification [57]. RF is a powerful and flexible algorithm
applicable in various sectors such as banking, stock exchange and health applications. It is
also applied for imputing missing values, which is the focus here.

Breiman [56] defines a RF mathematically as a classifier consisting of a collection of
tree-structured classifiers {g(x, θl), l = 1, . . .} where the {θl} are independent identically
distributed random vectors. For input x, each tree casts a unit vote for the most popular
class among training observations in the leaf node reached by that input vector. For
prediction of a continuous outcome, each tree predicts the average value of the training
observations in the leaf node reached by input vector x. The RF algorithm combines
the decision trees to predict by taking the average value from all of these trees, and the
prediction accuracy increases as the number of trees increases.

Several authors adopted RF to implement various packages for imputing missing
values in the R software. For instance, Stekhoven and Buehlmann [58] implement the
RF algorithm in the missForest package, and Doove et al. [59] implement RF in the mice
package. Other R packages that implement RF for missing data imputation include the
CALIBERrfimpute, randomForest, randomSurvivalForest and randomForestSRC pack-
ages [60,61]. Several researchers compare various missing data imputation methods from
these packages and conclude that missForest gives lower imputation error [61–63].

This work will use the mice and missForest packages to impute missing data using
the RF algorithm. The missForest package incorporates interaction and nonlinearity in the
model and can handle both continuous and categorical missing data with no reliance on
any distribution, although it deviates from the implementation in Breiman [56] slightly. Its
advantages over other algorithms make the RF method popular for missing data imputa-
tion [60]. In the mice package univariate missing data is imputed using an RF algorithm
based on Breiman [56]. It is important to highlight that the mice package has more functions
than the missForest package.

To identify the best number of trees to use in implementing RF and missForest for
this study, 10, 50, 100 and 500 trees were considered. It was evident that 50 and 500 trees
generally produced the best (lowest mean) results from either RMSE or MAPE criteria
(defined immediately below) for the five percentages missing. Therefore, for missForest
we use 500 trees as run time is very fast. However, for the random forest from the mice
package, as the number of trees grows the run time becomes much higher and we do not
recommend using a higher number of trees. In that case, we use 50 trees.

2.4. Evaluation Metrics

Two indicators, root mean square error (RMSE) and mean absolute percentage er-
ror (MAPE) were used to evaluate the performance of these imputation methods. The
RMSE measure provides a broad representation of the error distribution from the method/
model [64] and MAPE gives an intuitive interpretation for the relative error [65]. These
statistics are calculated using Equations (12) and (13).

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2

(12)

MAPE =
1
n∑n

i=1
|yi − ŷi|

yi
(13)

where yi and ŷi are the ith observation of the complete and imputed water level discharges,
respectively, and n is the sample size. In general, the smaller the values from these two
indicators, the better the performance of the imputation method.
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3. Results

The evaluation and comparisons between imputation methods are presented below to
identify the best method for imputing univariate and multivariate water level discharges.

3.1. Univariate Water Level Imputation

Evaluation of the three single imputation methods comprising Kalman smoothing
(KS), random and seasonal decomposition (Sdec) is performed using monthly water level
records from the Kainji water station covering years 2010–2016. Missing data at six levels
of missingness, 5%, 10%, 20%, 30%, 40% and 50%, were created in the complete dataset
assuming MCAR, MAR and MNAR mechanisms using the R missMethods package. These
missing values were then replaced with new values generated from the three methods from
the R imputeTS package.

The RMSE and MAPE measures were used to compare the imputation accuracies from
these different methods of imputation for each missing value mechanism. To conduct this,
30 repeats of the data deletion and imputation were run for each imputation method to
provide the results recorded. Finally, summary statistics for RMSE and MAPE from the
30 repeats were obtained and summarised using the mean and standard deviation. Lower
values of RMSE and MAPE and low standard deviations are desirable for low error and
low variability. Tables 2 and 3 show the results for RMSE and MAPE, respectively.

Table 2. Comparison of the mean and standard deviation (in brackets) values of the RMSE statistic
between the deleted original data and the imputed data for missing completely at random, missing
at random and missing not at random mechanisms and the Kalman smoothing (KS), random and
seasonal decomposition (Sdec) imputation methods. Values in bold show the best method in each
case (with lowest mean or lowest standard deviation).

% Missing Method MCAR RMSE
MAR MNAR

5
KS 13.61 (8.94) 16.35 (11.68) 15.61 (10.80)

Random 102.60 (35.74) 96.28 (27.07) 92.76 (27.84)
Sdec 10.46 (5.96) 13.53 (7.98) 13.76 (7.60)

10
KS 25.36 (13.49) 22.44 (11.62) 25.42 (12.60)

Random 140.93 (30.51) 135.77 (26.30) 130.60 (22.46)
Sdec 21.22 (8.83) 19.12 (8.46) 22.33 (12.05)

20
KS 42.00 (10.59) 49.71 (24.94) 50.41 (26.27)

Random 204.30 (28.58) 205.60 (30.97) 209.40 (21.59)
Sdec 34.73 (8.24) 39.06 (10.78) 37.77 (9.13)

30
KS 69.53 (20.06) 67.12 (28.94) 68.04 (17.96)

Random 253.00 (33.19) 247.70 (23.02) 248.50 (27.11)
Sdec 54.99 (16.06) 44.02 (10.26) 45.90 (12.76)

40
KS 96.19 (21.31) 108.53 (32.82) 97.17 (29.80)

Random 287.70 (25.80) 287.20 (25.45) 286.60 (27.53)
Sdec 73.24 (25.38) 75.16 (32.89) 71.58 (28.49)

50
KS 134.41 (29.58) 134.38 (29.17) 141.40 (46.30)

Random 318.10 (27.76) 320.50 (23.43) 319.90 (25.10)
Sdec 112.91 (44.28) 97.97 (52.64) 102.70 (41.57)
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Table 3. Comparison of the mean and standard deviation (in brackets) values of the MAPE statistic
between the deleted original data and the imputed data for missing completely at random, missing
at random and missing not at random mechanisms and the Kalman smoothing (KS), random and
seasonal decomposition (Sdec) imputation methods. Values in bold show the best method in each
case (with lowest mean or lowest standard deviation).

% Missing Method MCAR MAPE × 103

MAR
MNAR

5
KS 0.18 (0.13) 0.19 (0.09) 0.19 (0.13)

Random 1.27 (0.44) 1.08 (0.35) 1.23 (0.52)
Sdec 0.16 (0.10) 0.18 (0.09) 0.17 (0.12)

10
KS 0.39 (0.16) 0.38 (0.15) 0.35 (0.16)

Random 2.45 (0.72) 2.87 (0.64) 2.65 (0.64)
Sdec 0.36 (0.14) 0.33 (0.13) 0.33 (0.14)

20
KS 1.02 (0.41) 1.05 (0.36) 0.90 (0.33)

Random 5.56 (1.02) 5.40 (0.95) 5.91 (0.92)
Sdec 0.79 (0.23) 0.83 (0.20) 0.76 (0.20)

30
KS 1.90 (0.56) 2.11 (1.25) 1.85 (0.63)

Random 7.98 (1.21) 7.56 (1.54) 8.36 (0.98)
Sdec 1.41 (0.71) 1.46 (0.51) 1.35 (0.27)

40
KS 3.27 (0.65) 3.19 (1.51) 3.39 (0.88)

Random 11.01 (1.10) 11.01 (1.34) 10.91 (1.28)
Sdec 2.52 (1.31) 2.36 (1.17) 2.29 (1.03)

50
KS 5.25 (1.71) 4.70 (0.99) 5.47 (1.09)

Random 11.07 (1.11) 13.01 (1.34) 13.91 (1.28)
Sdec 4.32 (1.96) 3.87 (1.76) 4.14 (1.60)

Table 2 shows that the Sdec method is best for imputing missing values for each of
the three missing data mechanisms, as it has the lowest (bolded) mean values in each case
for all six missingness percentages, followed by the KS and random methods in that order.
The random method is always much the worst. See also Figure 3 for boxplots of the results.
It is important to note that at lower levels of missingness, especially at 5% and 10%, the
KS method (with mean RMSE of 13.61 and 25.36, 16.35 and 22.44, and 15.61 and 25.42, for
MCAR, MAR and MNAR mechanisms, respectively) is not much worse than Sdec (which
has mean RMSE of 10.46 and 21.22, 13.53 and 19.12, and 13.76 and 22.33, respectively) and
the random method comes last. This finding is consistent with the study of Moritz and
Bartz-Beielstein [30]. The Sdec method also in most cases has the lowest standard deviation,
implying greater consistency than for the other methods; however, at 40% and 50%, the
random method seems to be more consistent than the other methods.

The mean RMSE values range between 10.46 and 318.10 for MCAR, 13.53 and 320.50
for MAR and 13.76 and 319.90 for MNAR. These minimum and maximum values for the
MCAR mechanism are slightly lower compared to MAR and MNAR. The mean RMSE
also increases as the percentage of missingness increases for any method or missing data
mechanism, which implies, not surprisingly, that these methods are better when dealing
with fewer missing values than at higher levels of missingness.
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Figure 3. Boxplots of RMSE values for Kalman smoothing (KS), random and seasonal decomposition
(Sdec) methods at 5%, 10%, 20%, 30%, 40%, and 50% levels of missingness, respectively, for the
missing completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR) missing value mechanisms.
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Figure 3 clearly shows the level and spread of RMSE values at different percentages
of missingness, assuming the MCAR, MAR and MNAR mechanisms. For all missingness
rates, the values tend to cluster around the median RMSE for both KS and Sdec, especially
from 5% to 30%, while the plots for the random method are located higher up and have a
wider spread. Again, it is obvious that Sdec is best, based on smaller values of the median
RMSE, closely followed by KS, and random is third by some distance. For the random
method, the spread in RMSE values tends to decrease as the missing percentage increases,
which is similar to the case for the standard deviation values; whereas, for the KS and Sdec
methods at higher percentages of missingness, say 40% and 50%, the spread tends to widen
and there are some outliers.

The summary of the MAPE statistic in Table 3 also suggests that the best method for
imputing missing values at all levels for the Kainji water level discharge is Sdec, the KS
method is next best and the random method is poorer. However, as the percentage of
missingness in the data increases these differences between the methods become clearer.
This can also be seen from the boxplots in Figure S1; however, at 50% missing, Sdec has a
wider spread than the other methods, meaning that its MAPE result is more unpredictable
at this higher percentage of missing values, similarly to Figure 3. Sdec also has the least
variability for 5–30% missingness; whereas, for 40% and 50% missingness, KS generally has
the least variability. In this case the MAPE values for the MAR mechanism are the lowest,
followed by MCAR and then MNAR. As for RMSE, the mean values increase as the level of
missingness increases. For MAPE, the standard deviation values also tend to increase with
the level of missingness. Sdec is the best method at 50% missingness, based on the mean
RMSE and MAPE, however, it is more variable than KS. Therefore, at that missingness
level, KS may be preferred.

3.2. Multivariate Water Level Imputation

The performance of RF, kNN, missForest (MF) and PMM methods, i.e., two sin-
gle imputation methods (kNN and MF) and two multiple imputation methods (RF and
PMM), assuming MCAR, MAR and MNAR missing data mechanisms, were analysed using
monthly simulated water level discharge from three water stations, namely Ibi, Makurdi
and Umaisha on the river Benue, for the time period 2011–2016, as described above. Five
rates of missing values (10%, 20%, 30%, 40% and 50%) were created using the ampute
function from the R mice package (results for the 5% missing rate are not included here as
it gave fewer points missing for any one station, since the 5% missing values were created
across the whole dataset of values for the three stations, and as the results were very similar
to those for 10% missingness. The 5% level was initially considered as a low percentage
of missing values, for consistency with the univariate study). The missing values were
replaced with new values generated from the four methods from the R mice package (RF
and PMM), missForest package (MF) and VIM package (kNN).

The accuracies of these four imputation methods were assessed using RMSE and
MAPE metrics, using 30 repeats, as above. The mean RMSE for each method at the five
missingness levels for the three missingness mechanisms for the three water stations are
presented in Table 4 and corresponding results for MAPE are shown in Table 5 (results for
standard deviation are not shown). It was thought that a lower missingness level may have
produced lower variability of results, and potentially lower (better) values of the accuracy
measures. This is not the case, and from the results for all water stations the variability
seems to be similar on the whole for all missing percentages for the methods considered.
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Table 4. Comparison of the mean values of the RMSE statistic between the deleted original data and
the imputed data for missing completely at random, missing at random and missing not at random
mechanisms and the random forest (RF), k nearest neighbour (kNN), missForest (MF) and predictive
mean matching (PMM) imputation methods. Values in bold show the best method in each case (with
lowest mean).

%
Missing Method

MCAR MAR MNAR

Ibi Makurdi Umaisha Ibi Makurdi Umaisha Ibi Makurdi Umaisha

10

RF 22.51 21.24 50.24 21.02 26.02 53.51 25.80 31.33 66.74
kNN 17.17 16.22 36.61 19.55 15.39 42.42 19.11 19.47 48.17
MF 14.60 19.24 37.71 17.25 19.13 35.06 20.18 19.67 54.26

PMM 25.98 24.21 47.57 26.71 25.95 55.31 26.35 24.96 58.47

20

RF 36.81 36.56 81.04 34.71 34.15 85.84 39.21 32.43 76.44
kNN 23.84 25.51 73.77 28.48 24.92 64.24 32.97 33.66 70.32
MF 26.76 28.60 62.10 25.00 28.30 56.36 28.22 32.90 76.22

PMM 33.16 39.17 67.82 34.28 38.65 87.78 41.99 41.25 94.16

30

RF 45.66 47.17 99.47 44.66 43.07 100.85 49.17 43.93 106.59
kNN 31.86 36.19 79.21 33.11 37.80 74.05 38.69 38.79 83.80
MF 33.19 39.19 85.16 38.45 35.64 94.59 39.62 39.89 91.93

PMM 42.01 49.13 103.32 42.58 44.98 97.24 51.59 48.11 115.20

40

RF 49.67 56.49 123.15 51.36 54.03 118.37 50.94 56.74 129.32
kNN 36.40 46.46 94.26 41.16 43.94 92.94 43.67 46.00 97.40
MF 39.69 46.75 101.41 36.90 43.16 98.50 46.99 46.30 102.40

PMM 57.15 61.82 127.80 48.60 63.14 117.17 58.36 55.54 129.24

50

RF 59.70 64.19 136.39 62.00 62.59 139.55 56.40 58.46 147.40
kNN 44.69 48.28 109.82 45.45 51.10 117.73 49.19 54.01 111.92
MF 45.76 52.00 106.10 49.49 46.83 106.82 49.75 53.94 111.39

PMM 61.52 69.37 140.91 57.11 67.09 150.09 66.30 69.90 134.70

Table 5. Comparison of the mean values of the MAPE statistic between the deleted original data and
the imputed data for missing completely at random, missing at random and missing not at random
mechanisms and the random forest (RF), k nearest neighbour (kNN), missForest (MF) and predictive
mean matching (PMM) imputation methods. Values in bold show the best method in each case (with
lowest mean).

%
Missing Method

MCAR MAR MNAR

Ibi Makurdi Umaisha Ibi Makurdi Umaisha Ibi Makurdi Umaisha

10

RF 0.0092 0.0062 0.0287 0.0079 0.0081 0.0526 0.0073 0.0070 0.0229
kNN 0.0062 0.0045 0.0348 0.0075 0.0041 0.0320 0.0055 0.0045 0.0181
MF 0.0050 0.0054 0.0206 0.0062 0.0057 0.0249 0.0054 0.0043 0.0168

PMM 0.0094 0.0065 0.0617 0.0111 0.0073 0.0407 0.0060 0.0050 0.0143

20

RF 0.0178 0.0131 0.0877 0.0169 0.0123 0.1907 0.0143 0.0079 0.0232
kNN 0.0118 0.0094 0.0925 0.0138 0.0087 0.0902 0.0134 0.0104 0.0336
MF 0.0105 0.0103 0.0507 0.0119 0.0109 0.0610 0.0115 0.0099 0.0273

PMM 0.0159 0.0155 0.1973 0.0173 0.0133 0.1089 0.0171 0.0122 0.0401

30

RF 0.0255 0.0210 0.1192 0.0266 0.0181 0.1654 0.0228 0.0161 0.0556
kNN 0.0177 0.0154 0.0967 0.0178 0.0172 0.1260 0.0174 0.0148 0.0396
MF 0.0206 0.0170 0.1554 0.0230 0.0159 0.1524 0.0191 0.0145 0.0465

PMM 0.0225 0.0224 0.2060 0.0257 0.0215 0.1519 0.0233 0.0179 0.0927

40

RF 0.0337 0.0271 0.1634 0.0357 0.0270 0.2377 0.0292 0.0242 0.0793
kNN 0.0239 0.0225 0.1347 0.0282 0.0218 0.1942 0.0233 0.0197 0.0863
MF 0.0279 0.0238 0.1616 0.0224 0.0218 0.2269 0.0253 0.0195 0.0800

PMM 0.0388 0.0342 0.1859 0.0330 0.0345 0.2118 0.0352 0.0239 0.1587

50

RF 0.0422 0.0358 0.2513 0.0452 0.0351 0.2330 0.0347 0.0275 0.1258
kNN 0.0346 0.0251 0.1972 0.0344 0.0286 0.2434 0.0293 0.0257 0.1129
MF 0.0326 0.0298 0.2098 0.0393 0.0252 0.1895 0.0315 0.0260 0.1061

PMM 0.0505 0.0425 0.3913 0.0398 0.0376 0.2812 0.0435 0.0344 0.1089
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From Table 4, for the MCAR mechanism at 10% missingness, the methods with the
lowest mean RMSE values are MF, kNN and kNN for the Ibi, Makurdi and Umaisha
stations, respectively. At 20% missing, kNN, kNN and MF are best for Ibi, Makurdi and
Umaisha, respectively. For 30% and 40% missingness, kNN is the best across all water
stations. At 50% missing, the lowest mean RMSE values were for kNN, kNN and MF for
Ibi, Makurdi and Umaisha, respectively (see also Figure S2, which shows that kNN and
MF tend to have a lower spread around the median RMSE and are overall the best two
methods, while PMM and RF tend to have a wider spread and/or be located higher up
in the plots for all water stations). For the MAR mechanism at 10% and 20% missing, the
best methods are MF, kNN and MF for Ibi, Makurdi and Umaisha, respectively. At 30%
missing, kNN, MF and kNN for Ibi, Makurdi and Umaisha, respectively, have the lowest
RMSE. For 40% missing, MF, MF and kNN are best, and at 50% missing, kNN, MF and
MF are best for the Ibi, Makurdi and Umaisha stations, respectively (Table 4). (Figure S3
also tends to show a lower level and spread around the median RMSE values for MF and
kNN, a wider spread for RF and overall PMM is worst). For the MNAR mechanism for
10% missing, kNN is best for all three water stations. At 20% missingness, MF, RF (which
is similar to MF in this case) and kNN have the lowest RMSE values for the Ibi, Makurdi
and Umaisha stations, respectively. For 30% and 40% missing, kNN is the best method
across all water stations. At 50% missingness, RMSE is lowest for kNN, MF and MF for Ibi,
Makurdi and Umaisha, respectively (Figure S4 also shows the best two methods as kNN
and MF, in that order, and PMM and RF are the worst due to a higher level and spread).

From these results, for the MAR mechanism, MF is generally best, closely followed by
kNN, while RF is slightly better overall than PMM, which is last. For the MCAR and MNAR
mechanisms, kNN is best, closely followed by MF. There is a clear difference between the
best two and the last two imputation methods. RF and PMM are worst. PMM and RF also
tend to give a larger spread of RMSE values (Figures S2–S4).

The mean RMSE values range between 14.60 and 140.91 for MCAR, 15.39 and 150.09
for MAR and 19.11 to 147.40 for MNAR, depending on the imputation method and level of
missingness, and these values are lowest for the MCAR mechanism compared to MAR and
MNAR, which is similar to the conclusion from the univariate case above.

From the summary of the MAPE statistic (Table 5), the overall best method for imput-
ing missing values at all levels of missing data for the three water stations along the river
Benue assuming the MCAR mechanism is kNN, followed by MF. RF and PMM are not as
good. For the MAR mechanism, MF is best, closely followed by kNN. Finally, MNAR has
an interesting result with MF and kNN as the two best methods overall, in that order, while
RF is sometimes not far behind, especially at 20% missing, and PMM is generally worst.

The corresponding boxplots for MAPE for the MCAR, MAR and MNAR mechanisms
are presented in Figures S5–S7, respectively, and broadly confirm the results for RMSE.
These plots do show many high outliers, indicating poor results in some instances, espe-
cially for the PMM and RF methods and for the Umaisha water station, but also in some
cases for the kNN and MF methods for higher levels of missing data.

4. Discussion

Missing data, especially for hydrological data such as water level data, is a persistent
problem for many developing countries for various reasons and ignoring missing data
for analysis causes loss of information and potentially misleading conclusions, which in
turn impacts mitigating measures taken by governments and other stakeholders. This
study compares the performances of several single and multiple imputation methods, each
on monthly water level data from the Kainji water station on the river Benue and the Ibi,
Makurdi and Umaisha water stations on the river Niger in Nigeria. This aimed to identify
the best method(s) for both single and multiple imputation approaches to avoid biased
estimates and misleading conclusions [18].

Studies on imputation for missing data in hydrology-related areas have been carried
out previously, such as in Gao et al. [10] and Hamzah et al. [40,41]. In Nigeria for instance,



Water 2023, 15, 1519 17 of 21

using imputation in this area is a new practice. Ekeu-wei et al. [13] introduced the concept
of multiple imputation to impute annual peak river discharge, which is vital for flood
frequency estimation. Oyerinde et al. [42] used the PMM method to impute missing data
from 22 water discharge stations with different missing data percentages. However, these
two studies failed to consider the missing data mechanism/pattern, which is important
for handling missing data. In addition, they failed to consider single imputation methods,
which are frequently suitable for imputing complex univariate time series [30].

For both our univariate and multivariate data, performances of single and multiple
imputation methods were compared using RMSE and MAPE statistics. Missingness was
introduced in the data at several different rates in each case, using MCAR, MAR and
MNAR mechanisms.

For the univariate water level data, of the three single imputation methods considered
in this study, the Sdec method is best for imputing the missing data for the three missing
data mechanisms. At lower levels of missingness, especially at 5% and 10%, KS is not
much worse than Sdec but the random method was much poorer and is not recommended.
Furthermore, Sdec in general has the lowest variability in RMSE or MAPE, except at the
highest level of missingness. The results for MCAR data were better compared to MCAR or
MNAR. However, for univariate time series imputation, assuming MCAR or MAR tends
to give similar results [35]. The mean RMSE increases as the percentage of missingness
increases, which implies that these methods are better when dealing with fewer missing
values, which is not surprising.

For the multivariate case, performances of single and multiple imputation methods
were compared. We showed that for MCAR and MAR, missForest has the best results,
closely followed by kNN; while, for the MNAR mechanism kNN is the best method, closely
followed by missForest; whereas, RF and PMM have low accuracy in imputing data gaps,
based on the two performance metrics considered. Coincidently, these two best methods
are single imputation methods and are fast to execute, which is also consistent with our
findings in the univariate case.

For RF, the random forest method, our study found no consistent improvement in the
results as the number of trees increased using the random forest from the mice R package;
but, it confirmed that using a large number of trees (say 500) is time consuming and
would not be recommended in practice, which is consistent with the finding in Boehmke
and Greenwell [66]. For the kNN method, k = 15 and k = 7 consistently produced the
best results from either RMSE or MAPE. This conclusion disagrees with the findings of
Muinonen et al. [67], who say that imputation accuracy from kNN does not improve for
k > 3 but confirm the findings of McRoberts et al. [68] that a higher value of k (k ≥ 7 in our
case) may improve estimation accuracy and have a lower variability of results.

This article has examined several imputation methods with water level data for a
range of missing value percentages. Clearly, any such study is limited and a wider range of
techniques could be used. The focus here is on water levels, and different conclusions may
have been drawn with different data. We also considered missing data percentages from
very little, at 5%, to a substantial proportion, at 50%, and no higher than 50% as it has been
reported that using imputation for datasets with more than 50% missing observations often
produces biased results and high variability (unpredictability) in the imputed data [69].
However, Madley-Dowd et al. [70] found that, for data where values are missing according
to the missing at random mechanism, imputation can provide unbiased results even with a
large percentage of missing data (up to 90% missing). The study in [42] also considered
missing data from 2% up to 70% of the dataset size for water discharge data. Therefore, it
would be worth examining this further in the context of water level imputation, especially
as even in one of the raw datasets (from the Makurdi water station) used to construct the
multivariate data 68% of the water levels were missing.
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5. Conclusions

Missing values in water level data is a persistent problem, which, if not properly han-
dled before conducting any analysis, may contribute to adverse impacts of extreme events
such as flooding, due to loss of information and wrong conclusions and recommendations
from the analysis. It is especially common in developing countries. There are various
approaches in the literatures aimed at curtailing impacts of data gaps, such as case-wise
deletion. Imputation methods allow the direct tackling of data gaps. In this study, single
and multiple imputation methods were considered to establish a best approach for missing
data for univariate and multivariate water level discharges.

From the univariate analysis, it was concluded that the seasonal decomposition
method is best for imputing missing values at various missingness levels for all three
missing mechanisms, followed by the Kalman smoothing method. Therefore, the seasonal
decomposition method is recommended for imputation in univariate water level data.

For the multivariate analysis, the missForest method was best, followed by kNN for
the MCAR and MAR mechanisms, and for the MNAR mechanism, kNN was the best
method, closely followed by missForest. The random forest and PMM methods gave poor
results based on the two evaluation metrics considered. Both missForest and kNN can
be employed to replace missing values in multivariate water level data and are not time
consuming to run, unlike random forest imputation.

It would be worthwhile expanding this study to investigate larger percentages of
missing data, as missing values are widely encountered in hydrological datasets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15081519/s1, Figure S1: Boxplots of MAPE values for Kalman
smoothing (KS), random and seasonal decomposition (Sdec) methods at 5%, 10%, 20%, 30%, 40%, and
50% levels of missingness, respectively, for the missing completely at random (MCAR), missing at
random (MAR) and missing not at random (MNAR) missing value mechanisms, Figure S2: Boxplots
of RMSE values for k nearest neighbour (kNN), missForest (MF), predictive mean matching (PMM)
and random forest (RF) methods at 10%, 20%, 30%, 40%, and 50% levels of missingness, respectively,
for the missing completely at random (MCAR) missing value mechanism, Figure S3: Boxplots of
RMSE values for k nearest neighbour (kNN), missForest (MF), predictive mean matching (PMM)
and random forest (RF) methods at 10%, 20%, 30%, 40%, and 50% levels of missingness, respectively,
for the missing at random (MAR) missing value mechanism, Figure S4: Boxplots of RMSE values
for k nearest neighbour (kNN), missForest (MF), predictive mean matching (PMM) and random
forest (RF) methods at 10%, 20%, 30%, 40%, and 50% levels of missingness, respectively, for the
missing not at random (MNAR) missing value mechanism, Figure S5: Boxplots of MAPE values
for k nearest neighbour (kNN), missForest (MF), predictive mean matching (PMM) and random
forest (RF) methods at 10%, 20%, 30%, 40%, and 50% of missingness, respectively, for the missing
completely at random (MCAR) missing value mechanism, Figure S6: Boxplots of MAPE values for
k nearest neighbour (kNN), missForest (MF), predictive mean matching (PMM) and random forest
(RF) methods at 10%, 20%, 30%, 40%, and 50% levels of missingness, respectively, for the missing at
random (MAR) missing value mechanism, and Figure S7: Boxplots of MAPE values for k nearest
neighbour (kNN), missForest (MF), predictive mean (PMM) and random forest (RF) methods at 10%,
20%, 30%, 40%, and 50% levels of missingness, respectively, for the missing not at random (MNAR)
missing value mechanism.
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Abbreviation
Abbreviation Meaning
Missing data mechanisms
MCAR Missing completely at random
MAR Missing at random
MNAR Missing not at random
Imputation methods
KS Kalman smoothing
Sdec Seasonal decomposition
PMM Predictive mean matching
kNN k nearest neighbour
RF Random forest
MF missForest
Evaluation metrics
RMSE Root mean square error
MAPE Mean absolute percentage error
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