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Editorial on the Research Topic

Advances in sea state modeling and climate change impacts
1 Introduction

Research on generating accurate wind and wave hindcasts and investigating climate

change effects on marine environments and conditions have become popular in recent

decades. The wind and wave modeling communities have made significant developments

in physical and numerical parameterizations and model performance in sea state modeling.

Knowledge of the marine environment has been understood better with modeled wind and

wave datasets, supplemented by in-situ and remotely sensed data. The quality of wind data

is being improved, which leads to generating the wave climate with higher accuracy.

Therefore, improvements in wind predictions are of prime interest. This Editorial on

Frontiers in Marine Science aims to bring together a diverse group of experts to discuss the

latest advancements in wind and wave hindcasts and climate models. The focus is on

understanding the most recent developments in wave hindcasts in various marine

environments, as well as identifying the potential impacts of climate change on ocean

climate. The research articles included in this collection showcase the most recent findings

on topics such as sea state modeling, wind and wave climate, wave and sea level projections,

and more.
2 Sea state modeling

This thematic section focuses on some papers about sea state modeling in different sea

areas. This summary covers the impact of various wave-ice parameterization models on

wave model hindcast performance, the role of non-linear tide-surge-river interactions in

exacerbating flooding, the effects of binary typhoons on ocean surface waves, the evaluation

of WRF and WAVEWATCH-III® (WWIII) models during a meteotsunami event, and

introduces a two-scale approximation as a new method for estimating transfer rates in

wind-wave spectra.
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Iwasaki and Otsuka conducted an evaluation of the wave-ice

parameterization models in WWIII along the coastal region of the

Sea of Okhotsk during winter. They discovered that the accuracy

was lower in ice-covered areas compared to open-water areas, with

a noticeable discrepancy between the six sea ice models. The

simulations that incorporated sea ice greatly improved the wave

field bias in coastal areas as compared to the simulations without sea

ice. Xiao et al. characterized the non-linear interactions between

tide, storm surge, and river flow using the unstructured-grid Finite

Volume Community Ocean Model in the Delaware Bay Estuary,

United States. The authors indicated that the tide-surge interactions

mainly influenced diurnal tides, and semidiurnal tides were damped

due to tide-river interactions. The effect of binary typhoons on

ocean surface waves was numerically analyzed by Chang et al. in

waters surrounding Taiwan. These effects were elucidated near the

tracks of the three super typhoons. The results of the analysis

indicate that binary typhoons not only lead to an increase in

significant wave height (Hs), but also result in an enhancement of

one-dimensional wave energy and two-dimensional directional

wave spectra. Rahimian et al. conducted a reliability assessment of

the WRF and WWIII models during a recent meteotsunami event

in the Persian Gulf. They determined that the Mellor-Yamada-

Nakanishi-Niino (the Mellor-Yamada-Janjic) scheme produced the

best performance for stations over the water (land) for planetary

boundary and surface layer (Eta similarity). Additionally, the results

of the study revealed that the calibrated ST6 formulation with the

Gaussian Quadrature Method produced a more accurate prediction

of the wave spectrum. Perrie et al. proposed a generalized two-scale

approximation for estimating transfer rates in wind-wave spectra.

They introduced a generalized formulation of the two-scale

approximation into the WAVEWATCHIII™ model, which can

handle multiple peaked spectra, sheared spectra, and sea-swell

combinations. The new methodology has been shown to

significantly improve the accuracy of the results and was validated

through application to real test cases.
3 Wind and wave climates

This thematic section presents six studies on the examination of

wind and wave climates in various regions. These studies explore

into the topics of wave climate variability and mudbank formation,

a comprehensive analysis of wave climatology, the long-term and

seasonal variations of wind and wave extremes, the impact of

internal climate variability on historical ocean wave height trends,

the spatial and temporal variability and climate teleconnections of

global ocean wave power, and the use of innovative polygon trend

analysis for detecting trends in winds and waves. Saprykina et al.

analyzed the relationship between wave climate variability and the

formation of mudbanks along the southwestern coast of India. They

employed the wavelet correlation method to find significant

correlations between the height of wind waves and swell and

various climatic indices, including both positive and negative

phases, on different time scales. The study also identified the time

lags between these fluctuations. Barbariol et al. conducted a study of

the wind waves in the Mediterranean Sea and presented their
Frontiers in Marine Science 026
findings in the form of a 40-year wave hindcast. The authors

investigated the relationship between the wind waves and

atmospheric parameter anomalies, as well as with teleconnection

patterns. They discovered that the Scandinavian index variability

had the strongest correlation with the variability of the

Mediterranean Sea wind waves, particularly in the case of typical

winter sea states. Additionally, the authors found that the typical

and extreme significant and maximum individual wave heights in

the Mediterranean Sea tend to decrease in the summer and increase

in the winter. Cabral et al. conducted a study of the historical trends

of extreme waves in the Arctic Ocean using a 28-year wave hindcast

and a non-stationary approach to analyze the time-varying

statistical properties. They found substantial seasonal differences

and robust positive trends in extreme wave height, particularly in

the East Siberian seas and Beaufort, with increasing rates of up to

60% for the 100-year return period, despite a marginal increase in

wind speed of up to 5%. Casas-Prat et al. evaluated the trends in the

annual mean and maximum Hs using a 100-member ensemble with

a single model initial-condition for the period 1951 to 2010. They

discovered that relying on a single member was insufficient in

identifying the statistically significant positive trend present in the

ensemble in some regions of the Southern Ocean. Cao et al.

analyzed the ERA5 reanalysis data from 1979 to 2020 and

quantified the global distribution and variability of wave power.

According to their findings, the regions with the highest potential

for wave energy were located in the westerlies of both hemispheres.

Furthermore, they observed a trend of increasing wave power in the

Southern Ocean, which dominated the overall pattern of global

wave power. Akc ay et al. compared the effectiveness of innovative

trend methods and traditional methods in identifying the trends of

monthly mean and maximum wind speed and Hs in the Black Sea

coast using 42 years of SWAN wave simulations forced by CFSR

winds. The results of the Mann-Kendall test indicated a low

occurance of trends for both parameters, while the IPTA method

identified stronger trends.
4 Wave and sea level projections

In this thematic section, sea level and wave climate projections

are studied, in the context of the mean and extreme wave climate,

directional spectra, and regional wave climate.

Li et al. examined the projected changes in the average and

extreme wave climate in the East China Sea, Yellow Sea, and Bohai

Sea for two future time frames (2021-2050 and 2071-2100) under

the RCP2.6 and RCP8.5 scenarios. They discovered that the average

annual and seasonal Hs is expected to decline during both future

periods and under both scenarios. However, in contrast, the annual

and summer/winter 99th percentile Hs is likely to increase in a

significant portion of the study area. Lobeto et al. analyzed the

projections of directional wave spectra to understand how wind

waves will behave in the future using a seven-member wave climate

projection ensemble under a high-emissions scenario. They pointed

out that relying solely on integrated wave parameters such as Hs and

mean wave period can conceal important information about the

direction, magnitude, and reliability of wave climate changes. This
frontiersin.org
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is because positive and negative variations within the spectrum can

cancel each other out, leading to an underestimated change for

certain wave systems. Su et al. analyzed the impact of climate

change on the water level caused by storm surges and wind waves in

Køge Bay, near the entrance of the Baltic Sea, which has a low tidal

range. The authors found that the change in wave height and period

during stormy conditions is negligible. However, when taking into

account sea level rise, the simulation showed that under storm surge

conditions, the wave height is expected to double in the near future

(mid-century), and the wave period may also increase by around 1.5

seconds. Jackson et al. used a dynamical downscaling approach,

consisting of a series of nested two-dimensional hydrodynamic

models, to calculate the anticipated changes in the total sea level

climate and its components along the Uruguayan coast. The authors

found that the primary contributor to the projected changes in the

area is the rising regional mean sea level, followed by the impact of

increased water depth on the tidal component amplitudes.
5 Other topics

Finally, the Research Topic includes three papers aiming to

investigate inter-annual to multi-decadal sea surface temperature

(SST) variability, freshwater transport by the Labrador Current, and

the long-term variability of intermediate water thickness.

Al Senafi utilized an empirical orthogonal function (EOF)

decomposition analysis to study the interannual to multi-decadal

variability of sea surface temperatures (SST) in the Persian Gulf from

1982 to 2020. The author found that the warming rate from 1982 to

2020 was as high as 0.59°C per decade and concluded that despite the

overall warming trend of SST, there was a cooling period, which then

shifted back to warming and has been increasing since 2003. Ma et al.

analyzed the freshwater transport by the Labrador Current around the

Grand Banks of Newfoundland using 26 years of data from the Global

Ocean Physical Reanalysis (GLORYS12v1). The study found that the

seasonal and inter-annual variations of the freshwater transport in the

eastern area of theGrandBanks ofNewfoundland are primarily driven

by variations in the horizontal velocity of the Labrador Current, while

changes in salinity play a significant role in the variation of the
Frontiers in Marine Science 037
freshwater transport north of 45°N. Park studied the fluctuations of

the East Sea intermediate water (ESIW) thickness over a long period

and the change in the intermediate layer that took place in the mid-

1990s. The author proposed that the shift in the regime of the East Sea

meridional overturning circulation was behind this change. Before the

mid-1990s, the variability of the ESIW layer was largely influenced by

active deep-water formation, but after the mid-1990s, the formation

rate of the ESIW became the primary factor in determining its

thickness variability.
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Wave Climate Variability and
Occurrence of Mudbanks Along the
Southwest Coast of India
Yana V. Saprykina1* , S. V. Samiksha2 and Sergey Yu. Kuznetsov1

1 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia, 2 Council of Scientific and Industrial
Research-National Institute of Oceanography, Dona Paula, India

Mudbanks (MBs) are a natural phenomenon, forming along the southwest coast of
India during southwest monsoon (SWM), almost every year. High waves initiate these
formations. The temporal variability (both intra-annual and multi-decadal) of wave climate
of the southeastern Arabian Sea (AS) is related to main climate indices which determine
climate fluctuations in this region, and based on that, occurrence of MBs is illustrated.
Voluntary Observing Ships data and climate indices such as El Niño phenomenon index
for the site 5N-5S and 170W-120W (NINO3.4), El Niño/Southern Oscillation (ENSO),
Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), AAO, Atlantic Multi-
decadal Oscillation (AMO), and IO Dipole (IOD) have been analyzed. Using wavelet
correlation method, high correlations with positive and negative phase of climatic indices
(IOD, SOI, NINO3.4, ENSO, AMO, PDO, and AAO) fluctuations in heights of wind
waves and swell and time lags between them on monthly, yearly, decadal, and multi-
decadal time scales are identified. For the first time, high correlation between the annual
fluctuations of AMO and monthly average wave heights is shown. It has been found
that the El Niño phenomenon plays a major role in the variability of wave climate of
the southeastern AS for all time scales. A strong variability in wave climate at short
time scales, such as 0.5, 1, 3.0–3.5, 4–5, and 7–8 years, is evident from the analyses.
Decadal changes correspond to 10, 12–13, and 16 years. The influence of El Niño is
manifested with a delay of several months (3–6) on annual time scales and about 1–
2 years on a decadal and multi-decadal time scales. Possible connection between the
occurrence of MBs and variability in wave climate in the southeastern AS is shown for the
periods 7, 10–12, 18–20, and about 40 years correlating with fluctuation in the climate
indices—IOD, ENSO, NINO3.4, and SOI. It is shown that intra-annual fluctuations in
occurrence and duration of existence of MBs depend on the distribution of highest
monthly averaged significant wave heights (SWHs) in the summer monsoon cycle.

Keywords: mudbanks, wind climate, climate indices, Arabian Sea, Voluntary Observing Ships data, wavelet
correlation analysis, wind wave and swell

INTRODUCTION

Mudbank (MB) is the natural phenomenon occurring along the southwest coast of India (Kerala
coast) during southwest monsoon (SWM) season. It is a calm and turbid region with very high
suspended sediment concentration, and attenuates the high energy monsoon waves due to wave–
mud interaction. The main criterion for the formation of MB is the existence of high energy waves,
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which are capable of bringing clay and mud and keeping them
in suspension for weeks/months together. Previous studies state
that the appearance and lifetime of MBs depend on waves
in a particular monsoon period, and vary from year to year
(Mathew et al., 1995). Locally known as “Chakara,” these MBs
act as boon for fishermen as they dampen the high waves of
SWM and provide a kind of “temporary harbors” with calm
water, thereby allowing fishing activities in the nearshore region.
Biological productivity is also enhanced in this region, which
in turn plays a major role for good fish catch. Damodaran
and Kurian (1972); Gopinathan and Qasim (1974), Nair et al.
(1984); Rao et al. (1984), and Martin Thompson (1986) studied
the socio-economic impacts of MB due to high biological
productivity. Despite the predominance of the economic effect
from the appearance of MBs in this region, it is also necessary
to take into account the dynamics of MBs when designing
ports, marinas, offshore platforms, etc., in the vicinity of MBs
formation regions in order to avoid, for example, possible
siltation around coastal structures and changes in loads on
them. Over the years, different aspects of MB have been
studied by several researchers, viz., hydrography (Kurup and
Varadachari, 1975; Nair, 1985), physical oceanography (Mathew
et al., 1995; Jiang and Mehta, 1996; Tatavarti and Narayana, 2006;
Samiksha et al., 2017; Muraleedharan et al., 2018), water quality
characteristics (Rao et al., 1984; Balachandran, 2004), ecology
(Nair et al., 1984; Martin Thompson, 1986), sedimentological
(Ramachandran and Mallik, 1985; Mallik et al., 1988; Narayana
et al., 2008), mineralogical (Nair and Murty, 1968; Rao et al.,
1984), geochemical (Jacob and Qasim, 1974; Ramachandran,
1989; Badesab et al., 2018), hydrochemical (Nair and Balchand,
1992), and rheological (Faas, 1995; Jiang and Mehta, 1996; Shynu
et al., 2017). Mathew et al. (1995) stated that MB usually forms
at 12 locations along the Kerala coast (Alleppy coastal zone)
(Figure 1) during the SWM. The Alleppy coastal zone is a
prograding coastline with wide sandy beaches to the north and
narrow sandy beaches to the south. The hinterland is marshland
underlain by fine sediments. The shelf is narrow, and beach ridges
exist at 20 m water depth. The shelf gradient is gentle, and 10
and 20 m isobaths are at about 5 and 10 km distance from the
shore (Narayana et al., 2008). This coast is a micro-tidal region
having semidiurnal tidal ranges < 1 m. The tidal currents are not
significant except at river mouths and estuaries (Kurup, 1977).
The average annual rainfall exceeds 3000 mm, and more than 70%
occurs during the SWM (June–September). The tropical storms
form comparatively less in the Arabian Sea (AS) than the Bay of
Bengal (BoB), and that also in general, during the NE monsoon
season. However, high waves are generated during the SWM.
Here MBs play an important role in dampening this high waves,
and thereby controlling erosion along this part of the coast.

Mudbanks prevail in semi-circular shape and extend up to
8–10 km offshore in water depth up to 15 m and 3–4 km
alongshore. As was shown mud dominated bottom can damp
the waves (Rajesh Kumar et al., 2008; Parvathy and Bhaskaran,
2019) and this effect comparable with wave attenuation due to the
vegetation (Samiksha et al., 2019). Samiksha et al. (2017) studied
the wave attenuation due to the MBs using measurements and
modeling and found that 65–70% of waves dampened in the MBs

area. Philip et al. (2013) found that the formation is associated
with increased upwelling along the coast. Jacob et al. (2015) and
Loveson et al. (2016) argued over the validity of subterranean
conduit flow of mud/water from the Vembanad Lagoon. Shynu
et al. (2017) carried out seasonal time series measurements of
suspended particulate matter in the MBs region and postulated
that the dissipated wave energy might have probably eroded
the bottom sediment and formed the near-bed fluid mud. As
was recently shown in Saprykina et al. (2020), wave dissipation
leads to frequency downshifting process in wave spectra due to
difference of wave attenuation coefficients at the beginning and
the end of this process will lead to formation first erosive and
then accumulative profile, i.e., MB. Though different hypotheses
were proposed for explaining the formation of MB, none of
them is conclusive due to lack of convincing scientific/field
supports holistically.

When we compare earlier study of Mathew et al. (1995)
with recent studies, we can show that the frequency of MB
occurrence has reduced in the recent years (Noujas et al., 2013;
Parvathy et al., 2015). Therefore, in the present study, we made
an attempt to investigate the possible connection between the
frequency of occurrence of MBs and variability in wave climate
of the eastern AS.

The North Indian Ocean (NIO) comprises of two basins,
namely, the AS and the BoB. The wave climatology in the NIO
changes primarily due to wind reversal during two seasons—
SWM and northeast monsoon (NEM). Wave characteristics
in both the basins are different during the two seasons. The
wave climate of eastern AS is described by many researchers
(Prasada Rao and Baba, 1996; Kumar et al., 2000; Amrutha
et al., 2016; Nair and Kumar, 2016; SanilKumar and Jesbin,
2016; Naseef and Kumar, 2017) based on various datasets. The
wave climate of the eastern AS shows seasonal variability with
maximum wave height during SWM (Sanjiv et al., 2012; Glejin
et al., 2013b; Anoop et al., 2014; Kumar et al., 2014). Johnson
et al. (2012) studied wave parameters at three locations in the
eastern AS during SWM, and found increase in significant
wave height (SWH) as we move from south to north. Shanas
and SanilKumar (2014) and Glejin et al. (2013b) studied the
changes in wind speed and SWH in the eastern AS by analyzing
34 years of ERA data and concluded that the average SWH in
the eastern AS during pre-monsoon (February–May), SWM
(June–September), and post-monsoon (October–January) are
about 1.0, 2.7, and 0.7 m, respectively, with an annual average
value of approximately 1.1 m. Few studies (Neetu et al., 2006;
Glejin et al., 2013b; Amrutha et al., 2016) also proved that
the wind waves of the eastern AS are also strongly affected by
the diurnal variations of sea/land breeze activity during the
non-monsoon period. Wave climate along the west coast of India
(WCI) is dominated by swells during SWM and NEM and by
wind seas during pre-monsoon season (Prasada Rao and Baba,
1996; Kumar et al., 2000; Aboobacker et al., 2011; Vethamony
et al., 2011). In the eastern AS, SWHs are generally low during
NEM and pre-monsoon, and higher during SWM (Kumar and
Kumar, 2008; Vethamony et al., 2009; Aboobacker et al., 2011).
Long period Southern Ocean swells are also observed in the
eastern AS, except during SWM (Glejin et al., 2013a,b). Recently,
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FIGURE 1 | Study region including Kerala coast, India and coordinates (points) of VOS wave data available in the Global Wave Atlas for 1970–2018. The study
regions 1 (a) and 2 (b) in the Arabian Sea are marked in squares.

Sreelakshmi and Bhaskaran (2020a; 2020b; 2020c) carried out
detailed studies on the wind and wave climatology in the IO,
using global datasets such as ERA-Interim, ERA40, and ERA5.
They divided IO into different sectors based on diversified
wave characteristics and discussed the trends in wind and wave
climate, sector wise in the whole IO.

Stopa and Cheung (2014) studied the periodicity and patterns
of global ocean wind and wave climate and revealed that wave
climate of IO and Pacific Ocean depends on the El Niño/Southern
Oscillation (ENSO) and Antarctic Oscillation (AAO). Anoop
et al. (2016) examined the impact of IO Dipole (IOD) on the
surface wind field of the AS and its impact on the wave climate
during October, when the winds are weak and the IOD is the
strongest. Their study concluded that the IOD impact depends on
variations in the wind fields during different phases of IOD event.
Decrease in SWHs was observed in the central and southwest
coast of India during positive phase of IOD, whereas SWHs
increase during the negative phase of IOD. They also observed
that in the eastern AS, IOD impact is stronger than ENSO with
more effect in the central eastern AS. A study carried out by
Chowdhury and Behera (2017) made an attempt to investigate
the effects of a changing wave climate on longshore sediment
transport (LST) along the central WCI. They tried to link the
variability in wind waves and swells with the changes in the LST
over the period of time. Their study concluded that the decay in
LST is directly linked to the decrease in the wave activity. As of
now, there are numerous study on various aspects related to MB
of Kerala, but the impact of wave variability on the occurrences
of MB is still unexplored.

Therefore, in the present paper, we studied the variation of
wave climate through climate indices, and explored the possible
connections of these fluctuations with appearance of MBs and
their evolution in different years. For the analysis of wave climate
of the eastern AS, visual observations made from the voluntary

ships (VOSs) were used. The temporal variability (both intra-
annual and multi-decadal) in wave climate of the eastern AS
is related with the main climate indices, and based on that,
occurrence of MBs over the years is discussed.

DATA AND METHODS

Wave Data
The available field wave data are not sufficient and suitable for
this type of analysis to investigate the relationship between wave
climate and main climate indices describing the dynamics in
the Indian Ocean (IO) because of their temporal and spatial
limitations. The reanalysis wave data could not be used for this
analysis, due to the main disadvantage of poor reproduction
of wave conditions in the nearshore and on long time scales
(decadal periods) because they are based on wind reanalysis.
This is determined by the errors in the reanalysis of wind data
for long periods back to time and the discrepancy between the
reanalysis of wind data and observations in the coastal zone.
When analyzing climatic changes, this can lead to the detection
of spurious trends (Bloomfield et al., 2018) or, conversely, not to
detect changes on multi-decade periods (Saprykina et al., 2019).
In Samiksha et al. (2017), discrepancies in the buoy and model
wave heights were attributed to the possible formation of MBs
(model could not accurately reproduce nearshore wave heights).
Wave measurements available for this region are very rare and
limited to a few months only. In this situation, visual observations
are the only source of data available in the coastal zone of Kerala.
Therefore, for the analysis of wave climate, visual observations
made from VOSs have been used. The successful use of these data
for the analysis of climate change is shown in many scientific
papers (Barnett, 1983; Gulev et al., 2003). Validation of these
data is available with full-scale field measurements by buoys and
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radars, and a good similarity is observed (Soares, 1986; Grigorieva
and Badulin, 2016; Grigorieva et al., 2017). In the past, along
the coast of India, Chandramohan et al. (1991) visually observed
wave and current data were used to estimate LST along the north
Karnataka coast. The quality of visual observation data in relation
to measured and model data is discussed in detail in Soares
(1986); Gulev et al. (2003), and Grigorieva et al. (2017). The
discrepancies between VOS data and measurements are mainly
found while comparing non-averaging observations. Otherwise,
when comparing with monthly mean or annual data, the accuracy
has significantly increased, and as noted in Gulev et al. (2003)
for many locations, observational uncertainties are within 20% of
mean values, which is acceptable for climatological studies. The
accuracy also depends on the number of observations. From this
point of view, the IO has very large number of wave observations,
as the ship traffic is huge. In general, the accuracy for VOS
data is 0.5 m for wave heights, 1 s for periods, and 10◦ for
directions (Gulev et al., 2003; Grigorieva et al., 2017). It is very
well comparable with altimetry data (0.4 m for wave heights, no
wave period, 17–20◦ for directions) and buoys data (0.2 m for
wave heights, 1 s for periods, 10◦ for directions) (Grigorieva and
Badulin, 2016; Saprykina and Kuznetsov, 2018a).

Voluntary ship data were extracted from the Global Wave
Atlas, which was created at the Shirshov Institute of Oceanology
of Russian Academy of Sciences. The details of VOS data included
in the Atlas, methods of preprocessing (artificial errors correction
or elimination, correction of small wave heights, checking
extreme wave heights and inconsistency of wave parameters,
checking the accuracy of wind sea and swell separation, applying
the steepness and wave age control using combined criteria, etc.),
and validation are described in Gulev et al. (2003); Freeman et al.
(2017), and Grigorieva et al. (2017). Quality checked data of
Wave Atlas include about 30% of all available VOS data. In the
observation scheme of VOS, wave parameters (SWH and mean
wave period) of wind waves and swells are recorded separately,
first on the basis of expert visual assessments of observators
(seafarers and ocean scientists), and second, in accordance with
the unified methodology adopted for such observations in recent
decades. Waves propagating in the absence of wind, long waves
with a direction different from wind and any other genesis
of which cannot be associated with the effect of wind, can
be classified as swell waves. Most of the observations in the
Wave Atlas additionally provide information such as wind speed
and direction, data, time, coordinate (longitude, latitude), wave
period, etc. For the IO, such records are available since 1888;
however, the most complete data (in particular, wave height
and period of wind waves and swell, wind speed, direction of
propagation, and coordinates) and verified database are available
from 1970 only. Thus, from the IO dataset, we have extracted
data for the period 1970–2018 in the domain extending from
0◦ to 20◦N and 60◦ to 85◦E (Region 1) (Figure 1). A separate
sub-region including Alleppy coastal zone was also extracted
along the coast of Kerala extending between 8◦–12◦N and
75◦–77◦E (Region 2).

Figure 2 shows the number of observations extracted from
January 1970 to December 2018 by month, dependences of
available wave height on the number of observations, and wave

parameters (height and period) for a site near the coast (region
2) and region 1, without region 2. Figure 2 clearly shows
that the number of observations near the coast of Kerala is
significantly less, but at a qualitative level, the wave parameters
are approximately the same. The heights of wind waves and swells
near the shore (region 2) are slightly lower. Near the coast, waves
with a period of the order of 1 s were recorded, while in region
1, such waves were practically not observed (Figures 2E,F).
For both swells and wind waves in the selected regions of
IO, there is slightly dependence especially of large wave height
on the number of observations (Figures 2B,D). This is quite
understandable, since high waves are less common than low ones,
and the more observations, the more likely to register higher
waves. When comparing the wave heights in the two regions, no
significant qualitative difference, for example, possibly caused by
the presence of MBs, is observed. The dependence of the wave
height on the period has the same character (Figures 2E,F).

To verify the data of VOS observations, we additionally
compared the VOS data with available waverider buoy data
measured off Kerala coast (near MB region, region 2). Two
waverider buoys were installed in Alleppy coastal zone at 15 m
water depth (May21 to July 31, 2014) and 7 m water depth (June
26 to July 31, 2014) at the distances 10 and 6 km from the
shore, consequently. More details about the field measurements
are given in Samiksha et al. (2017). The comparison of
SWHs between available VOS observations nearshore and buoy
measurements is shown in Figure 3.

Figure 3 shows the qualitative coincidence change in SWHs.
The observed differences in the heights are explained by
differences in the averaging methods. The buoy data are obtained
as a result of averaging the 20-min time series, and the data of
VOS observations are actually given as non-averaged parameters
of the observed individual waves. Inconsistencies can also be due
to wave shoaling and dissipation in nearshore zone.

Climatic Indices
The following main climate indices, which traditionally reflect
the influence of El Niño phenomenon in the AS in which the
monsoon intensity is associated with the dynamics of the IO were
considered in the present study: (i) IOD, (ii) Southern Oscillation
Index (SOI), (iii) AAO, (iv) ENSO, (v) El Niño phenomenon
index for the site 5N-5S and 170W-120W (NINO3.4), (vi)
Pacific Decadal Oscillation (PDO), and (vii) Atlantic Multi-
decadal Oscillation (AMO). The time series of these indices
and their description are available on websites of the offices of
the US National Oceanic-Atmospheric Agency https://www.cpc.
ncep.noaa.gov and https://www.esrl.noaa.gov. The time series of
NINO3.4, ENSO, IOD, AMO, and SOI from 1970 to 2018, PDO
from 1970 to 2017, and AAO from 1979 to 2018 were analyzed.

Methods of Analysis
For analysis, the wave heights were monthly averaged. As the
time series of monthly averaged VOS data are short (49 years
or 588 months), in order to obtain periodicity, especially, the
decadal and multi-decadal scales, instead of using the classical
spectral analysis based on FFT and DFT methods, we have
used the Yule-Walker parametric method and the method of
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FIGURE 2 | Number of observations by months from January 1970 to December 2018 (A,C), dependence of wave height on the number of observations (B,D), and
dependence of wave height on wave period (E,F) for region 1 (excluding region 2, blue and light blue colors) and region 2 (red and pink colors), respectively. Circles
represent swells, and stars represent wind waves.

FIGURE 3 | Comparison of wave heights between VOS data (black circles) in region 2 and buoy measurements at 15 m (blue point) and 7 m (red points) water
depths and coordinates of observations and buoys. The line approximately separates land and sea.

continuous wavelet transform with the Morlet wavelet function
(Torrence and Compo, 1998; Saprykina and Kuznetsov, 2018a,b).

The Yule-Walker parametric method of spectral analysis is
based on applying an autoregression model on the data series,
in which the variable to be studied will linearly depend on its
own previous values and on some stochastic term (Stoica and
Moses, 2005). For sinusoidal time series, Yule-Walker method
allows us to determine the period even if the length of the series
is about half of the period, i.e., for our study, it is possible to
detect period about 98 years. For long time series or for short-
time periodicity, the results of classical spectral analysis (FFT and
DFT methods) and Yule-Walker method will be the same (Stoica
and Moses, 2005). So Yule-Walker parametric method of spectral
analysis will allow detecting at the same time both multi-decadal
(for which length of data is very short) and monthly periods (for
which length of data is enough).

Wavelet transform is a kind of scanning of time series by
frequencies. Like Yule-Walker method, it allows us to determine
the periodicity of processes in short series of half the specified
period. In addition, wavelet analysis represents the fluctuation
of the spectrum in time, in contrast to the spectral analysis,
which averages the spectrum over time. This allows us to
assess the structure of the process as a whole and analyze
its stationarity/non-stationarity. As shown in Saprykina and
Kuznetsov (2018a; 2018b), fluctuations of climatic indices (for
example, AMO and PDO) are non-stationary in time and can
be non-linear due to modulation of high frequencies by low
frequencies. In this case, the use of classical correlation analysis
applied to linear stationary processes is impossible. Therefore,
to obtain the correlations, we have used the recently developed
method of wavelet correlations. Wavelet-correlations method is
the construction of a correlation function between the wavelet
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transforms of two signals for the same wavelet-frequency bands.
It is analog to the classical correlation analysis, when original
signals are initially filtered on a set of narrow-banded signals of
characteristic frequency bands, and then the correlations between
these narrow-banded signals are analyzed. If the number of such
narrow-banded signals is sufficiently large, then each narrow-
band signal can be considered as a quasi-stationary signal, and
makes it possible to analyze the correlations between two non-
stationary processes.

RESULTS AND DISCUSSION

Homogeneity of Arabian Sea Wave
Climate
The changes in the monthly averaged heights (MAH) of the wind
waves and swells for regions 2 and 1 are shown in Figures 4B,E.
The MAH of swells do not have a linear trend; however, the
heights of wind waves show a slight increase in the last one
decade. MAH of waves have periodic fluctuations. Maximum
fluctuations occur during the year and the maximum number of
SWH in a year appears in the summer months (June–August)
for both the regions (Figures 4A,D). However, in some years,
in region 2 near the coast, the highest swells were observed in
September (Figures 4A,D). In general, the long-term average
annual cycle of changes in MAH of waves is similar for both
the regions (Figures 4C,F), except that the maximum MAH of
wind waves in the coastal region are observed in June and in the
offshore (region1) in July. This may serve as an indirect sign that
peak of the MBs formation is observed in the coastal region in
July (Samiksha et al., 2017) and attenuate the waves, compared to
the rest of the eastern AS.

Figure 5 shows that qualitatively the fluctuations and trends in
monthly averaged wave heights are the same for both the regions.
The relationship between them is linear with a coefficient of 1.1,
the deviation from 1 is due to the fact that the data of region
2 contain more nearshore data and, in general, their height is
0.2 m less. Taking into account the analysis of the heights of
individual waves of the two regions, made above, we can assume
that the data of monthly averaged wave heights in the two regions
of eastern AS are homogeneous (Figures 2, 5). Therefore, it can
be expected that changes in wave climate will occur in the same
manner for both the coastal and the offshore regions. Hence, in
order to analyze the wave climate variability, we have merged the
data of both the regions to have more data for reliable analysis.
The wave data homogeneity of the two regions also indicate that
the AS as a whole can influence the dynamics/formation of MBs.

Variability of Arabian Sea Wave Climate
Figure 6 and Supplementary Figure 1 present the results
of spectral parametric analysis performed by the Yule-Walker
method and a wavelet analysis for the changes in the MAH
of wind waves and swells for region 1. For analysis, mean
value and linear trend were removed from the time series
of monthly averaged wave heights. It is clearly seen that the
characteristic periods observed at small time scales are the annual
and semi-annual variability of wave heights (both swells and wind

waves), associated with SWM in the summer period (June–July)
(Figure 4). The characteristic peaks of this variability are present
both on the spectra and on the wavelet diagrams. According to
wavelet analysis, fluctuations in this time range for the period
1970–2018 are almost stationary, and have no visible time trends
(Figures 4, 6 and Supplementary Figure 1).

As for the decadal and multi-decadal oscillations of average
monthly wave heights are concerned, it is clearly seen on the
wavelet diagrams (Figure 6 and Supplementary Figure 1) that
the periods of these oscillations are non-stationary, and there are
linear trends in their periods, both for wind waves and for swells
(for example, in the range of periods from 40 to 200 months).
The non-stationary nature of the process of changing the monthly
averaged wave heights at these time scales does not allow the use
of spectral analysis to clearly distinguish periods in this range,
especially for wind waves (Figure 6 and Supplementary Figure 1,
spectra), although this periodicity is clearly visible on wavelet
diagrams. In general, based on the results of spectral and wavelet
analysis, it can be stated that changes in average monthly heights
of wind waves and swell waves have the same variability on
periods of 6 months, 1 year, 3 years, 4–5 years, and 7–8 years, and
similar periodicity on longer and multi-decadal scales in range
about 10–16 and 20–40 years.

Variability of Climate Indices
The results of wavelet analysis show that the changes in the
selected indices are also non-stationary. To save this article space,
we have discussed only two of them—IOD and NINO3.4. For
example, changes in IOD index have a pronounced trend on
the scales of variability from 50 to 100 months and from 350 to
200 months (Figure 7A). Changes in the NINO3.4 index have a
visible trend in the period range, 100–200 months (Figure 7B).
At the same time, the variability of both indices is stationary
in the range of 6–12 months. The unsteady nature of PDO and
AMO changes has been discussed in detail in Saprykina and
Kuznetsov (2018a,b). Thus, the wavelet analysis made it possible
to explain the non-stationarity of changes in all indices in a
given time range.

Analysis of Connection Variability of
Monthly Averaged Wave Heights With
Climate Indices
As expected the classical correlation analysis showed rather
low correlations with the select climate indices (correlation
coefficients are less than 0.2), except for correlation with
NINO3.4 index—correlation coefficient is 0.39. Such low
connections can be explained by the non-stationary changes in
both wave heights and indices. To obtain correlations between
non-stationary processes, the wavelet correlation method has
been used in the present study. The wavelet correlation
coefficients at zero time lag for MAH of wind waves and swell
waves are shown in Figure 8. The corresponding wavelet cross
correlation diagrams, for some indices versus time lags, are
shown in Supplementary Figure 2.

A zero time lag means that two processes occur
simultaneously. It can be seen that for periods less than a
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FIGURE 4 | The month in which the highest average monthly wave height is observed, the change in the average monthly height of wind waves (blue) and swells
(red) and the annual change in the heights of wind waves and swell averaged from 1970 to 2018 for region 1 excluding the region 2 (A–C) and region 2 (D–F).

decade, changes in the heights of wind waves and swell waves
are associated with changes in the same climate indices.
Some differences are observed in periods more than 10 years.
Supplementary Table 1 shows the characteristic periods of
variability of the monthly averaged wave heights and swells and
their correlation (correlation coefficient > 0.4) with the select
climate indices.

FIGURE 5 | Monthly averaged wave height in region 2 versus region 1
(excluding region 2) for wind waves (blue) and swells (red).

The correlations between some indices will be significantly
higher if we take into account the time lag between climate
processes and the change in wave heights (Supplementary
Figure 2). For example, the positive phase of the annual and
semi-annual changes in the NINO3.4 index leads to an increase
in wave heights with a lag of 2 months (correlation coefficient is
0.80 for both the periods). There is 1-year lag between the positive
phase of NINO3.4 oscillations with a period of about 10 years
and the averaged monthly wave heights (correlation coefficients
are 0.50 and 0.80, for wind waves and swells, respectively)
(Supplementary Figures 2c,d). The lag between positive phase
of the ENSO change during the year and 6 months and increase
in wave height occurs with a lag of 1 month with correlation
coefficients of 0.60 and 0.68 for wind waves and swells in both
periods, respectively. A negative phase of SOI oscillation with a
period of about 10 years will lead to an increase in the height
of wind waves and swell waves with a lag of 1 year (correlation
coefficients are negative: −0.60 and −0.75, respectively), and a
positive phase of oscillation with a period of 20 years will have
a lag of 2 years (correlation coefficient is 0.70) (Supplementary
Figures 2a,b). The positive phase of ENSO index leads to an
increase in wave heights for a period of 10–13 years with a lag
of 6 months to 1 year, both for wind waves and for swell waves
(correlation coefficients are 0.55 and 0.70, respectively). Also,
a positive phase of ENSO oscillation with a period of 16 years
correlates with an increase in the height of wind waves with a lag
of 2 years (correlation coefficient is 0.50). The negative phase of
AMO with 7–8 years period of oscillation will lead to an increase
in the height of wind waves after 1 year (correlation coefficient
is −0.65), and the positive phase of oscillation with a period
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FIGURE 6 | Change in monthly averaged heights of wind waves. Wavelet transform (A) and power spectral density Yule-walker method (B) (for wavelet analysis,
mean value and linear trend were excluded from height series). The lines show the available trends in coefficient fluctuations.

of 16 years will also increase the height of swells after 1 year
(correlation coefficient is 0.80) (Supplementary Figures 2e,f).

The negative phase of fluctuations in the PDO index
with a period of 16 years leads to an increase in the swell
height with a lag of 2 years (correlation coefficient is −0.65)
(Supplementary Figures 2g,i). Also, in the diagrams of wavelet

correlations (Figure 6 and Supplementary Figure 2), one can
notice a rather high correlation between changes in wave heights
and fluctuations of climate indices occurring with a time lag,
which was not detected at zero time lag. So, for a change in
the MAH of swells, a variability of 13 years period associated
with fluctuations in the IOD index exists, like the monthly
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FIGURE 7 | Fluctuations of IOD (A) and NINO3.4 (B) indices and their wavelet transform (top), power spectral density Yule-walker method (bottom). For wavelet
analysis, mean value and linear trend were excluded from indices.

averaged wind waves, but it is lagged by about 2 years (correlation
coefficient is−0.65).

For the SOI index, there is a relationship between a period of
change of 20 years and fluctuations in the average monthly swell
height as well as for wind waves, lagged by 2 years (correlation
coefficient is 0.55). For the NINO3.4 index, there is a high
correlation between the increase in the height of wind waves and
its positive phase for a period of 16 years with a lag of 2–3 years
(correlation coefficient is 0.65).

An increase in the MAH of wind waves with a period of 3 years
can be associated with a positive phase of oscillations of the AMO
index over the same period (correlation coefficient is 0.60) and
occurs 6 months later. There is also a relationship between the
negative phase of fluctuations in the AMO index with a period of
8 years (correlation coefficient is −0.50) and the increase in the
height of swells that occurs after a year.

The annual fluctuations in the heights of both wind waves and
swells are closely connected to fluctuations in the PDO index,
lagged by 3 months. A correlation between the negative phase of
AAO fluctuations with periods of 12–13 years and an increase in
the height of swells (correlation coefficient is −0.80) with a lag

of 1 year has been identified (Supplementary Figures 2j,k). It
should be especially noted that the averaged monthly height of
wind waves varies in phase with fluctuations in the IOD index
over the periods 3, 7, 13, and 20 years.

Thus, as a result of the analysis, the following periods of
fluctuations in the MAH of wind waves and swells were identified:
0.5 year (associated with NINO3.4 and ENSO), 1.0 year (due to
a change in NINO3.4, ENSO, AMO, and PDO), 3.0–3.5 years
(associated with a change in NINO3.4, ENSO, SOI, and IOD),
4.0–5.0 years (associated with a change in PDO and AAO),
7.0–8.0 years (associated with a change in IOD and AMO),
10.0 years (associated with a change in SOI, NINO3.4, and
ENSO), 12.0–13.0 years (associated with a change in IOD and
AAO), 16.0 years (associated with a change in NINO3.4 and
PDO), 20.0 years (associated with a change in SOI, NINO3.4,
and AAO) and 30.0 years (associated with a change in PDO and
AAO). For all indices except PDO, there are high correlations
on periods about 40 years. Note that on all time scales, the most
significant connection between the wave climate and the El Niño
phenomenon changes in which are directly or indirectly taken
into account in the indices NINO3.4, ENSO, SOI, and PDO.
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FIGURE 8 | Wavelet correlation coefficients between changes in climate indices and averaged monthly height of wind waves (A) and swell waves (B) at zero time lag.

Possible Connections of Arabian Sea
Wave Climate Fluctuations and
Occurrence of Mudbanks
As discussed in Section “Introduction,” there have been
many studies dealing with various aspects of appearance and
disappearance of MBs at various locations along the Kerala
coast. Numerous studies confirm the fact that high waves during
the monsoon period initiate the appearance of MBs. This gives
us a reason to speculate and form a hypothesis about how
the identified periods of fluctuations in wave heights could
influence the evolution of MBs and how this is confirmed by the
available observations.

In Mathew et al. (1995), measured SWH and time of existence
of MB off Alleppy in summer monsoon of 1986–1989 are shown
in the same figure. It can be seen from this figure that the time
of appearance and duration of existence of MB depend on the
maximum wave heights in the summer monsoon cycle. So, if the
maximum wave heights were in May-early June during 1986–
1989, MBs were observed from mid-June to mid-July (in 1989).
If the height of maximum waves was observed in mid-June,
MB appeared from mid-July to end of August (in 1986). In

1988, the highest waves were observed in June and July, which
corresponded to the existence of MB from mid-June to early
August. This indicates that the time of appearance of MB and
their “lifetime” are associated with distribution of maximal SWH
in the monsoon cycle. Despite the fact that the maximum MAH
of wind waves and swells in the monsoon cycle during 1979–
2018 have been observed in June, it is clearly seen that there are
deviations from this average cycle, when the largest waves are
observed in other months (Figure 4). In Figure 9, changes in
the monthly averaged SWH during summer monsoon years in
which observations of times of appearance and times of existence
of MBs in the Kerala region are available are presented in Philip
et al. (2013).

SWH is calculated using the following formula:

Hs =
√
H2
wind +H2

swell (1)

where Hwind = SWH of wind waves and Hswell = SWH of swells.
If we refer to Figure 9, we find that in 1990 and 2001,

MBs appeared off Kerala in June, which corresponds to the
time (month) of maximum monthly averaged SWH. In 1999,
they were observed during May–September, which corresponds
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FIGURE 9 | The monthly averaged SWHs in the Arabian Sea for select years
according to VOS data.

to the time of higher waves already set in May and the peak
of monthly averaged SWH in July. In 2000, MB appeared in
August, and maximum monthly averaged SWH was observed in
July. In 1988 and 1998 (10 years period), MBs were observed
from June to August, and, as can be seen in Figure 9, this
corresponds to approximately the same summer monsoon cycle
of monthly averaged SWH, with maximum heights in June and
July. According to the results of wave climate analysis carried out
in the previous section, the possible 10-year periodicity of such
a cycle could be related to the influence of climate indices SOI,
NINO3.4, and ENSO (Supplementary Table 1).

Because the appearance of MBs depends on the heights of the
waves and, as the analysis of Figure 9 shows, the wave height
threshold for their formation is 2 m. As shown in Saprykina
et al. (2020), the mechanism of MBs formation due to the wave
transformation depends on the rate of dissipation of their energy
above the bottom profile. In this case, it is important that must
be two characteristic regions: first with a strong dissipation of
the wave energy and then with a weak one, which will lead to
the formation of an erosive (weighing of particles) and then
an accumulative bottom profile due to their transfer, i.e., the
formation of an MB. If the wave height is too high, then the
length of the erosional area will significantly prevail, the particles
will be in a suspended state, and the MBs will not have time to
form. Therefore, MBs sometimes form not in the months when
the highest waves were observed, but in the following months,
when the wave height is lower, for example, in 1988, 1998, 1999,
and 2000 years. In general, knowledge of the patterns of annual
and long-term changes in wave heights in the monsoon cycle can
also make it possible to predict the time of the appearance of MBs
on different parts of the Kerala coastline due to the features of
wave transformation over the bottom topography of each area.

Let us discuss how does the maximal of the monthly averaged
SWH in summer monsoon cycle changes during 1970–2018.
Figure 10A shows a series of these maximal (mean value
is removed) and its wavelet transform. Figure 10B shows

the corresponding wavelet correlation coefficients with climate
indices SOI, NINO3.4, ENSO, and IOD at zero time lag. Periods
of the order of 7, 10–12, 18–20, and about 40 years associated
with the fluctuations of these climate indices are clearly visible. It
is confirmed by high values of modulus of the wavelet correlation
coefficients (Figure 10B).

Webster et al. (1999) noted that El Niño events have indirect
influence on IO and can force it to coincide with periods
of its internal dynamics. Although IOD is considered as the
main climate index of IO dynamics, as can be seen from
Figure 10B, the combined mutual influence of SOI, NINO3.4,
and ENSO indices in addition to the influence of IOD determines
the main important periods of variability of the maximum

FIGURE 10 | Maximum of monthly averaged SWH in summer monsoon cycle
and its wavelet transform (A) and wavelet correlation coefficients with climate
indices at zero time lag (B). For wavelet analysis, mean value and linear trend
were excluded from indices.
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monthly averaged SWH during the monsoon period: 7, 18–20,
and about 40 years.

Parvathy et al. (2015) have listed out the occurrences of
MBs off southwest coast of India by taking into account all the
reported data in the past and also discussed the significance of
the recent and past MB in coastal dynamics. They reported that
the best known MB of the southwest coast of India is Alleppy.
Earlier reported areas of MB formation are the Munambam–
Chettuwa sector at Chettuwa, Vadanappally, Nattika, Thalikulam,
and Kaipamangalam (Mathew et al., 1995). But, presently these
locations do not show any occurrences of MBs, and as reported
by Noujas et al. (2013) during monsoons (2009–12), the MB
occurrences were observed at Kara to Kaipamangalam sector. As
reported in Noujas et al. (2013), based on the literature survey
and interaction with the local people in the studied area, the
location of occurrence of MBs moved southward from Chettuwa
to Thalikkulam to Nattika to Edamuttam to Kaipamangalam
to Bhajanamdom successively during the last 40 years, and it
remained stable in the same sector for 5–10 years. From 2013
onward, the occurrences of MB were reported in the Thykal and
Punnapra region, Alleppy. About 10–12 years back, MBs which
were seen confined to Purakkad region have moved south toward
Punnapra region and since then it is forming at Punnapra region
repeatedly (Parvathy et al., 2015).

The movement of MBs southward could be connected to the
identified about 40 year period of El Niño events—for example,
its influence on Monsoon Current in the IO (Webster et al.,
1999). Suppose such possible influence is applied on West India
Coastal Current (WICC), it could transport huge volume of water
and suspended sediments from the coastal northern AS into
the southeastern AS so that MB movement can be associated
with simultaneous long-term fluctuations (about 40 years) of
IOD, SOI, and El Niño. Unfortunately, the absence of detailed
systematic long-term observations at least in a few locations in
the study region does not allow us to obtain unambiguous clear
connections between fluctuations of the wave climate and MBs
occurrence. However, the above reasoning about the relationship
between wave climate fluctuations is in a good agreement with
the visual long-term observations of MBs evolution on the Kerala
coast available in the literature. Thus, we hypothesize possible
periods of movement of MB with the main climate indices, which
further requires verification of other data.

CONCLUSION

The analysis of wave data of VOS observations for the period
1970–2018 showed that the annual periodicity of changes in wave
climate in the eastern AS, both in the coastal region and in the
offshore is associated with the summer monsoon.

It has been found that the El Niño phenomenon plays a major
role in the variability of wave climate of the eastern AS in all time
scales, and its influence is directly or indirectly taken into account
while calculating climate indices such as NINO3.4, ENSO, SOI,
and PDO. The influence of El Niño is manifested with a delay
of several months (3–6) on annual time scales and about 1–
2 years on a decadal to multi-decadal time scales. To analyze the

relationship between the change in the wave climate of this region
and the El Niño fluctuation, the NINO3.4 index is recommended
since it shows the maximum correlation links on all time scales of
the variability.

The strong variability of the wave climate at short time scales
has been identified: 0.5 year, 1 year, 3–3.5 years (with a time lag
of about 6 months), 4–5 years and 7–8 years (with a time lag of
about 1 year). Decadal periods of change correspond to 10, 12–13,
and 16 (with time lag of about 1 year) years.

The multi-decadal fluctuations occur with a period of 20 years
(correlate with IOD and AAO indices), 30 years (correlate with
AAO and PDO indices), and about 40 years (correlate with IOD,
ENSO, NINO3.4, and SOI).

It is shown that intra-annual fluctuations in appearance and
duration of existence of MBs depend on the distribution of
highest monthly averaged SWHs in the summer monsoon cycle.
The monthly averaged SWH threshold for their formation is 2 m.
Through annual fluctuations of highest waves in monsoon cycle,
a possible relationship between the wave climate variability of the
AS and the formation of MBs can be shown for the periods 7,
10–12, 18–20, and about 40 years. It correlates with fluctuation of
IOD, ENSO, NINO3.4, and SOI climate indices.
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Based on a novel approach, present-day and future spectral wind-wave conditions in a 
high-emission scenario from a seven-member wave climate projection ensemble are 
compared. The spectral analysis at the selected locations aids in understanding the 
propagation of swell projected changes from the generation areas across the ocean 
basins. For example, a projected increase in the energy from Southern Ocean swells can 
be observed in all ocean basins and both hemispheres, which is especially relevant in the 
west coast of North America due to the penetration of these swells beyond 30°N. Similarly, 
a consistent decrease in the energy of large northern Atlantic swells is noted close to the 
equator. This work provides evidence that assessments based on only integrated wave 
parameters (e.g., significant wave height and mean wave period) can mask information 
about the sign, magnitude, and robustness of the actual wave climate changes due to 
the offset of positive and negative variations within the spectrum, leading to a significant 
underestimation of the change associated with certain wave systems.

Keywords: ocean waves, wave climate projections, wave energy, swell, wind-wave spectrum

INTRODUCTION

The sea surface elevation spectrum constitutes the most complete way to describe wind waves 
as a stochastic process. This spectrum represents the distribution of energy resulting from the 
contributions of several superimposed waves with different periods and directions that reach 
a particular location (Holthuijsen, 2007), and it is essential for assessing coastal processes and 
engineering designs. The distribution and magnitude of the energy within the spectrum provide 
information about the number of wave systems it contains, as well as their degree of development. 
Two are the main ways to represent the spectral energy: in terms of the wave frequency 
(hereinafter known as frequency spectrum) and in terms of wave frequency and wave propagation 
direction (hereinafter known as directional spectrum). The frequency spectrum has been used 
extensively by fitting observations to parametric spectral forms (e.g., JONSWAP and Pierson-
Moskowitz). Directional spectra provide additional information by characterizing how wave 
energy is spread along directional sectors, enabling us to undertake a more detailed analysis 
of the wave climatology in a particular location (Espejo et  al., 2014; Shimura and Mori, 2019) 
and to identify the different wave systems reaching it (Portilla-Yandún et  al., 2015). More 
recently, directional spectra have been utilized to develop studies at global scale, assessing the 
wave climate seasonality through the identification of wave modes and their variations throughout 
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the year (Echevarria et  al., 2019), as well as their relation 
with climate teleconnection patterns (Echevarria et  al., 2020).

The prominent role of wind-generated waves in ocean sea 
surface dynamics (Cavaleri et  al., 2012) implies that changes 
in magnitude, direction, and frequency may have a notable 
impact on offshore related economic activities (e.g., offshore 
industry and shipping routes) and in coastal areas, affecting 
processes such as shoreline erosion (Toimil et  al., 2020) and 
flooding (Hemer et  al., 2012a; Melet et  al., 2018; Kirezci et  al., 
2020). Projected changes in wind-generated waves induced by 
climate change have thus been widely studied, especially during 
the last decade (e.g., Hemer et  al., 2013; Mori et  al., 2013), 
to assess both the magnitude of future variations and associated 
uncertainty (Morim et  al., 2019). The numerous studies that 
have been conducted are usually developed on the outputs of 
general circulation model (GCM)-based wave climate projection 
ensembles, covering different greenhouse-gas (GHG) 
concentrations scenarios and temporal horizons. The GCMs 
are characterized by systematic biases caused by factors such 
as the spatial resolution or the simplifications introduced by 
the parametrization of physical processes (Maraun et al., 2017), 
hence also inducing biases in projections of wind waves (Hemer 
et  al., 2012b). Despite bias correction (BC) is usual practice 
in climatic variables such as precipitation or temperature, its 
application in wave climate ensembles is relatively recent. In 
this regard, since its need was demonstrated (Lemos et  al., 
2020a), BC has been applied in various wave climate studies 
(Lemos et  al., 2020b; Meucci et  al., 2020; Lobeto et  al., 2021). 
All these researches apply BC to ensembles of integrated wave 
parameters, not existing, to the best of our knowledge, any 
study applying BC to wave spectra.

Despite the wave spectrum fully describes the wind wave 
climate, almost all the studies on changes in wave climate due 
to climate change assess the projected variations in representative 
integrated wave parameters. The reasons behind this simplification 
lie in the huge storage capacity demanded by directional spectra 
and the extended use of integrated parameters in multiple 
formulations related to the design of marine structures and 
coastal processes. In particular, the usual approach relates the 
expected changes in wave climate with future changes in 
significant wave height (Hs; e.g., Fan et  al., 2013; Wang et  al., 
2014), which have led to a consensus about the expected 
changes in annual and seasonal mean Hs in some regions 
along the global ocean. In this regard, there exist agreement 
on an increase in Hs in the Southern Ocean and tropical 
eastern Pacific and a decrease in the North Atlantic Ocean, 
northwestern Pacific, and Mediterranean Sea (Morim et  al., 
2018; Oppenheimer et  al., 2019). Nonetheless, a deeper 
understanding of these future variations needs the study of a 
wider number of variables, such as period and direction, 
especially considering the notable role their changes may have 
in coastal impacts (e.g., van Gent et  al., 2008; Harley et  al., 
2017). The assessment of changes in period and direction 
through parameters, such as mean wave period (Tm) and mean 
wave direction (Dirm), is now common practice (e.g., Casas-
Prat et  al., 2018), which offers a closer vision to the expected 
change in the full wave spectrum. In the same vein, there is 

an increasing interest in evaluating the effect of climate change 
in variables that integrate different parameters and provide more 
complete information about wave climate. For example, the wave 
energy flux (e.g., Mentaschi et al., 2017), a variable that integrates 
wave height and wave period, has been proven to be  a valid 
indicator of global warming (Reguero et al., 2019) and provided 
robust changes in areas where Hs changes alone have great 
uncertainty (Lemos et al., 2019). However, none of the described 
studies provide any information about the projected changes in 
the different wave systems reaching a certain location as it can 
only be  derived from directional spectra.

Based on the above information and to gain a broader 
understanding of how the global wave climate will be  affected 
by climate change, as well as its consequences for impact 
assessments, this study attempts to explore the future changes 
in directional spectra under a high-emission scenario across 
all ocean regions. We  aim to show the added value offered 
by a novel approach that explore simultaneously the effect of 
climate change on the energy, period, and direction of the 
waves, unraveling as well the differences with respect to the 
standard use of projected integrated wave parameters.

DATA AND METHODS

Wave Climate Data
Global wave climate projections are generated using the 
third-generation numerical wave model WaveWatch III v4.18 
(Tolman, 2014). Surface-wind fields and ice coverage outputs 
from CMIP5 GCMs are considered as inputs to develop a 
seven-member ensemble (further information in 
Supplementary Material). Present-day and future wave 
conditions are characterized through 20-year time slices 
(1986–2005 and 2081–2100, respectively). The RCP8.5 
greenhouse gas (GHG) emission scenario, one of the 
representative concentration pathways (RCPs) covered in the 
Fifth Assessment Report (AR5) from the International Panel 
on Climate Change (IPCC; Cubasch et  al., 2013), is selected 
to conduct the research. This scenario represents a 
concentration trajectory characterized by a radiative forcing 
of 8.5  W/m2 by 2100  in the absence of a drastic reduction 
in GHG emission rates. In addition, GOW2 wave hindcast 
(Perez et al., 2017) is used as reference data for the present-day 
wave climate, both to analyze the mean wave climatology 
and to assess the magnitude of the systematic biases in the 
projections by comparing the annual mean wave spectrum 
(Supplementary Material).

The projected changes from directional spectra are analyzed 
at 14 selected locations according to geographical and physical 
criteria (Figure  1). Concerning the former, we  choose a 
representative sample of regional wave conditions along the 
global coast. Thus, six points are selected in the Pacific basin, 
three along the east coast (P2, P11, and P12) and another 
three along the west coast (P1, P9, and P10). Six points are 
also analyzed in the Atlantic basin, three in the west coast 
(P3, P4, and P13) and three more along the east coast (P5, 
P6, and P7). Finally, two more points are selected in the Indian 
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basin (P8 and P14). Physical criteria account, first, for a 
multimodal wave climate at the target locations (Echevarria 
et  al., 2019), i.e., reached by multiple wave systems. Second, 
the selected locations should be  at a distance to the coast 
higher than 30 km to avoid local diffraction and/or non-linear 
processes due to propagation in shallow waters.

As a result of the simulations, hourly time series of directional 
spectra are stored at the target locations (Figure 1), discretized 
in 32 frequency bins, exponentially distributed from 0.0373 
to 0.7159  Hz (i.e., from 1.4 to 26.8  s) and 24 directional 
sectors of 15° each, i.e., each spectrum is divided into 768 
frequency-direction spectral bins (hereinafter spectral bins).

Projected Changes and Uncertainty 
Assessment
The projected change for each GCM is obtained as the difference 
between the annual mean spectrum of future and present-day 
wave climate. The ensemble mean change is then calculated 
as the average of the individual changes for each GCM (Eq. 1), 
i.e., we  assume equal contributions from all the ensemble  
members.

 DE
E E

Nens
i
i N

fc
i

pc
i

=
−

=
=∑ 1  (1)

where N is the number of models, DEens  is the projected 
ensemble mean change, Epc

i  is the mean wave spectrum for 
the present climate (1986–2005), and E fc

i  is the mean wave 
spectrum for the future climate (2081–2100).

The uncertainty of the projected change is assessed based 
on a method proposed in the AR5 report (Tebaldi et  al., 2011; 
Collins et  al., 2013), which consists in the analysis of its 
significance first and then considering the agreement in the 
sign of change between the members of the wave climate 
projection ensemble. Nevertheless, as the number of selected 

models is notably smaller than in the study defining the method 
(21 vs. 7), we  require a stricter agreement between members 
to consider the changes to be  robust. Namely, more than 80% 
of the models (≥6) must present a statistically significant change, 
and at least 80% of them must agree on the sign of change. 
The statistical significance is calculated by applying a Welch’s 
t-test to the mean of the reference and future periods at the 
95% confidence level. The consideration of an unequal variance 
t-test lies in the possible shift of the energy along the frequency 
and direction axes in the future, hence causing a change in 
the energy variance at each spectral bin with respect to the 
present-day climate. Spectral bins in which the change is found 
to be  robust are highlighted. Only changes above 1% of the 
maximum change within the spectrum are highlighted to ease 
the understanding of the results.

RESULTS

The spectral approach enables the detailed study of future changes 
in wave energy, providing the variations at each spectral bin. 
Similarly, it is possible to assess how the bulk of the energy 
moves along the frequency axis. To this end, for each direction, 
we  calculate the range of periods within which the energy 
interquartile range is concentrated at present and in the future, 
and then we determine its shift. Nevertheless, an accurate analysis 
of wave climate spectral changes at each of these locations also 
requires specific study of local wind conditions and the geometry 
of the coast to account for reflections. Considering the main 
purpose of this work, we  focus on only the main wave systems 
that reach the target points, neglecting the small changes related 
to local wind seas, which represent a very small percentage of 
the total energy in the spectrum.

Below, we provide a brief description of the present-day wave 
climate at each location (Figure 2) and the main projected changes 
by the end of the century under the RCP8.5 scenario (Figure 3).  

FIGURE 1 | Target points selected to develop the analysis. For each location, the closest country, coordinates, and depth are shown.
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For completeness, the shift in the energy interquartile range 
for each direction is shown (Figure 4). The information provided 
by the assessment of the directional spectra that cannot 
be  obtained from integrated wave parameters is highlighted.

P5 and P6 are in the northeastern Atlantic on the European 
coast. Most of the wave energy at these points is carried by 
swells propagating from the west at P5 and northwest at P6, 
which are generated under extratropical storms crossing the 
northernmost Atlantic Ocean (Camus et  al., 2014; Pérez et  al., 
2014). These points show the greatest decrease in energy among 
all the locations analyzed (Figure  3), as well as a shift to lower 
periods (Figure  4). A closer look at P5 also highlights an 
expected robust negative change in the low-energetic swells 
coming from the north and the wind seas from the south. 
Analogously, the results at P6 also show a future decrease in 

the wind seas coming from the northeast and southwest. This 
negative pattern at both points agrees with the expected decrease 
in Hs and with the results obtained in previous studies regarding 
projected changes in wave height along the European Atlantic 
coast (Bricheno and Wolf, 2018). Although P7 is also located 
in the northeastern Atlantic, its lower latitude (16° north) causes 
it to not only be  affected by swells generated in the Northern 
Hemisphere (NH) but also by swells that travel from the Southern 
Hemisphere (SH) that cross the equator, especially during austral 
winter (Semedo et  al., 2011; Supplementary Figure  1). This 
point is also reached by the wind seas coming from the northeast 
and northwest with a mean period of approximately 8 s (Figure 2). 
Therefore, the robust decreases in Hs and Tm integrate the 
variations in these four wave systems, concealing the nonuniform 
behavior of the spectral projected changes (i.e., there are spectral 

FIGURE 2 | Present-day (1986–2005) mean wave climate at the analyzed locations from GOW2 hindcast. Polar plots: annual mean spectral energy. Left boxes 
(from top to bottom): annual mean significant wave height (Hs), mean wave period (Tm), and mean wave direction (Dirm). The color bars used to represent each 
variable are displayed in the bottom-right part of the panel. From left to right: energy (m2 s/rad), Hs (m), Tm (s), and Dirm (°).
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bins with both signs of change). Thus, while an increase and 
displacement to higher periods are expected for swells generated 
in the SH, a decrease is projected in the energy carried by 
swells and wind seas from the North Atlantic Ocean, which 
agrees with the results at P5 and P6.

The North Atlantic west coast is represented by P3 and 
P4, which are low energy locations affected by low-period 
waves. Most of the energy that reaches P4 comes from waves 
generated by trade winds in the tropical North Atlantic that 
propagate from the east with a mean period of approximately 
9  s. The results show a robust decrease in this energy and a 
shift to lower periods, agreeing with the projected decreases 
in Hs and Tm. P3 is mainly affected by swells generated in 

the tropical-north trade wind region coming from the southeast 
and two local wind-wave systems that propagate from the 
south and east. Spectral results show a generalized projected 
decrease and a negligible shift in the energy that is consistent 
with the decrease expected in Hs and the almost null decrease 
in Tm. P13 is located on the coast of Brazil in the tropical 
southwestern Atlantic. The mean wave climate indicates that 
it is mainly affected by swells generated in the Southern Ocean 
that propagate from the south, swells generated in the tropical 
south Atlantic coming from the east and wind waves propagating 
from a direction of approximately 200°. The projected increase 
in Hs agrees with the change expected for the energy carried 
by southern and eastern swells. However, while a displacement 

FIGURE 3 | Projected changes at the analyzed locations by the end of the century (2081–2100) under the RCP8.5 scenario with respect to present-day wave 
climate (1986–2005). Polar plots: multimodel ensemble mean change in annual mean spectral energy. Left boxes (from top to bottom): multimodel ensemble mean 
changes in annual mean significant wave height (Hs), mean wave period (Tm), and mean wave direction (Dirm). Stippling denotes statistically significant change and 
agreement in the sign of change in at least 80% of the models. The color bars used to represent the change in each variable are displayed in the bottom-right part 
of the panel. From left to right: energy (m2 s/rad), Hs (cm), Tm (s), and Dirm (°).
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of the energy to higher periods is expected for swells from 
the Southern Ocean, the opposite is obtained for eastern waves, 
which likely causes the very low projected change found in Tm.

P2 is located on the west coast of North America, so it is 
mainly affected by the swells generated by extratropical storms 
in the North Pacific. This point is also affected by wind seas 
coming from the northwest and by mature energetic swells 
generated in the Southern Ocean that penetrate the NH mostly 
during austral winter (Young, 1999; Semedo et  al., 2011; 
Supplementary Figure  2). The results show a robust projected 
increase in southern swells with periods between 14 and 22  s. 
Nevertheless, a consistent change is not found for the largest 
swells generated in the northernmost Pacific, as has been found 
in the Atlantic (i.e., periods above 14  s). Figure  4 displays a 
notable shift in the southern energy to higher periods and an 
almost null shift in the north Pacific energy. The integration 

of all these spectral changes leads to an uncertain decrease 
in Hs and a very small increase in Tm that mask the important 
increase expected for long southern swells.

The southeastern Pacific wave climate is studied at locations 
P11 and P12. The main energy contributors to the total energy 
at these points are swells generated in the Southern Ocean. 
Despite their southern latitude, both points still receive a low 
amount of energy during boreal winter carried by very long 
swells from the NH (Supplementary Figures  3, 4); together 
with P2, this provides evidence of the seasonal displacement of 
the swell front in the eastern Pacific (Young, 1999). Regarding 
P11, a bipolar change pattern in the energy coming from southern 
mid-latitudes can be  observed, showing a robust increase in the 
swells generated below approximately 40°S and a consistent 
decrease in waves from higher latitudes. The shift to higher 
periods and the large changes expected for the energy carried 

FIGURE 4 | Shift in the energy interquartile range between the present (1986–2005) and the end of the century (2086–2100) under RCP8.5 scenario. For each 
panel: shift in seconds of the quantile 0.25 (solid line) and the quantile 0.75 (dashed line) of the energy for each direction. Percentage of energy coming from each 
direction (in red).
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by the southernmost swells induce a projected increase in Hs 
and Tm. The results at P12 exhibit the same robust bipolar pattern 
as at P11 and an increase in wind seas propagating from the 
south. The balance between spectral energy variations with different 
signs is clearly the cause of the low negative change expected 
in Hs, which is not reflecting, as it occurs at P2, the notable 
increase expected for very energetic Southern Ocean swells. 
Finally, a robust decreasing signal is not found for long swells 
coming from the NH at P11 and P12, corroborating the results at P2.

The northwestern Pacific coast is represented by a point located 
on the east coast of Japan (P1). This point is affected by the 
energetic swells generated in the northernmost Pacific, swells 
coming from the east, and swells from the south. The projected 
spectral changes highlight a robust decrease in energy and a 
remarkable shift to lower periods that is consistent with the 
projected negative changes in Hs and Tm. P9 is close to the 
equator (latitude 1°S) and is sheltered from the Southern Ocean 
swells due to the presence of Australia and multiple islands. 
Therefore, most of the energy arriving at this point is carried 
by the waves originating in the NH, namely swells coming from 
the north and northeast. However, a swell system generated in 
the tropical south Pacific propagating from the southeast is still 
discernible. Regarding the projected changes, an energy increase 
with a slight shift to higher periods likely related to the found 
intensification of southeasterly trades (Timmermann et al., 2010), 
is expected for southern waves, and in line with the results at 
P1, a robust decrease with a shift to lower periods can be observed 
in the wave systems generated in the NH. The preponderant 
role of northern wave systems induces negative projected changes 
in Hs and Tm, precluding the possibility of reaching any conclusion 
about future variations in energy from SH waves. Finally, the 
southwestern Pacific wave climate is studied at P10, a point 
located in the Southern Ocean and affected by highly energetic 
swells generated by southern westerly winds. In addition, it is 
also reached by swells coming from the southeast and northeast 
and wind seas coming from the west. Projected spectral changes 
show a robust bipolar pattern characterized by an increase in 
wave systems with a western component and a decrease in wave 
systems coming from the eastern directional sectors. Therefore, 
the consistent increase obtained in Hs involves a great loss of 
information since it cannot account for the important projected 
decrease in waves coming from the east. Moreover, Figure  4 
shows a shift in energy to higher periods for swells propagating 
from the southwest and the opposite for waves coming from 
the east, resulting in a robust projected increase in Tm that 
masks the existent energy shift to lower periods.

Changes in the wave conditions in the Indian basin are 
studied at P14 and P8. The mean wave climate shows that P14 
is mainly reached by three wave systems: the Southern Ocean 
swells from the south and the southeast and the tropical-north 
swells from the northeast. While a robust increase is obtained 
in swells from the south, a consistent decrease is seen for the 
other two wave systems. In addition, a shift to lower periods 
is observed for waves coming from the east, and in agreement 
with previous locations, a shift to higher periods is observed 
for the Southern Ocean energy. Although robust decreases in 
Hs and Tm are obtained, the consideration of changes from 

integrated parameters prevents the derivation of the clear increase 
found for southern swells. Regarding P8, although it is located 
in tropical northern Indian, it is still affected by swells generated 
in the Southern Ocean that travel beyond the equator. This 
point also receives waves generated in the tropical Indian Ocean 
propagating from the west that are especially strong during the 
summer monsoon season (Portilla-Yandún, 2018) and wind 
waves from the northwest. A projected uncertain decrease is 
observed for tropical swells with no clear energy shift. By contrast, 
a robust increase in the energy carried by swells generated in 
the Southern Ocean with a shift to higher periods is found. 
Integrated wave parameters indicate a consistent decrease in Hs, 
which conceals the change in southern swells, as seen at P14.

The assessment of the projected changes at each location 
independently provides us a global overview of the spectral 
changes and allows us to draw some conclusions about the future 
behavior of energetic swells (large-period swells) along the world’s 
coasts. Results evidence a robust increase in the energy carried 
by swells generated by extratropical cyclone activity in the Southern 
Ocean below approximately 40°S that can be  observed at points 
located in the Southern Pacific (e.g., P11 and P12), Atlantic 
(P13), and Indian basins (P14). Similarly, the propagation of 
these swells beyond the equator makes it feasible to note this 
consistent increase in northern locations, such as on the west 
coast of North America, Senegal, and India (P2, P7, and P8, 
respectively). This positive change may be  related to the increase 
in energy transferred to the ocean surface due to the expected 
intensification of surface westerly winds in the roaring forties 
and furious fifties regions (Swart and Fyfe, 2012) and could also 
be favored by the fetch increase caused by the expected reduction 
in ice coverage in high latitudes (Thomson and Rogers, 2014). 
Regarding changes in northern energetic swells, a clear decrease 
in the energy carried by swells generated by extratropical storms 
in the northernmost Atlantic can be  observed at points located 
in Europe (P5 and P6) and with a lower magnitude along the 
tropical coast of Africa (P7). Nonetheless, a robust change cannot 
be  found in the energetic swells (periods above 14  s) coming 
from the northernmost Pacific on the coast of North America 
(P2) or at points located in the SH that still receive northern 
mature swells during boreal winter (P11 and P12).

DISCUSSION

The assessment of projected wave climate changes from directional 
spectra provides information that cannot be  obtained from the 
commonly used method based on integrated wave parameters. 
While the spectral approach allows us to separately analyze the 
sign and magnitude of change from different swells and seas that 
reach a certain location, the consideration of changes from integrated 
wave parameters necessarily overlooks the existence of positive 
and negative variations within the spectrum. Similarly, the analysis 
of wave climate changes following the standard approach may 
entail an underestimation of the actual changes due to the integration 
of variations with opposite sign from different wave systems. The 
results on the coast of Chile (P12; Figure  3) are clear evidence 
for this statement. Notwithstanding that the projected change from 
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integrated parameters indicates a low decrease in significant wave 
height, future changes from directional spectra show a clear bipolar 
change pattern characterized by positive and negative variations 
with a high magnitude (increase for southwestern swells and 
decrease for western swells). This issue can also be  seen in other 
locations, such as the west coast of North America (P2) and 
southwestern Indian (P14).

Moreover, the uncertainty assessment of the projected changes 
denotes that the spectral analysis can provide consistent results 
for some of the wave systems that integrate the spectrum, 
even when the projected changes from integrated wave parameters 
exhibit a lack of robustness. This can be  observed at points 
in both the Pacific (P2) and Atlantic (P5) basins. In this regard, 
although changes in significant wave height are not robust in 
the northwestern Pacific coast, spectral changes indicate that 
the future variations in large swells propagating from the 
Southern Ocean at P2 are still robust. Similarly, a strong 
conclusion about the future behavior of northern swells and 
southern seas can be  derived at P5 on the British coast from 
the spectral approach despite the great uncertainty associated 
with the change in significant wave height.

The spectral analysis also shows a misleading climate change 
signal from the mean wave period. Again, there can be  an 
offset of variations with opposite sign that can drive a deceptive 
change, making it unfeasible to observe the existence of negative 
and positive variations and more importantly, to see the actual 
magnitude of the projected change associated to each wave 
system. From the number of locations analyzed, a clear increase 
in periods in the Southern Ocean energetic swells can be seen. 
Nevertheless, the assessment from integrated parameters masks 
this projected increase when these swells are not the main 
energy contributor at the location of analysis. The points located 
in the tropical eastern Atlantic (P7) and southeastern Pacific 
(P12) are two examples of this issue.

The use of integrated wave parameters can have severe 
implications in  locations where an increase and shift in the 
energy carried by recurrent wave systems to higher periods 
are masked. In other words, although a decrease can be projected 
for integrated parameters, such as the mean period or significant 
wave height, the spectral approach can show a notable increase 
in wave systems periodically reaching a certain location. 
Separately assessing the projected changes in the most severe 
wave systems that reach the coast, especially at coastal stretches 
affected by a multimodal wave climate, can help to more 
accurately determine the impacts derived from changes in wave 
conditions in view of the significant influence that wave period 
and direction have on coastal processes.

The present study is developed without correcting the existing 
systematic bias of the wave climate projections (Supplementary  
Figures  5–18). In this regard, despite BC has recently been 
shown to be  optimal to obtain more accurate projected changes 
in integrated wave parameters (Lemos et al., 2020a), its application 
to directional spectra is yet to be  addressed. Furthermore, the 
way of application of BC to integrated wave parameters (e.g., 
quantile mapping) cannot be  directly extrapolated to directional 
spectra. As previously seen, future changes do not only apply 
to the energy magnitude within the spectrum, since shifts along 

the frequency and direction axes may also occur. The energy 
in a certain spectral bin at present could move to another one 
in the future, therefore, introducing an important error if 
we  correct the bias equally in both time periods. In addition, 
the bias assessment indicates a heterogeneous bias pattern within 
the spectrum for some locations (e.g., P7 and P10), precluding 
a proportional correction based on the comparison of an integrated 
parameter such as the total energy. Despite the lack of BC, 
since its application do not alter the sign of the projected changes 
(Lemos et  al., 2020a), and we  are comparing ensemble changes 
of integrated parameters and wave directional spectra from the 
same models (i.e., affected by the same GCM biases), the obtained 
results can be  considered as a reliable evidence of the added 
value offered by the spectral approach. Nevertheless, further 
research is needed to raise a BC technique applicable to spectra 
that accounts for the described issues and helps to provide 
more accurate changes.

We consider that the results presented in this study offer 
a clear vision of the potential contribution of directional spectra 
within the understanding of wave climate projected changes 
and their implications, which is evidence of a misleading climate 
change signal in some cases according to the standard approach 
based on integrated wave parameters. These insights, together 
with the technological progress that boosts storage in larger 
databases, encourage the development of deeper studies that 
are not constrained to a limited number of locations and the 
annual mean climate, opening the door to a much more 
advanced comprehension of the future behavior of wind waves 
in entire regions.
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Low-lying coastal areas in the mid-Atlantic region are prone to compound flooding
resulting from the co-occurrence of river floods and coastal storm surges. To better
understand the contribution of non-linear tide-surge-river interactions to compound
flooding, the unstructured-grid Finite Volume Community Ocean Model was applied
to simulate coastal storm surge and flooding in the Delaware Bay Estuary in the
United States. The model was validated with tide gauge data in the estuary for selected
hurricane events. Non-linear interactions between tide-surge-river were investigated
using a non-stationary tidal analysis method, which decomposes the interactions’
components at the frequency domain. Model results indicated that tide-river interactions
damped semidiurnal tides, while the tide-surge interactions mainly influenced diurnal
tides. Tide-river interactions suppressed the water level upstream while tide-surge
interaction increased the water level downstream, which resulted in a transition zone of
damping and enhancing effects where the tide-surge-river interaction was prominent.
Evident compound flooding was observed as a result of non-linear tide-surge-river
interactions. Furthermore, sensitivity analysis was carried out to evaluate the effect
of river flooding on the non-linear interactions. The transition zone of damping and
enhancing effects shifted downstream as the river flow rate increased.

Keywords: storm surge, non-linear interactions, river flood, compound flooding, numerical modeling, Delaware
Bay, tropical cyclones, FVCOM

INTRODUCTION

Coastal flooding hazards caused by tropical cyclones present a severe risk to nearly 40% of the U.S.
population living in low-lying coastal areas. The co-occurrence of storm surge and river flooding
may cause compound flooding (Bevacqua et al., 2019), which results in extreme water levels caused
by non-linear interactions of storm surges, river flood, and astronomical tides (Doodson, 1956;
Proudman, 1957; Rossiter, 1961; Johns et al., 1985; Arns et al., 2020). Coastal flood risks associated
with compound flooding cannot be simply estimated by superposition of astronomical tides and
river-induced and storm-surge-induced water levels. Non-linear interactions are known to exist
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between tides, storm surge, and river flow, but understanding of
how non-linear interactions exacerbate the compounding effect
is limited. The total water levels could be increased or decreased
by the non-linear interactions between storm surges, river flow,
and tides. Furthermore, such non-linear interaction is sensitive to
sea level rise, storm intensity, and river flow as a result of climate
change (Yang et al., 2014; Li et al., 2020), which makes the flood
hazard risk even more complex and unpredictable.

The characteristics and mechanisms of tide-surge interactions
(TSIs) have been widely studied during recent decades
(Proudman, 1955; Prandle and Wolf, 1978; Wolf, 1978; Idier
et al., 2012; Zhang et al., 2020). In an early study conducted in
the North Sea and River Thames, United Kingdom, observed TSI
was found to amplify surge height significantly on rising tides,
independent of initial surge height or the relative phase difference
between tides and surges (Proudman, 1955). Horsburgh and
Wilson (2007) gave a first-order explanation of the surge cluster
that occurs with rising tide based on the phase shift of the
tidal signal (the effect of surge on tides) combined with the
modulation of surge production due to the change in water
depth (the effect of tides on surge). Olbert et al. (2013) applied
a statistical method to the hindcast over 1959–2005 in the Irish
Sea and found that surges tend to peak at a particular phase of
tide irrespective of the timing of the storm landfall but with site
specificity. The degree of total water level modulation due to
TSI is also site-specific and varies with surge height and tidal
ranges (Keers, 1968; Prandle and Wolf, 1978). Prandle and Wolf
(1978) used a one-dimensional model to show that TSI is mainly
produced by the quadratic friction effect followed by the shallow
water and advective effects, and that the shallow water and
advective effects can be dominant on rising tides, while quadratic
friction can be prominent on high tides.

Tides that propagate into the upper estuaries are subject to
tide-river interactions (TRIs), resulting in the modulation of
tidal amplitudes at specific tidal frequencies by bottom friction
and river flow (Godin, 1999; Horrevoets et al., 2004). Based
on the shallow water equation, TRI can be caused by three
non-linear terms: spatial acceleration, friction, and a gradient
of river flow (Dronkers, 1964). The TRI between river flow and
tides has been demonstrated to attenuate tidal energy in the
upstream of an estuary, while it stimulates energy transfer from
the principal tides to overtides in the downstream (Guo et al.,
2015). However, the variation in TRI corresponding to varying
river flow and its damping effect on total water level have not been
described in detail.

Tide-surge-river interactions (TSRIs) are the non-linear
interactions among tides, storm surge and river flow, which add
additional complexity to TSIs due to the presence of storm surge
and river flooding. Although TSRIs are rarely studied, they are
an important component of storm surges. For example, Dinapoli
et al. (2021) found that the current due to river flow (CDR)
non-linearly interacts with both the tides and storm surges in
the Río de la Plata estuary. Their work further suggests the
tide-CDR and surge-CDR interactions both induce asymmetries
in the water level and the interactions are mainly caused by
the quadratic bottom friction. Spicer et al. (2019) and Spicer
et al. (2021) collected observations in Maine estuaries during

“windstorms” and pointed out the TSRI to be the dominant
mechanism contributing to upstream surge amplification (which
is estimated to be exceeding 1m and more than double than non-
tidal forcing induced surges). By testing different combinations
of the atmospheric forcing effect on generating the extreme water
levels via non-stationary tidal harmonic analysis (Matte et al.,
2013), the mechanism to generate TSRI is found to be related
to the increased mean flow and frictional energy from wind
forcing (Spicer et al., 2021). A comprehensive review on different
interaction mechanisms between SLR-tide-surge, tide-surge, tide-
river, wave-surge, tide-wave, and SLR-wave was conducted along
the coasts and estuaries worldwide (Idier et al., 2019), the values
of the interactions vary from a few tens of centimeters to over 1 m.

Many previous studies focused on TSI or TRI independently.
However, during compound flooding events when extreme surge
levels co-occur with extreme river flooding, both TSI and TRI
modulate the total water levels (TWLs) as part of TSRI. To
the authors’ knowledge, the relative importance of TSI and
TRI to the overall TSRI during compound flooding events
has not been well documented. Spicer et al. (2019) raised
attention to the importance of distinguishing how non-linear
TRI varies from TSI by using a non-stationary tidal analysis
method to account for non-linear interactions. The methods
to analyze tidal constituents of a tidal record have been well
summarized by Hoitink and Jay (2016), based on assumptions of
either stationary or non-stationary environments. The traditional
stationary methods, such as harmonic analysis (Pawlowicz et al.,
2002), assume that tidal constituents are fixed and independent
from oceanic and atmospheric forcings, thus appropriate for
tides in the deep ocean (Dean, 1966; Godin, 1972; Flinchem
and Jay, 2000). For tides affected by rivers and coastal processes,
the non-stationary method can resolve the time-changing tidal
amplitude and phase due to strong non-linear interactions
between atmospheric forcing, river flow, and tides (Jay and
Flinchem, 1997; Matte et al., 2013, 2014; Sassi and Hoitink,
2013; Guo et al., 2015). Jalón-Rojas et al. (2018) compared the
advantages and disadvantages of stationary and non-stationary
methods used in tidal analysis and concluded that the stationary
method does not reproduce the time-varying properties of the
tidal signal and therefore cannot be used to predict the non-linear
interactions between tidal constituents and non-tidal forcing
variations; however, the non-stationary method can be used to
distinguish non-linear components. Lastly, although the effects of
wind waves and wave-current interaction could have additional
impact on storm surge, we decided not to explicitly include wind
waves in this study due to two main reasons. First, in a recent
study by Ye et al. (2020) using a comprehensive hydrodynamic
model framework that includes wind waves, the authors fund that
the effect of wave-current interaction on storm surge is very small
(i.e., a few centimeters) inside Delaware Bay during Hurricane
Irene. Second, we feel it is important to first elucidate the effects
of TSRIs on storm surge before further expand the scope to
include more processes, which include wind waves and baroclinic
processes. On the other hand, studies by Sheng et al. (2010) and
Hsiao et al. (2019) also suggested that wave-induced setup could
contribute significantly to the storm surge elevation, depending
on specific study sites and hurricane/typhoon events. Thus, to
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explicitly include wind waves should be considered in the next
phase of modeling work.

Numerical model simulations offer good insights to help
isolate each interaction process and estimate the uncertainty of
flooding risk caused by the complexity of non-linear interactions.
This paper presents the results of a modeling study conducted
to investigate the variations between TRI, TSI, and TSRI and
evaluate their interactions and their contributions to the TWL
during compound flooding events in the Delaware Bay Estuary
(DBE). By comparing non-linear terms produced during selected
historical hurricane events, this study characterized the damping
and amplification effects of different non-linear interaction
processes on TWL and analyzed the underlying mechanisms.
The non-stationary tidal analysis method was applied to quantify
the relative contribution by diurnal, semidiurnal, and quarter-
diurnal tidal bands to the non-linear interactions. In addition,
the sensitivity of non-linear interaction to different return period
river flows was explored.

METHODOLOGY

Study Site
The funnel-shaped DBE is located on the mid-Atlantic coast
of the United States (Figure 1A). The estuary mouth is about
18 km wide and the bay has a maximum width of 45 km in
the lower bay and converges to a width of 0.3 km at Trenton
(Figure 1B), stretching about 210 km toward the head of a tidal
freshwater river (Sharp, 1984). Mean estuary depth is 7 m, the
deepest waters exceed 30 m, and a shipping channel has been
progressively deepened since the late 1800s by increasing the
thalweg of the estuary from roughly 8 to 15 m (Pareja Roman,
2019). The DBE is dominated by semidiurnal tides where M2 and

S2 tides account for up to 96% of the tidal variability (Aristizabal
and Chant, 2013), which is strongly convergent and moderately
dissipative in terms of tidal energy (Lanzoni and Seminara, 1998).
The tidal range is approximately 1.5 m at the estuary mouth and is
amplified upstream; the maximum tidal current is approximately
1 m/s (Wong and Sommerfield, 2009). The Delaware River
provides more than half of the freshwater discharge to the estuary
(Whitney and Garvine, 2006). A hydraulic jump is observed
~2.7 km downstream of the Trenton tidal gauge (Figure 1B) due
to the abrupt transition in bathymetry and roughly represents the
upstream limit of tidal intrusion (Zhang et al., 2020).

Delaware Bay Estuary is undammed along its main stem
and has networks of tidal flats that store vegetation, sediment,
and nutrients in the lower bay. DBE provides a natural testbed
for examining the mechanisms and characteristics of non-linear
interactions among different physical processes under extreme
storm conditions.

Numerical Model
The numerical model used in this study is the unstructured-
grid, Finite-Volume Community Ocean Model (FVCOM) (Chen
et al., 2003). FVCOM has been used extensively for modeling
storm surge in many coastal regions worldwide (Song et al.,
2013; Chen et al., 2014, 2016; Wang and Yang, 2019; Yang et al.,
2021). The unstructured-grid framework allows the flexibility to
robustly simulate fine-scale dynamic processes in any complex
estuarine and coastal bay system. In this study, an unstructured-
grid for the DBE was developed to cover a model domain
that extends ~1500 km offshore from the coast and ~240 km
upstream from the DBE mouth (Figure 2). The model grid
consisted of 822,684 triangle elements and 429,847 nodes. The
unstructured-grid resolution varies from 40 km at the open

FIGURE 1 | (A) Model domain and bathymetry. (B) 10 NOAA tidal gauges and 23 U.S. Geological Survey river gauges with bathymetry inside the DBE. The 10 tide
gauges in the DBE are listed as Lewes (LE), Cape May (CM), Brandywine Shoal Light (BSL), Ship John Shoal (SJS), Reedy Point (RP), Delaware City (DC), Marcus
Hook (MH), Philadelphia (PA), Burlington (BU), and Newbold (NB).
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FIGURE 2 | FVCOM model grid (white line) with color contours showing the mesh resolution (A) the whole model domain (B) zoom-in of the upper channel near
Philadelphia (C) lower bay near estuary mouth.

boundary to approximately 100 m in the estuary, and the highest
resolution of 20 m is for tributaries. The average grid resolution
for the floodplain is approximately 100 m. The land boundary
of floodplain is cut off at 3 m above the mean sea level to
allow for simulation of inland inundation. A sigma-stretched
vertical coordinate of five layers was used for all the model runs.
The wetting and drying algorithm, which incorporates a bottom
viscous layer of specified thickness (Dmin = 5 cm in the present
study), was applied to simulate the inundation process in the
intertidal zone and floodplain.

Model open-boundary conditions were specified by tidal
elevations obtained from the TPXO8.0 global ocean tide
model1. Sea surface wind field was obtained from the global
atmospheric reanalysis model European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5),
which has a spatial resolution of 30 km and temporal resolution
of 1 hr. River flows collected at 23 U.S. Geological Survey
(USGS) river gauges in the DBE were specified as the river
boundary condition (Figure 1). The main rivers discharged
into DBE are the Delaware River (Q1) and Schuylkill River
(Q20), which, respectively, contribute about 58% and 14% of
the total freshwater inflow (Sharp, 1984). Sensitivity tests of
bottom roughness conducted by Ye et al. (2020) suggested that
a spatially varying bottom roughness is necessary to represent
the different bottom characteristics in the lower and upper
bay. In this study, bottom roughness was calibrated based
on observed M2 amplitude at ten tidal gauges. Initial bottom
roughness values of 0.0001 and 0.0025 m were tested for the
entire domain. Final bottom roughness values of 0.0005 m for
the coastal ocean to lower bay and 0.0001 m for the middle
and upper bay were specified, which gave good calibration
results (Figure 3).

1https://tpxows.azurewebsites.net/

The model bathymetry was interpolated based on four
different bathymetry data sets from the National Oceanic
and Atmospheric Administration (NOAA): (a) 1/9 arc-second
resolution (~3.5 m) Continuously Updated Digital Elevation
Model (CUDEM, doi: 10.25921/ds9v-ky35), which covers the
DBE; (b) the 1/3 arc-second (~10 m) and 1 arc-sec (~30 m)
data from the National Centers for Environmental Information
(NCEI), which covers the nearshore coastal areas; (c) 3 arc-sec
(~90 m) Coastal Relief Model2 for the less than 300 m deep
coastal waters and floodplain; and (d) the 1 arc-min ETOPO1
Global Relief Model (Amante and Eakins, 2009) for the deep
ocean. The model vertical datum was referenced to the North
American Vertical Datum of 1988 (NAVD88) and any data set
that had a different vertical datum was converted to NAVD88
using V-Datum program (Parker et al., 2003; Yang et al., 2008).

2https://www.ngdc.noaa.gov/mgg/coastal/crm.html

FIGURE 3 | Model calibration of bottom roughness based on M2 tidal
amplitude.
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TWL and Non-linear Interaction
Decomposition
To characterize the non-linear interaction, time series of TWLs
were decomposed into astronomical tides, low-frequency surge
(LFSs), and non-linear interactions, following the method of
Spicer et al. (2019), Spicer et al. (2021). Astronomical tides were
obtained from the Tide Only (TO) model run (Table 1). LFS
represents the water level setup induced by non-tidal forcing,
such as river flow, surface wind, and atmospheric pressure. The
total surge level (TSL), which consists of LFS and non-linear
interaction, was obtained by subtracting astronomical tides from
TWL. LFS was extracted from TSL using a low-pass filter with
a cut-off frequency of 35 hr to remove tidal signals (Walters
and Heston, 1982). The non-linear interaction was calculated
by subtracting LFS from TSL. Figure 4 details the flowchart to
decompose the time series of TWL and obtain the non-linear
interaction term. The method was first applied at the 10 tidal
gauges (Figure 1B) for model calibration and then applied to the
whole model domain.

To understand the process of non-linear interaction with tides,
the non-linear interaction term is further decomposed based
on its specific tidal frequency. A non-stationary tidal analysis
method—Complex Demodulation (Gasquet and Wootton, 1997;
Jalón-Rojas et al., 2018)—was applied to a non-linear interaction
term to estimate the time-dependent amplitude and phase of
diurnal (D1), semidiurnal (D2), and high-frequency (D4, D6, and
D8) tidal bands. Complex demodulation is based on a wavelet
approach and assumes that the time series X(t) is composed of
an oscillating signal with frequency σ and a non-periodic signal
Z(t):

X (t) = A (t) cos (σt + ∅ (t))+ Z (t) (1)

where, tidal frequency σ is calculated as 2π/24 rad h−1

for D1, 2π/12.4206 rad h−1 for D2, 2π/6.21 rad h−1 for
D4, 2π/4.14 rad h−1 for D6, and 2π/3.10 rad h−1 for D8;

TABLE 1 | Design of numerical experiments for non-linear interactions analysis.

Scenario Forcing Extreme Events

TO Tide N/A

TSR Tide, Wind, River Irene, Lee, Sandy, and Isabel

TS Tide, Wind Irene

TR Tide, River Irene

TSR SensQ Tide, Wind, 2–500 years ARI River Irene

FIGURE 4 | Flowchart of decomposing the TWL into tides, low-frequency
surge, and non-linear interactions. TWL = Tides + LFS + Non-linear
Interactions.

time-dependent amplitude A and phase ∅ can be calculated by
integrating the frequency σ with respect to time following the
steps below (Jalón-Rojas et al., 2018):

a) The time series X(t) is multiplied by a complex modulation
of frequency e−iσt to get an unfiltered modulated signal in order
to shift the frequency of interest to zero:

Y (t) = X (t) e−iσt =
A(t)

2
e−i∅(t)

+
A(t)

2
e−i(2σt+∅(t))

+ Z (t) e−iσt (2)

b) Y(t) is low-pass filtered to remove frequencies at or above
σ,whereas the terms A(t)

2 e−i(2σt+∅(t))
+ Z (t) e−iσt are removed,

thus the oscillation in the original signal X(t) is effectively
removed to get:

Y ′ (t) =
A′(t)

2
e−i∅

′(t) (3)

c) The time-varying amplitude A′(t) and phase ∅′(t) are
calculated from the Inverse Fourier Transform (Bloomfield,
2004) of the filtered spectrum Y ′ (t) by taking twice the
magnitude of Y ′ (t) and the arc tangent of the ratio of the
imaginary to real parts of Y ′ (t) , respectively.

In addition to the wavelet transform method, a spectral
technique—the so called singular spectral analysis (SSA)
method—is also presented in this study. This method has been
demonstrated to be especially efficient for extracting information
from short and noisy time series without previous knowledge of
the non-linear dynamics affecting the time series (Schoellhamer,
2001, 2002). The SSA method is widely used to quantify the
relative contributions made by different processes to the total
variance of the time series (Jalón-Rojas et al., 2016, 2017; Xiao
et al., 2020). The SSA method decomposes a time series into so-
called reconstructed components by sliding a window of width
M down the time series and obtaining an autocorrelation matrix
(Vautard et al., 1992). The eigenvalues of the autocorrelation
matrix give the contribution of each period to the total variance
of the analyzed time-series data set. For further information
about the SSA method, the reader is referred to Vautard et al.
(1992). Jalón-Rojas et al. (2016) state that a combined approach
of wavelet transform method and SSA for short-term analysis
complement each other. SSA complements the wavelet transform
method in terms of quantification, and the wavelet transform
method complements SSA by reconstructing and visualizing the
time series of interested periods.

MODEL VALIDATION AND SIMULATIONS

Extreme Events and Numerical
Experiments Design
The major historical hurricanes since 2000 that have affected
the DBE include Isabel (2003), Hurricane Irene (2011), and
Hurricane Sandy (2012). Tropical Storms Lee (2011), which
followed Hurricane Irene, also brought heavy rainfall to the
Delaware River Basin. These extreme events were selected
to validate the storm surge model of the DBE Figure 5
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FIGURE 5 | Tracks of selected hurricane and tropical storm events – Isabel (2003), Irene and Lee (2011), and Sandy (2012). Red box indicates the DBE.

shows the tracks of these hurricanes obtained from the
hurricane database (HURDAT) at National Hurricane Center
(Landsea and Franklin, 2013).

Hurricane Isabel was formed on September 1, 2003 and
intensified to a category 5 hurricane on September 11, 2003, with
a maximum sustained wind speed of 145 kts. It made landfall near
the banks of North Carolina at 17:00 UTC September 18. 2003, as
a slow-moving system, and proceeded on a northwesterly track
(Figure 5). Isabel produced storm surges of 1.8 m to 2.4 m above
normal tides near the point of landfall along the Atlantic coast of
North Carolina, with reduced storm surge levels ranging from 0.6
m to 1.2 m along Delaware shorelines.

Hurricane Sandy, one of the largest Atlantic hurricanes on
record, made landfall as an extratropical cyclone near New Jersey
at 23:30 UTC October 29, 2012, and proceeded on a northeasterly
track (Figure 5). The maximum sustained wind speed was
estimated to be 100 kts and the storm surge peak was 0.9 m to
1.5 m along Delaware shorelines.

Hurricane Irene, one of the costliest hurricanes on record
in the U.S., made primary landfall along the US East Coast
on the North Carolina shoreline as a category 1 hurricane
at 12:00 UTC on August 27, 2011, and another landfall
at 09:35 UTC on August 28, 2011, near New Jersey, and
continued along the Atlantic coastline (Figure 5). The
maximum sustained wind speed was about 105 kts and
peak storm surges were between 1.2 and 1.8 m along the
coast of New Jersey. Hurricane Irene is an example of a
compound flooding event during which the combination of
storm surge and rainfall-induced freshwater river flooding
amplifies the hazardous impacts of individual events
(Ye et al., 2020).

Tropical Storm Lee formed over the Gulf of Mexico (Figure 5)
and made landfall along the coast of southern Louisiana at
10:30 UTC on September 3, 2011. The strongest wind (60 kts)
associated with the low pressure occurred primarily over the
northern Gulf of Mexico. Lee brought heavy rainfall to the Mid-
Atlantic region, which caused some of the most severe flooding
in the region’s history.

Two large precipitation events associated with Hurricane
Irene and Tropical Storm Lee resulted in two peak flows from
Delaware River up to 4000 m3/s and 5500 m3/s on August
28, 2011 and September 9, 2011 at Trenton (USGS, 1463500,
Figure 6A). The peak flows during Hurricanes Isabel and Sandy
were less significant than those during Hurricane Irene and
Tropical Storm Lee, which measured up to 1500 m3/s (Figure 6B)
and 800 m3/s at Trenton (Figure 6C), respectively.

To compare the non-linear terms produced by different
forcings during Irene (a compound flooding event), numerical
experiments were conducted and are summarized in Table 1.
Results from two model runs, TO run (driven by tides only)
and TSR run (driven by tides, surface winds, and river flow),
were processed to extract TSRI following the method described
in section “TWL and Non-linear Interaction Decomposition.” To
distinguish TSI and TRI from TSRI during Hurricane Irene, the
TS run (driven by tides and surface winds) and the TR run (driven
by tides and river flow) were designed to mimic the Irene event
but the individual river flows and surface winds were removed;
thus the non-linear interaction induced by TSI only and TRI only
during Irene, as well as their effect on TSRI, could be estimated.

Furthermore, a series of sensitivity model runs were
conducted to investigate the response of TSRI during Irene with
river flows (TSR SensQ) corresponding to different recurrence
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FIGURE 6 | Delaware River discharge at Trenton (USGS 1463500, Q1 in Figure 1B) during historical extreme events: (A) Irene and Lee; (B) Isabel; and (C) Sandy.

intervals (ARIs), commonly known as return periods, and the
impact of TSRI on TWLs. The surface wind field and open
boundary of water levels were kept the same as those during
Hurricane Irene in the TSR run.

Model Validation With Water Levels
To validate the storm surge model of DBE, model performance
in simulating the TWL during extreme events was evaluated by
comparing modeled water levels in the TSR run to observed data
at the NOAA 10 tide gauges for three one-month-long periods
that corresponded to four extreme events—Hurricane Irene and
Tropical Storm Lee (August 20, 2011 to September 20, 2011),
Hurricane Sandy (October 20, 2012 to November 20, 2012), and
Hurricane Isabel (September 01, 2003 to September 30, 2003).

Model parameters, such as the bottom roughness and open-
boundary sponge layer (radius and friction coefficient), were first
calibrated based on Hurricane Irene and Tropical Storm Lee and
then validated for Hurricanes Sandy and Isabel. Figure 7 shows
the scatter-plot comparisons for simulated and observed water
levels at the 10 tide gauges in the DBE for the three simulations
periods. Overall, the model-predicted water levels match the
observed data variation trend well and the model reproduces the
tidal amplification toward upstream inside the DBE. However,
the model tends to underpredict the TWL at some locations, such
as at the PA station during Sandy and Isabel, and the SJS and CM
stations, respectively, during the Irene and Lee events.

To quantify the model’s skill in simulating water level
in the DBE, a set of model performance metrics were

calculated. Specifically, the following four error statistical
parameters were used.

The root-mean-square-error (RMSE) is defined as:

RMSE =

√∑N
i=1 (Pi −Mi)

2

N
(4)

where, N is the number of observations, Mi is the measured value,
and Pi is the model-predicted value.

The scatter index (SI) is the normalized RMSE with the
average magnitude of measurements:

SI =
RMSE
|M|

(5)

The bias (Bias) is defined as the mean difference between model
predictions and the measurements:

Bias =
∑N

i=1 (Pi −Mi)

N
(6)

The linear correlation coefficient (R) is a measure of the linear
relationship between model predictions and the measurements:

R =
∑N

i=1
(
Pi − P

) (
Mi −M

)√(∑N
i=1
(
Mi −M

)2
) (∑N

i=1
(
Pi − P

)2
) (7)

The error statistics for the simulated water levels at all tide gauges
are provided in Table 2. The RMSE varies within a range between
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FIGURE 7 | Scatter comparisons of simulated and observed water levels at 10 tidal stations during three simulation periods in the DBE; (A,D) Irene and Lee: August
20 to September 20, 2011; (B,E) Sandy: October 20 to November 20, 2012; (C,F) Isabel: September 01 to 30, 2003. The red line represents the 1-to–1 fit and the
green line represents the linear correlation between model and data.

0.15 and 0.26 m with an increasing trend in the upstream,
likely due to the effects of the complicated geometry of narrow
and meandering channels. The SI values, which measure the
normalized RMSE, vary from 0.22 in the estuarine mouth to 0.38
in the river mouth. The Bias values at all stations are within
a range of −0.06 to −0.20 m, which also suggests the model
is slightly underestimating water levels. The linear correlation
coefficient R is 0.98 at all the stations except at the very upstream

station Newbold (0.97) and the downstream station at Lewes
(0.96), indicating the model predictions strongly correlate with
field observations.

The simulated major tidal harmonic constant (M2) was also
compared with observed data at ten tide gauges (Table 3).
The maximum difference between simulated and observed M2
tidal constituent is −0.13 m at NB station, which is about
12.1% underprediction by the model. More accurate bathymetry
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TABLE 2 | Error statistics of water-level predictions in the DBE.

Station ID RMSE (m) SI Bias (m) R

Newbold (NB) 0.23 0.22 −0.06 0.97

Burlington (BU) 0.26 0.29 −0.20 0.98

Philadelphia (PA) 0.22 0.32 −0.18 0.98

Marcus Hook (MH) 0.22 0.36 −0.17 0.98

Delaware City (DC) 0.20 0.34 −0.14 0.98

Reedy Point (RP) 0.20 0.35 −0.15 0.98

Ship John Shoal (SJS) 0.21 0.35 −0.15 0.98

Brandywine Shoal Light (BSL) 0.18 0.37 −0.14 0.98

Lewes (LE) 0.15 0.38 −0.08 0.96

Cape May (CM) 0.15 0.31 −0.08 0.98

TABLE 3 | Comparison of observed and modeled M2 tidal amplitude in the DBE.

Station ID AM2_obs

(m)
AM2_mod

(m)
AM2_mod –
AM2_obs

(m)

Relative
error (%)

Newbold (NB) 1.07 0.94 −0.13 −12.1

Burlington (BU) 0.85 0.88 0.03 3.5

Philadelphia (PA) 0.84 0.85 0.01 1.2

Marcus Hook (MH) 0.78 0.77 −0.01 −1.3

Delaware City (DC) 0.74 0.77 0.03 4.1

Reedy Point (RP) 0.77 0.76 −0.01 −1.3

Ship John Shoal (SJS) 0.83 0.80 −0.03 −3.6

Brandywine Shoal Light (BSL) 0.72 0.71 −0.01 −1.4

Lewes (LE) 0.71 0.69 −0.02 −2.8

Cape May (CM) 0.62 0.62 0 0.0

and high model resolution may be required to improve the
model accuracy in very upstream region of the estuary. Model
predictions of M2 tide at the rest tide gauges matched the data
reasonably well. Therefore, the overall performance of the model
in simulating tidal elevation is considered satisfactory.

RESULTS AND DISCUSSION

Contribution of TSRI to TWL
Previous studies suggest that TSRI increases the uncertainty
in TWL prediction (Doodson, 1956; Proudman, 1957; Rossiter,
1961; Johns et al., 1985; Arns et al., 2020). To understand the
effects of TSRI on TWLs and coastal flooding in the DBE, TSRI
was derived for the four extreme events.

Figure 8 shows the time series of the simulated TWL,
astronomical tides, LFS, and TSRI—at the NB, PA, and LE
stations, located at the upstream, upper bay, and lower bay,
respectively. To better understand the effect of TSRI on TWL,
the unmodulated total water level (UTWL), which is simply a
linear superposition of tide and LFS, was also plotted in Figure 8.
Comparison of the TWL and UTWL indicates that modulations
from TSRI on TWL vary with locations and extreme events.
During Hurricane Irene (Figure 8A)., TSRI was the product of
tides interacting with river and storm surges in turn to manifest
TWL at a tidal frequency. TSRI at the LE station, which is located

in the downstream of DBE, is storm surge driven for four extreme
events, indicating less effect on TWL because there was little
difference between TWL and UTWL (Figure 8C). TSRI at the NB
station is dominated by river flow, showing strong tidal signals
(Figure 8A). TSRI at NB suppressed tidal variations by more than
50% of the tidal range. TSRI at PA is less river dominant and does
not feature prolonged damping on tides (Figure 8B).

During Tropical Storm Lee, which featured strong river flow
and little storm surge, TWL at NB is significantly elevated
up to 2.1 m by LFS, but the tidal range is much reduced
(Figure 8D), similar to during Hurricane Irene. TSRI at NB
had an amplitude (up to 1.2 m) similar to tides during peak
river flow but in an opposite phase, resulting in the weakening
of the tidal fluctuations. Strong TSRI lasted more than 4 days
during high river flow, which demonstrated that TSRI was in a
direct proportion to the river flow (Godin and Martinez, 1994;
Sassi and Hoitink, 2013). Without the effect of TSRI, as shown
in the UTWL, the tidal variations were maintained and the
maximum UTWL was up to 1.0 m higher than the maximum
TWL (Figure 8D). Downstream of NB, the magnitude of TSRI
was greatly reduced to a level of 10 to 15% of TWL at PA
(Figure 8E) and approached zero at LE (Figure 8F), because
neither river flow nor storm surge affected TWL at the mouth
of DBE during Tropical Storm Lee.

Hurricanes Sandy and Isabel featured strong storm surges,
but had river flows smaller than those during Irene and Lee.
TSRI from downstream (LE) to upstream (PA, NB) were
mainly induced by the storm surges, and the peaks of TSRI
increased from about 0.2 to 0.8 m as water depth became
shallower (Figures 8G–L). Wind stress-induced surge magnitude
is understood to be significantly greater at low water than at high
water (Horsburgh and Wilson, 2007; Rego and Li, 2010; Zheng
et al., 2020). The shallower the water depth, the stronger the tidal
current magnitude, which resulted in stronger TSRI.

Unmodulated total water level shows both magnitude and
phase differences from TWL at PA and NB during landfall
of Sandy and Isabel (Figures 8G,H,J,K). Previous studies
indicated that the effect of TSRI on surges is through magnitude
modulation, and the effect on tides is through phase shift
(Horsburgh and Wilson, 2007). The peak of TSRI occurred on
falling tide during Sandy but on rising tide during Isabel, where
TWL propagated faster than UTWL during Sandy but slower
than UTWL during Isabel. In an idealized first-order modeling
study, Horsburgh and Wilson (2007) discovered that that the
peak TSRI with respect to high tide does not occur randomly but
in clusters on the rising or falling tides, depending on the phase
speed between TWL and tides. Therefor when tides lead the TWL
(such as Isabel), the TSRI will peak halfway up the rising tide. On
the other hand, when tides lag TWL (such as Sandy), TSRI will
peak on the falling tide. The changes of phase speeds of surge and
tide can be explained by the increase of bottom friction effect due
to the reduced water depth (Wolf, 1981).

Contribution of TSRI to Tidal Modulation
Tides interact with different physical processes and generate non-
linear interactions at tidal frequencies, which affect the tidal
variations of TWL. This process is seen as tidal modulation by
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FIGURE 8 | Modeled tides (blue), LFS (green), TSRI (black), TWL (dark red), and UTWL (tides + LFS, orange) during Irene (A–C), Lee (D–F), Sandy (G–I), and Isabel
(J–L) at tidal gauges Newbold (NB), Philadelphia (PA), and Lewes (LE) (top to bottom).

TSRI on TWL. Because TSRI varies with tidal frequency, it is
helpful to conduct frequency analysis of TSRI to understand how
different tidal bands interact with LFS. By decomposing the TSRI
based on the tidal frequency (mainly focusing on diurnal D1,
semidiurnal D2, and quarter-diurnal D4 bands), the effects of
tidal modulation by TSRI on TWL were assessed and quantified
during the four extreme events. This section describes how non-
stationary tidal analysis—Complex Demodulation as described
in section “TWL and Non-linear Interaction Decomposition”—
was applied to the time series of TSRI to calculate the time-
varying amplitude and phase at different tidal frequencies. The
reconstructed time series of TSRI at the D1, D2, and D4 bands at
the upstream NB station are presented in Figure 9.

The amplitude of the D2 component of TSRI during strong
river flow (Irene and Tropical Storm Lee) can reach up to 1 m,
which is comparable to semidiurnal tides, and the time series
is out of phase with a 6-h lag relative to tides (Figures 9A,D).
Therefore, the tidal modulation by TSRI on TWL at the D2 band
has a damping effect. The amplitude of tidal variations of TWL
(red line in Figures 9A,D) at the D2 band is reduced by more
than 50% of the amplitude of semidiurnal tides (blue line in
Figures 9A,D). The contribution of TSRI to tidal modulation
at the D2 band during Sandy and Isabel was insignificant, as
shown in Figures 9G,J. The amplitude of the D1 component of
TSRI can reach up to 0.4 m during strong storm surge events
induced by Sandy and Irene, about 2 times greater than diurnal
tides (Figures 9B,H). The tidal modulation by TSRI on TWL
at the D1 band enhanced the diurnal tides in a dominant way.

The amplitude of the D4 component of TSRI is less significant
in NB station for all the four extreme events (Figures 9C,F,I,L).
However, the phase of TSRI at the D4 band works against the
tides when the river flow is strong, such as during Irene and Lee
(Figures 9C,F).

The peak amplitudes of TSRI at the D2, D1, and D4 bands
and the corresponding amplitudes for tides, as well as the sum
of the two, are plotted in Figure 10 for 10 tidal gauges, in order
from upstream to downstream in the DBE. During Hurricane
Irene and Tropical Storm Lee, it is clear that river flow mainly
interacts with tides at the D2 band and results in TSRI damping
semidiurnal tides until the river flow impact ceases at MH station
(Figures 10A,D). Therefore, the higher the river flow, the greater
the tidal modulation of damping on semidiurnal tides by TSRI,
and the smaller the tidal variations of TWL at the D2 band.
During Irene and Sandy, storm surges mainly interacted with
diurnal tides, and the tidal modulation by TSRI on TWL at the D1
band was amplified. The tidal variations of TWL at the D1 band
were enhanced by peak TSRI during Irene and Sandy, resulting
in strong storm surges larger than diurnal tides (Figures 10B,H).
High-frequency TSRI at the D4 band generally enhances tides
except at the NB station during high river flow events (e.g.,
Irene and Lee), and the magnitude is overall not significant
(Figures 10C,F,I,L).

From upstream to downstream, the tidal modulations by TSRI
on TWL at the D2, D1, and D4 bands all show a decreasing
trend as water depth increases. The TSRI at the D2 band shows
greater variations and larger magnitudes than those at the D1
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FIGURE 9 | Time series of predicted tides (blue), TSRI (black), and tides plus TSRI (red) for the D2, D1, and D4 bands (top to bottom) during Irene (A–C), Lee (D–F),
Sandy (G–I), and Isabel (J–L) at the NB station.

FIGURE 10 | Predicted peak amplitudes of TSRI (black) and corresponding amplitudes of tides (blue), the sum of tides and TSRI (red) at the D2, D1, and D4 bands
(top to bottom) at 10 tidal gauges during Irene (A–C), Lee (D–F), Sandy (G–I), and Isabel (J–L). Note: The vertical scales for the D2, D1, and D4 bands are not the
same.
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FIGURE 11 | Spatial variations on peak values of (A) TRI, (B) TSI, and (C) TSRI during Hurricane Irene in the DBE. Tide gauges are labeled as red triangles.

band when the impact of river flow is significant. Therefore,
the tidal modulation on TWL by TSRI is dominated by the
river-induced damping effect during high flow events. Storm
surge-induced amplification becomes the dominant effect when
river flow is low.

Effects of River Flow and Storm Surge
on Compound Flooding
For Hurricane Irene, which featured high river flow and large
storm surge, the effects of river-induced damping by TRI and
storm surge-induced amplification by TSI on TWL co-exist
during compound flooding (e.g., Figures 10A,B). As indicated
in the previous section, TRI mainly damps on semidiurnal tides
(D2 band) and TSI enhances diurnal tides (D1 band). To better
understand the combined effect of TRI and TSI on the TWL,
numerical experiments (TR run and TS run) were conducted to
extract TRI and TSI components from TSRI.

The spatial distributions of the peak magnitude of TRI, TSI,
and TSRI inside the DBE during Hurricane Irene were compared
(Figure 11) and further evaluated along a longitudinal transect.
The DBE can be divided into three zones based on the pattern
of TSRI: the river zone where TSRI is dominated by TRI in
the upstream of the BU station and shows patterns similar to
those in Figures 11A,C; the surge zone where TSRI is dominated
by TSI downstream of the MH station and exhibits patterns
similar to those in Figures 11B,C; and the transition zone
where TSRI is influenced by both river flow (TRI) and storm
surge (TSI) between the BU and MH stations (Figure 11C).
Hoitink and Jay (2016) proposed the definition of boundary
between tidal river and estuary using the point of reversal of
lowest low waters from spring to neap (typically AMsf=AS2).
It was found AMsf=AS2 ≈ 0.13m at the PA station where

TS is delimiting but TR becomes dominant. The transition
zone classification based on TSRI distribution also indicates the
estuary-tidal river boundary.

FIGURE 12 | Along estuary variations in the TSR run (black), TR run (red), and
TS run (blue) of (A) peak values of TWL and peak magnitude of non-linear
interactions, (B) modulation ratio by non-linear interactions on TWL.
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To assess the level of impact of TRI, TSI, and TSRI on TWL,
the modulation ratio is used, which is defined as:

modulation ratio (%) =
TWLmax − UTWL

TWLmax
× 100

=

(
1−

Tide+ LFS
TWLmax

)
× 100 (8)

where, UTWL = Tide+ LFS at the same timestep of TWLmax.
Based on the definition of TWL (Figure 4), Eq. (8) can be further
written as:

modulation ratio (%) =

(
Nonlinear Interactions

TWLmax

)
× 100 (9)

The modulation ratio represents the modulation of non-linear
interactions on TWL in terms of magnitude and phase change.
Figure 12 shows that when only tide and river flow are considered
(TR run, orange line), the TRI damps TWL by up to 40% in
the upstream and the damping effect gradually reduces to zero
around MH. In TS run (blue line), the TSI enhances TWL by 5–
15% in the whole domain, but the effect on the TWL is smaller
than the effect of river flow (Figure 12A). In the TSR run, a

transition point of TSRI is shown around 230 km upstream
between the PA and BU stations. At the very upstream, TSRI is
damping TWL up to 40%, while downstream of the tipping points
TSRI is enhancing TWL by 10–15% (Figure 12B).

The frequency analysis in section “Contribution of TSRI to
Tidal Modulation” details the variations in TSRI at different
tidal frequencies (Figure 9), and the modulation ratio evaluates
the impacts of non-linear interactions on TWL under different
forcing mechanisms (Figure 12). To further quantify the relative
contributions of the D2, D1, and high-frequency (D4+D6+D8)
tidal bands to the total variance of TRI, TSI, and TSRI, the SSA
method (described in section “TWL and Non-linear Interaction
Decomposition”) was applied at 10 tide gauges. Figure 13A
shows that TRI is contributed by D2 and high-frequency bands
only and the contribution from the D1 band is zero. The D2 band
contributes 70 to 90% of the total variability of TRI at the NB
and BU stations, while the high-frequency band contributes more
than 50% of the total variability of TRI at the PA and MH stations,
which indicates the shallow water effect becomes dominant in
this area. The lower contribution of the high-frequency band
to the total variability of TRI at upstream locations (NB and
BU) with respect to D2 was attributed to a faster damping of

FIGURE 13 | Peak values of (A) TRI, (B) TSI, (C) TSRI (black lines), and the percentage of relative contributions from different tidal bands [D2 – semi-diurnal band
(red); D1 – diurnal band (gray); D4+D6+D8 – high-frequency (orange)] to the total variance of corresponding non-linear interactions at 10 tidal gauges.
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TABLE 4 | Relative contributions (%) of the D2, D1, and high-frequency (D4+D6+D8) bands to the total variance of TRI, TSI, and TSRI at 10 tidal gauges.

TRI TSI TSRI

Peak D2 D1 D4+6+8 Peak D2 D1 D4+6+8 Peak D2 D1 D4+6+8

ID (m) (%) (%) (%) (m) (%) (%) (%) (m) (%) (%) (%)

NB 1.2 89.8 0.0 9.4 0.3 19.6 53.0 22.8 1.2 86.7 3.7 8.7

BU 0.7 74.9 0.0 22.9 0.3 19.0 70.1 9.4 0.8 71.0 8.2 18.0

PA 0.3 41.9 0.0 53.9 0.3 15.2 75.8 7.2 0.5 22.7 20.7 51.5

MH 0.1 36.5 0.0 57.9 0.3 43.9 46.4 8.4 0.3 44.1 26.9 24.3

DC 0.1 21.9 0.0 73.7 0.4 16.4 73.9 8.0 0.4 16.6 63.1 17.6

RP 0.1 22.2 0.0 72.7 0.4 14.8 71.3 11.7 0.4 19.4 60.4 16.4

SJS 0.0 44.6 0.0 51.9 0.3 18.3 77.2 4.3 0.3 8.1 85.3 6.2

BSL 0.0 38.1 0.0 42.6 0.3 17.5 79.5 2.7 0.3 5.9 87.7 6.1

LE 0.0 15.2 0.0 58.3 0.3 14.7 77.5 6.7 0.3 15.1 77.0 6.8

CM 0.0 26.5 0.0 50.8 0.2 17.9 73.2 8.1 0.2 17.8 74.8 6.8

the higher harmonics by river flow. Further downstream of MH,
TRI is less than 0.2 m and becomes negligible. However, for the
TS run, TSI is predominantly contributed by the D1 band in
a range of 50 to 80% in the entire DBE (Figure 13B). In the
TSR run, which considered the combined forcing of tide, river
flow, and storm surge, the contribution of TSRI followed a three-
zone pattern (Figure 13C), as described in section “Effects of
River Flow and Storm Surge on Compound Flooding.” The D2
and D1 bands contribute the most to TSRI in the upstream and
downstream of the estuary, respectively. In the transition zone
around PA, the high-frequency band contributes up to 60% of
the total variance of TSRI (Figure 13C). The contributions to
the total variance of TRI, TSI, and TSRI from the identified D2,
D1, high-frequency (D4+D6+D8) bands at 10 tidal gauges are
summarized in Table 4.

Sensitivity of River Flow on Compound
Flooding
As discussed in previous sections, TSRI is proportional to river
flow and has a damping effect on tidal amplitude, which is
caused by the bottom friction effect via dissipating tidal energy
(Godin, 1999; Horrevoets et al., 2004). However, the relationship
between tidal damping and river flow rate can be linear or
non-linear in different estuaries. Tidal damping by TSRI is
dominated by the river flow in the upstream of tidal estuaries
(Godin and Martinez, 1994). Theoretical analysis suggested a
linear relationship between tidal damping modulus and river
flow in the Columbia River estuary (Kukulka and Jay, 2003).
However, Guo et al. (2015) found non-linear tidal decay of
principal tides and the modulation of M4 tide with increasing
river flow in the Yangtze River estuary. To better understand
the relationship between the damping effect and river flow in
the DBE, a sensitivity analysis was conducted to evaluate the
damping effect of TSRI on TWL in the DBE under different river
flow conditions.

To determine the river flow range corresponding to a flood
return period, a rating curve of flood frequency for the Delaware
River was developed using USGS stream gauge data at Trenton.
Figure 14 indicates that Irene is equivalent to a 5 year flood

event while Tropical Storm Lee corresponds to a 10 year flood
event. Sensitivity model runs were carried out with stream flows
corresponding to flood return periods of 2, 5, 10, 25, 50, 100,
and 500 years. The hydrograph shape of the Irene event was
used to construct the river flow input by multiplying a ratio to
match the peak design flows to simulate Irene-like river flood
events. Tide and wind field were kept the same as those used in
Hurricane Irene.

The variations of the peak TWL and peak magnitude of TSRI
under different river flows from upstream to downstream and the
corresponding modulation ratios by TSRI on TWL are shown in
Figure 15. The magnitude of TSRI and TWL from upstream to
the MH station is affected by river flow changes; the maximum
variations of TSRI and TWL in the upstream were approximately
in the ranges of 1–2 m and 2.2–5.5 m, respectively (Figure 15A).
The larger increase in TWL compared to TSRI is due to the
increase in LFS induced by river flow. In general, downstream
of station MH, the variation of river flow has little influence on
TWL and TSRI, and modulation ratio. However, approximately
between stations BU and MH, the effects of river flow rates on
TWL, TSRI, and modulation ratio become evident, with TWL
and TSRI increasing toward the upstream as a function of flow
rate (Figure 15A) and the modulation ratio transitioning from
enhancing to damping (Figure 15B). It is also observed that the

FIGURE 14 | Flood frequency chart of the Delaware River based on USGS
data.

Frontiers in Marine Science | www.frontiersin.org 14 July 2021 | Volume 8 | Article 71555745

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-715557 July 26, 2021 Time: 18:4 # 15

Xiao et al. Non-linear Interactions of Compound Flooding

FIGURE 15 | Along-estuary variations of (A) peak magnitude of non-linear
interactions and peak TWL corresponding to a range of return periods (2–500
years ARI) from the Delaware River; (B) modulation ratio by TSRI on TWL.

transition location of the modulation ratio shifts downstream
as river flow increases (Figure 15B). It is interesting to see the
modulation ratio reaching a minimum (or maximum damping)
in the upstream zone and the minimum inversely proportional to
the flow rate and ARI (Figure 15B). For example, the respective
minimums of the modulation ratio corresponding to ARIs of
5 yr, 25 yr, and 500 yr are approximately −43, −40, and
−33%. The presence of the minimum of modulation ratio can
be explained by its definition in Eq. (9), which is non-linear
interactions divided by TWL. In the transition zone, the relative
increase in the damping effect from non-linear interactions is
greater than the increase in TWL. However, toward the upstream,
TWL increases significantly with a greater rate and results in
a reduction in the magnitude of the modulation ratio, and
consequently the maximum damping.

SUMMARY AND CONCLUSION

In this study, a 3-D, high-resolution storm surge model was
developed to evaluate the non-linear interactions between
tidal and non-tidal components of TWLs in the DBE during
hurricane events. In particular, focused analysis was conducted
to understand the effect of non-linear interactions on coastal
compound flooding induced by the co-occurrence of river floods
and coastal storm surges. Specifically, storm surge and non-linear
interactions induced by historical extreme weather events—
Hurricanes Isabel (2003), Irene (2011), Tropical Storm Lee
(2011), and Sandy (2012) – were simulated and analyzed.

The model was validated with observed water levels at 10
tide gauges that span the entire DBE. Simulated water levels
were decomposed to astronomical tides, LFSs, and non-linear
interactions. The effects of non-linear interactions on the TWL
were further analyzed using a wavelet approach and a spectral
analysis method. TRI and TSI were derived using numerical
experiments driven by the corresponding forcing only. The DBE
can be divided into three zones: the river-dominated (upstream
of the BU station), the storm surge-dominated (downstream of
station MH), and the transition zone in between. Analysis results
indicate that TRI tends to damp tidal amplitude on the D2 band,
by up to 40% of the TWL, in the upstream river-dominated zone,
caused by the bottom friction effect via dissipating tidal energy
(Godin, 1999; Horrevoets et al., 2004). However, TSI amplifies
tides on the D1 band by 10 to 15% of TWL in the entire estuary.

The effect of TSRI on TWL was more noticeable during
compound flooding events such as Hurricane Irene. TSRIs in the
river and surge zones are dominated by TRI and TSI to dampen
and enhance TWL, respectively. TSRI in the transition zone is
jointly contributed to by TRI and TSI, which yields a tipping
point of separating the damping and enhancing effects in the
estuary. Sensitivity analysis indicated that the tipping point of
TSRI damping and enhancing effects shifts downstream as river
flow ARI increases.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

ZY, ZX, and TW contributed to conception and design of the
study. ZX, ZY, and TW contributed to the methodology. NS
and MW contributed to the river flow analysis. ZX performed
the simulations, visualization, and results analysis. DJ provided
project administration. ZX and ZY wrote the first draft of
the manuscript. All authors contributed to manuscript review,
revision, and approved the submitted version.

FUNDING

This work was supported by the MultiSector Dynamics, Earth
System Model Development and Regional and Global Modeling
and Analysis program areas of the United States Department of
Energy, Office of Science, Office of Biological and Environmental
Research as part of the multi-program, collaborative Integrated
Coastal Modeling (ICoM) project. All model simulations
were performed using resources available through Research
Computing at Pacific Northwest National Laboratory.

ACKNOWLEDGMENTS

The authors thank Dr. Isabel Jalón-Rojas for providing the
MATLAB script of the complex demodulation method.

Frontiers in Marine Science | www.frontiersin.org 15 July 2021 | Volume 8 | Article 71555746

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-715557 July 26, 2021 Time: 18:4 # 16

Xiao et al. Non-linear Interactions of Compound Flooding

REFERENCES
Amante, C., and Eakins, B. W. (2009). ETOP01 1 Arc-Minute Global Relief Model:

Procedures, Data Sources and Analysis, OAA Technical Memorandum NESDIS,
NGDC-24. 19.

Aristizabal, M., and Chant, R. (2013). A numerical study of salt fluxes in delaware
bay estuary. J. Phys. Oceanogr. 43, 1572–1588. doi: 10.1175/Jpo-D-12-0124.1

Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P., et al.
(2020). Non-linear interaction modulates global extreme sea levels, coastal
flood exposure, and impacts. Nat. Commun. 11:1918. doi: 10.1038/s41467-020-
15752-5

Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., et al. (2019). Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change.
Sci. Adv. 5:eaaw5531. doi: 10.1126/sciadv.aaw5531

Bloomfield, P. (2004). Fourier analysis of Time Series: An Introduction. Wiley Series
in Probability and Statistics. Hoboken, NJ: John Wiley.

Chen, C., Gao, G., Zhang, Y., Beardsley, R. C., Lai, Z., Qi, J., et al. (2016).
Circulation in the Arctic Ocean: results from a high-resolution coupled ice-
sea nested Global-FVCOM and Arctic-FVCOM system. Prog. Oceanogr. 141,
60–80. doi: 10.1016/j.pocean.2015.12.002

Chen, C. S., Lai, Z. G., Beardsley, R. C., Sasaki, J., Lin, J., Lin, H. C., et al. (2014).
The March 11, 2011 Tahoku M9.0 earthquake-induced tsunami and coastal
inundation along the Japanese coast: a model assessment. Prog. Oceanogr. 123,
84–104. doi: 10.1016/j.pocean.2014.01.002

Chen, C. S., Liu, H. D., and Beardsley, R. C. (2003). An unstructured grid, finite-
volume, three-dimensional, primitive equations ocean model: application to
coastal ocean and estuaries. J. Atmos. Ocean. Technol. 20, 159–186. doi: 10.
1175/1520-0426(2003)020<0159:augfvt>2.0.co;2

Dean, R. G. (1966). “Tides and harmonic analysis,” in Estuary and Coastline
Hydrodynamics, ed. A. T. Ippen (New York, NY: MHGraw-Hill),
197–229.

Dinapoli, M. G., Simionato, C. G., and Moreira, D. (2021). Nonlinear interaction
between the tide and the storm surge with the current due to the river flow in
the rio de la Plata. Estuaries Coasts 44, 939–959. doi: 10.1007/s12237-020-00
844-8

Doodson, A. T. (1956). Tides and storm surges in a long uniform gulf. Proc. R. Soc.
Lon. Series A Math. Phys. Sci. 237, 325–343. doi: 10.1098/rspa.1956.0180

Dronkers, J. J. (1964). Tidal Computations in Rivers and Coastal Waters.
Amsterdam: North-Holland Publishing Company.

Flinchem, E. P., and Jay, D. A. (2000). An introduction to wavelet transform tidal
analysis methods. Estuarine Coastal Shelf Sci. 51, 177–200. doi: 10.1006/ecss.
2000.0586

Gasquet, H., and Wootton, A. J. (1997). Variable-frequency complex demodulation
technique for extracting amplitude and phase information. Rev. Sci. Inst. 68,
1111–1114. doi: 10.1063/1.1147748

Godin, G. (1972). The Analysis of Tides. Buffalo, NY: University of Toronto Press,
264.

Godin, G. (1999). The propagation of tides up rivers with special considerations
on the upper saint lawrence river. Estuarine Coastal Shelf Sci. 48, 307–324.
doi: 10.1006/ecss.1998.0422

Godin, G., and Martinez, A. (1994). Numerical experiments to investigate the
effects of quadratic friction on the propagation of tides in a channel. Continental
Shelf Res. 14, 723–748. doi: 10.1016/0278-4343(94)90070-1

Guo, L., van der Wegen, M., Jay, D. A., Matte, P., Wang, Z. B., Roelvink, D., et al.
(2015). River-tide dynamics: exploration of nonstationary and nonlinear tidal
behavior in the Yangtze River estuary. J. Geophys. Res. Oceans 120, 3499–3521.
doi: 10.1002/2014JC010491

Hoitink, A. J. F., and Jay, D. A. (2016). Tidal river dynamics: implications for deltas.
Rev. Geophys. 54, 240–272. doi: 10.1002/2015rg000507

Horrevoets, A. C., Savenije, H. H. G., Schuurman, J. N., and Graas, S. (2004). The
influence of river discharge on tidal damping in alluvial estuaries. J. Hydrol. 294,
213–228. doi: 10.1016/j.jhydrol.2004.02.012

Horsburgh, K. J., and Wilson, C. (2007). Tide-surge interaction and its role in
the distribution of surge residuals in the North Sea. J. Geophys. Res. Oceans
112(C8):4033. doi: 10.1029/2006JC004033

Hsiao, S. C., Chen, H., Chen, W. B., Chang, C. H., and Lin, L. Y. (2019). Quantifying
the contribution of nonlinear interactions to storm tide simulations during a

super typhoon event. Ocean Eng. 194:106661. doi: 10.1016/j.oceaneng.2019.
106661

Idier, D., Bertin, X., Thompson, P., et al. (2019). Interactions between mean sea
level, tide, surge, waves and flooding: mechanisms and contributions to sea level
variations at the coast. Surv. Geophys. 40, 1603–1630. doi: 10.1007/s10712-019-
09549-5

Idier, D., Dumas, F., and Muller, H. (2012). Tide–surge interaction in the English
channel. Nat. Hazard Earth Sys. 12, 3709–3718. doi: 10.5194/nhess-12-3709-
2012

Jalón-Rojas, I., Schmidt, S., and Sottolichio, A. (2016). Evaluation of spectral
methods for high-frequency multiannual time series in coastal transitional
waters: advantages of combined analyses. Limnol. Oceanogr. Methods 14, 381–
396. doi: 10.1002/lom3.10097

Jalón-Rojas, I., Schmidt, S., and Sottolichio, A. (2017). Comparison of
environmental forcings affecting suspended sediments variability in two
macrotidal, highly turbid estuaries. Estuar. Coast. Shelf Sci. 198, 529–541. doi:
10.1016/j.ecss.2017.02.017

Jalón-Rojas, I., Sottolichio, A., Hanquiez, V., Fort, A., and Schmidt, S. (2018).
To what extent multidecadal changes in morphology and fluvial discharge
impact tide in a convergent (Turbid) Tidal River. J. Geophys. Res. Oceans 123,
3241–3258. doi: 10.1002/2017jc013466

Jay, D. A., and Flinchem, E. P. (1997). Interaction of fluctuating river flow with a
barotropic tide: a demonstration of wavelet tidal analysis methods. J. Geophys.
Res. 102, 5705–5720. doi: 10.1029/96jc00496

Johns, B., Rao, A. D., Dubinsky, Z., Sinha, P. C., and Lighthill, M. J. (1985).
Numerical modelling of tide-surge interaction in the Bay of Bengal. Philos.
Trans. Royal Soc. Lond. Series A Math. Phys. Sci. 313, 507–535. doi: 10.1098/
rsta.1985.0002

Keers, J. F. (1968). An empirical investigation of interaction between storm surge
and astronomical tide on the east coast of Great Britain. Dtsch. Hydrogr. Z. 21,
118–125. doi: 10.1007/bf02235726

Kukulka, T., and Jay, D. A. (2003). Impacts of Columbia River discharge on
salmonid habitat: 1. A non-stationary fluvial tide model. J. Geophys. Res.
108(C9):3293. doi: 10.1029/2002JC001382

Landsea, C. W., and Franklin, J. L. (2013). Atlantic hurricane database uncertainty
and presentation of a new database format. Mon. Wea. Rev. 141, 3576–3592.
doi: 10.1175/mwr-d-12-00254.1

Lanzoni, S., and Seminara, G. (1998). On tide propagation in convergent estuaries.
J. Geophys. Res.Oceans 103(C13), 30793–30812. doi: 10.1029/1998jc900015

Li, M., Zhang, F., Barnes, S., and Wang, X. (2020). Assessing storm surge impacts
on coastal inundation due to climate change: case studies of Baltimore and
Dorchester County in Maryland. Nat. Hazards 103, 2561–2588. doi: 10.1007/
s11069-020-04096-4

Matte, P., Jay, D. A., and Zaron, E. D. (2013). Adaptation of classical tidal harmonic
analysis to nonstationary tides, with application to river tides. J. Atmos. Oceanic
Technol. 30, 569–589. doi: 10.1175/jtech-d-12-00016.1

Matte, P., Secretan, Y., and Morin, J. (2014). Temporal and spatial variability of
tidal-fluvial dynamics in the St. Lawrence fluvial estuary: an application of
nonstationary tidal harmonic analysis. J. Geophys. Res. 119, 5724–5744. doi:
10.1002/2014JC009791

Olbert, A. I., Nash, S., Cunnane, C., and Hartnett, M. (2013). Tide–surge
interactions and their effects on total sea levels in Irish coastal waters. Ocean
Dynamics 63, 599–614. doi: 10.1007/s10236-013-0618-0

Pareja Roman, L. F. (2019). Delaware Bay: Hydrodynamics and Sediment Transport
in the Anthropocene. doi: 10.7282/t3-3ss3-kc28 PhD thesis, Rutgers University,
New Jersey.

Parker, B., Hess, K. W., Milbert, D. G., and Gill, S. (2003). A national vertical datum
transformation tool. Sea Technol. 44, 10–15.

Pawlowicz, R., Beardsley, B., and Lentz, S. (2002). Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE. Comput. Geosci. 28,
929–937. doi: 10.1016/s0098-3004(02)00013-4

Prandle, D., and Wolf, J. (1978). The interaction of surge and tide in the North Sea
and River Thames. Geophys. J. Int. 55, 203–216. doi: 10.1111/j.1365-246X.1978.
tb04758.x

Proudman, J. (1955). The propagation of tide and surge in an estuary. Proc. R. Soc.
Lond. Series A Math. Phys. Sci. 231, 8–24. doi: 10.1098/rspa.1955.0153

Proudman, J. (1957). Oscillations of tide and surge in an estuary of finite length.
J. Fluid Mech. 2, 371–382. doi: 10.1017/S002211205700018X

Frontiers in Marine Science | www.frontiersin.org 16 July 2021 | Volume 8 | Article 71555747

https://doi.org/10.1175/Jpo-D-12-0124.1
https://doi.org/10.1038/s41467-020-15752-5
https://doi.org/10.1038/s41467-020-15752-5
https://doi.org/10.1126/sciadv.aaw5531
https://doi.org/10.1016/j.pocean.2015.12.002
https://doi.org/10.1016/j.pocean.2014.01.002
https://doi.org/10.1175/1520-0426(2003)020<0159:augfvt>2.0.co;2
https://doi.org/10.1175/1520-0426(2003)020<0159:augfvt>2.0.co;2
https://doi.org/10.1007/s12237-020-00844-8
https://doi.org/10.1007/s12237-020-00844-8
https://doi.org/10.1098/rspa.1956.0180
https://doi.org/10.1006/ecss.2000.0586
https://doi.org/10.1006/ecss.2000.0586
https://doi.org/10.1063/1.1147748
https://doi.org/10.1006/ecss.1998.0422
https://doi.org/10.1016/0278-4343(94)90070-1
https://doi.org/10.1002/2014JC010491
https://doi.org/10.1002/2015rg000507
https://doi.org/10.1016/j.jhydrol.2004.02.012
https://doi.org/10.1029/2006JC004033
https://doi.org/10.1016/j.oceaneng.2019.106661
https://doi.org/10.1016/j.oceaneng.2019.106661
https://doi.org/10.1007/s10712-019-09549-5
https://doi.org/10.1007/s10712-019-09549-5
https://doi.org/10.5194/nhess-12-3709-2012
https://doi.org/10.5194/nhess-12-3709-2012
https://doi.org/10.1002/lom3.10097
https://doi.org/10.1016/j.ecss.2017.02.017
https://doi.org/10.1016/j.ecss.2017.02.017
https://doi.org/10.1002/2017jc013466
https://doi.org/10.1029/96jc00496
https://doi.org/10.1098/rsta.1985.0002
https://doi.org/10.1098/rsta.1985.0002
https://doi.org/10.1007/bf02235726
https://doi.org/10.1029/2002JC001382
https://doi.org/10.1175/mwr-d-12-00254.1
https://doi.org/10.1029/1998jc900015
https://doi.org/10.1007/s11069-020-04096-4
https://doi.org/10.1007/s11069-020-04096-4
https://doi.org/10.1175/jtech-d-12-00016.1
https://doi.org/10.1002/2014JC009791
https://doi.org/10.1002/2014JC009791
https://doi.org/10.1007/s10236-013-0618-0
https://doi.org/10.7282/t3-3ss3-kc28
https://doi.org/10.1016/s0098-3004(02)00013-4
https://doi.org/10.1111/j.1365-246X.1978.tb04758.x
https://doi.org/10.1111/j.1365-246X.1978.tb04758.x
https://doi.org/10.1098/rspa.1955.0153
https://doi.org/10.1017/S002211205700018X
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-715557 July 26, 2021 Time: 18:4 # 17

Xiao et al. Non-linear Interactions of Compound Flooding

Rego, J. L., and Li, C. (2010). Nonlinear terms in storm surge predictions: effect of
tide and shelf geometry with case study from Hurricane Rita. J. Geophys. Res.
115:C06020. doi: 10.1029/2009JC005285

Rossiter, J. R. (1961). Interaction between tide and surge in the thames. Geophys. J.
Int. 6, 29–53. doi: 10.1111/j.1365-246X.1961.tb02960.x

Sassi, M. G., and Hoitink, A. J. F. (2013). River flow controls on tides an tide-
mean water level profiles in a tidel freshwater river. J. Geophys. Res. Oceans 118,
4139–4151. doi: 10.1002/jgrc.20297

Schoellhamer, D. H. (2001). Singular spectrum analysis for time series with missing
data. Geophys. Res. Lett. 28, 3187–3190. doi: 10.1029/2000GL012698

Schoellhamer, D. H. (2002). Variability of suspended-sediment concentration at
tidal to annual time scales in San Francisco Bay, USA. Cont. Shelf Res. 22,
1857–1866. doi: 10.1016/S0278-4343(02)00042-0

Sharp, J. (ed.) (1984). The Delaware Estuary: Research as Background For
Estuarine Management and Development. Delaware River and Bay Authority
Rep. University of Delaware College of Marine Studies and New Jersey Marine
Sciences Consortium, DEL-SG-03-84. Newark, DE: University of Delaware, 340.

Sheng, Y. P., Alymov, V., and Paramygin, V. A. (2010). Simulation of storm
surge, wave, currents and inundation in the Outer Banks and Chesapeake Bay
during Hurricane Isabel in 2003: the importance of waves. J. Geophys. Res. 115,
1–27.

Song, D., Wang, X. H., Cao, Z., and Guan, W. (2013). Suspended sediment
transport in the Deepwater Navigation Channel, Yangtze River Estuary,
China, in the dry season 2009: 1. Observations over spring and neap
tidal cycles. J. Geophys. Res. Oceans 118, 5555–5567. doi: 10.1002/jgrc.
20410

Spicer, P., Huguenard, K., Ross, L., and Rickard, L. N. (2019). High-Frequency
tide-surge-river interaction in estuaries: causes and implications for coastal
flooding. J. Geophys. Res. Oceans 124, 9517–9530. doi: 10.1029/2019jc0
15466

Spicer, P., Matte, P., Huguenard, K., and Rickard, L. N. (2021). Coastal windstorms
create unsteady, unpredictable storm surges in a fluvial Maine estuary. Shore
Beach 89, 3–10. doi: 10.34237/1008921

Vautard, R., Yiou, P., and Ghil, M. (1992). Singular-spectrum analysis: a toolkit
for short, noisy chaotic signals. Phys. D 58, 95–126. doi: 10.1016/0167-2789(92)
90103-T

Walters, R. A., and Heston, C. (1982). Removing tidal-period variations from
time-series data using low-pass digital filters. J. Phys. Oceanogr. 12, 112–115.
doi: 10.1175/1520-0485(1982)012<0112:rtpvft>2.0.co;2

Wang, T. P., and Yang, Z. Q. (2019). The nonlinear response of storm surge to
sea-level rise: a modeling approach. J. Coast. Res. 35, 287–294. doi: 10.2112/
jcoastres-d-18-00029.1

Whitney, M. M., and Garvine, R. W. (2006). Simulating the delaware bay buoyant
outflow: comparison with observations. J. Phys. Oceanogr. 36, 3–21. doi: 10.
1175/jpo2805.1

Wolf, J. (1978). Interaction of tide and surge in a semi-infinite uniform channel,
with application to surge propagation down the east coast of Britain. Appl.
Math. Model. 2, 245–253. doi: 10.1016/0307-904X(78)90017-3

Wolf, J. (1981). “Surge-tide interaction in the North Sea and River Thames,” in
Floods due to High Winds and Tides, ed. D. H. Peregrine (New York, NY:
Elsevier), 75–94.

Wong, K.-C., and Sommerfield, C. K. (2009). The variability of currents and sea
level in the upper Delaware estuary. J. Mar. Res. 67, 479–501. doi: 10.1357/
002224009790741111

Xiao, Z. Y., Wang, X. H., Song, D., Jalón-Rojas, I., and Harrison, D. (2020).
Numerical modelling of suspended-sediment transport in a geographically
complex microtidal estuary: Sydney Harbour Estuary, NSW. Estuar. Coast. Shelf
Sci. 236:106605. doi: 10.1016/j.ecss.2020.106605

Yang, Z., Myers, E. P., Wong, A. M., and White, S. A. (2008). VDatum for
Chesapeake Bay, Delaware Bay and Adjacent Coastal Water Areas: Tidal datums
and Sea Surface Topography, NOAA Tech. Rep. NOS CS 15. Silver Spring, Md:
National Oceanic and Atmospheric Administration, 110.

Yang, Z., Wang, T., Branch, R., Xiao, Z., and Deb, M. (2021). Tidal stream energy
resource characterization in the Salish Sea. Renewable Energy 172, 188–208.
doi: 10.1016/j.renene.2021.03.028

Yang, Z., Wang, T., Leung, R., Hibbard, K., Janetos, T., Kraucunas, I., et al.
(2014). A modeling study of coastal inundation induced by storm surge, sea-
level rise, and subsidence in the Gulf of Mexico. Nat. Hazards 71, 1771–1794.
doi: 10.1007/s11069-013-0974-6

Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E., et al. (2020).
Simulating storm surge and compound flooding events with a creek-to-ocean
model: Importance of baroclinic effects.OceanModel. 145:101526. doi: 10.1016/
j.ocemod.2019.101526

Zhang, Y. J., Ye, F., Yu, H., Sun, W., Moghimi, S., Myers, E., et al. (2020). Simulating
compound flooding events in a hurricane. Ocean Dynamics 70, 621–640. doi:
10.1007/s10236-020-01351-x

Zheng, P., Li, M., Wang, C., Wolf, J., Chen, X., De Dominicis, M., et al. (2020).
Tide-surge interaction in the pearl river estuary: a case study of typhoon hato.
Front. Mar. Sci. 7:236. doi: 10.3389/fmars.2020.00236

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Xiao, Yang, Wang, Sun, Wigmosta and Judi. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 17 July 2021 | Volume 8 | Article 71555748

https://doi.org/10.1029/2009JC005285
https://doi.org/10.1111/j.1365-246X.1961.tb02960.x
https://doi.org/10.1002/jgrc.20297
https://doi.org/10.1029/2000GL012698
https://doi.org/10.1016/S0278-4343(02)00042-0
https://doi.org/10.1002/jgrc.20410
https://doi.org/10.1002/jgrc.20410
https://doi.org/10.1029/2019jc015466
https://doi.org/10.1029/2019jc015466
https://doi.org/10.34237/1008921
https://doi.org/10.1016/0167-2789(92)90103-T
https://doi.org/10.1016/0167-2789(92)90103-T
https://doi.org/10.1175/1520-0485(1982)012<0112:rtpvft>2.0.co;2
https://doi.org/10.2112/jcoastres-d-18-00029.1
https://doi.org/10.2112/jcoastres-d-18-00029.1
https://doi.org/10.1175/jpo2805.1
https://doi.org/10.1175/jpo2805.1
https://doi.org/10.1016/0307-904X(78)90017-3
https://doi.org/10.1357/002224009790741111
https://doi.org/10.1357/002224009790741111
https://doi.org/10.1016/j.ecss.2020.106605
https://doi.org/10.1016/j.renene.2021.03.028
https://doi.org/10.1007/s11069-013-0974-6
https://doi.org/10.1016/j.ocemod.2019.101526
https://doi.org/10.1016/j.ocemod.2019.101526
https://doi.org/10.1007/s10236-020-01351-x
https://doi.org/10.1007/s10236-020-01351-x
https://doi.org/10.3389/fmars.2020.00236
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-713784 August 3, 2021 Time: 11:2 # 1

ORIGINAL RESEARCH
published: 06 August 2021

doi: 10.3389/fmars.2021.713784

Edited by:
Giovanni Besio,

University of Genoa, Italy

Reviewed by:
Matjaz Licer,

National Institute of Biology (NIB),
Slovenia

Hajime Mase,
Kyoto University, Japan

*Correspondence:
Shinsuke Iwasaki

iwasaki-s@ceri.go.jp

Specialty section:
This article was submitted to

Coastal Ocean Processes,
a section of the journal

Frontiers in Marine Science

Received: 24 May 2021
Accepted: 12 July 2021

Published: 06 August 2021

Citation:
Iwasaki S and Otsuka J (2021)

Evaluation of Wave-Ice
Parameterization Models

in WAVEWATCH III R© Along
the Coastal Area of the Sea

of Okhotsk During Winter.
Front. Mar. Sci. 8:713784.

doi: 10.3389/fmars.2021.713784

Evaluation of Wave-Ice
Parameterization Models in
WAVEWATCH III R© Along the Coastal
Area of the Sea of Okhotsk During
Winter
Shinsuke Iwasaki* and Junichi Otsuka

Civil Engineering Research Institute for Cold Region, Public Works Research Institute, Sapporo, Japan

Ocean surface waves tend to be attenuated by interaction with sea ice. In this study, six
sea ice models in the third-generation wave model WAVEWATCH III R© (WW3) were used
to estimate wave fields over the Sea of Okhotsk (SO). The significant wave height (Hs)
and mean wave period (Tm) derived from the models were evaluated with open ocean
and ice-covered conditions, using SO coastal area buoy observations. The models were
validated for a period of 3 years, 2008–2010. Additionally, the impact of sea ice on
wave fields was demonstrated by model experiments with and without sea ice. In the
open ocean condition, the root-mean square error (RMSE) and correlation coefficient for
hourly Hs are 0.3 m and 0.92, and for hourly Tm 0.97 s and 0.8. In contrast, for the ice-
covered condition, the averaged RMSE and correlation coefficient from all models are
0.44 m (1.6 s) and 0.8 (0.6) for Hs (Tm), respectively. Therefore, except for the bias, the
accuracy of model results for the ice-covered condition is lower than for the open water
condition. However, there is a significant difference between the six sea ice models.
For Hs, the empirical formula whereby attenuation depends on the frequency relatively
agrees with the buoy observation. For Tm, the empirical formula that is a function of
Hs is better than those of other simulations. In addition, the simulations with sea ice
drastically improved the wave field bias in coastal areas compared to the simulations
without sea ice. Moreover, sea ice changed the monthly Hs (Tm) by more than 1 m (3 s)
in the northwestern part of the SO, which has a high ice concentration.

Keywords: ocean surface waves, sea ice, Sea of Okhotsk, wave model, WAVEWATCH III

INTRODUCTION

The Sea of Okhotsk (SO) is a marginal ice zone (defined as the region of an ice cover that is affected
by waves and swell penetrating into the ice from the open ocean) and is the southernmost sea
with a seasonal ice cover in the Northern Hemisphere. Accurate forecasts of ocean surface waves
in the SO are important for navigation planning of ocean transport because it can help identify
hazardous areas and ensure safe shipping routes. In addition to its social importance, ocean waves
in sea ice play a part in the interaction between sea ice, the ocean, and the atmosphere, and those
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attenuations are key to the success of the sea ice-wave
coupled model (Roach et al., 2019). In winter, sea ice rapidly
extends southeastward from November to March before receding
(Figures 1A–G). Sea ice suppresses the wave-wind interaction by
reducing fetch. It also modifies the wave dispersion relation, and
the wave energy is attenuated through a conservative scattering
and non-conservative dissipation phenomenon (Squire, 2020).
Although the extent of sea ice in the SO has a large interannual
variability, its maximum value has been reported by the Japan
Meteorological Agency (JMA) to be decreasing at a rate of 3.9
%/decade1. Therefore, it is of great concern that a decrease in
sea ice in the SO will result in an increase in the height of ocean
surface waves in the future.

(Wavewatch III Development Group (WW3DG), 2019), one
of the most widely used third-generation spectral wave models
based on the radiative transfer equation for global and regional
wave forecasts, implements several parameterizations for wave-
ice interaction. In deep water, when currents are absent, the
evaluation of wind-generated ocean waves is governed by:

∂N
∂t
+∇ · CgN =

S
σ
, (1)

where, N = E/σ is the wave action density spectrum, which is
a function of the wave number (k) or relative angular frequency
(σ = 2πf ), direction (θ), space (x, y), and time (t), E is the wave
energy spectral density, f is the frequency, and Cg is the group
velocity. For the ice-covered region, the source term on the right-
hand side of Eq. (1) is defined as follows:

S = (1− Ci) (Sin + Sds)+ Snl + CiSice, (2)

where, Sin is the input term by wind, Sds is the dissipation
term induced by wave breaking, Snl is the nonlinear interaction
term among spectral components, Sice is the wave-ice interaction
term, and Ci is the ice concentration. Both wind input and
dissipation terms (Sin and Sds) are scaled by the open water
fraction (1− Ci), whereas Sice is scaled by the ice concentration.
The effects of ice on ocean waves can be presented as a complex
wavenumber k = kr + iki, with the real part kr representing
the physical wave number related to the wave length and
propagation speeds, producing effects analogous to shoaling and
refraction by bathymetry, and the imaginary part ki representing
the exponential attenuation coefficient ki = ki(x, y, t, σ) which
depends on the location, time, and radian frequency. ki is
introduced in the WW3 model as:

Sice

E
= − Cgα = − 2Cgki, (3)

here, α is the exponential attenuation rate for wave energy, which
is twice that of the amplitude (α = 2ki). The above equation
(Eq. 3) is used to calculate the dissipation by ice in WW3, denoted
as IC1–5 (except for IC0).

IC0 is based on Tolman (2003) and provides simple energy
flux blocking depending on the local ice concentration. Thus,
IC0 does not treat the effect as “dissipation” via the Sice source

1https://www.data.jma.go.jp/gmd/kaiyou/english/seaice_okhotsk/series_
okhotsk_e.html

term. IC1 allows the user to provide an exponential attenuation
rate of amplitude that is uniform in the frequency space (Rogers
and Orzech, 2013). IC2 assumes dissipation by friction in the
boundary layer below the ice cover (Liu and Mollo-Christensen,
1988). IC3 treats the ice cover as a linear viscoelastic layer based
on the model by Wang and Shen (2010). IC4 was introduced
by Collins and Rogers (2017) and provides the wave energy
dissipation by one of several simple, empirical, and parametric
forms through direct fitting with field data. IC4 is different from
the other models and needs seven empirical formulas denoted
as IC4M1–M7. In addition, IC5 uses a viscoelastic model based
on Mosig et al. (2015). ki is implemented for source functions
in IC1–5. The estimation of kr requires IC2, IC3, and IC5 to
provide a new dispersion relation. Descriptions of these models
are provided in Supplementary Text 1.

WW3 wave–ice parameterization models were applied in
several recent studies on field observations from the Arctic Sea,
in regions such as the Barents Sea, Chukchi Sea, and Beaufort
Sea (e.g., Cheng et al., 2020; Liu et al., 2020; Nose et al.,
2020). Nose et al. (2020) evaluated the uncertainty of wave–
ice parameterization models, using three theoretical models
(IC2, IC3, and IC5) and the field observations obtained during
November in the Chukchi Sea. In addition, Liu et al. (2020)
validated the performance of three wave–ice parameterization
models (IC2, IC3, and IC4M1–M4) using the field observation
from April to May in the Barents Sea. The results suggest that
IC3 and IC4M2 corroborate the observations the most. Although
sea ice is expected to have a significant impact on the wave
fields, no studies have evaluated the effect of sea ice on the wave
field in the SO. This study evaluates the wave fields derived
from six wave–ice parameterization models (IC0–5 in WW3)
using the buoy observations on the north coast of Hokkaido
(see Figure 1H). In this study, the wave fields derived from the
models were also evaluated for both open ocean and ice-covered
conditions. Moreover, the impact of sea ice on wave fields using
model simulations with and without sea ice was also clarified.
This study had two advantages over previous studies. The first
is the evaluation of a considerable number of six wave–ice
parameterization models. Six empirical models for IC4 (IC4M1–
M7 except for IC4M5) were also evaluated in this study. The
second advantage is the use of time-rich observation data. The
SO exhibits periods of open ocean and ice-covered conditions,
and the buoy observation fully covers both periods (3 years in
this study). Therefore, considering the accuracy of the modeled
wave field, it can be reliably used to compare the open ocean and
ice-covered conditions in the same region.

MATERIALS AND METHODS

Model Design
Two model domains were created using a nesting process for a
horizontal resolution of 0.25◦ (domain 1) and 0.08◦ (domain 2)
(Figure 1G). The outer domain (domain 1) covers the entire SO
(42◦–63◦N, 135◦–165◦E). The inner domain (domain 2) was used
to validate the wave fields in the coastal area (43◦–48◦N, 141.5◦–
146◦E). The directional resolution was 10◦, and the frequency
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FIGURE 1 | Monthly ice concentration (color) and ice thickness (contour) from November to May during 2008–2010 incorporating two model domains. (A–G)
Represent the ice concentration and ice thickness derived from NOAA OI SST V2 and CFSR, respectively. CFSR ice thickness (cm) were smoothed with a
two-dimensional boxcar filter with a width of 50 km. (H) Map of the NOWPHAS buoy location (red dot) and the GEBCO, 2020 bottom topography (color). The upper
right figure is an enlarged image of the buoy location and bottom topography (color with contours).

FIGURE 2 | Frequency distribution of hourly (A) Hs and (B) Tm from the NOWPHAS buoy. Gray bars correspond to values for all data during 2008–2010, while blue
bars indicate data for the ice- covered condition. Intervals (X–axis) of Hs and Tm are (A) 0.5 m and (B) 1 s, respectively.

range was 0.035–1.1 Hz, which was logarithmically discretized
into 30 increments. GEBCO, 20202 was used to provide the
bottom topography and coastlines.

2https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_
2020

The simulation of domain 1 incorporated 6-hourly
surface wind data from the 55-year JMA Reanalysis (JRA55)
(Kobayashi et al., 2015). This product is approximately 55 km in
latitude and longitude. In addition, the wind data for domain 2
were obtained from the JRA55 dynamic regional downscaling
product (DSJRA55) (Kayaba et al., 2016) developed by JMA,
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FIGURE 3 | Scatter diagrams of (A)Hs and (B) Tm between the ST6 model simulation (Y–axis) versus buoy observation (X–axis) for the open water condition.
Statistical values are shown in the lower left corner of both panels. In this comparison, we used values only when the ice concentration in the coastal area
(44◦–46◦N, 142.5◦–145.5◦E) around the buoy is 0%. IC1 modeled results are used in this figure. Colored shading indicates normalized data density on a log10-scale.
The number of validation data points (hourly) was 19453. The gray broken line y = x is added to both panels.

FIGURE 4 | Taylor diagram summarizing the statistical comparison between the NOWPHAS buoy observation and the model simulations with ST6 for the
ice-covered condition: (A) Hs and (B) Tm. The number of validation data points is 3277. The source terms of Sice are represented by the different colored circles
(legend in the upper region of the panel). The black cross shows the modeled results of IC1 simulation for the open water condition (i.e., results of Figure 3). The
black circle at the bottom indicates the buoy observation. The blue colored contour with an interval of 0.3 denotes the RMSE between the simulations and
observations. The RMSE and standard deviations have been normalized by the observed standard deviation. The correlation coefficients between both the fields are
shown by the azimuthal position of the simulation field. Note that the position of IC1 (gray circle) overlaps that of IC4M2 (light blue circle) in the left figure.

which has a spatial resolution of 5 km and a temporal resolution
of 1 h. Daily ice concentration was obtained from NOAA
Optimum Interpolation (OI) sea surface temperature (SST)
version 2 high-resolution dataset with a 0.25◦ × 0.25◦ spatial

grid (Reynolds et al., 2007). Ice thickness was incorporated from
the Climate Forecast System Reanalysis (CFSR) produced by
the National Centers for Environmental Prediction (NCEP)
(Saha et al., 2010). The CFSR product has a spatial resolution
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TABLE 1 | Statistical values of Hs and Tm between the ST6 model simulations and buoy observations for the ice-covered condition.

ICO IC1 IC2 IC3 IC4M1 IC4M2 IC4M3 IC4M4 IC4M7 IC5

Hs

bias (m) 0.47 0.10 0.01 0.25 −0.07 0.03 −0.06 0.29 0.10 0.17

RMSE (m) 0.51 0.40 0.41 0.44 0.44 0.40 0.43 0.44 0.47 0.43

Corr. 0.80 0.83 0.78 0.83 0.76 0.82 0.77 0.83 0.76 0.83

Tm

Bias (s) 0.82 −0.42 0.22 0.61 −0.97 −0.02 −0.51 0.26 −0.40 0.09

RMSE (s) 1.47 1.33 1.89 1.63 1.63 1.67 1.85 1.27 1.78 1.50

Corr. 0.60 0.67 0.49 0.61 0.55 0.62 0.59 0.71 0.48 0.67

The top three relatively accurate values in the ten model simulations are shown in bold. The number of validation data points is 3277.

of 0.25◦ at the equator, extending to a global 0.5◦ beyond
the tropics, with a temporal resolution of 6 h. The wind, ice
concentration, and thickness data were linearly interpolated
to the same spatial grid in the wave simulation of both
domains. On the north coast of Hokkaido, a southeastward
Soya warm current exists along the coast throughout the
year. However, this study does not include the influence of
ocean currents in model simulation because the strength of
the ocean current fluctuates seasonally, and is weak during
winter (Ohshima et al., 2017) which is the focal season of
this study. In addition, the buoy observation is located in
deep water (see section “Buoy Observation” for observation
depth), and the effect of tides is also not considered for our
model simulation.

In this study, six models for Sice, IC0, IC1, IC2, IC3, IC4, and
IC5 were used (see Supplementary Text 1). In addition, in order
to investigate the impact of sea ice on the wave field, simulations
that did not incorporate ice concentration were conducted.
Hereinafter, the model results without ice concentration are
denoted as “Non-ICE.” As shown in Supplementary Table 1,
the kinematic viscosity (ν) is required for IC2, and the ν and
the effective shear modulus (G) are required for IC3 and IC5 as
input parameters. Some theoretical ice parameters (ν and G) for
the theoretical models (IC2, IC3, and IC5) have been proposed
by previous studies (see Supplementary Table 1). In this study,
three, four, and two simulation cases were conducted for IC2,
IC3, and IC5, respectively, using the theoretical ice parameters
summarized in Supplementary Table 1. In addition, various
parameters have also been proposed for the binomial fitting
of IC4M2 and the step function of IC4M6 based on different
observational data (Supplementary Tables 2, 3). Therefore, eight
and six simulation cases were performed for IC4M2 and IC4M6,
respectively. Although IC4M5 and IC4M6 both provide a step
function in the frequency space, IC4M6 has more steps than
IC4M5. Therefore, IC4M5 was excluded from validation in
this study. A simple diffusive scattering model (denoted as IS1
in WW3) was used for these simulations. Another scattering
model (denoted as IS2) was implemented in WW3. However,
the difference between the scattering models (i.e., IS1 and IS2)
was small compared to the difference between the dissipation
models (IC0–IC5) (not shown). For terms Sin and Sds, we used
both ST4 (Ardhuin et al., 2010; Rascle and Ardhuin, 2013) and
ST6 (Rogers et al., 2012; Zieger et al., 2015; Liu et al., 2019).

FIGURE 5 | (A) Hs and (B) Tm averaged from the ST6 model simulations and
NOWPHAS buoy as a function of ice concentration in 10% bins. The source
terms of Sice are represented by the different colored lines and identified in the
legend panel. The horizontal axis denotes the ice concentration in the coastal
area around the buoy (44◦–46◦N, 142.5◦–145.5◦E).

In this study, the model results with ST6 are presented in the
main text, while the model results with ST4 are presented in
Supplementary Material.

All simulations were performed over a 3-year period from
2008 to 2010. The significant wave height (Hs) and mean
wave period (Tm01) were both recorded every hour during the
computation period. To simplify the notation, Tm01 is denoted
as Tm. To obtain the modeled value at the buoy position, we
bilinearly interpolated the fields to the buoy position using the
surrounding four grid values from domain 2.

Buoy Observation
To validate the model results of the wave field, we used buoy
observation data from the Nationwide Ocean Wave Information
Network for Ports and Harbors (NOWPHAS)3, provided by the
Ports and Harbors Bureau, Ministry of Land, Infrastructure,
Transport, and Tourism (MLIT). Significant wave height and
mean wave period data obtained every 20 min were used for
the observation depth of 52.6 m in the Monbetsu (south)
Station (red dot in Figure 1H). The distance from the coast

3http://www.mlit.go.jp/kowan/nowphas/index_eng.html
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of the buoy is 8,200 m. Buoy data for 3 years, from 2008 to
2010, were used, same as the modeling period. In the present
study, the observation data were averaged from 20 min to 1 h
and compared with the simulation results. Figure 2 shows the
frequency distribution of Hs and Tm observed by the buoy during
2008–2010. The averages for Hs and Tm are 0.83 m and 4.80
s, respectively (gray bars in Figure 2). The total number of
hourly observation data points was 24909. In the present study,
to evaluate the model simulations for the ice-covered condition,
we utilized values only when the ice concentration in the coastal
area (44◦–46◦N, 142.5◦–145.5◦E) around the buoy was 10% or
more. The number of observation data points was 3277 for the
ice-covered condition (blue bars in Figure 2). The number of
data points for the ice-covered conditions is significantly reduced
compared to that for all data but it covers the entire observation
area (Figure 2).

The sea ice in the SO is a one-year ice type and is thinner
than that of the Arctic Sea (e.g., Nihashi et al., 2018). Although
different from the buoy observation points of this study, the floe
size of sea ice up to 5 m accounts for 90% of the total in the
northeastern coast of Hokkaido (Kioka et al., 2020).

RESULTS

Validation With Buoy
The wave fields for the open water condition were evaluated
before comparing them with the wave fields for the ice-covered
condition. Figure 3 shows the scatter diagrams for the open water
condition for the model simulation and the buoy observation.
The bias, RMSE, and correlation coefficient for Hs were 0.02,
0.3, and 0.92 m, and for Tm were 0.14, 0.97, and 0.8 s,
respectively. The model results are in close agreement with
the buoy observations, and are consistent with the results of a
previous study (e.g., Shimura and Mori, 2019). This comparison
shows the model results of IC1 because there is no significant
difference between the other six models (IC0–5) in the open
water condition (not shown). The ST4 model simulation was also
calculated with close accuracy to the ST6 model simulation (see
Supplementary Figure 1).

As shown in Supplementary Tables 1–3, previous studies have
proposed various parameters for the three theoretical models
(IC2, IC3, and IC5), and two empirical models (IC4M2 and
IC4M6). Therefore, these five models are evaluated prior to the
comparison between the six wave–ice parameterization models.
There are no remarkable differences in IC2 depending on the
theoretical parameter, but there are significant differences in IC3
and IC5 (see Supplementary Table 4 for IC2, Supplementary
Table 5 for IC3, and Supplementary Table 6 for IC5). Hereafter,
IC2 is the simulation result of using ν by Liu et al. (1991), and
the results are almost the same (Supplementary Table 4). In
addition, IC3 and IC5 are the model results based on ν by Liu
et al. (2020) and G by Mosig et al. (2015), and these results
demonstrated relatively better accuracy (see Supplementary
Tables 5, 6). The empirical parameter of Meylan et al. (2014)
was employed for IC4M2 because the model results mostly agree
with buoy observations (Supplementary Table 7). The results of

IC4M6 are not presented here as it can be almost reproduced by
the binomial fitting of IC4M2 (see Supplementary Tables 7, 8).

To visualize the standard deviation (STD), root mean square
error (RMSE), and correlation coefficient between the model
simulations and NOWPHAS buoy data, Figure 4 displays Taylor
diagrams between the two fields (Taylor, 2001). In addition,
Table 1 lists the statistical analysis results between the model
simulation and buoy observations for Hs and Tm. Additionally,
Supplementary Figures 2, 3 display the scatter diagrams for
the model simulations and the buoy observations for Hs (Tm).
The model accuracies for the ice-covered condition are lower
than that for the open water condition except for bias, regardless
of the six wave–ice parameterization models (Figures 3, 4 and
Table 1). The averaged RMSE and correlation coefficient from all
models for the ice-covered condition are 0.44 m and 0.8, for Hs,
respectively, and 1.6 s and 0.6, respectively, for Tm, respectively.
The RMSE and correlation coefficient of Hs (Tm) for the ice-
covered condition are 0.14 m and 0.12 (0.63 s and 0.2) and are
less accurate compared with those for the open water condition.

For Hs, all model simulations indicate a correlation coefficient
greater than 0.75, a normalized STD between 0.99 and 1.4, and
a normalized RMSE (NRMSE) and RMSE of less than 0.83 and
0.52 m, respectively (Figure 4A, Supplementary Figure 2, and
Table 1). The bias for all Hs simulation was within ± 0.3 m
except for IC0 (Table 1). In particular, the bias of IC2 and IC4M2
were within 0.03 m, which were simulated with high accuracy
(Table 1). In addition, the RMSE and the correlation coefficients
of IC1 and IC4M2 were 0.4 m and >0.81, respectively, and were
better than those of other simulations (Table 1), although the
normalized STD of both simulations is slightly overestimated
as presented in Figure 4A. In contrast, the bias, NRMSE, and
RMSE of IC0 were 0.47, 0.82, and 0.51 m, respectively, and were
poorly estimated as compared with other simulations (Figure 4A,
Supplementary Figure 2, and Table 1).

Overall, for Tm, all simulations provided corresponding
correlation coefficients of less than 0.72, which was relatively
worse than those of Hs, same as the open water condition
(Figure 4B, Supplementary Figure 3, and Table 1). In addition,
the differences in the statistical values between simulations were
large compared to those of Hs (Figure 4 and Table 1). IC2,
IC4M1, IC4M3, and IC4M7 provided poor simulation results, as
their RMSE and correlation coefficients for Tm were greater than
1.62 s and less than 0.6, respectively (Figure 4B, Supplementary
Figure 3, and Table 1). In contrast, IC1 and IC4M4 yielded
simulations with least amount of error and indicated a NRMSE
(RMSE) less than 0.75 (1.34 s) and a correlation coefficient
of greater than 0.66, although the normalized STDs for both
simulations were less than 0.8 and tend to be underestimated
(Figure 4B, Supplementary Figure 3, and Table 1). Moreover,
the bias for IC4M2 and IC5 was ± 0.1 s, smaller than those of
other simulations (Table 1).

The statistical results, except as shown above for the bias,
depend on the averaging interval. Supplementary Table 9 lists
the statistical values between the model simulation and buoy
observations for the daily mean. The averaged RMSE for Hs and
Tm from the all simulations is 0.38 m and 1.24 s, respectively. The
correlation coefficient for Hs and Tm is 0.82 and 0.7, respectively.
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FIGURE 6 | Same as Figure 4 but for high ice-covered condition (ice concentration > 50%): (A) Hs and (B) Tm.

TABLE 2 | Same as Table 1 but for the high ice-covered conditions (ice concentration > 50%).

ICO IC1 IC2 IC3 IC4M1 IC4M2 IC4M3 IC4M4 IC4M7 IC5

Hs

bias (m) 0.7 0.01 −0.1 0.14 −0.19 −0.09 −0.17 0.36 −0.15 −0.06

RMSE (m) 0.71 0.38 0.43 0.47 0.41 0.36 0.42 0.54 0.38 0.35

Corr. 0.81 0.89 0.88 0.87 0.88 0.9 0.87 0.85 0.9 0.91

Tm

Bias (s) 1.28 −0.79 0.71 0.86 −1.74 0.16 −0.81 0.54 −1.67 −0.69

RMSE (s) 1.4 1.49 2.63 2.22 1.54 2.29 1.9 1.36 1.57 1.71

Corr. 0.62 0.49 0.15 0.45 0.45 0.37 0.52 0.63 0.42 0.52

The number of validation data points is 512. The top three relatively accurate values in the ten model simulations are shown in bold.

Compared with those for hourly data, the RMSE and correlation
coefficient of Hs (Tm) are 0.06 m and 0.02 (0.36 s and 0.1) more
accurate, respectively.

Moreover, we validated the model simulations as a function
of ice concentration (Figure 5). All Hs simulations were
overestimated at low ice concentrations (Ci < 20 %) (Figure 5A).
At high ice concentrations (Ci > 20%), the trend was
dependent on the simulation (Figure 5A). IC0, IC3, and IC4M4
overestimated, while IC4M1 and IC4M3 tended to underestimate
(Figure 5A). IC1 and IC4M2 were relatively close to the buoy
observations and were simulated with high accuracy, consistent
with the comparison results shown in Figure 4A and Table 1. For
Tm, differences between the simulations became remarkable as
the ice concentration increased (Figure 5B). IC4M2, IC4M4, and

IC5 were in good agreement with the observations (Figure 5B).
IC1, IC4M1, IC4M3, and IC4M7 underestimated, especially for
IC4M1 and IC4M7 at Ci > 40% (Figure 5B). On the other hand,
the Tm of IC0 and IC3 were overestimated, regardless of ice
concentration (Figure 5B).

As described in section “Materials and Methods,” we
also evaluated six dissipation models (IC0–IC5) with ST4
(Supplementary Figures 4, 5 and Supplementary Table 10).
Overall, there were no significant differences in the wave fields
between ST4 and ST6 in the buoy location (Supplementary
Figures 4, 5 and Supplementary Table 10). However, the
normalized STD for Hs with ST4 was remarkably reduced
(approximately 0.15) compared with that of ST6 (Supplementary
Figure 4A). When examined as a function of ice concentration,
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FIGURE 7 | (Upper panels) Temporal variations and (lower panels) scatter plots of monthly averaged (A,C) Hs and (B,D) Tm derived from the simulation and the
buoy observation. Both simulations are modeled results with ST6. (A,B) Values are averaged each month from 2008 to 2010. The light gray bars represent the ice
concentration in the coastal area around buoy (44◦–46◦N, 142.5◦–145.5◦E). (C,D) Statistical values are shown in the lower left corner of both panels. Note that the
position of Non-ICE (orange circle) overlaps that of IC4M2 (light blue circle) for the open water condition.

Hs and Tm with ST4 were slightly smaller than those with
ST6, but the trend in both simulations remained the same
(Supplementary Figure 5).

As shown in Figure 5, the differences between the simulations
became significant at high ice concentrations, especially for Tm.
Figure 6 and Table 2 show the comparison results between the
model simulations and the buoy observations for the high ice-
covered condition (ice concentration > 50%). For Hs, IC1 and
IC4M2 were relatively agreed with the buoy observations, similar
to their comparison results for the ice-covered condition (ice
concentration > 10%) shown in Table 1. In addition, the bias,
RMSE, and correlation coefficient of IC5 for Hs were – 0.06, 0.35,
and 0.91 m, respectively, and were also close to those of IC1 and
IC4M2 simulations (Figure 6A and Table 2). For Tm, overall, the
qualitative results in Table 2 were similar to the results shown in
Table 1, except for quantitative values. IC4M4 results were better
than those of other simulations (Table 2). Moreover, IC5 results
mostly agree with the observations, compared with the other two
theoretical models (IC2 and IC3) (Figure 6B).

Sea Ice Impact for Wave Field
To evaluate the impact of sea ice on ocean waves in the SO,
we compared the non-ICE simulations and IC4M2, which are
relatively accurate, especially in Hs. Figure 7 shows time series

and scatter plot of the monthly averaged Hs and Tm for the
simulation and observation at the buoy position. In general,
large Hs and Tm were observed in the coastal areas of Hokkaido
during winter (Figures 7A,B). Interestingly, IC4M2 simulations
remarkably mitigated the overestimation of Hs and Tm for non-
ICE simulations from January to April, when sea ice existed (i.e.,
ice concentration is not 0%) (Figures 7A,B). In addition, the
improvement of Hs and Tm for IC4M2 is confirmed from the
statistical values (Figures 7C,D).

Figure 8 shows the spatial distribution of averaged Hs and Tm
in February from IC4M2, and the differences between IC4M2 and
non-ICE. As expected, the wave fields were strongly dependent
on the sea ice field, and Hs (Tm) became smaller (larger) as the
ice concentration increased (Figures 8A,B). The difference in Hs
(Tm) between IC4M2 and non-ICE is greater (less) than 1 m (3 s)
at high ice concentrations (Ci > 70%) (Figures 8C,D).

DISCUSSION

As shown in section “Materials and Methods,” various coefficients
have been proposed for the binomial fitting of IC4M2 based
on different observational data (Supplementary Table 2). In the
eight simulation results of IC4M2, the biases of IC4M6H1, WA3
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FIGURE 8 | Averaged field (color) of (A) Hs and (B) Tm computed by IC4M2 in February during 2008–2010; difference (color) between IC4M2 and Non-ICE
simulations; (C) Hs; (D) Tm. Both simulations are modeled results with ST6. Spatial smoothing using a box filter of horizontal scale 50 km was performed for the ice
concentration (contour) (%). In this figure, we used the model results from domain 1.

UK, and WA3 NIWA were greater than 0.15 m (0.43 s) for Hs
(Tm) and were larger than the other simulations (Supplementary
Table 7). In fact, the attenuation rates of IC4M6H1, WA3 UK,
and WA3 NIWA were lower (Supplementary Figure 6). In
addition, we validated that the accuracy of IC4M1, IC4M3, and
IC4M7 was poor (especially in Tm), and the attenuation rate

was significantly different from that of IC4M2 (Supplementary
Figure 7). This is probably because the sea ice conditions
based on these parameterizations are different from those of
the SO. The sea ice thickness is less than 10 cm in the coastal
area of Hokkaido (Figure 1). As mentioned in the previous
section, 90% of the floe size of sea ice is within 5 m in the
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FIGURE 9 | (A) Normalized RMSE and (B) correlation coefficient from ST6 model simulations versus the buoy observation, as a function of time of running mean in
2 h bin. As shown in the legend in the upper corner, solid (broken) lines show the values for the ice-covered condition (open water condition) for Hs (blue) and Tm

(red), respectively. In this figure, the normalized RMSE is defined as

√∑(
Xs−Xo−bias

Xo

)2
/n, where Xs is the simulation result, Xo is the observation data, and n is the

number of data points. The ice-covered condition result shows the average from all model simulations (i.e., ten modeled results in Figure 4 or Table 1). The color
shading indicates the standard deviation of ten modeled simulations. The IC1 simulation result is used for the open water condition. 24 h is highlighted by the gray
broken line.

coastal area of Hokkaido. In contrast, IC4M1 uses field data
with sea ice floe sizes ranging from 20 to 30 m. In addition,
IC4M3 is based on an ice thickness between 0.5 and 3 m,
which is much thicker than the ice conditions in this study.
Moreover, IC4M7 is based on observations of only the pancake
ice region, although both pancake and frazil ice may exist in
the SO. On the other hand, IC4M2 was in good agreement
with observations for Hs, and IC4M4 was relatively close to
the observations for Tm. The IC4M2 (i.e., Meylan et al., 2014)
and IC4M4 were based on parameterization data from the
same field observation in the Antarctic Sea with ice thickness
ranging from 0.5 to 1 m; its ice conditions are relatively close
to those of SO. The empirical formula of IC4M4 (Kohout
et al., 2014) assumes the attenuation is a function of only Hs
as shown in Supplementary Text 1. Recently, Kohout et al.
(2020) suggested attenuation considers wave period and ice
concentration in addition to Hs, based on the observation
with < 0.5m ice thickness in the Antarctic Sea. In the future,
implementation of this model in WW3 is expected to further
improve the accuracy of simulation in thin ice thickness
areas such as SO.

Although the simulations of IC5 were relatively worse
compared with those of the accurate empirical model (IC4M2
for Hs, and IC4M4 for Tm), IC5 were better than those of two
theoretical models (IC2 and IC3), especially for the high ice-
covered condition (ice concentration > 50%). The results of these
models remarkably depend theoretical parameters (ν for IC2,
and ν and G for IC3 and IC5), as shown in Supplementary
Tables 4–6 (especially in IC3 and IC5). In this study, constant
theoretical parameters were used for IC2, IC3, and IC5. However,
these parameters are affected by the ice conditions (e.g., Cheng
et al., 2017); thus, these are likely changing both spatially
and temporally in the real ocean. Theoretical models have the

potential to further improve accuracy in the future, although it
is not possible to know the specific types or floe sizes of ice
in the entire SO. In other words, the simulation of wave fields
under ice-covered conditions depends the accuracy of sea ice
used as a model forcing in addition to the accuracy of the model
itself, as shown below.

Recently, Nose et al. (2020) revealed that the uncertainty
between ice concentration products is greater than the
uncertainty between theoretical models (IC2, IC3, and IC5).
Thus, it should be noted that our results depend not only on
the parameterization for source terms such as Sin, Sds, and Sice,
but also on the ice concentration used as forcing. In fact, the
results of this study are significantly dependent on the temporal
resolution of the ice concentration. For example, Figure 9 shows
the statistical analysis results for Hs and Tm as functions of the
interval of time averaging. As shown in Supplementary Table 9,
the NRMS (correlation coefficient) decreases (increases) as the
interval of time averaging increases (Figure 9). However, up
to approximately 24 h, the rate of change of NRMS and the
correlation for both wave fields with the ice condition are larger
than those for the open water condition. This is probably due to
the daily (24 h) ice concentration used in this study. In addition,
the theoretical models IC2, IC3, and IC5 also depend on the ice
thickness. Moreover, differences in wind data may also be one
cause of uncertainty in wave fields.

CONCLUSION

In this study, we evaluated six WW3 wave–ice parameterization
models (IC0–IC5) using buoy observations located in the
southern part of the Sea of Okhotsk for 3 years from 2008
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to 2010. In this comparison, Hs and Tm from the model
were evaluated with open ocean and ice-covered conditions.
Overall, the accuracy of model results for the ice-covered
condition is lower compared to the open water condition,
except for the bias. However, in the ice-covered condition,
IC4M2 appears to relatively agree with buoy observations
for Hs, and IC4M4 is closest to the observations for Tm.
We also clarified the impact of sea ice on wave fields in
the SO. In the coastal areas, the simulation with sea ice
drastically improved the bias of the wave fields (Hs and Tm)
compared to that without the simulation without sea ice.
In addition, the difference between the simulations with and
without sea ice is more than 1 m (3 s) for the monthly
mean Hs (Tm). The results of the present study can help
researchers and engineers perform calculations of wave fields in
the Sea of Okhotsk.
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The ocean surface waves during Super Typhoons Maria (2018), Lekima (2019), and
Meranti (2016) were reproduced using hybrid typhoon winds and a fully coupled wave-
tide-circulation modeling system (SCHISM-WWM-III). The hindcasted significant wave
heights are in good agreement with the along-track significant wave heights measured
by the altimeters aboard the SARAL (Satellite with ARgos and ALtiKa) and Jason-2
satellites. Two numerical experiments pairing Super Typhoons Maria (2018) and Meranti
(2016) and Super Typhoons Lekima (2019) and Meranti (2016) were conducted to
analyze the storm wave characteristics of binary and individual typhoons. Four points
located near the tracks of the three super typhoons were selected to elucidate the
effects of binary typhoons on ocean surface waves. The comparisons indicate that
binary typhoons not only cause an increase in the significant wave height simulations
at four selected pints but also result in increases in the one-dimensional wave energy
and two-dimensional directional wave spectra. Our results also reveal that the effects
of binary typhoons on ocean surface waves are more significant at the periphery of the
typhoon than near the center of the typhoon. The interactions between waves generated
by Super Typhoons Maria (2018) and Meranti (2016) or Super Typhoons Lekima (2019)
and Meranti (2016) might be diminished by Taiwan Island even if the separation distance
between two typhoons is <700 km.

Keywords: storm wave, super typhoon, binary typhoons, Taiwan Island, wave spectra

INTRODUCTION

Since the early 1900s, many studies on binary typhoons have been proposed (Fujiwhara, 1921;
Dong and Neumann, 1983; Ritchie and Holland, 1993; Carr et al., 1997; Carr and Elsberry, 1998;
Prieto et al., 2003; Jang and Chun, 2015; Cha et al., 2021). Carr et al. (1997) categorize the
direct tropical cyclone/typhoon interaction into three modes: the first is the one-way influence,
in which the motion of the larger tropical cyclone/typhoon is slightly affected by the presence
of the smaller tropical cyclone/typhoon; the second is the mutual interaction, in which both
tropical cyclones/typhoons experience significant rotation; and finally is the special merger case
of two nearly equal-sized tropical cyclones/typhoons that somehow are mutually attracted and
become close enough that the two cyclonic/typhoon’s circulations merge. Carr and Elsberry (1998)
objectively detected three modes of binary tropical cyclone interaction defined by Carr et al. (1997).

Frontiers in Marine Science | www.frontiersin.org 1 October 2021 | Volume 8 | Article 74918561

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.749185
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.749185
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.749185&domain=pdf&date_stamp=2021-10-05
https://www.frontiersin.org/articles/10.3389/fmars.2021.749185/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-749185 September 29, 2021 Time: 16:26 # 2

Chang et al. Binary Typhoons Storm Waves

Although previous studies have mainly focused on atmospheric
science and meteorology, these pioneering works have
contributed to a deep understanding of binary typhoons.
As the name suggests, binary typhoons involve two
typhoons/cyclones/hurricanes that are spatially proximal
and occur simultaneously. How close must two typhoons be to
be considered binary typhoons? Binary interactions (also known
as the Fujiwhara effect) defined by the NHC (National Hurricane
Center, National Oceanic and Atmospheric Administration,
United States) refer to two typhoons within a certain distance
(556–1,389 km depending on the sizes of the cyclones) that
begin to rotate around a common midpoint. Ritchie and
Holland (1993) indicated that the cores of two typhoons (binary
typhoons) might merge once they are as close as 150–300 km.
According to the report from Dong and Neumann (1983), the
influence of the ITCZ (intertropical convergence zone) flow on
relative rotation exceeds the Fujiwhara effect when the separation
distance of two typhoons in the ITCZ is more than 650 km;
however, the Fujiwhara effect surpasses the ITCZ flow in terms
of relative rotation when the separation distance between two
typhoons is <650 km.

Dong and Neumann (1983) also demonstrated that the
occurrences of binary typhoons are considerably more frequent
in the Northwestern Pacific Ocean (NPO) than in the North
Atlantic Ocean. Additionally, based on 36 years of recorded data
(1964–1981), typhoon pairs subject to binary interaction occur
1.5 times a year on average in the NPO and only 0.33 times in

the Atlantic Ocean. Jang and Chun (2015) utilized the best track
and reanalysis data observed in the NPO over 62 years (1951–
2012) to investigate the dynamical and statistical characteristics
of binary typhoons and found that the number of occurrences of
binary typhoons was 98, and was 1.58 a year on average. In fact,
the coexistence of two or more typhoons within a certain time
and distance was frequent in the NPO from 1951 to 2019, and the
highest number of typhoon coexistence instances was five in both
1960 and 1985 (Cha et al., 2021).

In the 2000s, numerous researchers conducted studies on
multiple-typhoon interactions using numerical models (Khain
et al., 2000; Yang et al., 2008; Wu et al., 2012; Jang and
Chun, 2015; Choi et al., 2017). For example, Khain et al.
(2000) investigated the motion and evolution of binary tropical
cyclone using a coupled tropical cyclone-ocean movable nested
grid model. Through a series of sensitivity experiments, their
researches recommended that the regimes of binary typhoons
interaction depend on the structure of the background flow
then. However, few studies focused on the effect of binary
typhoons on marine weather, e.g., storm waves, storm tides,
and storm surges, and further research is therefore required
(Xu et al., 2020). Ocean surface waves induced by wind are a
dominant process in coastal and nearshore regions worldwide;
moreover, understanding the characteristics of typhoon-driven
extreme waves and projecting their future change are important
considerations for the sustainable development of coastal and
offshore infrastructure and the management of coastal resources

FIGURE 1 | The computational domain of the SCHISM-WWM-III modeling system (sea area within the white line). The red, yellow, and orange lines represent the
tracks for Super Typhoons Lekima in 2019, Maria in 2018 and Meranti in 2016, respectively. L1, L2, L3, and L4 are selected representative points for elucidating the
effects of binary typhoons on ocean surface waves [typhoon tracks: Regional Specialized Meteorological Center (RSMC) Tokyo-Typhoon Center].
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and ecosystems, which is particularly true for studies on binary
typhoons. Yang et al. (2012) used multiple satellite observations
to evaluate the impacts of binary typhoons on upper ocean
environments for typhoons Hagibis and Mitag in November
2007. Their results suggested that due to the strong wind stress
curls forcing sustained for a long time, the intense Ekman
pumping and two mesoscale cold, cyclonic eddies appeared
in two certain areas after the trails of binary typhoons. This
finding provides convincing evidence that typhoons play an
important role in the activities of mesoscale eddies for the South
China Sea and NPO.

The present study on ocean surface waves focuses on binary
typhoon-generated storm waves as an important component of
the Earth’s climate system, recognizing that global extreme waves
will change with historical and future changes in the frequency,

intensity, and position of the marine typhoons that generate
them. This paper aims to study the effect of binary typhoons on
ocean surface waves in the waters surrounding Taiwan during
the passage of three binary typhoons, pairing Super Typhoons
Maria (2018) and Meranti (2016) and Super Typhoons Lekima
(2019) and Meranti (2016). This paper is organized as follows:
the details of the three selected super typhoons are described
in the following section. Section “Data and Methods” presents
the measurements, methods for improving the typhoon winds
from the reanalysis product and designing the binary typhoon
systems and the configuration of the wave-circulation modeling
system (i.e., an ocean circulation model, SCHISM-2D, coupled
with a wind wave model, WWM-III). The results of the model
validation and designed numerical experiments and discussion
are presented in section “Results and Discussion.” Finally, a

FIGURE 2 | (A) Unstructured triangular meshes and (B) bathymetry of the entire computational domain for the SCHISM-WWM-III modeling system.
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summary and conclusions are provided in section “Summary and
Conclusion.”

SELECTED SUPER TYPHOONS

Super Typhoon Meranti was one of the most intense tropical
cyclones on record and one of the three Category 5 (the Saffir–
Simpson hurricane wind scale) typhoons in the South China Sea,
with the others being Typhoon Pamela in 1954 and Typhoon
Rammasun in 2014. Meranti formed as a tropical depression on
Sep. 8 near the island of Guam and gradually intensified through
Sep. 11. Meranti became a super typhoon on Sep. 12 and reached
its peak intensity on Sep. 13 with 1-min sustained winds of
315 km/h as it passed through the Luzon Strait (to the south of
Taiwan). The estimated pressure of 890 hPa for Super Typhoon
Meranti was also the lowest on record in the Western Pacific
after those of Typhoon Megi in 2010 and Typhoon Mangkhut
in 2018. Meranti began weakening steadily as a result of land
(Taiwan) interaction, and then it struck Fujian Province of China
as a Category 2-equivalent typhoon on Sep. 15. Meranti rapidly

weakened after moving inland and dissipated when it arrived over
the waters off South Korea. The orange line in Figure 1 represents
the track of Super Typhoon Meranti in 2016.

Super Typhoon Maria was a powerful tropical cyclone that
affected Guam (the United States), the Ryukyu Islands (Japan),
Taiwan, and East China in early July 2018. Maria became a
tropical storm and passed the Mariana Islands on July 4 and
rapidly intensified the next day due to favorable environmental
conditions. Maria reached its first peak intensity on July 6, and
a second stronger peak intensity with 1-min sustained winds
of 270 km/h (equivalent to category 5 super typhoon status on
the Saffir-Simpson scale) and a minimum pressure of 915 hPa
was reached on July 9. Maria finally made landfall over Fujian
Province, China, on July 11 after crossing the Yaeyama Islands
and passing the northern offshore waters of Taiwan on July
10. The yellow line in Figure 1 represents the track of Super
Typhoon Maria in 2018.

Super Typhoon Lekima originated from a tropical depression
that developed in the eastern Philippines on July 30, 2019.
Lekima became a tropical storm and was named on August 4.
Under favorable environmental conditions, Lekima intensified

FIGURE 3 | (a) Satellite with ARgos and ALtiKa (SARAL) orbit in the computational domain at UTC 21:30 on Sep. 13, 2016, and (b) along-track significant wave
heights measured by altimeter on SARAL with hindcasted significant wave heights derived from the original ERA5 and modified ERA5 wind fields for Super Typhoon
Meranti in 2016.
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and reached its peak with 1-min sustained winds of 250 km/h
(equivalent to a category 4 super typhoon status on the Saffir-
Simpson scale) and a minimum pressure of 925 hPa on August 8.
Lekima made landfall in Zhejiang Province, China, on late August
9 and made its second landfall in Shandong Province, China, on
August 11 after moving across eastern China. The track of Super
Typhoon Lekima is illustrated using a red line in Figure 1.

DATA AND METHODS

Measurements of Significant Wave
Height From Satellite Altimeters
Satellite altimeter measurement data of ocean significant wave
height were utilized for model validation in the present study. The
data were collected by two satellites: SARAL (Satellite with ARgos
and ALtiKa) is a French (Centre National d’Etudes Spatiales,
CNES)/Indian (Indian Space Research Organisation, ISRO)
collaborative mission and was launched on 25 February 2013.
SARAL performs altimetric measurements designed to study

ocean circulation and sea surface elevation. Jason-2 was an Earth
satellite designed to make observations of ocean topography for
investigations into sea-level rise and the relationship between
ocean circulation and climate change. It was an international
Earth observation satellite altimeter joint mission for sea surface
height measurements between NASA (National Aeronautics and
Space Administration) and CNES.

The main instrument on the SARAL and Jason-2 satellites is a
radar altimeter that provides measurements of sea surface height,
wind speed at the ocean surface and significant wave height.
The data can be used for forecasting hurricanes, improving the
safety and efficiency of offshore industry operations, routing
ships, managing fisheries, monitoring river and lake levels, and
validating the accuracy of ocean and wind wave models.

Improvement of Typhoon Winds Through
a Directed Modified Method
Because of their simplicity, many parametric cyclone
wind models have been proposed since the mid-1960s
(Jelesnianski, 1965, 1966) and have been widely used to

FIGURE 4 | (a) Jason-2 orbit in the computational domain at UTC 23:00 on July 9, 2018, and (b) along-track significant wave heights measured by altimeter on
Jason-2 with hindcasted significant wave heights derived from the original ERA5 and modified ERA5 wind fields for Super Typhoon Maria in 2018.
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reconstruct the wind field of typhoons (Dube et al., 1985; Ginis
and Sutyrin, 1995; Lee, 2008; Chen et al., 2012). The wind
speeds and their distributions near the center of the typhoon
can accurately be reproduced through parametric cyclone wind
models; however, their performances are inferior in regions far
from the center of the typhoon. Conversely, the typhoon winds
derived from an atmospheric reanalysis are superior in areas
outside of the typhoon’s center but are generally worse for the
maximum typhoon wind speed (Pan et al., 2016; Chen et al.,
2019; Hsiao et al., 2019, 2020a,b, 2021a,b). To construct a reliable
scale for the entire wind field of a typhoon, a direct modification
technique proposed by Pan et al. (2016) was therefore applied
in the present study to take advantage of the combination of a
parametric cyclone wind model and reanalysis products:

WDM =


WERA5

[
r

Rmax

(
WBmax
WEmax

− 1
)
+ 1

]
r < Rmax

WERA5

[
Rtrs−r

Rtrs−Rmax

(
WBmax
WEmax

− 1
)
+ 1

]
Rmax ≤ r ≤ Rtrs

WERA5 r > Rtrs
(1)

whereWDM is the wind speed at an arbitrary grid point within the
model domain through the direct modification method, WERA
is the wind speed extracted from ERA5 (the fifth-generation
reanalysis of the European Centre for Medium-Range Weather
Forecasts for the global climate and weather) at an arbitrary
point in the computational grid, WBmax is the maximum wind
speed of the best track typhoon issued by the Regional Specialized
Meteorological Center (RSMC) Tokyo-Typhoon Center, WEmax
is the maximum wind speed of the typhoon among the hourly
ERA5 wind fields, r is the radial distance from an arbitrary grid
point within the model domain to the eye of the typhoon, Rtrs
is the radius of the modified scale (also known as the radius of
the transitional zone), and Rmax is the radius at the maximum
typhoon wind speed. Rmax can be expressed as a function of
WBmax and the latitude of the typhoon’s center:

Rmax = m0 +m1 ×WBmax +m2 (φ− 25) (2)

where φ is the latitude of the typhoon’s center. In Eq. (2), m0, m1,
and m2 were set to 38.0 (in n mi), -0.1167 (in n mi kt−1), and -
0.0040 (in n mi o−1), respectively, according to the results derived

FIGURE 5 | (a) Jason-2 orbit in the computational domain at UTC 00:00 on August 8, 2019, and (b) along-track significant wave heights measured by altimeter on
Jason-2 with hindcasted significant wave heights derived from the original ERA5 and modified ERA5 wind fields for Super Typhoon Lekima in 2019.
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from Knaff et al. (2007) for the Western Pacific typhoon basin. In
Eq. (1), Rtrs is regarded as an important parameter in determining
the accuracy of wind fields.

Binary Typhoon Design
The creation of wind fields with binary typhoons is not a
straightforward task. To ensure that the hourly wind speed at

each grid remained the maximum for the inputs of storm wave
hindcasting, an approach proposed by Xu et al. (2020) was
employed in the present study. Equation (1) was applied to
reconstruct the typhoon wind fields for Super Typhoons Meranti
(2016), Maria (2018), and Lekima (2019) individually and then
merged the wind fields of Super Typhoons Meranti (2016) and
Maria (2018) and the wind fields of Super Typhoons Meranti

FIGURE 6 | Spatial distribution of (A) the instantaneous wind field from a superposition of Super Typhoons Maria in 2018 and Meranti in 2016 and (B) the
corresponding significant wave heights.
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(2016) and Lekima (2019), which are then used as the designed
binary typhoon events in the present study.

Configuration of the SCHISM-WWM-III
Modeling System
An ocean circulation model called the SCHISM (Semi-implicit
Cross-scale Hydroscience Integrated System Model, Zhang et al.,
2016) serves as the core of the wave-tide-circulation modeling
system. The SCHISM is an upgraded product of the SELFE (Semi-
implicit Eulerian-Lagrangian Finite Element/volume, developed
by Zhang and Baptista, 2008) model, and both models are
based on the unstructured grids. To eliminate numerical
errors originating from the splitting between internal and
external modes (Shchepetkin and McWilliams, 2005), the no-
mode-splitting technique is employed in the SCHISM. High-
performance computations can be performed even if a very
high spatial resolution mesh is used in the SCHISM because
the severest stability constraint, i.e., the CFL (Courant–
Friedrichs–Lewy) condition, is ignored through a highly efficient
semi-implicit scheme (Zhang et al., 2020). Typhoon-induced
ocean hydrodynamics can be well-mimicked by means of a
two-dimensional, depth-averaged ocean circulation. Therefore,

SCHISM-2D (the two-dimensional version of the SCHISM) is
adequate to hindcast storm waves in practice. Because of their
high scalability, the SCHISM and SELFE modeling systems
have been employed to solve water quality and hydrodynamic
problems in estuarine and coastal environments in Taiwan.
For instance, estuarine residence time, suspended sediment,
and fecal coliform transport were simulated (Liu et al., 2008;
Chen et al., 2015; Chen and Liu, 2017), storm tide-induced
coastal inundation was assessed (Chen and Liu, 2014, 2016), and
tidal current energy was evaluated (Chen et al., 2013, 2017a).
According to the bathymetric characteristics of the seafloor in
the Taiwanese waters and the numerical stability, a time step of
120 s and a Manning coefficient of 0.025 were specified for the
SCHISM-2D model.

The WWM-III (Wind Wave Model version III) is a
third-generation spectral wave model derived from WWM-II
(developed by Roland, 2009). The WWM-III solves the wave
action balance equation on unstructured grids by a fractional
step method. In the present study, the BJ 78 model proposed by
Battjes and Janssen (1978) was utilized in the WWM-III to cope
with depth-induced wave breaking in nearshore shallow waters.
The wave breaking criterion and bottom friction coefficients are
0.78 and 0.067, respectively. The peak enhancement factor of

FIGURE 7 | Comparison of significant wave height time series generated by Super Typhoon Maria in 2018 and designed binary typhoons Maria (2018) and Meranti
(2016) at (A) L1, (B) L2, (C) L3, and (D) L4 four selected representative points.
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3.3 from the JONSWAP spectra (Joint North Sea Wave Project,
Hasselmann et al., 1973) is adopted in the WWM-III. The lowest
and highest limits of the discrete wave period are 0.04 and 1.0 Hz,
respectively, and is divided into 36 frequency bins. The full circle
of 360◦ is taken into account in the WWM-III, the number of
bins in the directional space is 36 and consequently the spectral
directional resolution is 360◦/36 = 10◦.

SCHISM-2D and WWM-III share the same subdomains using
the same domain decomposition scheme; therefore, interpolation
errors from the two models can be avoided. Additionally, the
parallelization highly enhances the computational efficiency of
SCHISM-2D and WWM-III. The improvement of the coupled
model, SCHISM-WWM-III, was accomplished by employing the
different time steps in two models, i.e., 120 s for SCHISM-2D

FIGURE 8 | Spatial distribution of (A) the instantaneous wind field from a superposition of Super Typhoons Lekima in 2019 and Meranti in 2016 and (B) the
corresponding significant wave heights.
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and 600 s for WWM-III. The SCHISM-WWM-III system is a
two-way, tightly coupled modeling system, i.e., the SCHISM-2D
delivers the wind velocities, depth-averaged currents, and water
surface elevations to the WWM-III, and then the wave radiation
stresses computed by the WWWM-III are used in the SCHISM-
2D every 5 hydrodynamic time intervals, and has been used to
predict the offshore storm waves and coastal storm tides induced
by typhoons and to hindcast the long-term wave parameters
in the waters surrounding Taiwan (Chen et al., 2017b, 2019;
Shih et al., 2018; Su et al., 2018; Hsiao et al., 2019, 2020a,b,
2021a,b).

To eliminate the effects of the boundary conditions on
model simulations, the computational domain for storm surge,
storm tide and storm wave modeling must be large enough
to accommodate an entire typhoon, including its peripheral
circulation (Orton et al., 2012; Zheng et al., 2013; Hsiao et al.,
2021a). Hence, the present study created a large computational
domain that covers the area from longitudes of 105◦E to 140◦E
and latitudes of 15◦N to 31◦N (as shown in Figure 1) and
contains 276,639 vertices and 540,510 triangular elements (as
shown in Figure 2A). The latest global bathymetric product
released by the GEBCO (General Bathymetric Chart of the
Oceans), namely, the GEBCO_2021 Grid, was adopted to

construct the bathymetric data for the SCHISM-WWM-III
modeling system in the present study (as shown in Figure 2B).
GEBCO_2021 provides global coverage of elevation data in
meters at a 15 arc-second spatial resolution. Open boundary
conditions for SCHISM-WWM-II were not always required, as
the three selected super typhoons are completely covered by the
large computational domain (Liu et al., 2012; Hsiao et al., 2020a,b,
2021a). The tidal elevation and horizontal velocity at the open
boundaries of SCHISM-WWM-III were driven by eight main
tidal constituents (M2, S2, N2, K2, K1, O1, P1, and Q1) extracted
from a regional inverse tidal model (China Seas and Indonesia;
Zu et al., 2008), and the effects of sea level pressure on the
boundary tidal elevations were taken into consideration.

RESULTS AND DISCUSSION

Hsiao et al. (2021b) examined significant wave height simulations
for Super Typhoons Maria (2018) and Lekima (2019) at various
Rtrs and found that acceptable significant wave heights could
be hindcasted if Rtrs was equal to 4 Rmax. Therefore, the ERA5
winds were adjusted through the direct modification method (as
expressed in Eq. 1) with Rtrs = 4Rmax and were imposed on the

FIGURE 9 | Comparison of significant wave height time series generated by Super Typhoon Lekima in 2019 and designed binary typhoons Lekima (2019) and
Meranti (2016) at (A) L1, (B) L2, (C) L3, and (D) L4 four selected representative points.
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SCHISM-WWM-III modeling system to validate the hindcasts of
typhoon-caused storm waves in the present study.

The hourly typhoon winds from ERA5 were adjusted using
Eq. (1), transformed from the structured grid (at a spatial
resolution of 31 km) into the unstructured grid and served
as meteorological data for the SCHISM-WWM-III modeling
system. The significant wave height observations measured
by the altimeters aboard the SARAL and Jason-2 satellites
were used to evaluate the performance of the significant
wave heights hindcasted by the SCHISM-WWM-III modeling
system for Super Typhoons Meranti (2016), Maria (2018)
and Lekima (2019).

Model Validation of Significant Wave
Heights for Individual Super Typhoons
The measurement points of significant wave height (gray solid
circle) along the orbit of the SARAL satellite in the computational

domain at UTC 21:30 on Sep. 13, 2016, are shown in Figure 3a.
The comparison of along-track significant wave heights between
observations and model hindcasts is presented in Figure 3b.
For Super Typhoon Meranti in 2016, the measured significant
wave height reached a maximum of 7.65 m at a latitude of
21.6◦N (blue solid circle in Figure 3b), while the maximal
hindcasts were 7.7 m (black line in Figure 3b) and 7.01 m
(red line in Figure 3b) at the same position by using the
original and modified hourly ERA5 wind fields, respectively.
Figure 3b also indicates the underestimations of the significant
wave height when the original ERA5 winds were imposed on
the SCHISM-WWM-III modeling system. Figures 4a, 5a show
the measurement points of significant wave height (gray solid
circle) along the orbit of the Jason-2 satellite in the computational
domain at UTC 23:00 on July 9, 2018, and UTC 00:00 on Aug.
8, 2019, respectively. The hindcasted significant wave heights
corresponding to the measured points in Figures 4a, 5a are

FIGURE 10 | Comparison of 1-D wave energy spectra time series generated by Super Typhoon Maria in 2018 and designed binary typhoons Maria (2018) and
Meranti (2016) at (A) L1, (B) L2, (C) L3, and (D) L4 four selected representative points at the time of the peak significant wave during single Super Typhoon Maria
(2018).
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presented in Figures 4b, 5b for Super Typhoons Maria (2018)
and Lekima (2019), respectively. As shown in Figures 4b, 5b, the
hindcasts driven by the original and modified hourly ERA5 wind
fields match the altimeter data from the Jason-2 satellite for Super
Typhoons Maria (2018) and Lekima (2019); this phenomenon
is similar to that observed for Super Typhoon Meranti (2016)
(Figure 3b). The maximum significant wave heights can be
captured only when using the modified ERA5 winds, although
they are slightly overestimated for Super Typhoon Maria (2018)
(Figure 5b). The results of the model validations for significant
wave height in the present study are consistent with those derived
from Xu et al. (2020).

Variation in Significant Wave Height
Between Single Typhoons and Binary
Typhoons
Numerical experiments were designed to pair Super Typhoons
Maria (2018) and Meranti (2016) and Super Typhoons Lekima

(2019) and Meranti (2016) through the method proposed by
Xu et al. (2020) to better understand the effect of binary typhoons
on ocean surface waves. The wind fields of the three typhoons
were reconstructed individually by means of Eq. (1), and the
winds of Super Typhoons Maria (2018) and Meranti (2016) and
Super Typhoons Lekima (2019) and Meranti (2016) were then
merged separately. The spatial distribution of the instantaneous
wind field with a superposition of Super Typhoons Maria
(2018) and Meranti (2016) is illustrated in Figure 6A. The
main structures (areas with higher wind speeds) of the two
super typhoons remained unchanged, and the maximum wind
speed ranged from 40–45 m/s for Super Typhoon Maria (2018)
and could exceed 50 m/s for Super Typhoon Meranti (2016).
Figure 6B shows the significant wave heights generated by the
binary typhoons [Super Typhoon Maria (2018) coupled with
Super Typhoon Meranti (2016)] corresponding to the wind field
in Figure 6A. An interesting phenomenon that should be noted
is that the significant wave heights induced by Super Typhoon
Maria (2018) in the deeper offshore waters were similar to

FIGURE 11 | Directional wave spectra generated by Super Typhoon Maria in 2018 at (A) L1, (B) L2, (C) L3, and (D) L4 four selected representative points at the
time of the peak significant wave during single Super Typhoon Maria (2018).
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those caused by Super Typhoon Meranti (2016) in the nearshore
shallow waters (as shown in Figure 6B). This is because the wave
heights are attenuated by wave energy dissipation through seabed
friction in coastal shallow waters even if the winds are stronger.

The selection of a representative point to illustrate the effects
of binary typhoons on ocean surface wave time series is not
straightforward. Four points (L1–L4, as shown in Figure 1)
close to the tracks of the three super typhoons and close to
Taiwan are selected to elucidate the effects of binary typhoons
on ocean surface waves although this selection might not be
comprehensive enough. Figure 7 presents a comparison of the
significant wave height time series driven by a single typhoon
[Super Typhoon Maria (2018)] and binary typhoons (Super
Typhoon Maria (2018) paired with Super Typhoon Meranti
(2016)]. The enhancement of peak significant wave heights by
the binary typhoon effect for L1 and L2 is weak (Figures 7A,B).
The percentage increases in the peak significant wave height
are only 4 and 0.9% for L1 and L2, respectively. However, the

effect of the binary typhoons on significant wave height is more
obvious before and after the peaks when Super Typhoon Maria
(2018) approaches L1 and L2. This phenomenon might be due
to the presence of Super Typhoon Meranti (2016), which raised
the wind speeds in the peripheral circulation of Super Typhoon
Maria (2018). As shown in Figures 7C,D, there is no doubt that
the significant wave heights at L3 and L4 increases dramatically
because of the passage of Super Typhoon Meranti (2016).

Figure 8A depicts the spatial distribution of the instantaneous
wind field from a superposition of Super Typhoons Lekima
(2019) and Meranti (2016) and the corresponding significant
wave height (Figure 8B). The significant wave height time series
generated by the single typhoon [Super Typhoon Lekima (2019)]
and binary typhoons [Super Typhoon Lekima (2019) paired
with Super Typhoon Meranti (2016)] for L1–L4 are presented
in Figure 9 (Figure 9A for L1, Figure 9B for L2, Figure 9C
for L3, and Figure 9D for L4). Comparison of Figures 9A–D
with Figures 7A–D shows that the effects of binary typhoons on

FIGURE 12 | Directional wave spectra generated by designed binary typhoons Maria (2018) and Meranti (2016) at (A) L1, (B) L2, (C) L3, and (D) L4 four selected
representative points at the time of the peak significant wave during single Super Typhoon Maria (2018).
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significant wave height derived from the coupled Super Typhoons
Lekima (2019) and Meranti (2016) are very similar to those from
the coupled Super Typhoons Maria (2018) and Meranti (2016).

Variation in Wave Spectra Between
Single Typhoons and Binary Typhoons
The one-dimensional (1-D) wave spectra of a single typhoon
[Super Typhoon Maria (2018)] and designed binary typhoons
[Super Typhoon Maria (2018) paired with Super Typhoon
Meranti (2016)] at four selected points (L1–L4) are presented in
Figure 10 (Figure 10A for L1, Figure 10B for L2, Figure 10C
for L3, and Figure 10D for L4) at the time of the peak
significant wave that occurred during the single Super Typhoon
Maria (2018). Higher wave energy spectra with lower frequency
(0.05–0.1 Hz) are observed at points L1–L4 for both the single
typhoon and binary typhoons. Additionally, lower-frequency
(0.05–0.1 Hz) wind seas are the major component at points L3–
L4 (as shown in Figures 10C,D) for both the single typhoon

(blue lines in Figures 10C,D) and binary typhoons (red lines in
Figures 10C,D) since the storm waves were primarily generated
before or during the passage of the center of typhoons. The
percentage increases in wave energy spectra caused by the binary
typhoons at L1 and L2 are only 19 and 11%. This phenomenon
is dissimilar to that observed at L3 and L4 because the presence
of Super Typhoon Meranti (2016) brought high wave energy and
generated ocean surface waves.

The influence of binary typhoons on wave spectra was
also investigated by comparing the single typhoon- and
binary typhoon-induced two-dimensional (2-D) directional wave
spectra at four selected points (L1–L4). Figure 11 (Figure 11A
for L1, Figure 11B for L2, Figure 11C for L3, and Figure 11D
for L4) illustrates the 2-D directional wave spectra at the time
of the peak significant wave that occurred during the single
Super Typhoon Maria (2018). According to the report from
Young (2006) and Hu and Chen (2011), most spectra induced by
tropical cyclones are monomodal (unidirectional). The simulated

FIGURE 13 | Comparison of 1-D wave energy spectra time series generated by Super Typhoon Lekima in 2019 and designed binary typhoons Lekima (2019) and
Meranti (2016) at (A) L1, (B) L2, (C) L3, and (D) four selected representative points at the time of the peak significant wave during single Super Typhoon Lekima
(2019).
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2-D directional wave spectra with the single Super Typhoon
Maria (2018) are monomodal at L1–L4, and the results are
consistent with previous studies (Young, 2006; Hu and Chen,
2011; Xu et al., 2020). However, a weaker bimodal feature can
be found at L1 when binary typhoons [Super Typhoon Maria
(2018) paired with Super Typhoon Meranti (2016)] were present
(as shown in Figure 12A). Comparison of Figures 11A,B with
Figures 12A,B shows that the differences in 2-D directional wave
spectra between the single and binary typhoons are minor at L1
and L2. Nevertheless, the magnitudes of the 2-D directional wave
spectra for the binary typhoon were three times and four times
higher than those for the single typhoon at L3 and L4, respectively
(Figures 12C,D), and more widespread.

Figure 13 shows the 1-D wave spectra of the single Super
Typhoon Lekima (2019) and designed binary typhoons, i.e.,
Super Typhoon Lekima (2019) coupled with Super Typhoon
Meranti (2016), at four selected points (Figure 13A for L1,
Figure 13B for L2, Figure 13C for L3, and Figure 13D for L4)
at the time of the peak significant wave that occurred during

the single Super Typhoon Lekima (2019). The enhancements
of the 1-D wave spectra are weaker at L1 and L2 than at L3
and L4 due to the presence of Super Typhoon Meranti (2016).
The 1-D wave spectra shown in Figure 13 are similar to those
illustrated in Figure 10; higher wave energy spectra with lower
frequencies (0.05–0.1 Hz) are observed at points L1–L4 for the
binary typhoons (red lines in Figures 10A–D). However, higher-
frequency wind seas (>0.1 Hz) were the major component of
the 1-D wave spectra for the single Super Typhoon Lekima
(2019) at L3 and L4 (blue lines in Figures 13C,D). The 2-D
directional wave spectra driven by single Super Typhoon Lekima
(2019) for four selected points at the time of the peak significant
wave occurrence are displayed in Figure 14 (Figure 14A for
L1, Figure 14B for L2, Figure 14C for L3, and Figure 14D for
L4). The single Super Typhoon Lekima (2019) formed weaker
bimodal features that were detected at L3 and L4 (as shown in
Figures 14C,D). Hu and Chen (2011) indicated that most of the
hurricane/typhoon−generated 2-D directional wave spectra are
monomodal, but the occurrence of bimodal 2-D directional wave

FIGURE 14 | Directional wave spectra generated by Super Typhoon Lekima in 2019 at (A) L1, (B) L2, (C) L3, and (D) L4 four selected representative points at the
time of the peak significant wave during single Super Typhoon Lekima (2019).
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spectra is still 15%. Figures 15A–C show the 2-D directional wave
spectra of the designed binary typhoons, i.e., Super Typhoon
Lekima (2019) coupled with Super Typhoon Meranti (2016) for
four selected points. Comparison of the 2-D directional wave
spectra of single Super Typhoon Lekima (2019) and those of
the designed binary typhoons shows that a weaker bimodal
feature is found at L1 for the binary typhoons (Figure 15A).
The magnitudes of the 2-D directional wave spectra are very
similar at L1 and L2 for single typhoons and binary typhoons but
slightly more widespread when Super Typhoon Meranti (2016)
was present (Figure 15B). The increments of 2-D directional
wave spectra from the binary typhoon are significant at L3 and
L4. As seen in Figures 15C,D, the 2-D directional wave spectra
of the binary typhoon at L3 and L4 are 26 and 13 times higher
than those from Super Typhoon Lekima (2019) alone because of
the presence of Super Typhoon Meranti (2016). Additionally, the
spectra directions at L3 are also shifted from 300◦ to 180◦ for
the single typhoon and binary typhoons (comparing Figure 14C
with Figure 15C). A similar phenomenon is also found at L4, and

the spectra directions are changed from 0◦ to 180◦ (comparing
Figure 14D with Figure 15D). The occurrence times of peak
significant wave height between the single typhoon and binary
typhoons at L3 and L4 were shifted (Figures 9C,D), and the
frequencies of the 1-D wave spectra for the designed binary
typhoons at L3 and L4 became lower than those for the single
typhoon (Figures 13C,D). These variations might cause changes
in the directions of the 2-D directional wave spectra.

The results derived from the numerical experiments indicate
that the bimodal features of 2-D directional wave spectra are
ordinary phenomena when the presence of binary typhoons
interaction. The dominating spectral shapes are almost the same
at L1 and L2 compared single typhoon to binary typhoons
conditions (compared Figures 11A,B to Figures 12A,B, and
compared Figures 12A,B to Figures 13A,B). The slight
differences in 2-D directional wave spectra were distributed in the
east-southeast. These bimodal spectral peaks were caused by the
swell from the induced by Super Typhoon Meranti (2016). On
the contrary, the bimodal features in the 2-D directional wave

FIGURE 15 | Directional wave spectra generated by designed binary typhoons Lekima (2019) and Meranti (2016) at (A) L1, (B) L2, (C) L3, and (D) L4 four selected
representative points at the time of the peak significant wave during single Super Typhoon Lekima (2019).

Frontiers in Marine Science | www.frontiersin.org 16 October 2021 | Volume 8 | Article 74918576

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-749185 September 29, 2021 Time: 16:26 # 17

Chang et al. Binary Typhoons Storm Waves

spectra returns to the monomodal form when the spectrum is
dominated by wind sea generated by the single Super Typhoons
Maria (2018) or Lekima (2019). The comparison results also
suggest that wave interactions raised by binary typhoons cannot
be ignored for simulating the storm waves in Taiwanese waters
even if the interactions might be diminished by Taiwan Island.

SUMMARY AND CONCLUSION

A fully coupled wave-circulation modeling system, SCHISM-
WWM-III, with a large computational domain was developed
to investigate the effects of binary typhoons on ocean surface
waves. SCHISM-WWM-III was validated with significant wave
heights measured by altimeters aboard the SARAL and Jason-2
satellites during the period of Super Typhoons Meranti (2016),
Maria (2018), and Lekima (2019). Original and modified typhoon
wind fields from ERA5 were imposed on SCHISM-WWM-III
to hindcast the storm waves induced by three super typhoons.
The comparisons indicate that the modified ERA5 winds are far
superior to the original ERA5 winds in hindcasting ocean surface
waves during typhoon events. Two numerical experiments with
modified ERA5 typhoon winds were designed to clarify the
influences of binary typhoons on the significant wave height, 1-D
wave spectra, and 2-D directional wave spectra simulations. The
first numerical experiment paired Super Typhoons Maria (2018)
and Meranti (2016), while the second numerical experiment
consisted of two typhoons Super Typhoons Lekima (2019) and
Meranti (2016). Four representative points (L1–L4) close to
the paths of three super typhoons are selected to examine
the binary typhoon effects caused by two designed numerical
experiments. The significant wave height, 1-D wave spectra,
and 2-D directional wave spectra at points L1–L4 for single
typhoons and binary typhoons were determined to assess their
differences. It is intuitively that the significant wave height will
be raised due to the effect of binary typhoons, however, from
a scientific perspective, how many percentages of wave height
increment is needed to be quantified. This paper reveals that
binary typhoons slightly increase the peak significant wave height
(<9%) at points L1 and L2 in the two numerical experiments.
This is identical to the result from a previous similar study for
binary typhoons in the South China Sea. However, the increases
in significant wave heights before and after peaks are obvious
at points L1 and L2 because the wind speeds in a typhoon’s
peripheral circulation might be enhanced if another typhoon is
present nearby. This finding is particularly noticeable and unique
in the present study. At points L3 and L4, the significant wave
heights increased dramatically because of the passage of Super
Typhoon Meranti (2016) in two numerical experiments. The 1-D
wave spectra time series at points L1–L4 for the single typhoons
and binary typhoons are similar to the significant wave height
time series. Weak bimodal features in the 2-D directional wave
spectra are detected at point L1 in two numerical experiments
because of the presence of the binary typhoons. The variations
in the 2-D directional wave spectra at point L2 are minor but
are slightly more widespread. However, the enhancements of
the 2-D directional wave spectra at points L3 and L4 are more

significant due to the presence of Super Typhoon Meranti (2016).
The two numerical experiments designed in the present study
indicate that the ocean surface waves caused by single typhoons
are different from those induced by binary typhoons. The results
in the present study are identical to those previously reported for
the South China Sea. The effects of binary typhoons on ocean
surface waves are more significant at the periphery of the typhoon
than near the center of the typhoon. However, the interactions
between storm waves driven by binary typhoons might be
diminished by Taiwan Island even if the separation distance
between two typhoons is <700 km. The present study aims to
clarify the variations of significant wave height and 1D/2D wave
spectra when the presence of binary typhoons. The numerical
experiments for examining the effect of binary typhoons on
wave simulations are well-designed. The wind speeds for the
selected three super typhoons were more violent but did not make
their landfall on Taiwan. Although the numerical experiments
in the present study are artificially designed and exist certain
limitations and uncertainties, they can be very useful for scientists
and engineers to manage and develop the coastal and marine
environment. The present study not only highlights the effect
of binary typhoons on ocean surface waves but also provides
a methodology for similar or related studies on oceans where
binary typhoons/cyclones/hurricanes may occur, although more
designed numerical experiments need to be further analyzed.
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A climatology of the wind waves in the Mediterranean Sea is presented. The climate
patterns, their spatio-temporal variability and change are based on a 40-year (1980–
2019) wave hindcast, obtained by combining the ERA5 reanalysis wind forcing with
the state-of-the-art WAVEWATCH III spectral wave model and verified against satellite
altimetry. Results are presented for the typical (50th percentile) and extreme (99th
percentile) significant wave height and, for the first time at the regional Mediterranean
Sea scale, for the typical and extreme expected maximum individual wave height of sea
states. The climate variability of wind waves is evaluated at seasonal scale by proposing
and adopting a definition of seasons for the Mediterranean Sea states that is based on
the satellite altimetry wave observations of stormy (winter) and calm (summer) months.
The results, initially presented for the four seasons and then for winter and summer only,
show the regions of the basin where largest waves occur and those with the largest
temporal variability. A possible relationship with the atmospheric parameter anomalies
and with teleconnection patterns (through climate indices) that motivates such variability
is investigated, with results suggesting that the Scandinavian index variability is the
most correlated to the Mediterranean Sea wind-wave variability, especially for typical
winter sea states. Finally, a trend analysis shows that the Mediterranean Sea typical
and extreme significant and maximum individual wave heights are decreasing during
summer and increasing during winter.

Keywords: wave climate, Mediterranean Sea, ERA5, maximum waves, climate indices, climate trends, wave
hindcast, WAVEWATCH III (WW3)

INTRODUCTION

Wind waves are a key factor of the Earth global climate system contributing to the modulation
of the exchanges at the atmosphere-ocean interface (Cavaleri et al., 2012b). At the same time,
wind waves can significantly influence human activities at global-to-local scales, as they can
grow under moderate-to-intense winds provided a sufficient fetch length is available, therefore
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impacting offshore structures and navigation as well as coastlines
and coastal recreational or productive activities. The largest
individual waves of sea states, particularly during storm events,
are recognized as a potential risk of structural damage and of
goods and even human-life losses at sea. Many accidents have
been reported in the past and attributed to the occurrence of
very large, sometimes abnormal, wave heights (Dysthe et al.,
2008). Therefore, the assessment of the wind-wave climate (i.e.,
the wind-wave characteristics averaged on a long-term temporal
scale) and of its spatio-temporal variability and change is of
fundamental importance for coastal and offshore engineering
purposes (to design, for instance, littoral protections, oil rigs and
wind farms), navigation (ship routing) and for all other activities
related to the marine environment (DNV GL–Det Norske
Veritas Germanischer Lloyd, 2017). Beside the most widely used
significant wave height, information on the maximum wave
individual height expected at certain locations is more and more
required by the naval and offshore industries for the definition of
the environmental loads over the lifetime of a ship or a structure
(DNV GL–Det Norske Veritas Germanischer Lloyd, 2017).

In this study, we characterize the long-term wind-wave climate
of the Mediterranean Sea (hereinafter MS; Figure 1), located in
southern Europe, which is a primary source of food, ecosystem
services and economic activities for all the countries in the
region. It is estimated that one-third of the Mediterranean
countries’ population lives along the MS coastlines (46,000-
km long), and that 30% of the global international tourism
is headed to this region, particularly the coastal areas, where
large and populated cities have developed (United Nations
Environment Programme/Mediterranean Action Plan and Plan
Bleu, 2020). The MS is also one of the world’s busiest shipping
lanes, carrying 20% of seaborne trade (including 17% of
the world’s oil tank capacity; United Nations Environment
Programme/Mediterranean Action Plan and Plan Bleu, 2020),
10% of world container throughput and over 200 million
passengers (Piante and Ody, 2015). During MS storms wind
waves can grow until threatening heights that may cause naval
accidents, as happened to the passenger ships “Voyager” in
2005 (Bertotti and Cavaleri, 2008) and “Louis Majesty” in 2010
(Cavaleri et al., 2012a), both cruising in the western MS. Besides
this, the MS basin, with its processes and dynamics, is a pivotal
environmental factor for the climate not only of the whole
region (Lionello, 2012), but also of the neighboring areas and
countries. Given its fragility and exposure to anthropogenic
pressure, the MS is considered an early responder to climate
change and a hot-spot of its effects and impacts (Giorgi, 2006).
Hence, it is essential to assess both the past and present
climatologies in order to create a solid reference for studies on
the future climate.

The purpose of this paper is to characterize the typical
and extreme climate of the MS wind waves, together with its
spatio-temporal variability and changes at a long-term spanning
four decades (1981–2019). To cope with the requirements of
such a complex environment and characterize the wave climate
therein, we rely on a long-term and high-resolution wave
hindcast, obtained by combining numerical wave modeling and
atmospheric reanalysis. We have thus run the WAVEWATCH

III model [Tolman, 1991; The WAVEWATCH III Development
Group [WW3DG], 2019] with the ERA5 reanalysis wind forcing
(Hersbach et al., 2018, 2020) and performed a wave climate
analysis. In doing so, we do not expect to cover all aspects of the
wave climatology of the MS, some of which have been addressed
in various studies and publications (an non-exhaustive list of
them can be found in Section “The study area”). We rather
aim at bestowing new results based on state-of-the-art numerical
modeling and reanalysis data, using one of the longest and most
recent datasets to date. A novel season definition for the MS states
based on observed data is proposed and adopted. Additionally,
and most importantly, for the first time, we present and discuss
the MS climate of expected maximum individual waves and of the
most relevant factors for their development.

The paper is structured as follows. The study area, the wave
hindcast and the methodology we have used for the wave climate
analysis are detailed in Section “Methodology and Data”. In
Section “Results” we present the results of this wave climate
analysis, which first focuses on the significant wave height of
sea states, showing its typical and extreme seasonal climate in
the MS, its spatio-temporal variability and change, and then on
the expected maximum individual waves and relevant parameters
for their estimation (wave steepness and narrow bandedness).
Section “Discussion” is a discussion on the limits and strengths
of this dataset and on the results of the wave climate analysis, also
compared to previous studies in the same region. Conclusions in
section “Conclusion” close the paper.

METHODOLOGY AND DATA

The Study Area
The MS is a mostly deep (1,500 m on average) semi-enclosed
regional sea, connected to the west to the Atlantic Ocean by
the narrow Gibraltar Strait and to the east to the Black Sea by
the Bosporus and Gallipoli (Dardanelles) Straits. Geographically,
it is located between the European and the African continents
and, from a climatic perspective, at the transition between a
midlatitude regime zone, to the north, and a subtropical regime
zone, to the south. Meteorologically, the MS region is interested
by an intense synoptic-scale activity, with a separate branch of
the northern hemisphere storm track passing over the region
(Lionello and Sanna, 2005). The MS has a complex morphology,
with many islands and peninsulas dividing the basin into sub-
basins, some of them connected by straits (Figure 1). Together
with the presence of steep mountain ridges close to the coast,
this morphological complexity provides to the MS environment
with a spatial heterogeneity, which also reflects on the MS region
meteorology and climate, making their successful modeling
far from being trivial (Lionello, 2012). In addition, and most
important for the topic of this study, the orographic complexity
of the MS region plays a fundamental role in the genesis of
cyclones. In this context, cyclones typically originate (mostly in
the western MS) from the interaction of synoptic-scale flows with
the mountains, constraining the flow in the lower troposphere
and producing local and often strong winds (Lionello, 2012).
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FIGURE 1 | Map of the Mediterranean Sea basin and sub-basins (separated for the climate analysis purposes of this paper by dashed gray lines). The most relevant
regional winds are indicated by black arrows denoting blow-to direction.

In general, the MS wind climate is characterized by
the occurrence of winds with regional spatial structure
(200–1,000 km) and seasonal variability (Zecchetto and De
Biasio, 2007; Lionello, 2012). In Figure 1 we have indicated
the most relevant winds for the different sub-basins. Levanter
and Vendaval winds blow in the westernmost part of the MS
(Western sub-basin), respectively, from the north-east and the
south-west: the first during all seasons (but most intensely in
winter), the second mainly during autumn and spring. Mistral
is a cold dry wind jet, stronger during winter, blowing from the
north/north-west over the western and Tyrrhenian sub-basins
and occasionally reaching the African coasts. Libeccio and
Sirocco are southerly winds blowing in the Tyrrhenian and
Ionian-Meridional sub-basins: the first mainly in winter from the
south-west, the second mainly in autumn and spring from the
south-east. Sirocco is also channeled into the Adriatic sub-basin,
and it contributes to the intense storm surges that take place in
the northern Adriatic Sea and in the Venice lagoon (Cavaleri
et al., 2019). The other dominant wind in the Adriatic climate
is Bora, a cold and dry north-easterly wind producing jets over
the sea after interacting with the local orography. Northerly
winds also dominate the climate in the Levantine-Aegean
sub-basin: Etesian winds blow the from north/north-west and
are particularly strong during summer.

The climate of wind waves in the MS, mostly driven by
these regional winds, is subject to the morphological complexity
constraints described above, resulting in limited fetches in
large parts of the basin (with some exceptions) and in coastal
shallow regions relatively proximal to the generation areas.
Some regions present peculiar characteristics, for instance the
northern Adriatic Sea or the Aegean Sea, where wave propagation
experiences either the evolution over a relatively shallow flat

bottom or the shadowing by numerous islands, respectively. Most
of the studies on the MS wave climate (including a wind and wave
atlas of the MS, Western European Union and Western European
Armaments Organisation Research Cell, 2004) based on hindcast
or observed data, focused on the extreme significant wave height
(e.g., the monthly 99th percentile: Sartini et al., 2015a; Sartini
et al., 2015b, 2017; De Leo et al., 2020; Morales-Márquez et al.,
2020) with only a few exceptions that focused on the average
significant wave height (for instance, Lionello and Sanna, 2005;
De Leo et al., 2020). Others were dedicated to the assessment of
the wave energy climate at specific locations or over the whole
basin, with energy harvesting purposes (Barbariol et al., 2013;
Liberti et al., 2013; Arena et al., 2015; Besio et al., 2016). A similar
approach to the one presented in this paper, although with a
different purpose, can be found in von Schukmann et al. (2021),
where Benetazzo et al. have used a shorter portion of our dataset
for an assessment of the climate of the maximum individual
waves in the MS in the last quarter of a century, focusing on the
2019 anomalies and their physical interpretation. The complexity
of the MS climate has also been exploited to test novel approaches
for wave climate analysis (Sartini et al., 2015b; Portilla-Yandún
et al., 2019). Besides providing the statistics over decadal periods
(generally one to three decades), some of the previous studies
used statistical and data analysis approaches to obtain accurate
return level estimates of the significant wave height (e.g., Sartini
et al., 2015a), and to describe the spatio-temporal variability and
the long-term change (trends) of the wave climate (e.g., Sartini
et al., 2017; De Leo et al., 2020; Morales-Márquez et al., 2020).
To interpret inter-annual and inter-decadal variabilities, some
studies also tried to relate them to the modes of atmospheric
variability, looking for teleconnection patterns and using climate
indices (Lionello and Sanna, 2005; Morales-Márquez et al., 2020).
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Finally, some studies were devoted to providing projections of
the future wave climate under climate change scenarios over the
whole basin or sub-basins (see for instance, Benetazzo et al., 2012;
De Leo et al., 2021).

Mediterranean Sea Waves Hindcast
Wave Model Setup
The climate of MS wind waves, its spatio-temporal variability
and change presented in this paper are grounded on a
numerical model hindcast, produced by running the wave model
WAVEWATCH III R© (hereinafter WW3; version 6.07;1) for a
40-year long period from 1980 to 2019 over the whole MS
basin (Figure 1). WW3 is a third-generation spectral wind-
wave model that solves the random-phase spectral action density
balance equation for wavenumber-direction spectra [Tolman,
1991; The WAVEWATCH III Development Group [WW3DG],
2019]. Various source-term packages allow computing wave
generation by wind, decay by dissipative processes, nonlinear
wave-wave interactions, and wave transformation near the coast.
For this study, WW3 has been run over a high-resolution
structured curvilinear grid with a horizontal spacing of 0.05◦
(∼5 km). WW3 has been forced with the 10-meter wind
speed horizontal components (u10, v10) provided hourly by the
ERA5 atmospheric reanalysis, over a 0.25◦ resolution horizontal
structured grid (Hersbach et al., 2018). To represent wave
growth and decay in WW3, we have used the state-of-the-
art ST4 source-term parameterization of Ardhuin et al. (2010),
relying on the default values, but adjusting some coefficients in
agreement with the results of TEST405 of the Ardhuin et al.
study [The WAVEWATCH III Development Group [WW3DG],
2019] to values that are supposed to perform well for younger
seas (βmax = 1.55 and z0,max = 0.002). Wave propagation has
been computed using a third-order accurate scheme, together
with the discrete interaction approximations for nonlinear wave-
wave interactions, and accounting for subgrid-scale obstructions
(propagation-based approach; Tolman, 2003), very common in
some parts of the MS (e.g., Adriatic and Aegean seas). In shallow
waters (i.e., coastal areas and the northern Adriatic Sea) bottom
friction has been modeled using the JONSWAP parameterization
with default values (Hasselmann et al., 1973), while the depth-
induced wave breaking has been parametrized following Battjes
and Janssen (1978). To define the bottom topography and
coastlines we have used the ETOPO1 relief model (doi: 10.7289/
V5C8276M).

Wave Model Outputs
The model outputs considered in this study, produced at
hourly rate, are the significant wave height Hs, the maximum
expected crest height Cmax, and the maximum expected crest-
to-trough height Hmax. Results for Hs and Hmax are presented
in the paper, while results for Cmax are in the Supplementary
Material. The maximum individual crest and crest-to-trough
heights herein considered are computed using the space-time
extreme WW3 model implementation distributed since version
5.16 [The WAVEWATCH III Development Group [WW3DG],

1https://polar.ncep.noaa.gov/waves/

2016] which assumes nonlinear (for Cmax) and linear (for Hmax)
constructive interference of directionally spread waves as the
leading mechanism for the generation of the largest waves in a
sea state. In particular, the WW3 implementation is based on
the Tayfun (1980) approximation of the second-order nonlinear
model for Cmax and on the linear Quasi-Determinism model for
Hmax (Benetazzo et al., 2017), such as they can be defined over a
given space-time domain as:

Cmax =
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In Equations (1) and (2), ξ0 is the mode of the probability
density function of linear space-time extremes (Fedele, 2012),
σ = Hs/4 is the standard deviation of sea surface elevation,
N3, N2 and N1 are the average numbers of waves in the space-
time domain and over its boundaries (Benetazzo et al., 2017),
γ = 0.5772 is the Euler-Mascheroni constant, µ is the wave
steepness and ψ∗ is the narrow bandedness parameter. Steepness
and bandwidth are sea state characteristics that contribute to
the maximum individual wave height characterization. ψ∗ is
defined as the absolute value of the first minimum of the
autocovariance function of the sea state (Boccotti, 2000). As
both µ and ψ∗ are not direct outputs of WW3, we have a
posteriori derived them, as µ = Hs/(gT2

m/2π), with Tm being the
mean zero-crossing spectral wave period produced by WW3, and
fromHmax = Cmax,1

√
2(1+ ψ∗) (Boccotti, 2000) by deriving the

linear estimate of the maximum expected crest height Cmax,1
from Cmax, using the Tayfun (1980) quadratic equation [Equation
(36) of Benetazzo et al., 2017]. Further details on the space-
time extreme theoretical framework implemented in WW3 can
be found in Barbariol et al. (2017); Benetazzo et al. (2021b) and
references therein. A discussion on the role of wave steepness
and bandwidth on the maximum individual wave heights during
extreme events is given by Benetazzo et al. (2021a).

Our climatology of maximum individual waves deals with
the maximum crest height Cmax and the maximum crest-to-
trough height Hmax that might be expected in 20-min sea states
and over a 100 m × 100 m area. This duration and spatial
extent point to a customary sea state duration [e.g., measured by
in situ instruments as a buoy, World Meterological Organization
[WMO], 2018] and to the horizontal sea surface area covered by
an offshore structure (e.g., a large oil/drilling rig), respectively.

Assessment Methodology
The MS wind-wave hindcast has been assessed using satellite
altimeter observations of Hs, starting from 1991. Altimeter
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Hs data have been retrieved from the IMOS platform2 (Ribal
and Young, 2019; Young and Ribal, 2019), which provides
calibrated and cross-validated data (we have only retained data
flagged as “good data,” which according to the authors of
those studies proved very reliable). Satellite missions considered
in the August 1991–December 2019 period, for a total of
4066142 collocations, are listed in Supplementary Table 1.
The longest dataset is 14-year long (ERS-2), the shortest is
almost 4-year long (SENTINEL-3A). To inter-compare modeled
and observed data for validation purposes, wave hindcast
data have been bi-linearly interpolated in space and linearly
interpolation in time on the satellite data points location and
time. The statistical parameters and error metrics used to
evaluate the hindcast performance are the model-observation
bias BIAS = Hs,WW3−Hs,altimeter (overbar denoting ensemble
average), the relative bias RBIAS = (Hs,WW3/Hs,altimeter−1)×
100, the Pearson cross-correlation coefficient CC, the Mean
Absolute ErrorMAE = |Hs,WW3−Hs,altimeter| and the slope of the
best-fit line (linear regression).

To assess that the ERA5 climatological signal transferred from
the surface wind to waves can represent the intra- and inter-
annual climatological variability of MS waves, as well as the
trends, we have estimated the correlation between the monthly
50th and 99th percentile Hs from satellite altimeters and co-
located WW3 hindcast and compared the linear trends of
observed and modeled data. For these specific latter tasks, we
have retained only satellite datasets longer than 10-year (see
Supplementary Table 1).

Modeled maximum individual waves are generally verified
at the short-term (i.e., sea state) time scale (see e.g., Barbariol
et al., 2017, 2019; Benetazzo et al., 2021a,b), as there are
no observational platforms in the global oceans that are
continuously collecting this type of data over a long-term period.
In addition, the model-to-observation comparison would require
using observations with the same space and time domain sizes
used for the hindcast (i.e., 20 min and 100 m × 100 m), while
the sizes used for observations (application dependent and fixed)
may be different from those required. Hence, the assessment
of the WW3 hindcast in terms of Cmax and Hmax can be
only done indirectly. We rely here on the assessment of Hs,
which is the pivotal parameter for determining the height of
maximum expected individual crest and crest-to-trough heights
(Benetazzo et al., 2021b).

Wave Climate Analysis
The climatology of wind-wave sea states in the MS is presented
by using the 50th (i.e., median) and the 99th percentiles
of the significant wave height Hs, which may represent
typical and extreme sea-state conditions, respectively. Similarly,
the climatology of maximum individual waves is based on
the 50th and 99th percentiles of the maximum crest-to-
trough height Hmax (and maximum crest height Cmax in the
Supplementary Material).

In order to highlight the effects of intra-annual variability,
the 50th and 99th percentiles are estimated at seasonal scale

2https://catalogue-imos.aodn.org.au

and averaged over the length of the hindcast to provide an
empirical estimate of the expected typical and extreme conditions
during the different seasons. In this study, we propose and
adopt a novel definition of stormy seasons for the MS wind-
wave climate based on the observed Hs data in the MS, rather
than using the canonical meteorological definition based on the
air temperature (i.e., winter: December, January, February, DJF;
spring: March, April, May, MAM; summer: June, July, August;
JJA; autumn: September, October, November, SON). To this
end, satellite altimeter observations of Hs are used (see Section
“Assessment Methodology”). Yearly-averaged monthly Hs values
are first computed for each satellite altimeter and then the
eight satellites are combined to obtain the ensemble average and
standard deviation.

To let the interannual climate variability and climate change
due to external forcings emerge, we remove the source of
intrinsic intra-annual variability due to seasonality by taking
separately into account the different seasons, as done for instance
by Morales-Márquez et al. (2020). Therefore, in the result
presentation (climate variability and climate change), we shall
focus on the two most representative seasons only, i.e., winter
and summer. The interannual climate variability is shown in
terms of climate anomalies, which are defined as deviations of
the winter and summer 50th and 99th percentile values of a
generic wave height H in a specific ith year Hpp

i (pp = 50, 99)
with respect to the winter and summer yearly-averaged 50th
and 99th percentiles Hpp (overbar denoting average over the
years), i.e., Hpp

i −Hpp. Further, to assess the spatial distribution
of the inter-annual climate variability and highlight the MS sub-
basins and regions that have experienced the largest variations
in the study period, we have also normalized anomalies with
respect to the local yearly averages, thus showing the relative
anomalies, i.e., (Hpp

i −Hpp
)/Hpp. In order to motivate the

inter-annual climate variability of the MS waves, we look for
possible teleconnections between the wave climate variability
and the principal modes of atmospheric variability, taking
into account four northern hemisphere indices (downloaded
as monthly averaged values from3): North Atlantic Oscillation
(NAO), Scandinavian (SCAND), East Atlantic (EA) and East
Atlantic-Western Russian (EAWR). Monthly mean data are then
combined to obtain seasonal averages.

Finally, in order to assess any potential long-term change
in the typical and extreme sea state climate over 1981–2019,
the linear trend of winter and summer Hs, Cmax and Hmax are
estimated over the whole MS and sub-basins through the Sen’s
slope of the 50th and 99th percentiles (Theil, 1950; Sen, 1968),
testing the statistical significance at the 90% confidence interval
with the Mann–Kendall test (Mann, 1945; Kendall, 1948).

RESULTS

The characteristics of the MS wind-wave climate obtained
from the ERA5 wind forced WW3 hindcast are presented in
this Section stemming from the yearly-averaged seasonal 50th

3https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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and 99th percentiles of Hs (the conventional variable used
to describe the wave climate), together with their variability
and change. Same analyses are also conducted to investigate
the distribution of the crest-to-trough height of the maximum
individual waves Hmax (results for the crest height of the
maximum individual waves Cmax are in the Supplementary
Material). Before presenting the MS wind-wave climatology a
novel definition of seasons for the MS states and the assessment
of the wave hindcast performance are introduced.

An Observed Data-Based Definition of
Seasons for the Mediterranean Sea
States
The monthly 50th and 99th percentiles of Hs, as observed over
the MS by the eight satellite altimeters used for the hindcast
assessment (Supplementary Table 1) are shown in Figure 2A.
Observations are also normalized with respect to the maximum
monthly Hs percentile (Figure 2B), which occurs in January for
both the 50th and 99th percentiles. Both typical and extreme
sea states clearly show two dominant regimes: a stormy period,
from November to March (with values within 20% of the January
Hs; Figure 2B), and a relatively calm period, from June to
August (with values within few per cent of the minimum Hs,
occurring in June for the 50th percentile and in August for the
99th percentile). In between, there are two transitional seasons.
Following this variability, we define the four sea-state “seasons” as
winter (NDJFM), spring (AM), summer (JJA) and autumn (SO).
Compared to the classic meteorological definition, we therefore
propose a longer winter season, starting in November and ending
in March (both showing significantly larger Hs compared to
the other spring and autumn months), and shorter transitional
seasons (2-month long), with summer remaining unchanged.
This definition applies to the whole basin but still holds if only
northern, southern or western sub-basins are considered. If only

the eastern part of MS is accounted for, the relative difference
between summer and transitional seasons reduces (not shown
here), most likely due to the effect of Etesian wind-waves. This
is in agreement with findings of Queffeulou and Bentamy (2007)
who pointed out differences in western to eastern MS monthly
mean Hs from satellite altimetry, especially during summer
season. November and December Hs values clearly belong to the
winter season that accounts for the early months of the following
year; therefore, to have an equal number of seasons, we start
counting seasons from winter 1981 (beginning with November
1980) to autumn 2019 (ending in October 2019), thus analyzing
only 39 years in the whole period (hereinafter 1981–2019).

Assessment of the Mediterranean Ses
Wind-Wave Hindcast
The MS wind-wave hindcast performance in the 1991–2019
period against satellite altimeter observations is summarized
in Figure 3, which collects information about the relative
model-observation bias RBIAS in the MS and in the sub-
basins (Figure 3A), the Hs scatter (Figure 3B) and the relation
between modeled and observed climate variability and change
(Figures 3C,D). Modeled Hs is simulated in the MS with 0.87
best-fit line slope, BIAS = −0.12 m and MAE = 0.26 m. The
relative model-observation bias at the 50th percentile of modeled
Hs (0.93 m; blue dot in the Figure 3B) is −8%, while at the
99th percentile (3.78 m; red dot in the Figure 3B) it is −14%,
denoting a decrease in model performance with Hs, in agreement
with the MS wave hindcast study of Mentaschi et al. (2015;
verified against in situ wave buoys). The model-observed bias
might be partially corrected by calibrating the input/dissipation
source term parameterization in WW3. However, the spatial
heterogeneity of the MS (with narrow, semi-enclosed sub-basins
or/and surrounding orography) makes it difficult to achieve a set
of parameters that is optimized to obtain good performance in

FIGURE 2 | Yearly-averaged monthly 50th (black dots) and 99th (red diamonds) percentiles of Hs over the MS, from eight satellite altimeters (see Supplementary
Table 1), dimensional [panel (A)] and normalized with the maximum value [panel (B)]. Dots and diamonds represent the ensemble average over the altimeter
percentiles and bars represent the confidence intervals over the altimeter percentiles (± an ensemble standard deviation). Violet shading indicates winter months
(NDJFM), red shading summer months (JJA) and green shading spring and autumn (transitional seasons; AM and SO).
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FIGURE 3 | Performance of the WW3 wave hindcast in the MS and sub-basins against satellite altimetry (missions in Supplementary Table 1), August
1991–December 2019. [panel (A)] Relative Hs bias RBIAS as a function of Hs,WW3, with relevant percentile levels for the MS relative bias indicated by dashed lines.
Black line: MS; green line: Ionian; red line: Levantine; blue line: Tyrrhenian; orange line: Western; yellow line: Adriatic. [panel (B)] Scatter plot and statistics for the MS.
Purple circles are the Q-Q plot, with the blue dot denoting the 50th percentile and the red dot the 99th percentile. [panel (C)] Observed (JASON-1) and modeled
(WW3) monthly 50th percentiles of Hs over the MS. Correlation coefficients (CC) and relative model-observation difference in trends are indicated in title. [panel (D)]
Observed (JASON-1) and modeled (WW3) monthly 99th percentiles of Hs over the MS. Panel description as in panel (C).

the whole MS basin and in the whole Hs range (Lionello and
Sanna, 2005; Mentaschi et al., 2015; Sartini et al., 2017; Morales-
Márquez et al., 2020). This can be seen by comparing the slope of
best-fit lines and the relative bias at different percentiles for the
MS with those for the sub-basins. Best performance is achieved
in the widest sub-basins (Ionian, Levantine), with larger slope
and smaller relative bias compared to those obtained in the
whole MS. Worst performance are in the Adriatic Sea, where
the ERA5 wind is less effective in correctly reproducing wind
and then waves due to spatial resolution effects in a narrow
basin. These effects are partially visible also in the Tyrrhenian
and Western sub-basins (both with islands and narrow parts),

although performance in these sub-basins is comparable to
that for the MS.

The average (and standard deviation of) correlation
coefficients between the monthly 50th and 99th percentile
Hs from satellite altimeters and co-located WW3 hindcast
are: 0.98± 0.004 for the 50th percentile and 0.97± 0.009 for
the 99th percentile. An example of the monthly percentiles
time-series for JASON-1 is shown in Figures 3C,D, with
correlation coefficients larger than or equal to 0.98 for both 50th
and 99th percentiles. Also, the linear trends of Hs estimated from
the same satellite altimeters and co-located model data are in
agreement, with consistent (i.e., both positive or both negative)
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FIGURE 4 | Climate of typical MS wind waves. Yearly-averaged seasonal 50th percentile of Hs (1981–2019): winter [NDJFM, panel (A)], spring [AM, panel (B)],
summer [JJA, panel (C)], and autumn [SO, panel (D)].

Sen’s slope signs and a general tendency for larger model trends
for the 50th percentiles and smaller for the 99th percentiles
(compared to JASON-1, the relative trend differences are 15 and
−16% for the 50th and 99th percentile, respectively, while the
largest relative difference is −43%, between Envisat and model
99th percentile Hs trends).

Mediterranean Sea Wind-Wave Climate
The yearly-averaged seasonal 50th percentile of Hs is shown
in Figure 4. As expected, the largest values occur during
the winter (NDJFM) season when wind speeds are typically
stronger (Zecchetto and De Biasio, 2007). Spatial patterns of the
50th percentile Hs are rather different in winter and summer
(JJA), on the one hand, and very similar in spring (AM)
and autumn (SO), on the other hand. The most energetic
sea states occur over the western and southern sub-basins
in winter (50th percentile up to 1.5 m) and spring (up to
about 1 m), and over the eastern and western sub-basins
in summer (up to 1.25 m) and autumn (up to 1.0 m).
The western basin experiences the largest typical conditions
over all seasons except summer, particularly the Sardinian Sea
(amid the Gulf of Lyon, Sardinia, the North African coast
and the Balearic Islands) where the north-westerly Mistral

wind persistently blows from the French inland (Zecchetto
and De Biasio, 2007). In summer, the largest wave heights
are attained in the Aegean and Levantine basins (particularly
southeast of Crete, with a typical jet-like pattern) with values
comparable to those of winter and produced by the north-
westerly Etesian winds, typical of late spring, summer and
autumn seasons but reaching their maximum intensity during
summer (Zecchetto and De Biasio, 2007).

The yearly-averaged seasonal 99th percentile of Hs is shown in
Figure 5. The spatial distribution of extreme sea states is different
compared to that of typical conditions (Figure 4). Indeed, the
99th percentile of Hs in all seasons have similar spatial patterns,
and in particular the sea severities during spring and autumn
seem comparable (despite some minor differences, for instance
in the Alboran Sea and the Levantine basin). The largest values
occur in the Gulf of Lyon and Sardinian Sea (up to 5.5 m in
winter, up to 4.0 m in summer, up to 4.5 m in spring and
autumn). Other regions with large, though smaller, values are
located in the southern (Ionian Sea) and eastern (Levantine
Sea) sub-basins, while the summer waves southeast of Crete
island (the largest in the summer 50th percentile maps; jet-like
pattern) are surpassed by the extreme waves generated by the
Mistral wind in the Gulf of Lyon. In the Adriatic Sea, the spatial
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FIGURE 5 | Climate of extreme MS wind waves. Yearly-averaged seasonal 99th percentile of Hs (1981–2019): winter [NDJFM, panel (A)], spring [AM, panel (B)],
summer [JJA, panel (C)], and autumn [SO, panel (D)].

FIGURE 6 | Intra-seasonal variability of the wind-wave climate. Yearly-averaged ratio of the 99th to 50th percentile of Hs (1981–2019), during winter [NDJFM, panel
(A)] and summer [JJA, panel (B)].

pattern changes compared to the 50th percentile, with large
values more homogeneously distributed over the whole basin
(including in the northern part) and with the largest ones (in

the southern part) off the eastern coast, as a consequence of the
south-easterly Sirocco wind storms hitting the Croatia, Albany
and Montenegro shorelines.
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Variability of the Mediterranean Sea
Wind-Wave Climate
The first assessment of the wave climate variability is made
by analyzing the intra-seasonal extreme-to-typical condition
variations. In Figure 6 we show the winter (NDJFM) and summer
(JJA) ratios 99p,Hs/50p,Hs of the 99th to the 50th percentile of
Hs. This ratio provides a measure of the width of the empirical
probability distribution of Hs at seasonal scale and it is yearly-
averaged to obtain an empirical estimate of the expectation. We
observe that sea states are much more variable during summer
than winter, with the largest values of 99p,Hs/50p,Hs . There is
also a larger spatial variability of the ratio during summer with
respect to winter. Indeed, during winter extreme conditions are
generally up to four times greater than the typical ones, over
all the MS basin, with only spatially limited exceptions in the
northern Adriatic, southern Tyrrhenian, western Aegean seas
and eastern Levantine sub-basin, where they can be up to six
times larger (locally, more than six times). During summer,
extreme conditions can be more than six times larger than
typical ones (up to eight times) over large parts of the central
MS, including the Sardinian, Tyrrhenian and Adriatic Seas. The
lowest summer variability occurs in the Levantine basin, where
the sea states generated by the steady and low-variability Etesian
winds are intense but constant over the season.

We now proceed by assessing the interannual variability of
the wave climate in the MS region by showing the standard
deviation and range of the anomalies of typical and extreme
Hs during winter and summer. We first focus on the standard
deviation of the Hs anomaly, which is used to point out the
regions with the largest climate variability over the years. Then,
we focus on the standard deviation and range (maximum-minus-
minimum) of the relative anomaly (i.e., with respect to the
yearly-averaged percentiles of Hs, see Section “Wave Climate
Analysis” for the definition) to show the regions with the largest
variability with respect to the local wind-wave climate (and
quantify it), allowing to inter-compare regions with different Hs
percentiles. The interannual variability of the 50th percentile of
Hs is presented in Figure 7. During winter the largest variability
occurs in the Western sub-basin (Mistral wind region, up to
0.25 m standard deviation; Figure 7A); in summer, in the Aegean
and Levantine sub-basins (Etesian wind region, up to 0.2 m
standard deviation; Figure 7D). These are also the regions with
the largest 50th percentile of Hs (Figure 4) although the spatial
distribution of the standard deviation of the Hs anomaly does
not perfectly reflect that of the yearly-averaged 50th percentile of
Hs. Looking at the standard deviation of the relative anomalies
(Figures 7B,E), it emerges that the regions with the largest
variability with respect to the local wave climate are in the
Tyrrhenian, Adriatic and Aegean sub-basins during summer,
and in the Western, Tyrrhenian, Adriatic, and Levantine sub-
basins during winter. The maximum standard deviation of the
relative Hs anomaly, up to 20% of the 50th percentile Hs in both
summer and winter, occurs in the northern Adriatic Sea and
the southern Tyrrhenian Sea, where during 1981–2019 winters
the range of variability has reached 100% of the local 50th
percentile Hs.

The interannual variability of the 99th percentile of Hs is
presented in Figure 7, and show different characteristics with
respect to that of the 50th percentile of Hs. Indeed, in summer
the maximum standard deviation of the Hs anomaly is in the
Western sub-basin (Sardinian Sea, 0.6 m; Figure 7J), where also
the maximum 99th percentile occurs, whereas in winter the
maximum standard deviation is in the southernmost (Ionian
sub-basin, offshore Libya; Figure 7G) and westernmost (Western
sub-basin, southeast and southwest of Balearic Islands) parts of
the MS, which are not the locations with the maximum 99th
percentile of Hs (Sardinian Sea and Gulf of Lyon, Figure 5).
Similarly, the largest standard deviation of the relative anomaly
(20% of the 99th percentile Hs) is in the Western, Tyrrhenian,
Adriatic, Aegean and Ionian sub-basins during summer (as
for the 50th percentile Hs; Figure 7K), while in winter the
maximum is offshore Libya and southwest of the Balearic Islands
(Figure 7H). In these regions, the range of the relative anomaly is
up to the 100% of the local 99th percentile Hs.

To provide a synthetic description of the interannual climate
variability at the regional scale (i.e., MS basin and sub-basins), in
Figure 8 we show the time series of the spatially averaged relative
anomaly of the 50th and 99th percentile ofHs over the MS (spatial
averages over the sub-basins are shown in Supplementary
Figures 1–5). In general, during 1981–2019 there is an alternation
of positive and negative anomalies that, more frequently during
winter and especially in some sub-basins, tend to aggregate
forming clusters of years with (almost) only positive or negative
anomalies. An example of this aggregation is the 1989–1994
anomaly of the winter 50th percentile Hs. During this period
the largest negative anomaly in the MS have occurred (winter
1990, −18%), followed by four more seasons with negative,
often considerable, anomalies. The largest negative anomaly at
sub-basin scale have occurred in the Tyrrhenian Sea in the
same period (winter 1989, −36% of the 50th percentile of Hs;
Supplementary Figure 1), but similar pattern can be observed in
the Ionian, Adriatic and Western sub-basins, even if with smaller
anomalies. During 1989–1994 winters, the atmosphere in the
MS region has been very stable, in particular over the Western,
Tyrrhenian, Adriatic and Ionian sub-basins (Supplementary
Figures 1–4; as shown in Supplementary Figure 6, displaying the
500 hPa geopotential height, sea level pressure and wind intensity
anomalies over western Atlantic, Europe and western Asia from
ERA5 atmospheric reanalysis, for some seasons of interest). The
cause of this stability can be found in the localization of the
pressure fields on a synoptic (European) scale (Supplementary
Figure 6). The conditions that induce strong atmospheric
stability over the MS basin have been marked positive 500 hPa
geopotential anomalies and positive sea level pressure (SLP)
anomalies over Europe, and negative wind intensity anomalies
over the MS basin. Such conditions have occurred in all the 1989–
1994 winters (as shown in Supplementary Figure 6 for 1989 and
1990), and are responsible for the negative Hs anomalies observed
in Figure 8 for the MS and in Supplementary Figures 1–5 for
sub-basins. The largest positive Hs anomaly in the MS (+21% of
the 99th percentile of Hs) have occurred in winter 1981, while
the largest positive anomaly at sub-basin scale occurred in the
Tyrrhenian Sea in summer 2014 (+32% of the 50th percentile
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FIGURE 7 | Inter-annual variability of the typical [50th percentile, panels (A–F)] and extreme [99th percentile, panels (G–L)] wind-wave climate. Standard deviation
(std) of the Hs anomaly [panels (A,D,G,J)], standard deviation of the relative anomaly [panels (B,E,H,K)] and range [maximum-minus-minimum; panels (C,F,I,L)] of
the relative anomaly of the winter (NDJFM) and summer (JJA) 50th and 99th percentile of HS (1981–2019), with respect to the yearly-averaged winter and summer
50th (Figure 4) and 99th (Figure 5) percentile of HS, respectively.

of Hs). Winter 1981 has been characterized by an average
circulation over Europe (Supplementary Figure 6) with positive
SLP anomaly over Western Europe, positive 500 hPa geopotential
anomaly over Russia and a negative SLP anomaly on central
and southern Europe and on Scandinavia. These conditions
are associated with the meridional advection of arctic air and
intense cyclogenesis over the MS, especially over the western
part, as shown in Supplementary Figure 6 with maximum
wind intensity anomalies of over 1.5 m/s on the Western and
Ionian sub-basin (both showing very large positive extreme
Hs anomalies in winter 1981, Supplementary Figures 3–4).
Summer 2014 (Supplementary Figure 6) has been characterized

by geopotential and SLP anomalies in the western MS, with the
minimum pressure positioned on central-western Europe. This
configuration generates frequent advections of relatively cold
air along the eastern edge of the Azores anticyclone, producing
positive wind intensity anomalies (with values between 0.5 and
1.5 m/s, Supplementary Figure 6) in the Western, Tyrrhenian
and Adriatic sub-basins, all showing positive Hs anomalies in
summer 2014. The temporal climate variability of typical Hs
in the MS has been the largest in winter typical sea states
as shown by the 8.62% standard deviation. At sub-basin scale
the largest temporal variability of typical Hs has occurred
in the Tyrrhenian, Adriatic and Western sub-basins, both in

Frontiers in Marine Science | www.frontiersin.org 11 November 2021 | Volume 8 | Article 76061490

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-760614 November 16, 2021 Time: 15:52 # 12

Barbariol et al. Wind Waves in the Mediterranean Sea

FIGURE 8 | Inter-annual variability of typical and extreme wind-wave climate in the MS (1981–2019). Relative anomaly of 50th [panels (A,B)] and 99th [panels (C,D)]
percentiles of Hs during winter and summer seasons, spatially averaged over the MS. Solid lines represent the most correlated teleconnection indices among NAO,
EA, EAWR, and SCAND (correlation coefficient CC in the legend; indices are magnified ten times for graphical purposes).

summer and winter (for the Tyrrhenian Sea, 11.3 and 13.6%
standard deviation, respectively; see Supplementary Figure 1),
in agreement with results about typical climate variability in
Figure 7. Extreme Hs appears to be most variable in the
Tyrrhenian and Adriatic seas during summer, and in the Ionian
and Levantine sub-basins during winter, (for the Adriatic Sea
summer 11.2% and for the Ionian Sea winter 8.9% standard
deviation, respectively; see Supplementary Figures 2, 4), in
agreement with results for the climate variability shown in
Figure 7.

The inter-annual climate variability of the MS waves observed
in Figure 8 (and Supplementary Figures 1–5 for sub-basins) can
be partially explained by possible teleconnections between the
wave signals and the principal modes of atmospheric variability.
To this end, we compare the time series of the relative anomaly
with the time series of the NAO, SCAND, EA and EAWR indices.
Thus, we have (i) averaged the monthly values of 1981–2019
indices over the winter and summer seasons, respectively, (ii)
computed cross-correlation coefficients between the four indices
and the MS (and sub-basins) Hs relative anomalies and then
(iii) plotted in Figure 8 (and Supplementary Figures 1–5 for
sub-basins) the time series of the index showing the highest
correlation (in search for teleconnection). Generally, with only
a few exceptions, relative anomalies in the MS and sub-basins

are mostly correlated to SCAND positive phases, particularly, but
not only, for the 50th percentiles. In the MS, this is observed
for winter and summer typical and extreme sea states, except
for winter extreme Hs, which is related to the EA negative
phases. The highest correlations are found for the winter 50th
percentiles, although the correlation coefficients are generally
small, reaching 0.54 at most for the MS (SCAND and winter
50th percentile, Figure 8) and 0.65 maximum value for the
sub-basins (SCAND and Tyrrhenian Sea winter 50th percentile,
Supplementary Figure 1). The impact of the SCAND index on
the Mediterranean atmosphere dynamics and hence on the MS
wave climate can be observed, as an example, in the winter 1989
and 1990 atmospheric configuration (Supplementary Figure 6).
The persistent low 500 hPa geopotential height and SLP fields
over Scandinavia and Eastern Europe (with −1.2 and −0.8
seasonal SCAND index, respectively; Figure 8), induce negative
anomalies of wind speed over the whole MS, which, in turn,
generate negative anomalies of the 50th percentile Hs (−15 and
−18%, Figure 8).

Change of the Mediterranean Sea
Wind-Wave Climate
We assess here what might have been the climate change of
the winter and summer MS sea states over 1981–2019 showing
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FIGURE 9 | Change of the MS typical [50th percentile, panels (A,B)] and extreme [99th percentile, panels (C,D)] wind-wave climate. Trend of winter [panels (A,C)]
and summer [panels (B,D)] Hs during 1981–2019. Area with statistically significant trends at the 90% confidence intervals are denoted by black dots (decimated for
graphical purposes).

TABLE 1 | Spatial averages over the MS and sub-basins of the 50th and 99th percentile Hs trends shown in Figure 9 (cm decade−1), during 1981–2019 summer and
winter seasons.

50th Percentile 99th Percentile

Summer Winter Summer Winter

Significant All Significant All Significant All Significant All

Mediterranean −0.8 (22.7%) −0.4 1.1 (2.4%) 0.3 −1.6 (25.5%) −0.2 6.5 (4.5%) 0.9

Adriatic 0.5 (3.6%) 0.2 1.9 (28.9%) 1.3 −5.9 (17.1%) −2.1 5.4 (6.2%) 0.3

Ionian 0.4 (15.5%) −0.3 −1.3 (0.1%) −0.7 7.9 (29.8%) 4.2 −4.3 (0.1%) −0.3

Tyrrhenian −1.4 (5.0%) −0.4 0.0 (0.1%) 0.9 −6.9 (4.2%) 0.2 −10.0 (6.6%) −3.4

Levantine −1.1 (54.0%) −0.7 −1.4 (1.9%) −0.5 −6.6 (41.3%) −3.0 11.0 (9.5%) 3.9

Western 0.6 (0.5%) −0.4 2.5 (1.2%) 1.9 −5.4 (9.3%) −1.6 2.1 (1.5%) 0.1

Averages over the points where the trends are significant (black dots in Figure 9; tested with Mann-Kendall test and 90% confidence interval) and over all the points.
Value between parentheses is the percentage of points with statistically significant trends in a (sub-) basin with respect to all the points in the (sub-) basin.
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the maps of the Hs linear trends (using the Sen’s slope, in cm
decade−1, evaluated on 39 yearly data) in Figure 9 and their
spatial averages over the basin and sub-basins in Table 1. We
show both the trends at the points where there is statistically
significance (at 90% confidence interval according to the Mann–
Kendall test) and at all the points in a (sub-) basin, including
where there is no statistical significance.

The winter 50th percentile of Hs (Figure 9A and Table 1)
shows positive trends over large part of the western and northern
sub-basins of the MS, and negative or no trends in the eastern and
southern sub-basins, resulting in a substantially net zero trend
for the MS typical winter sea states (0.3 cm decade−1; Table 1).
The largest increases are in the Sardinian Sea and offshore
Algerian coasts (up to 5 cm decade−1) and largest decreases in
the southern MS (down to −3 cm decade−1). However, only
trends offshore the Algerian coasts, in the central Adriatic Sea
(Sirocco and middle Bora jets regions) and in small portions of
the Aegean and Balearic seas are statistically significant, bringing
the spatial average to 1.1 cm decade−1 (Table 1). The summer
map (Figure 9B) is far different, showing generally smaller
Sen’s slopes, except in some limited areas in the eastern part
of the basin, with statistically significant increases (up to 4 cm
decade−1) in the Aegean Sea and eastern and western Levantine
basin and decreases (down to −4 cm decade−1) in the central
Levantine basin where the summer Etesian winds blow. As a
whole, the MS presents a very mild decreasing trend during
typical summer sea states (−0.8 cm decade−1; Table 1).

The 99th percentile Hs trends, shown in Figures 9C,D, are
significantly larger than the 50th percentile trends shown above.
During winter the largest statistically significant changes are in
the southern Levantine sub-basin with increases up to 12 cm
decade−1 offshore Egypt and Israel (11.0 cm decade−1 on average
in the sub-basin), in the Gulf of Lyon with increases up to
12 cm decade−1 (Mistral jet region, despite a smaller average
trend in the Western sub-basin), in the northern Adriatic Sea
(northern Bora jet, increases up to 8 cm decade−1) and in
the southern Tyrrhenian Sea, the only statistically significant
area of negative trend for winter extreme sea states (down
to −12 cm decade−1, −10.0 cm decade−1 on average in
the Tyrrhenian Sea). In the MS the winter 99th percentile
Hs has increased 6.5 cm decade−1 (Table 1) as a whole. In
summer, the trend distribution and sign are quite different
from the winter ones. Indeed, globally the 99th percentile
Hs has decreased (−1.6 cm decade−1; Table 1), and the
spatial distribution is quite similar to the distribution of the
summer 50th percentile Hs trends. In particular, a statistically
significant increase is observed in the Ionian (up to 12 cm
decade−1, 7.9 cm decade−1 on average in the sub-basin)
and Aegean seas only. The Levantine basin shows a decrease
down to −10 cm decade−1 and of −6.6 cm decade−1 on
average, while the Balearic, Tyrrhenian (including the Gulf of
Genoa) and Adriatic seas show moderate decreasing trends in
the summer extreme sea states. Concluding, on average, in
1981–2019 the MS wind-wave climate has decreased during
summer seasons and increased during winter seasons (both
50th and 99th percentiles) with the largest changes in the
extreme sea states.

Mediterranean Sea Maximum Individual
Wave Climate
In this section we change the focus of the analysis from the
climate of the significant wave height of sea states to the MS
climate of the maximum individual wave heights and the other
(beside significant wave height) relevant parameter for their
estimation, i.e., wave steepness and narrow bandedness.

Maximum Individual Waves
The yearly-averaged winter and summer 50th and 99th
percentiles of Hmax are shown in Figure 10 (and in
Supplementary Figure 7 for Cmax). As expected, seasonal
and spatial patterns closely mirror those of Hs, which is
the driving parameter determining the height of maximum
individual waves (others, like the steepness for Cmax and the
narrow bandedness parameter for Hmax, will be discussed in the
following). The largest typical crest heights occur in the Sardinian
Sea (Western sub-basin) and in the southern MS during winter,
reaching up to 3.5 m height, whereas during summer the largest
values are found southeast of Crete island in the Levantine basin
with heights up to 3 m. The largest extreme wave height (99th
percentile) can be found in the same parts of the MS with values
up to 12 m in winter and 8 m in summer.

The variability of the maximum individual wave climate
(Cmax and Hmax) well matches the variability of the Hs climate,
shown in section “Variability of the Mediterranean Sea Wind-
Wave Climate.” The extreme-to-typical condition variations at
seasonal scale for Hmax and Cmax are shown in Supplementary
Figures 8, 9, respectively. Compared to the Hs variations in
Figure 6, they only show minor differences, which do not
substantially change the conclusions drawn about the seasonal
and regional characteristics of the wave climate variability in the
MS, which are also valid for the inter-annual variability.

What deserves more attention is the change in the maximum
individual wave climate, expressed using the Sen’s slope of the
linear trend over 1981–2019. Trends are shown in detail for
Hmax in Figure 11 (in Supplementary Figure 10 for Cmax)
and summarized as spatial averages over the MS and sub-basins
in Table 2 (in Supplementary Table 2 for Cmax). On average,
maximum individual waves change more than Hs (Table 1) with
slopes larger than Hs slopes: e.g., on average for the MS in
winter 2.5 and 13.9 cm decade−1 for Hmax, instead of 1.1 and
6.5 cm decade−1 for correspondingHs values. More than doubled
slopes for Hmax are also observed in Figure 11, with winter Hmax
increasing up to 10 cm decade−1 in the Western sub-basin (50th
percentile) and up to 25 cm decade−1 in the Levantine sub-basin
(99th percentile). In general, however, the spatial distribution of
the trends for Hmax (and Cmax too) reflects the distribution of
Hs trends. The meaning of these trends and how they can be
interpreted compared to the Hs trends will be examined in the
Discussion section.

Wave Steepness and Narrow Bandedness
We have shown that, while the maximum individual wave climate
displays characteristic typical and extreme values, spatial patterns
and variability of the maximum individual wave climate closely
mirror those of the significant wave height. The reason is that
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FIGURE 10 | Climate of the maximum individual waves. Yearly-averaged seasonal 50th [panels (A,B)] and 99th [panels (C,D)] percentiles of Hmax (1981–2019):
winter [NDJFM, panels (A,C)], summer [JJA, right panels (B,D)].

maximum crest and wave heights are monotonic functions of
significant wave height Hs [see Equations (1) and (2)]. Therefore,
we expect that regions where Hs is large are also the regions
where Cmax and Hmax are the highest. This is confirmed by
the comparison of Figure 10 and Supplementary Figure 7. At
the same time, though with a smaller effect with respect to
Hs, Cmax and Hmax are also monotonic functions of the wave
steepness µ and the narrow bandedness ψ∗, respectively [see
Equations (1) and (2)]. Therefore, maximum individual wave
heights in Figure 10 and Supplementary Figure 7 are the result
of the combined effect of Hs (both Cmax and Hmax), µ (Cmax)
and ψ∗ (Hmax).

In Figures 12A,B we show the yearly-averaged winter and
summer 50th percentile of µ. As younger waves are generally
steeper, largest steepness (up to 0.07) can be found close to
the shores where prevailing Mediterranean onshore winds blow
from: e.g., in the Gulf of Lyon (Mistral), in the Aegean Sea
(Etesian), along the eastern Adriatic coast (Bora), but also on

the leeward side of straits (i.e., Sirocco to the north of Otranto
Strait in the Adriatic Sea, Vendaval to the east of Gibraltar Strait,
Mistral to the east of Bonifacio Strait in the Tyrrhenian Sea,
Etesian to the west of the Bosporus Strait). Steepness decreases
moving off-shore along the wind direction as waves develop.
Although the steepest waves occur in winter, the summer Etesian
wind waves are as steep as in winter. The 99th percentile of
µ (Figures 12C,D), again larger in correspondence of younger
waves, is up to 0.075 over the whole MS except in the Adriatic
Sea (up to 0.08) and in very narrow coastal regions where can
be up to 0.09. Wind-sea dominated seas typically have steepness
values larger than 0.03–0.04, while swell dominated seas may
have halved values compared to wind-seas (Barbariol et al., 2019).
The steepness values we find in the MS (generally larger than
0.03) denotes the predominance of wind-seas in the MS climate,
especially in winter. During summer smaller values (0.02; 50th
percentile) can be found in the Gulf of Genoa and in the southern
Tyrrhenian Sea, where mature waves driven by south-westerly
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FIGURE 11 | Change of the MS typical [50th percentile, panels (A,B)] and extreme [99th percentile, panels (C,D)] maximum individual wave climate. Trend of the
winter [panels (A,C)] and summer [panels (B,D)] Hmax during 1981–2019. Areas with statistically significant trends at the 90% confidence intervals are denoted by
black dots (decimated for graphical purposes).

winds can develop after frequency- and direction-dispersion
along the large distances from the Alboran Sea to these areas
(among the longest in the MS).

The yearly-averaged 50th percentile of ψ∗, shown in
Figures 13A,B, generally ranges between 0.625 and 0.675 in
winter, while can be up to 0.75 in summer. These are values
representative of a unimodal wind-sea (0.65 ≤ ψ∗ ≤ 0.75; see
Boccotti, 2000), denoting the prevailing nature of typical MS
sea states. Smaller values can be found in the wide western
and southern basins where a local wind-sea may combine
with more mature seas coming from different directions. It is
worth mentioning that a proper long-term statistical analysis
of the sea state characteristics should account for different
wave systems separately. That is, wind-sea and swell (if any)
should be separated (e.g., using spectral partitioning techniques
accounting also for wave direction) and treated independently as

they have a different origin and belong statistically to different
populations. However, the range of superimposed wind-sea and
swell (ψ∗ ≤ 0.6; Boccotti, 2000) is rather rare in the MS, even
if crossing sea states with waves with different wave direction
may occur. The 99th percentile values of ψ∗ (Figures 13C,D),
generally larger than 0.7 and up to 1, denotes the presence
of narrow banded sea states, able to produce the largest
crest-to-trough excursions according to the Quasi-Determinism
theory (Boccotti, 2000; Benetazzo et al., 2017, 2021b), especially
in the Adriatic, Tyrrhenian and Aegean seas.

DISCUSSION

In this section, we first highlight and discuss the limits and
strengths of the dataset and of the related climate analysis. Then,
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TABLE 2 | Spatial averages over the MS and sub-basins of the 50th and 99th percentile Hmax trends shown in Figure 11 (cm decade−1), during 1981–2019 summer
and winter seasons.

50th Percentile 99th Percentile

Summer Winter Summer Winter

Significant All Significant All Significant All Significant All

Mediterranean −1.8 (23.0%) −1.0 2.5 (2.4%) 0.6 −3.9 (25.4%) −0.6 13.9 (4.8%) 1.9

Adriatic 1.2 (3.6%) 0.5 4.5 (27.0%) 3.1 −13.3 (17.3%) −4.6 12.3 (6.4%) 0.9

Ionian 1.0 (16.4%) −0.7 −3.0 (0.1%) −1.4 16.9 (28.6%) 8.8 −10.4 (0.1%) −0.4

Tyrrhenian −3.0 (4.3%) −0.9 3.7 (0.1%) 1.9 −15.2 (4.2%) 0.3 −19.7 (6.4%) −6.7

Levantine −2.5 (54.1%) −1.6 −3.6 (2.0%) −1.1 −14.2 (41.9%) −6.4 22.6 (10.4%) 8.0

Western 1.2 (0.7%) −0.8 6.1 (1.4%) 4.4 −12.3 (9.5%) −3.5 3.7 (1.8%) 0.2

Averages over the points where the trends are significant (black dots in Figure 11; tested with Mann-Kendall test and 90% confidence interval) and over all the points.
Value between parentheses is the percentage of points with statistically significant trends in a (sub-) basin with respect to all the points in the (sub-) basin.

we comment on the results we have obtained, by also comparing
them to those obtained in previous studies for the same area.

The climatology of MS waves presented in the previous
section relies upon the climatology of the ERA5 reanalysis
wind. Even if ERA5 horizontal resolution may be poor for
representing the dynamical structure of the wind fields in some
regional seas, as the narrow semi-enclosed Adriatic or Aegean
seas, it currently represents the state-of-the-art of long-term
atmospheric reanalysis and hence the best forcing option for the
present work. In this context, using a dynamical downscaling of
ERA5 winds, Vannucchi et al. (2021) showed an improvement
of wind and wave hindcast performance against wind stations
and buoys in the MS compared to the original ERA5 data mostly
at coastal stations. We have decided to use ERA5 wind and not
ERA5 waves, as the latter may be not suitable for long-term
climate analyses, at least for studies extending before and after
1992, i.e., the beginning of satellite altimeter data assimilation
in the wave models. The introduction of spurious trends is a
well-known issue pointed out by Aarnes et al. (2015) for ERA-
Interim reanalysis waves (Dee et al., 2011) that may apply also
to ERA5. To cope with the resolution issue of ERA5 in the MS
and with the potential 1992 singularity in wave products, we
have therefore (i) relied on the ERA5 wind forcing (on which we
expect a smaller or at least indirect data assimilation effect) and
on an ad hoc high-resolution (about 5 km) wave hindcast and (ii)
verified the wave hindcast results against satellite altimetry. While
this has not increased the wind forcing resolution, it has allowed
us to produce one of the longest consistent Mediterranean wave
hindcasts up to now, providing a detailed representation of the
wave climatology in a morphologically complex enclosed sea and
assessing its uncertainty compared to observations in the region.
Concerning the hindcast performance, the MS wave climate, its
(intra- and inter-annual) variability and the trends have shown to
be well reproduced by the ERA5 wind forced hindcast. However,
the negative modeled-observed Hs relative bias shown in Section
“Assessment of the Mediterranean Ses Wind-Wave Hindcast”
should be regarded when using the estimates of the 50th and 99th
percentile of the MS wave heights.

Results of the wave hindcast and following wave climate
analysis have shown marked regional characteristics of the wave

climate, related to the peculiarities of the regional winds blowing
over the Mediterranean sub-basins. Results for the typical and
extreme wind-wave climate are in agreement with other studies
both for spatial distribution and intensity, albeit with some
differences [see e.g., Morales-Márquez et al. (2020) for extreme
winter Hs and Lionello and Sanna (2005) for mean seasonal Hs,
both presenting slightly smaller maxima]. In particular, results
have highlighted the MS regions where the largest waves occur,
which are in the Western, Ionian and Levantine sub-basins,
depending on the season. Indeed, compared to previous studies,
in this paper we have provided results at a seasonal scale. We have
shown that the variety of the MS wave climate characteristics may
be well represented by winter and summer seasons, in terms of
intensity and patterns of wave heights, with spring and autumn
in-between. This is in agreement with the results of Lionello and
Sanna (2005), who argued that the MS climate, including wave
climate, is characterized by two main seasons, i.e., winter and
summer, with spring and autumn only being transitional seasons.

The definition of seasons we have adopted in this study
is based on the wind-wave climate and on the altimeter
Hs observations in particular, rather than on monthly air
temperatures, as in the meteorological definition of seasons. This
choice is supported by other studies on the MS region climate.
Indeed, Trigo et al. (1999) suggested that the traditional four
meteorological seasons do not fit well the cyclone occurrence
patterns in the MS region. In this context, attempts to objectively
define season start/end and duration in the MS region, based on
different indices than the largely spatially variable temperature,
led to definitions of seasons that generally correspond to the
traditional ones, but with longer winters and shorter springs and
autumns (Alpert et al., 2004; Kotsias et al., 2021) in agreement
with our definition. Also Lionello and Sanna (2005), based on
principal component analysis of the modeled Hs, defined four
seasons, again with longer winters (and summers) and shorter
springs and autumns.

Following the conclusions of previous studies that found that
the climate (including wave climate) variability of part of the
MS (in particular the northern part with a mid-latitude climate
regime) can be partially related to midlatitude climate indices
(e.g., Lionello and Sanna, 2005; Morales-Márquez et al., 2020)
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FIGURE 12 | Yearly-averaged seasonal 50th [panels (A,B)] and 99th [panels (C,D)] percentiles of µ (1981–2019): winter [NDJFM, panels (A,C)], summer [JJA,
panels (B,D)].

we have searched for teleconnections between wave climate
variability and the principal modes of atmospheric variability.
We have found that MS typical (50th percentile) wave climate
variability is generally positively correlated to the SCAND index
(i.e., positive Hs anomalies generally corresponding to positive
SCAND phases, and viceversa). This is in accordance with the
SCAND positive phases being generally associated with enhanced
cyclogenesis in the MS region (Xoplaki, 2002). Extreme wave
variability (99th percentile) is also positively correlated to the
SCAND index in summer, while it can be negatively correlated
to the EA index in winter. The negative phases of EA were
also related to extreme waves in the MS by Izaguirre et al.
(2010) using satellite data. Over the sub-basins there can be
differences, for example the Adriatic Sea, whose wave climate
variability is always positively correlated to the SCAND index
during winter and to EAWR during summer. In general, our
results are in agreement with the results from another study

(Morales-Márquez et al., 2020) and suggest that the MS wave
climate variability is mildly-to-slightly related to the variability
of large-scale atmospheric structures, which have a more clear
influence on the wave climate in other seas (e.g., the North-
Atlantic Ocean; Morales-Márquez et al., 2020). We thus share
the conclusions of Lionello and Galati (2008) that even if some
patterns seem to exert a larger influence with respect to others,
this is not sufficient to explain the dominant variability of the
wave climate in the MS and its sub-basins, which is the result
of a combined effect of large-scale atmosphere dynamics and
orography (forcing regional winds).

The observed trend of decreasing Hs during summer and
increasing Hs during winter (both for typical and extreme
wave climate; Table 1) seems to disagree with some other past
climate change studies in the region, although based on different
wind forcing datasets, wave models, trend estimate, and season
definition. Indeed, Lionello and Sanna (2005) found a statistically
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FIGURE 13 | Yearly-averaged seasonal 50th [panels (A,B)] and 99th [panels (C,D)] percentiles of ψ∗ (1981–2019): winter [NDJFM, panels (A,C)], summer [JJA,
panels (B,D)].

significant decreasing trend of the mean Hs in the MS during
winter months (December to March, −2.4 cm decade−1), while
we have found a statistically significant increasing trend of the
median Hs in the MS during November to March (Table 1, 1.1 cm
decade−1). Also, the spatial distribution and intensity of the
99th percentile winter (December to February) Hs trend obtained
by Morales-Márquez et al. (2020) only partially resembles that
shown in Figure 9C. There is instead remarkable agreement, at
least in some specific regions, with the trend estimates for the
annual maximum Hs by De Leo et al. (2020). Comparing those
estimates with ours for the winter 99th percentile Hs (the closest
to the annual maxima), we see many areas of corresponding
increase/decrease: for instance, positive trends in the Gulf of
Lyon and other parts of the Western basin, in the northern
Adriatic and Tyrrhenian seas and in the easternmost part of the
Levantine basin; negative trends in the southern Tyrrhenian Sea,
Sardinian Sea and central Adriatic Sea. However, the change in

the wind-wave climate we have found (Figure 9 and Table 1)
reflects the change in the ERA5 wind forcing intensity and spatial
distribution while for instance Lionello and Sanna (2005) study
is based on the ERA-40 reanalysis (Uppala et al., 2005) and
Morales-Márquez et al. (2020) and De Leo et al. (2020) on the
CFSR reanalysis (Chawla et al., 2013). Hence, the reasons for
different trends on the intensity of storms should be searched
for in the wind forcings that have generated the wave model
results. Changes in ERA5 wind characteristics might be due,
for instance, to changes in storm trajectories, as suggested by
numerous climatological studies, which investigated not only
the intensity and frequency of Mediterranean cyclones but also
the variability of their trajectories in the last decades and in
the future climate projections (Lionello et al., 2002; Lionello
and Giorgi, 2007; Cavicchia et al., 2014; Messmer et al., 2020).
We have verified monthly Hs percentile trends from the ERA5
wind forced wave hindcast at the MS basin scale against trends
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from satellite altimeters and found a general agreement in the
increasing/decreasing trends as well as in the magnitude of the
trends. For Hmax (and Cmax), we have found trends that are larger
than the Hs trends: for instance, for the winter 50th percentile
on the whole MS, on average 2.44 times for Hmax. This can
be explained with Hmax being on average 2.36 Hs. Hence, the
linear trend of Hmax, i.e., 4Hmax/4T, should be on average
4Hmax/4T ≈ 2.364Hs/4T, the difference between 2.44 and
2.36 being possibly explained with a change in the other wave
parameters that Hmax depends upon.

CONCLUSION

In this paper, we have taken advantage of the ERA5 atmospheric
wind reanalysis and spectral wave modeling to characterize the
wind-wave climate of the MS, its spatio-temporal variability and
change. The wind-wave dataset we have produced has allowed us
to obtain one of the longest wave climate assessments in the MS
to date. Also, for the first time we have bestowed an assessment
of the maximum individual wave climate in the MS. Our main
results are here summarized:

• We have verified the ERA5 wind-based wind-wave hindcast
against satellite observations of significant wave height
with respect to its performance in reproducing the typical
(50th percentile) and extreme (99th percentile) Hs, and the
variability and trend of the MS wind-wave climate. Despite
a general tendency to underestimate Hs (in particular in
narrow basins as the Adriatic Sea and for the extremes) the
dataset has been shown to properly reproduce the temporal
variability and the trends of Hs.
• We have presented the typical and extreme MS wind-wave

climate patterns and characteristics at seasonal scale and,
to this end, we have proposed and used a definition of
seasons based on the satellite observation of significant
wave height over the MS, which presents a stormy season
(winter) lasting 5 months, a calm season (summer) lasting
3 months and two transitional seasons (spring and autumn)
lasting 2 months each. This definition is in agreement with
other objective season definitions in the MS.
• The largest typical waves (both as Hs and maximum

individual waves) occur in the western and southern MS
during winter, and in the eastern MS during summer,
whereas the largest extreme waves occur in the western MS
in all seasons, with maximum values during winter.
• The intra-seasonal variability of MS wind waves (expressed

as the ratio of the 99th to the 50th percentile Hs) has
been shown to be largest during summer and in the
Adriatic, Tyrrhenian and Sardinian Seas, indicating these
are season and the MS sub-basins that are more prone
to the development of large extremes waves compared
to the typical ones. On the other hand, the inter-annual
variability has proven to be largest where the largest winter
and summer waves occur. However, when the inter-annual
variability has been expressed with respect to the local
climate (i.e., in terms of relative anomaly) it has emerged

that the Adriatic and Tyrrhenian Seas are characterized
by the largest variability of typical and extreme Hs, with
the Ionian and Levantine sub-basins also showing large
variability of extreme Hs. During the analyzed period
(1981–2019) these regions of the MS have experienced
variations up to 100% of both the local 50th or 99th
percentile Hs.
• We have motivated the largest positive and negative

relative anomalies of Hs in the MS basin (and sub-
basins) thanks to the geopotential height at 500 hPa,
mean sea level pressure and wind intensity anomalies and
we have related the temporal variability of the relative
anomalies in the MS to the principal modes of atmospheric
variability. The seasonal Scandinavian index seems the most
correlated to the seasonal wind-wave variability in the
MS, especially during winter and for the typical Hs, with
positive Scandinavian index phases associated to the largest
typical winter Hs (extreme winter Hs are best correlated to
the Eastern Atlantic index). However, correlations found
are not remarkable (0.54 at most for the MS, 0.65 for
sub-basins) and this suggests, in agreement with previous
studies in the MS, that the wind-wave variability in the
MS can only be partially motivated by teleconnections,
most likely due to the effects of local orography that,
interacting with synoptic scale atmospheric structures,
generates cyclones and consequent winds with regional
characteristics that partially lose the link with their large-
scale source.
• The long-term trends found in the ERA5-wind based

hindcast of the MS waves are negative for the summer
season and positive for the winter season, both for typical
and extreme sea states (and maximum individual waves).
These trends are statistically significant though generally
modest in magnitude (however, locally up to 12 cm
decade−1 for extreme winter Hs and 25 cm decade−1

for extreme winter Hmax) and are larger for extreme sea
states compared to typical sea states. This suggests the MS
wind-wave climate has changed during 1981–2019, with
decreasing Hs (and maximum individual waves) during
summer and increasing during winter.
• The climate characteristics (patterns, spatio-temporal

variability and change) of maximum individual waves
closely mirror those of Hs, although there are some
differences that are motivated by the dependence of Hmax
(and Cmax) by other sea state characteristics, i.e., the
narrow bandedness parameter and the wave steepness. We
have presented their typical and extreme seasonal patterns
and intensities, showing that MS sea states are generally
dominated by wind waves.

Concluding, this study have proven that the ERA5 wind can be
successfully used to hindcast the wind waves in the MS, a crucial
task to assess the past and present climate in a regional basin
providing environmental and economical services to the whole
MS region and where the impacts of climate change are expected
to be significant in the near future. As a recommendation for
future reanalysis-wind based assessments in a semi-enclosed
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basin with similar characteristics (i.e., narrow sub-basins and
surrounding orography), in order to reduce the spatial resolution
effects in the narrowest basins (as the Adriatic Sea) and close to
the coasts, a dynamical downscaling of ERA5 winds would be
advisable. This represents one of the further improvements on the
hindcast production side. As regards the wave climate analysis,
although swell seas are rather rare in the MS, a partitioning
analysis of the directional wave spectra determining the different
wave systems that may mix in a sea state would allow treating
them separately (if necessary) and also characterizing the crossing
seas that often pose serious problems to ships in navigation.
Finally, further investigations, for instance looking for a change
in the direction of cyclonic paths and their intensity, would help
disentangling the dominant mechanisms that drive the changing
seasonal wave climate we found.
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Few studies have focused on the projected future changes in wave climate in the
Chinese marginal seas. For the first time, we investigate the projected changes of the
mean and extreme wave climate over the Bohai Sea, Yellow Sea, and East China Sea
(BYE) during two future periods (2021–2050 and 2071–2100) under the RCP2.6 and
RCP8.5 scenarios from the WAM wave model simulations with a resolution of 0.1◦.
This is currently the highest-resolution wave projection dataset available for the study
domain. The wind forcings for WAM are from high-resolution (0.22◦) regional climate
model (RCM) CCLM-MPIESM simulations. The multivariate bias-adjustment method
based on the N-dimensional probability density function transform is used to correct
the raw simulated significant wave height (SWH), mean wave period (MWP), and mean
wave direction (MWD). The annual and seasonal mean SWH are generally projected
to decrease (-0.15 to -0.01 m) for 2021–2050 and 2071–2100 under the RCP2.6 and
RCP8.5 scenarios, with statistical significance at a 0.1 level for most BYE in spring
and for most of the Bohai Sea and Yellow Sea in annual and winter/autumn mean.
There is a significant decrease in the spring MWP for two future periods under both
the RCP2.6 and RCP8.5 scenarios. In contrast, the annual and summer/winter 99th
percentile SWH are generally projected to increase for large parts of the study domain.
Results imply that the projected changes in the mean and 99th percentile extreme waves
are very likely related to projected changes in local mean and extreme surface wind
speeds, respectively.

Keywords: wave climate, extreme wave, multivariate bias adjustment, climate projection, Chinese marginal seas
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INTRODUCTION

Ocean waves, especially extreme waves, contain tremendous
energy and can greatly impact coastal and offshore industries and
marine ecosystems (Hoeke et al., 2013; Toimil et al., 2020). They
are also one of the dominant contributors to coastal erosion and
flooding (Casas-Prat and Wang, 2020; Melet et al., 2020) along
with sea-level rise, storm surge, and precipitation (Camus et al.,
2017). Extreme waves have also been a significant threat to human
life. For example, they are the deadliest marine hazard in China
and have caused ∼74% of the total casualties from major marine
hazards (including extreme waves, storm surges, tsunamis, and
sea ice) during 2000–2015 (Tao et al., 2018).

Under global warming, there have been emerging changes
in large-scale atmospheric circulations or climate modes. The
western North Pacific subtropical high will likely weaken and
retreat eastward in the mid-troposphere at the end of the twenty-
first century (He et al., 2015). There was a robust migration of
tropical cyclones coastward and poleward in 1982–2018 (Wang
and Toumi, 2021). Mei and Xie (2016) revealed that typhoons
that impact East and Southeast Asia have intensified by 12–15%
during 1977–2014 and indicated that the proportion of category
4 and 5 typhoons has doubled or tripled. All these changes have
potential implications for ocean waves or extreme wave events.

Previous studies have investigated the historical changes in
the mean or extreme wave conditions globally or regionally
(Reguero et al., 2019; Shi et al., 2019; Young and Ribal, 2019).
Based on satellite observations, Young and Ribal (2019) revealed
small increases in the significant wave height (SWH) and larger
increases in the 90th percentiles extreme wave conditions during
1985–2018, especially in the Southern Ocean. Shi et al. (2019)
found that the 99th percentile extreme waves increases in most
of the Chinese seas by 0.5–3 cm/year in 1979–2017.

However, knowledge of future projected changes in ocean
wave climate is limited relative to knowledge of sea surface
temperatures or sea levels. This is because most global climate
models (GCMs) from the Climate Model Intercomparison
Project (CMIP) do not have ocean wave components, with
some exceptions, such as FIO-ESM v2.0 (Song et al., 2020).
Useful projections of mean and extreme wave climate need to be
conducted through dynamical or statistical downscaling (Wang
and Swail, 2001, 2006; Mori et al., 2010). Since the launch
of the Coordinated Ocean Wave Climate Project (henceforth
COWCLIP, Hemer et al., 2012), projected change studies of the
ocean wave climate have advanced both regionally and globally
(Hemer et al., 2013a; Casas-Prat et al., 2018; Lobeto et al.,
2021; O’Grady et al., 2021). From the first community-derived
multi-model ensemble of wave-climate projections, Hemer et al.
(2013a) revealed the projected changes of SWH, mean wave
period (MWP), and mean wave direction (MWD) and found
a projected increase in annual mean SWH over 7.1% of the
global ocean, predominantly in the Southern Ocean. Based on
statistical projections of wave height from sea-level pressure of
20 CMIP5 GCMs, Wang et al. (2014) found increases of SWH
in the tropics and high latitudes in the Southern Hemisphere.
The occurrence frequency of the present-day 10-year return
extreme wave heights are likely to double or triple in several

coastal areas worldwide at end of the twenty-first century under
the RCP 8.5 scenario. Morim et al. (2018) conducted a system
review on global and regional wind-wave climate projection
and established consistent patterns of projected changes in
wind-wave climate globally under the global warming. Morim
et al. (2019) concluded that approximately 50% of the world’s
coastline is at risk due to wave climate change, and current
wave projection uncertainties are dominated by model-driven
uncertainty, encouraging the application of multi-modeling
methods on wave climate projections. By using ensembles of
global wave model runs driven by 8 CMIP5 GCMs, Meucci et al.
(2020) revealed that the intensity of a 100-year return level of the
SWH increases by 5–15% in the Southern Ocean by the end of
the twenty-first century relative to the 1979–2005 period.

GCMs generally have a coarse resolution, which is not feasible
in capturing local or regional wind systems. Li et al. (2016)
found that the high-resolution regional climate model (RCM)
hindcast can add value in capturing strong wind speeds in the
coastal areas of the Bohai Sea and Yellow Sea. Timmermans et al.
(2017) revealed that wave modeling driven by high-resolution
winds features improvement in capturing extreme waves relative
to coarse-resolution winds. In contrast, Chowdhury and Behera
(2019) revealed that the wave modeling driven by high-resolution
RCMs does not add value to those driven by coarse-resolution
GCMs in the Indian Ocean, indicating that the added value of
RCMs strongly depends on the regions considered (e.g., Di Luca
et al., 2012). The high-resolution wind-driven wave projections
have been performed over areas such as the European coast
(Laugel et al., 2014; Bricheno and Wolf, 2018; Bonaduce et al.,
2019), the southeastern coast of Australia (Hemer et al., 2013b),
and the Gulf of St. Lawrence (Wang et al., 2018), however, it is
not yet available for the Chinese marginal seas by now.

Wave modeling inevitably demonstrates bias relative to
observations, which is a combination of inherited systematic
bias from wind forcings and bias generated from wave modeling
processes due to inadequate model physics, numerical solution
schemes, or unrealistic topography. Different bias-adjustment
methods (BAMs), such as the delta method and empirical or
parametric quantile mapping method, have been applied in
several wave climate studies (Charles et al., 2012; Parker and Hill,
2017; Lemos et al., 2020a,b; Meucci et al., 2020). However, the
performances among BAMs show some differences. Lemos et al.
(2020a) demonstrated that a quantile-based bias adjustment is
better than the delta method in correcting biases in extremes.
Parker and Hill (2017) revealed that bivariate BAMs can greatly
improve intervariable correlations by comparing them with
univariate BAMs. However, wave variables (wave height, wave
direction, wave period, etc.) are highly correlated with each other.
Multivariate bias adjustment is required to apply on the raw wave
outputs, to correct biases in both individual wave variables and
multivariate dependence structures.

For the first time, high-resolution regional wave climate
projections in the Bohai Sea, Yellow Sea, and East China
Sea (hereafter BYE) driven by high-resolution RCM winds are
performed. The present study aims to investigate the future
projected changes in the annual and seasonal mean and extreme
waves in this area during the middle of the twenty-first century
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(2021–2050) and the end of the twenty-first century (2071–2100)
under the RCP2.6 and RCP8.5 scenarios. A multivariate bias-
adjustment method (MBAn, Cannon, 2018) is applied to correct
multivariate biases.

This paper is organized as follows. Section “Methodology
and Datasets” describes the model and datasets. The results
are given in section “Results”, including the wave hindcast
evaluation and projected change analyses in the mean and
extreme wave conditions. The manuscript ends with conclusions
and a discussion (section “Conclusion and Discussion”).

METHODOLOGY AND DATASETS

Wave Dynamical Downscaling
In this study, the third-generation WAM cycle 4.7 was used to
investigate the impact of climate change on the wave conditions
in the BYE area. It maintains the basic physics and numeric of
the WAM model used in Li et al. (2021) and is run in a shallow-
water mode, with depth refraction considered. The wave model
is configured to use 24 directions and 25 frequencies ranging
from 0.04118 to 0.41145 Hz. It is implemented on two nested
domains: the northwestern Pacific Ocean (NWP) with a spatial
resolution of 0.5◦ and the BYE area with a spatial resolution
of 0.1◦ (Figure 1). Full-wave spectra produced by the larger
domain simulations are provided to the smaller domain at the
open boundaries with an hourly frequency. The topographic data
are obtained from the General Bathymetric Chart of the Oceans
1-min grid.1

We conducted wave hindcast simulations over the NWP and
BYE forced by ERA5 wind speed (0.25◦, Hersbach et al., 2020)
during 1979–2019 to validate the model’s ability to capture the
wave climate features in the BYE (thereafter ERA5 driven wave
hindcast). ERA5 winds have proved to be robust in forcing
wave conditions in the study domain (Li et al., 2020). To
study the impact of climate change on wave climate, nested
WAM simulations are forced by 3-hourly wind outputs (0.22◦)
from the CCLM-MPIESM RCM simulations (Kim et al., 2020)
for the historical climate period (1979–2005) and two future
periods (2021–2050 and 2071–2100) under the RCP2.6 and
RCP8.5 emission scenarios. The above wind forcings are spatially
interpolated to 0.5◦ and 0.1◦ resolutions for the NWP and BYE
simulations, respectively, and kept constant in time throughout
3-h during wave integration. CCLM-MPIESM regional climate
simulations were performed by Pohang University of Science
and Technology from the CORDEX-East Asia II framework
(Kim et al., 2020) by using the RCM CCLM downscaled from
the global climate model MPIESM-LR (Giorgetta et al., 2013).
To reduce potential biases on larger-scale circulation patterns,
spectral nudging was employed to zonal and meridional winds
above the 850 hPa level based on the sensitivity experiment results
(Lee et al., 2016). CCLM experimental details are summarized on
the CORDEX-East Asia website.2

1https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_
one_minute_grid/
2http://cordex-ea.climate.go.kr/cordex/

Bias Adjustment of Wave Fields
A multivariate bias-adjustment method based on the
N-dimensional probability density function transform (MBAn,
Cannon, 2018) has been applied to multiple wave variables,
including the SWH, MWP, and MWD. As wave direction
is a cyclic variable, it was partitioned into two orthogonal
components (sinMWD and cosMWD) before the application of
bias-adjustment. MBAn can correct the biases of the marginal
distribution of individual wave variables and multivariate
dependence structure. Three steps are involved in the usage of
MBAn for bias adjustment of historical and future projected
wave variables: (1) applying a uniformly distributed random
orthogonal rotation to the simulated and observed data; (2)
correcting the marginal distributions of each variable of the
rotated simulated data by using the quantile delta mapping
method; and (3) applying inverse rotation to the correct
data. These steps are repeated until the modeled multivariate
distribution has converged to the observed distribution. More
details can be found in Cannon (2018).

Buoy and Satellite Observations
To validate the skills of the wave model in capturing historical
wave climate features in the BYE, in-situ observations from five
buoy stations (Figure 1) were obtained from the Marine Science
Data Center of the Chinese Academy of Sciences for the period
approximately from 2010 to 2019. The observed wave variables
include SWH, wave direction, and MWP. Furthermore, a daily
merged multi-mission along-track L3 satellite product from the
Sea State Climate Change Initiative (CCI) dataset v1 (Dodet et al.,
2020) is also used as a reference for comparison from 1991 to
2018. The Sea State CCI L3 product retains only valid and good-
quality measurements from 10 altimeters (ERS-1, ERS-2, TOPEX,
Envisat, GFO, CryoSat-2, Jason-1, Jason-2, Jason-3, and SARAL).
The satellite measurements nearest to the WAM model grid
points and within 1 h from the simulated full hour were assigned
as observations for the specific model grid. All simultaneous pairs
between satellite observations and model grid points were used to
evaluate the models’ skills in capturing wave conditions.

The statistical metrics used for the comparison between
simulated data and observations are the bias, scatter
index (SI), correlation coefficient (CORR), and root mean
square error (RMSE).

Calculation of the Intra-Annual and
Inter-Annual Variability
We used the robust coefficient of variation (RCoV) to quantify
the inter-annual and intra-annual variability in the SWH. RCoV
is defined as the median absolute deviation (MAD) divided by the
median (Gunturu and Schlosser, 2012):

RCoV =
MAD
Median

=
Median[

∣∣SWHi −median (SWHi)
∣∣]

median (SWHi)

where SWHi is the bias-adjusted time-series of the SWH.
To compute the intra-annual variability of SWH, we

performed the following processes: (1) calculate the monthly
mean SWH at each grid point, (2) calculate the median of
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FIGURE 1 | Topography (in meters) of the modeling areas: the outermost square indicates the domain for the WAM simulations over the northwestern Pacific region
(resolution: 0.5◦), and the red square indicates the region for the fine-resolution (0.1◦) WAM simulations. Red points and numbers indicate the locations and station
numbers of buoy observations, respectively. The abbreviations BS, YS, ECS, and NWP represent the Bohai Sea, the Yellow Sea, the East China Sea, and the
northwest Pacific Ocean, respectively.

monthly SWH and MAD data series for each year, (3) divide
the annual MAD with the corresponding annual median SWH to
obtain annual RCoV, and (4) calculate the median of the annual
RCoV, producing an estimation of the intra-annual variability
of SWH. For the calculation of inter-annual variability of SWH,
the annual mean SWH was calculated first and the RCoV was
calculated based on the annual mean time series.

RESULTS

Evaluation of the ERA5-Driven Wave
Hindcast and Bias-Adjusted Historical
Simulation
We compared the SWH of the ERA5-driven wave hindcast with
the Sea State CCI dataset between 1991 and 2018 (Figure 2).
The results show that the wave hindcast is in good agreement
with the observed SWH, with a bias of -0.104 m, correlation
coefficient of 0.858, root mean square error of 0.5 m and scatter
index of 0.338. Furthermore, we also assessed the wave hindcast
annually from 1991 to 2018, with the Sea State CCI dataset as
a reference (Supplementary Table 1). The statistical metrics are
similar among different years in terms of bias, RMSE, and CORR
except in 1991, when there are only 204 pairs. It is found that
the simulated data tend to overestimate satellite observations for
SWH larger than 6 m, which may be due to the underestimation
of extreme wave heights by altimeter data in the coastal area
(Dodet et al., 2020) or the limited skills of ERA5-driven wave
hindcast in capturing very extreme wave heights.

In addition, we compared the wave hindcast with 5 buoy
observations in terms of SWH, MWP, and MWD. The
comparisons between observed and simulated SWH in Table 1
show that the biases are mostly within 0.12 m, the CORR values
are higher than 0.8, the RMSE is mostly less than 0.4 m, and
the normalized standard deviation is larger than 0.86, indicating
that the performance of the WAM hindcast is consistent when
using different observation datasets as references. Furthermore,
the extreme SWH values (i.e., 90th and 99th percentile SWH,
hereafter the SWH_90p and SWH_99p, respectively) are also well
captured by the WAM hindcast.

Table 2 shows that the WAM hindcast generally overestimates
the MWP by values less than 0.46 s and overestimates the
temporal variability with nsd larger than 1. However, the CORR
values are smaller than those for the SWH in Table 1. Regarding
the MWD, the biases are within ± 30◦, except for station
S07, where the bias of the simulated MWD is 58.51◦. The
large bias of MWD at station S07 is possible because the wind
forcing or the wave modeling is still too coarse to resolve the
coastal wind inhomogeneity or complex bathymetric refraction.
Nevertheless, the wave hindcast forced by ERA5 is generally
realistic in capturing wave statistics, with both satellite and buoy
observations as references.

To assess the skills of MBAn in correcting the biases of
multiple variables from raw WAM historical simulation, we
compared the climatological biases between the raw WAM
simulation and bias-adjusted WAM simulation output for
the SWH, SWH_99p, MWP, and MWD (Figure 3). The
WAM hindcast driven by the ERA5 wind reanalysis dataset
is used as a reference. Figure 3 shows that the raw WAM
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FIGURE 2 | Comparison between the ERA5-driven wave hindcast (y-axis) and satellite data (x-axis) during 1991–2018 in the BYE area: scatter plots (dots), qq plots
(black dashed dots), linear regression line (red line), equal value line (blue line) and several statistical measures [valid numbers of entries, mean values of satellite
(Mean R) and model (Mean M), standard deviation of satellite (Std R) and model (Std M), root-mean-square error (RMSE), Scatter Index (SI), Mean Bias, and
correlation coefficient (CORR)]. The color of scatter plots indicates the count of points within a determined square area centered at each data point.

TABLE 1 | Comparison between the ERA5-driven wave hindcast and buoy observations for the SWH.

num Mobs (m) Mwam (m) bias (m) corr rmse (m) nsd o_p90 (m) m_p90 (m) o_99p (m) m_99p (m)

S02 11,939 0.76 0.64 –0.12 0.85 0.28 0.86 1.4 1.2 2.2 1.88

S06 26,598 1.26 1.33 0.07 0.91 0.33 0.99 2.2 2.24 3.9 4.06

S07 21,157 0.51 0.56 0.05 0.8 0.25 0.92 1 1.01 2.1 1.75

S11 15,405 0.96 1.13 0.17 0.83 0.4 0.96 1.8 1.87 3.2 3.22

S15 7,679 1.52 1.49 –0.03 0.91 0.41 0.96 2.8 2.63 4.9 5.01

Here Mobs and Mwam represent the observed and modeled mean SWH, respectively. The nsd is normalized standard deviation, which normalizes simulated standard
deviation by the observed standard deviation. The letters o and m indicate observations and modeling, respectively.

simulation generally overestimates the SWH, SWH_99p, and
MWP. There are both positive and negative biases for the
raw simulated MWD. As expected, the multivariate bias-
adjustment method can greatly reduce the climatological
biases of raw simulation, showing negligible biases relative to
the WAM hindcast.

Historical Wave Climate and Projected
Changes in the Climatology and
Variability of the Wave Climate
The projected changes in the mean and extreme wave climate
have been assessed based on bias-adjusted wave datasets under
present-day climate (1979–2005) and future projections (2021–
2050 and 2071–2100). In addition, a Mann-Whitney U-test
(Kruskal and Wallis, 1952), a non-parametric test, was used
to determine whether the differences in the mean wave

conditions between future projections and present-day climate
are statistically significant.

The results show an increase in the climatological annual
and seasonal mean SWH from the northwest to southeast in
the study domain (Figure 4). Large mean SWHs over 1.6 m
are pronounced in the southeastern BYE in autumn and winter.
The annual and seasonal mean SWH are generally projected
to decrease (-0.15 to -0.01 m) during 2021–2050 and 2071–
2100 under the RCP2.6 and RCP8.5 scenarios, with statistical
significance at a 0.1 level for most BYE in spring and for most of
the Bohai Sea and Yellow Sea in annual and winter/autumn mean.
The exceptions are autumn season during 2021–2050 under
both scenarios (Figures 4e2,e4), featuring significant increasing
changes (0.05–0.15 m) in the East China Sea.

We also observe that the decreases in annual or seasonal
mean (except for summer) SWH are more pronounced at the
end of the twenty-first century under the RCP8.5 scenario
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TABLE 2 | The same as Table 1 but for the MWP.

num Mobs(s) Mwam (s) bias (s) corr rmse (s) nsd BiasMWD (◦)

S02 11,939 4.17 4.62 0.45 0.57 1.2 1.34 23.46

S06 26,598 5.85 6.09 0.24 0.57 1.3 1.05 –28.22

S07 21,157 5.06 5.33 0.27 0.55 1.42 1.32 58.51

S11 15,405 5.76 5.73 –0.03 0.68 0.99 1.32 –26.87

S15 7,679 5.96 6.42 0.46 0.63 1.41 1.24 –11.3

BiasMWD indicates the difference between simulated and observed MWD.

compared with the other counterparts. Furthermore, the spatial
patterns of projected changes in the annual mean and seasonal
mean SWH resemble those of projected changes in the surface
wind speed (Supplementary Figure 1), which indicates that the
SWH changes in the BYE are highly related to the changes in
the local surface wind speeds. The spatially mixed pattern of
projected changes in SWH, especially in the Bohai Sea and Yellow
Sea in spring (Figures 4c2,c5) and in summer (Figures 4d2–
d5), is also possibly related to the rotation of wind directions
(Supplementary Figure 1), the impact of which is rather strong

in the marginal seas (Hemer et al., 2010; Kudryavtseva and
Soomere, 2017).

Figure 5 shows that the climatological annual and seasonal
MWPs also increase from the northwest to the southeast. MWP
larger than 6 s is mainly in the southeastern BYE, featuring
larger areas in summer and autumn. There are distinct features
of projected changes in seasonal MWP. The results indicate a
significant decrease in the MWP in spring over almost the entire
study domain for both periods and both scenarios, especially for
the East China Sea at the end of the twenty-first century under
RCP8.5 (Figure 5c5). Projected increases are pronounced in large
parts of the Yellow Sea and East China Sea in summer at the
end of the twenty-first century under RCP2.6 and the middle and
end of the twenty-first century under RCP8.5 (Figures 5d3–d5);
however, the changes are not significant at 0.1 level.

Figure 6 shows that there is generally low inter-annual
variability, with RCoV in the range of 0.03–0.05, while there
is stronger intra-annual variability, with RCoV mostly from 0.1
to 0.25. It is noticed that we find that the strong intra-annual
variability and low inter-annual variability is a common feature
for the global ocean especially in the North Pacific Ocean, North
Atlantic Ocean, and some marginal seas, with the exception of

FIGURE 3 | The differences between the raw WAM historical simulation and ERA5-driven wave hindcast for the climatological means of the (a) significant wave
height (SWH, m) and the (c) annual 99th percentile of the SWH (SWH_99p, m), (e) mean wave period (MWP, s), and (g) mean wave direction (MWD, ◦); (b,d,f,h) the
same as (a,c,e,g) but for bias-adjusted results.
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FIGURE 4 | Annual and seasonal historical (1979–2005) climatological mean SWH (m) and the projected changes for RCP2.6 and RCP8.5 in different periods:
2021–2050 and 2071–2100. Stippling indicates areas where the projected changes are significant at a 0.1 level.

the polar ocean areas (Supplementary Figure 2), where the inter-
annual variability is much larger than intra-annual variability.

The projected changes in both inter- and intra-annual
variability are more pronounced at the end of the twenty-first
century than those in the middle of the twenty-first century.
In particular, there was a more than 40% increase in inter-
annual variability in the southern East China Sea at the end of
the twenty-first century under the RCP2.6 scenario (Figure 6g)
and a more than 30% decrease in inter-annual variability in the
southern Yellow Sea and northern ECS at the end of the twenty-
first century under RCP8.5 scenario (Figure 6h). Furthermore, a

large increase (more than 30%) in intra-annual variability along
the southeastern coasts of China and around Jeju Island at the
end of the twenty-first century for both scenarios is observed
(Figures 6i,j).

The spatial patterns of projected changes in the inter-
annual variability of SWH resemble those of projected
changes in the surface wind speed to some extent, with
spatial correlations in the range of 0.36–0.67 (Supplementary
Figure 3), indicating that the inter-annual variability of
SWH is partially determined by the changes in the local
surface wind speeds. However, it is not the case for projected
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FIGURE 5 | The same as in Figure 4 but for the annual or seasonal MWP (s). Stippling indicates areas where the projected changes are significant at a 0.1 level.

changes of intra-annual variability, which features a very low
spatial relationship between SWH and surface wind speed
(Supplementary Figure 3). Therefore, some other factors
such as the migration of cyclone paths or the swell variability
generated by a remote wind possibly govern the projected
changes in inter-annual and intra-annual variability, which
deserves further in-depth study.

The Projected Changes in the Annual
and Seasonal Extreme Wave Climate
The annual or seasonal SWH_99p shows an increase from the
northwest to southeast in the study domain (Figure 7). SWH_99p

over 5 m is mainly observed in the East China Sea for summer
and autumn (Figures 7d1,e1), which are supposed to be caused
by tropical cyclones. The annual and seasonal SWH_99p features
stronger projected changes than those in the climatological mean
SWH. The annual SWH_99p are projected to increase in the East
China Sea in the middle of the twenty-first century under the
RCP8.5 scenario (Figure 7a4), which are mainly caused by the
projected increase in summer and autumn, with a more than
0.5 m intensification in the East China Sea (Figures 7d4,e4).
For the summer season in 2071–2100 under both scenarios,
SWH_99p shows a projected increase larger than 0.2 m, however,
they mostly fail to pass the significance test at 0.1 level. The
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FIGURE 6 | Robust coefficient of variation (RCoV) to quantify (a) inter-annual variability and (b) intra-annual variability of the SWH for 1979–2005. Projected changes
(%) in inter-annual (left two panels) and intra-annual (right two panels) variability between the bias-adjusted future projections (middle: 2021–2050; lower: 2071–2100)
and bias-adjusted historical runs. (c,e,g,i) Are for RCP2.6, and (d,f,h,j) are for RCP8.5.

projected decreases larger than 0.2 m are mainly in the Yellow
Sea in autumn for both periods and both scenarios (Figures 7e2–
e5). The BYE shows a significant projected decrease in the
SWH_99p in spring at the end of the twenty-first century under
the RCP8.5 scenario (Figure 7c5) in the range of -0.5 to -0.05
m. For winter, we find a projected increase in the SWH_99p
of 0.2–0.5 m in the East China Sea for the middle of the
twenty-first century under the RCP2.6 scenario (Figures 7b2–
b5). Generally, the projected changes in the SWH_99p feature
strong seasonal variability.

The predominance of wave types can be determined by the
wave age parameter. The sea state is dominated by wind sea if
the wave age A = Cp/U10 = gTp/2πU10 < 1.2 and dominated
by swell if A>1.2 (e.g., Smith et al., 1992), where Cp is the wave
peak phase speed, U10 is the 10-m wind speed, and Tp is the
wave peak period. Supplementary Figure 4 shows the historical
simulated and future projected occurrence frequency of swells.
The annual and seasonal distribution patterns of occurrence
frequencies of swell-dominant waves are similar between the
historical simulation and future projections, featuring swell
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FIGURE 7 | The same as in Figure 4 but for the annual or seasonal SWH_99p (m). Stippling indicates areas where the projected changes are significant at a 0.1
level.

prevalence increases from the Bohai Sea to the East China Sea.
Annually, the percentage increases from 30% in the Bohai Sea
to more than 80% in the southeastern East China Sea. Swell-
dominant waves occur the most frequently in summer and the
least frequently in winter, with frequencies larger than 70% for
nearly all the Yellow Sea and East China Sea for the former and
less than 50% for the Bohai Sea and Yellow Sea for the latter.
Except for summer, the Bohai Sea features wind-sea dominant
wave fields for the other three seasons.

Figure 8 shows that the 99th percentile (99p) wind-sea-
dominated sea-state are larger than 3 m for most of the study

domain and can be more than 5 m in the southeastern part of
the East China Sea in the present-day climate (Figures 8d1,e1),
which is supposed to be caused by the impacts of tropical
cyclones. Projected increases in winter and summer for 99p
wind-sea-dominated sea-state are found for large parts of the
study domain for both future periods under the RCP2.6 and
RCP8.5 scenarios. In particular, 99p wind-sea-dominated sea-
state is projected to increase significantly by more than 0.5 m
in summer (Figures 8d3–d5) and to decrease by more than 0.5
m in autumn in the Yellow Sea or parts of the East China Sea
(Figures 8e2–e5).
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FIGURE 8 | The same as in Figure 4 but for the annual or seasonal 99th percentile wind-sea dominant wave fields (m). The numbers labeled represent spatial
corrections between the 99th percentile wind-sea-dominated sea-state and those of the 99th percentile total waves in Figure 7. Stippling indicates areas where the
projected changes are significant at a 0.1 level.

In contrast, we can see that the annual or seasonal 99p swell-
dominated sea-state are much smaller than those of extreme
wind-sea-dominated sea-state, with the former being larger than
1.5 m for most of the study domain (Figure 9). The projected
changes in the 99p swell-dominated sea-state are also not as
pronounced as those in the 99p wind-sea-dominated sea-state
(Figure 8). Furthermore, we find projected increases of more
than 0.3 m for 99p swell-dominated sea-state in the southern
Yellow Sea or the East China Sea in summer and autumn during
2021–2050 under the RCP8.5 scenario, contributing to the total

increases (Figure 7). On the other hand, slight decreases in 99p
swell-dominated sea-state by 0.05–0.2 m are distributed mainly in
the BYE domain for spring except for the one during 2021–2050
under the RCP2.6 scenario (Figure 9c2).

Notably, we find that the projected changes in the near future
(2021–2050) are generally more pronounced than changes in
the far future (2071–2100) under RCP8.5 scenario for annual,
summer and autumn SWH_99p (Figure 7), for annual and
summer 99p wind-sea-dominated sea-state (Figure 8), and for
annual, summer and autumn 99p swell-dominated sea-state
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FIGURE 9 | The same as in Figure 4 but for the annual or seasonal 99th percentile swell dominant wave fields (m). The numbers labeled represent spatial
corrections between the 99th percentile wind-sea-dominated sea-state and those of the 99th percentile total waves in Figure 7. Stippling indicates areas where the
projected changes are significant at a 0.1 level.

(Figure 9). The results are possibly due to the impact of natural
variability instead of anthropogenic climate change.

In addition, we calculated the spatial corrections between the
99th percentile wind-sea (swell)-dominated sea-state and those of
the 99th percentile total waves, to reveal their spatial consistency.
The spatial corrections added in Figures 8, 9 show that there are
generally higher correlations between projected changes of 99p
total sea-state (Figure 7) and projected changes of 99p wind-sea-
dominated sea-state (Figure 8). This implies that the local wind-
generated sea state mainly causes the projected changes in 99p

extreme waves. This conclusion is further confirmed by the fact
that the projected change patterns of the SWH_99p in Figure 7
greatly resemble those of the 99th percentile surface wind speeds
in the BYE (Supplementary Figure 5).

CONCLUSION AND DISCUSSION

For the first time, we investigate the future changes in the
mean and extreme wave climate in the Bohai Sea, Yellow Sea,
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and East China Sea. Previous studies have revealed that high-
resolution dynamical downscaling can add value to coarse-
resolution reanalysis or GCMs in capturing the intensity of
strong winds in coastal areas, as well as tropical cyclones (Li
et al., 2016; Li, 2017); therefore, we used regional downscaled
winds (resolution 0.22◦) to force high-resolution WAM wave
model simulations in the study domain for the present-day
climate (1979–2005) and future climate (2021–2050, 2071–2100)
under the RCP2.6 and RCP8.5 scenarios. The WAM simulations
feature a resolution of 0.1◦, which is the highest-resolution wave
climate projection dataset available for the study domain. We
applied a multivariate bias-adjustment method based on the
N-dimensional probability density function transform (MBAn)
to correct biases in the raw simulated SWH, MWP, and MWD.
The projected changes in the mean and extreme wave climate
in the middle (2021–2050) and end of the (2071–2100) twenty-
first century were evaluated, with the present-day wave climate
during 1979–2005 serving as a reference. The main conclusions
are summarized as follows:

(1) The WAM hindcast with 0.1-degree resolution driven
by ERA5 winds shows robust skills in capturing wave statistics
compared with the buoy and satellite observations. The MBAn
method proves to be skillful in reducing substantial biases of
the historical WAM simulation in the climatological mean SWH,
MWP, MWD, and 99p extreme wave heights.

(2) The annual and seasonal mean SWH are generally
projected to decrease (-0.15 to -0.01 m) for the 2021–2050 and
2071–2100 periods under the RCP2.6 and RCP8.5 scenarios,
with statistical significance at a 0.1 level for most BYE in spring
and for most of the Bohai Sea and Yellow Sea in annual and
winter/autumn mean. A significant decrease in MWP in spring
for both periods under both scenarios is found. The projected
changes in inter-annual and intra-annual variabilities are more
pronounced at the end of the twenty-first century than those in
the mid- twenty-first century.

(3) The annual, and winter/summer 99th percentile SWHs are
projected to increase for large parts of the study domain, and the
autumn 99th percentile SWH are projected to decrease for the
Yellow Sea, with the former mostly failing to pass the significance
test. Results imply that the projected changes in the mean and
99th percentile extreme waves are very likely related to the
projected changes in local mean and extreme surface wind speeds.

The significant contribution of this study is that we, for the
first time, revealed the projected changes of mean and extreme
waves, with a focus on the Chinese marginal seas. This is
also the first study to apply the multivariate bias-adjustment
method on the simulated wave variables. The high-resolution
wave projection data produced in this study can provide support
for a comprehensive assessment of marine energy resource under
climate change (e.g., Lira-Loarca et al., 2021). They can also be
used for estimating wave induced loads for appropriate design,
construction, and operations of offshore and coastal structures
(e.g., Kumar et al., 2018). Furthermore, extreme waves can
cause extensive modification of the shoreline environment and
landforms, and threaten human life (Hansom et al., 2015).
Hence, integrating multivariate extreme wave conditions into
comprehensive assessments of coastal hazards and vulnerability

is paramount to effective coastal climate adaptation planning
(Morim et al., 2020).

Based on reconstructed SWH over the Chinese marginal seas
by using a multivariate regression model and the twentieth-
century reanalysis ensemble of the mean sea level pressure, Wu
et al. (2014) revealed that the annual and seasonal SWH trends
during 1911–2010 are dominantly negative over the Chinese
marginal seas, and the summer maximum SWHs seem to have
increased in the East China Sea. Our study implies that these
trends are likely to continue in the future.

Being consistent with Fan et al. (2014), both the historical and
future projected wave fields are dominated by the swell wave.
However, the high spatial correlation of projected changes in
mean or extremes between wind and wave fields in our study
indicated that the projected changes in the mean and extreme
waves are mainly related to the projected changes in local surface
wind speeds in the Bohai Sea, Yellow Sea and East China Sea,
annually and seasonally. The conclusion is partially consistent
with Fan et al. (2014), who showed a more pronounced increase
in the wind-sea energy than swell energy in July to December at
the end of the twenty-first century in our study domain. While for
the other global oceans, whether the changes in total waves being
determined by swell or by wind-sea are regionally dependent
(Fan et al., 2014).

The projected changes of mean, especially the extremes wave
heights, for large parts of our study domain, do not pass the
significance test at 0.1 level, implying that these changes may
be related to sampling uncertainty. Nevertheless, we find strong
consensus between our study and many other global-scale studies
regarding the projected decrease and its intensity for the annual
mean and winter mean SWH in the study domain. The projected
decrease of annual mean or winter significant mean wave heights
are generally less than -0.1 m or -10% in the middle and end of
the twenty-first century under different scenarios including A1B
(Mori et al., 2010; Semedo et al., 2013; Shimura et al., 2016), A2
(Hemer et al., 2013c), RCP4.5 and RCP8.5 (Wang et al., 2014;
Shimura et al., 2016; Lemos et al., 2019; Morim et al., 2019),
based on either single-GCM forcing (e.g., Mori et al., 2010) or
ensemble-GCM forcing wave simulations (e.g., Shimura et al.,
2016), The consensus proves the robustness of projected decrease
of annual mean or winter significant mean.

However, the projected changes in summer mean SWH as
well as extreme wave heights, lack consensus among studies in
this area. Semedo et al. (2013) showed decreasing changes in
summer mean SWH under A1B emission scenario, while Wang
et al. (2014) revealed increases for projected summer mean SWH
and summer maximum wave heights at the end of the twenty-
first century under RCP8.5 scenario, and Morim et al. (2019)
showed an increase in summer mean SWH and a decrease in
annual 99th percentile wave heights under RCP4.5 and RCP8.5
scenario. Similarly, their projected changes in summer mean
or extreme wave heights in the study domain generally do not
pass the significance test. The dissimilarity of projected changes
in summer mean SWH and extreme wave heights is supposed
to stem from different sources including internal variability,
GCMs or RCMs wind forcing, wind-wave modeling method, and
scenario uncertainty (Deser et al., 2012; Morim et al., 2019).
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The note is that this study only adopts a single wind
forcing for each future period and scenario and does not
consider the complete uncertainty sources. This is because of
the limited availability of high-resolution wind forcings during
the conduction of the wave simulations. With the release of
more high-resolution RCM datasets through the Coordinated
Regional Climate Downscaling Experiment (Sørland et al., 2021),
ensemble of high-resolution wave projections are in demand for
the Chinese marginal seas. Furthermore, it is also interesting
to investigate the capacity of these high-resolution RCMs in
simulating tropical cyclones and in driving cyclone-related
extreme waves. The projected changes of cyclones and cyclone-
related extreme waves and their uncertainties, are worthy of
further efforts.
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The Arabian Gulf comprises one of the world’s most unique and fragile marine

ecosystems; it is susceptible to the adverse effects of climate change due to its

shallow depth and its location within an arid region that witnesses frequent severe

atmospheric events. To reproduce these effects in numerical models, it is important to

obtain a better understanding of the region’s sea surface temperature (SST) variability

patterns, as SST is a major driver of circulation in shallow environments. To this end,

here, empirical orthogonal function (EOF) decomposition analysis was conducted to

investigate interannual to multi-decadal SST variability in the Gulf from 1982 to 2020,

using daily Level 4 Group for High Resolution SST (GHRSST) data. In this way, three

dominant EOF modes were identified to contribute the Gulf’s SST variability. Significant

spatial and temporal correlations were found suggesting that throughout the 39-year

study period, SST variability could be attributed to atmospheric changes driven by the

El Nio-Southern Oscillation (ENSO), Atlantic Multi-decadal Oscillation (AMO), and Indian

Ocean Dipole (IOD) climate modes. Spatial and temporal analyses of the dataset revealed

that the average SST was 26.7◦C, and that the warming rate from 1982 to 2020 reached

up to 0.59◦C/decade. A detailed examination of SST changes associated with heat

exchange at the air-sea interface was conducted using surface heat fluxes from fifth

generation (ERA5) European Centre for Medium-Range Weather Forecasts (ECMWF).

Despite the SST warming trend, the accumulation of heat during the study period is

suggesting that there was an overall loss of heat (cooling). This cooling reverted into

heating in 2003 and has since been increasing.

Keywords: sea surface temperature, climate indices, climate change, Arabian Gulf, Persian Gulf

1. INTRODUCTION

Owing to its strategic location and its susceptibility to extremely high temperatures and salinities
(Johns et al., 2003; Khan et al., 2021), the ArabianGulf (hereafter Gulf) is one of themost important,
yet fragile, marine ecosystems on Earth. This important region may be susceptible to the adverse
effects of climate change. Unfortunately, increasing water temperatures driven by global warming,
as well as contaminants (oil spills, waste waters, and industrial waste) (Uddin et al., 2021; Stöfen-
OBrien et al., 2022), have severely affected and degraded the Gulf ’s marine ecosystems, such as its
sabkhas, mudflats, mangrove swamps, sea grasses, and coral reefs (Burt et al., 2011; Vaughan et al.,
2021). These ecosystems support various endangered marine species, such as dugongs and turtles
(Sale et al., 2010). Thus, understanding the driving forces of the Gulf ’s circulation mechanism is
critical to preserving these natural habitats. In relation to the preservation of climate balance in the
Gulf, coupled atmosphere-ocean dynamics play a major role in determining regional and global
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climate conditions. They are characterized bymultiple spatial and
temporal patterns that can be identified by analyzing trends in sea
surface temperature (SST) (Messié and Chavez, 2011). Despite
its importance, the coupled atmosphere-ocean dynamics within
the Gulf are poorly understood and only few studies exist in the
published literature, largely due to the paucity of oceanographic
and meteorological measurements. A study by Purkis and Riegl
(2005) investigated the effects of the Gulf ’s water temperatures
on coral assemblages, while relating SST anomalies to the El
Nio-Southern Oscillation (ENSO). Moradi and Kabiri (2015),
meanwhile, analyzed the spatio-temporal variability of SST and
chlorophyll-a in the Gulf for a 10-year period, finding no clear
SST modes. Another study by Noori et al. (2019), used the daily
Optimum Interpolation SST anomaly (OISSTA) generated by the
National Oceanic and Atmospheric Administration (NOAA) to
examine the Gulf spatio-temporal SST trends from 1982 to 2016
and link these to ENSO andNAO.Most other studies (Arun et al.,
2005; Nezlin et al., 2010; Almazroui, 2012; Huang et al., 2021)
have focused on the impacts of major climate modes (ENSO,
Indian Ocean Dipole [IOD], and North Atlantic Oscillation
[NAO]) on the Gulf ’s air temperature and precipitation. Provided
with these contexts, the Gulf ’s SST modes were analyzed and
their relationships to regional and global climate patterns were
explored in aim of improving understanding of interannual to
multi-decadal SST variability within the Gulf, and to determine
its relation tomajor climatemodes. Understanding these patterns
will refine the cognizance of current ocean dynamics and
predictive capabilities of ocean circulation models, consequently
aiding studies into the sustainability of ocean ecosystems globally.

The remainder of this manuscript is organized as follows.
Section 2 describes the study area. Section 3 describes the dataset
employed in this study and the analytical approach. Section 4
presents the Gulf ’s SST spatial and temporal variabilities between
the years 1982 and 2020. In addition, this section also presents
the identification and discussion of the three major SST modes
in the Gulf and relates them to the Atlantic Multi-decadal
Oscillation (AMO), ENSO, and IOD climate modes. A summary
and conclusions are then detailed in Section 5.

2. STUDY AREA

The Gulf ’s basin has an average depth of 36 m, with the
maximum depth (100 m) occurring near the Strait of Hormuz
(Figure 1). The Gulf is 990 km long and 338 km wide, with
an estimated surface area and volume of 239,000 km2 and
8,630 km3, respectively. Tectonic driven subsidence increased
the seafloor depths at the shelf break that connects the Strait
of Hormuz to the Gulf of Oman and Indian Ocean to become
200–300 m, while localized seafloor depressions generated 70–95
m troughs along the Iranian coastline. It is situated in the
subtropical high pressure belt region (25–30◦N), within which
the Earth’s harshest deserts are found (Al Senafi and Anis, 2015).
Descending dry air in this region creates arid desert conditions,
while the Gulf is exposed to extra-tropical weather systems from
the northwest. The most well-known weather phenomena in the
Gulf are Shamal wind events (Rao et al., 2001, 2003) and dust

storms (Kutiel and Furman, 2003). Shamal (“north” in Arabic)
designates strong (up to 20 m/s; Rao et al., 2003) northwesterly
winds that blow over the Gulf in summer (June to August;
associated with the relative strengths of the Indian and Arabian
thermal lows) and in winter (November to March; related to
synoptic weather systems to the northwest) (Aboobacker et al.,
2011). These meteorological phenomena occur at a rate of 10
events per year and substantially impact the natural environment
and human health. They also cause abrupt changes in the Gulf ’s
circulation, mixing intensities, heat-budget, and SST patterns (Al
Senafi and Anis, 2015; Li et al., 2020b) similar to the Mistral
winds that blow towards the Gulf of Lion in the Mediterranean
(Bosse et al., 2021), and the Bora wind events that blow towards
the Adriatic Sea (Ferrarin et al., 2019). In addition, SST changes
resulting from thesemeteorological events also likely play amajor
role in the formation and location of the Gulf Deep Water
(GDW). Driven by surface water cooling, GDW flows out of the
Gulf close to its bottom, before spilling out into the Indian Ocean
via the Strait of Hormuz. GDW is critical in regulating the Gulf ’s
salinity and flushing its contaminants (Swift and Bower, 2003;
Yao et al., 2014).

The arid regional meteorological conditions and shallow
depths described above produce large variations in sea
temperatures, which can range from 11◦C in winter to
38◦C in summer (Alosairi et al., 2020). Moreover, the excess
evaporation over precipitation and river discharge can cause
hyper-saline conditions, with salinities up to 70 PSU (Sheppard
et al., 2010). The long-term circulation in the Gulf is, as in
other semi-enclosed basins (e.g., Mediterranean and Red Sea),
is a combined product of wind stress, buoyancy (Al Senafi
and Anis, 2020b), freshwater runoff, tides (Al Senafi and Anis,
2020a; Li et al., 2020a), as well as the restricted exchange with
the open ocean that results in an inverse estuarine circulation
(Thoppil and Hogan, 2010a; Yao and Johns, 2010a,b). Thus,
better understanding the region’s interannual to multi-decadal
SST variability could better reveal the Gulf ’s surface and
deep circulations.

3. METHODOLOGY

The Gulf ’s daily SST was studied for the period of January
1982 to December 2020. The dataset employed in this study
was obtained using the Level 4 Group for High Resolution
Sea Surface Temperature (GHRSST) that is freely available
online through NASA’s Physical Oceanography Distributed
Active Archive Center (PO.DAAC) (https://podaac.jpl.nasa.gov).
This product interpolates and extrapolates SST observations
from various sources, creating a smoothly gridded database
that contains temporally and spatially homogeneous daily
SST images at a spatial resolution of 0.25◦ (Reynolds et al.,
2007; National Centers for Environmental Information,
2016). The GHRSST dataset has been assessed by Nesterov
et al. (2021) using in-situ measurements in the southern
Gulf. Results of this assessment found a good agreement
between both datasets with correlation coefficients exceeding
0.99. Furthermore, in-situ measurements at Qarooh Island,
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FIGURE 1 | Bathymetry map of the Gulf.

FIGURE 2 | (A) Daily SST observations (January-2013 to March 2014) from GHRSST (red) and Qarooh Island station, Kuwait (blue), (B) comparison of daily SSTs

from GHRSST and Qarooh Island observations. A linear fit to the data, using robust regression is represented by the solid red line. (C) Taylor diagram (Taylor, 2001)

summarizing results of comparison between GHRSST and Qarooh Island observations from SST.

Kuwait described in Al Senafi and Anis (2020b) were
used to evaluate the accuracy of the GHRSST dataset in
the northern Gulf (Figure 2A). Results of this evaluation
demonstrate that the GHRSST dataset is well correlated (r

= 0.99) with the observations and displayed a Mean Bias
Error (MBE) of 0.02◦C (Figures 2B,C) capturing seasonal
variability and the SST’s changes associated with various
meteorological events.
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FIGURE 3 | (A) SST average, (B) SST range, (C) SST maximum, (D) SST minimum, (E) SST trend, and (F) SST variance for 1982–2020; SST time series was

detrended and deseasoned prior to computing variance. SST: sea surface temperature.

FIGURE 4 | Scatter plot of correlation between detrended annual

Shatt-Al-Arab river discharge and detrended annual SST for 1982–2015. SST:

sea surface temperature.

Using the GHRSST dataset described above, a total number of
14,244 images were retained and organized in an M N matrix,
where M and N represent the spatial and temporal elements,

respectively. This dataset was used to describe the space (x) and
time (t) variability of SST in the Gulf, using statistical measures
(average, range, variance, trend, minimum, and maximum)
and the traditional Empirical Orthogonal Function (EOF)
decomposition. EOF analysis reconstructs a gridded time series
of the specified modes from eigenmode maps of variability and a
corresponding principal component (PC) time series. In an EOF
analysis, the temporally and spatially varying SST, T(x, t), can be
expressed in an orthogonal expansion of PCs in the form

T(x, t) =

N∑
n=1

Fn(x)an(t), (1)

where Fn(x) is the spatial loading (EOF) and an(t) is the temporal
varying functions (PC). Prior to EOF analysis, it was first
necessary to detrend the daily SST images temporally to remove
long term trends and emphasize temporal variance,

T′(x, t) = T(x, t)−
1

N

N∑
t=1

T(x, t), (2)

where T′(x,t) represent the residual SST anomalies. Alternatively,
the spatial trend was also removed,

T′(x, t) = T(x, t)−
1

M

M∑
t=1

T(x, t). (3)

After the dominant SST modes were defined based on spatio-
temporal characteristics, their correlations with major climate
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FIGURE 5 | (A) J0q average, (B) J0q minimum, (C) J0q maximum, and (D) J0q variance for 1982–2020; J0q time series was detrended and deseasoned prior to computing

variance.

modes, including AMO, ENSO, and IOD, were investigated.
This type of analysis has been widely adopted in studies with
unknown modes of variability and their associations with major
modes of climate variability globally (e.g., Fauchereau et al.,
2003 over the Atlantic and Indian Oceans, Carleton, 2003 over
the Southern Ocean, and Wu et al., 2020 over the Pacific
Ocean). Other climates modes were excluded from detailed
analysis as overall they exhibited insignificant correlations with
the Gulf ’s SST modes. These modes included Arctic Oscillation
(AO), North Atlantic Oscillation (NAO), and Pacific decadal
oscillation (PDO). Climate mode datasets were obtained from
the National Oceanic and Atmospheric Administration (NOAA)
Physical Sciences Laboratory website (https://www.psl.noaa.gov/
data/climateindices).

The thermal conservation equation was used to approximate
the contribution to SST changes associated with heat exchange at
the air-sea interface, as follows:

1T =
1

ρwhCp

∫
J0qdt, (4)

where T is temperature, ρw is the surface density (1024–1030
kg/m3) taken from Reynolds (1993), h is the surface mixed layer
depths (5–20 m) taken from Reynolds (1993), Cp is the specific
heat capacity constant of seawater, and J0q is the net heat flux.

J0q = Jswq + Jlwq + JLq + JSq , (5)

where Jswq is the net shortwave radiation, Jlwq is the net longwave

radiation, JLq is the latent heat flux, and JSq is the sensible heat

FIGURE 6 | Percentage SST changes associated with heat exchange at

air-sea interface. SST: sea surface temperature.

flux. The four heat flux components were obtained from the fifth
generation (ERA5; Hersbach et al., 2018) of the European Centre
for Medium-Range Weather Forecasts (ECMWF) atmospheric
reanalysis of global climate for the period of 1982 to 2020, at a
spatial resolution of 31 km. The ERA5 dataset is freely available
online through the Copernicus Climate Change Service (https://
climate.copernicus.eu).
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FIGURE 7 | (Top): Time series of yearly averaged SST anomalies for years 1982–2020; (Bottom map) yearly averaged SST anomaly Gulf maps. SST: sea surface

temperature.

FIGURE 8 | (Top): Time series of percentage of days within each year above 39-year period average for 1982–2020; (Bottom map) rate of warming per decade for

each day of year.
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FIGURE 9 | (Top): Time series of yearly averaged SST anomalies for 1982–2020; (Bottom map) yearly averaged SST anomaly Gulf maps. SST: sea surface

temperature.

In a detailed one year study conducted by Al Senafi et al.
(2019), ERA5 heat fluxes were validated and shown to be the
most suitable data for the Gulf, with an error of 4.5 W/m2

and a correlation of 0.9. Based on the thermal conservation
approximation, the percentage of change in SST that could be
explained by air-sea heat exchange was determined from the
overall observed SST changes; Al Senafi and Anis (2020b) used
a similar approach to study the Gulf ’s advection processes.

4. RESULTS AND DISCUSSION

4.1. SST Spatial Variability in the Gulf
(1982–2020)
The Gulf daily SST time series for the period of 1982 to 2020
revealed that the spatial period average was 26.7◦C (Figure 3A),
and that it displayed a latitudinal gradient of cooler temperatures
from south to north. The Gulf was shown to be warmer than
other semi-enclosed seas such as the Mediterranean Sea, which
has an annual average SST of 19.7◦C (Shaltout and Omstedt,
2014), but cooler than the Red Sea, which has an annual average
SST of 27.1◦C (Krokos et al., 2019). However, unlike the Red Sea,
which has an average depth of 450 m (Shaked and Genin, 2011),
the Gulf is shallower, with an average depth of 36 m (Pous et al.,
2012). This results in the Gulf experiencing larger seasonal swings
in SST; they can reach up to 25.2◦C, with the range being higher
in shallower regions (i.e., the northern half and along the western
coast) than in deeper areas (the southern half and eastern coast;

Figures 1, 3B). The Gulf ’s maximum SST (36.7◦C) was recorded
on July 1996 in the vicinity of Makasib Island, which is located
between Qatar and the United Arab Emirates (UAE; Figure 3C).
The currents here are stagnant and the waters are shallow (<
10 m) (Reynolds, 1993; Thoppil and Hogan, 2010b). The Gulf ’s
maximum SST was found to be warmer than that of the Red Sea
(maximum of 33◦C recorded at Bab-el-Mandab Strait; Chaidez
et al., 2017). In addition, various studies in the Gulf have recorded
single point measurements of 37.6 and 34.6◦C in Kuwaiti waters
(Alosairi et al., 2020; Al Senafi and Anis, 2020a). In contrast, the
Gulf ’s minimum SST was 11.7◦C (recorded in Kuwaiti waters;
Figure 3D), which was cooler than the minimum SST observed
in the Mediterranean and Red Seas: 15◦C (Criado-Aldeanueva
et al., 2008; Shaltout, 2019). This emphasizes the Gulf ’s large
temperature swings.

The non-seasonal SST intensity of change was examined
by focusing on the SST variance shown in Figure 3F. This

approach also emphasized the regions within the Gulf that
experienced the highest non-seasonal fluctuations during the 39-
year study period; these areas are likely to be relatively susceptible

to the influence of climate change. The results presented in
Figure 3F distinctively show that variance was stronger in the
northern tip, where Shatt-Al-Arab river discharge occurs, and
in the waters surrounding Qatar. These two regions also feature
the shallowest waters, which may explain their relatively quick
response to external forcing (e.g., sea surface heat and mass
transfer), compared to other regions in the Gulf (Figure 3B). In
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FIGURE 10 | Gulf EOF of first three SST modes for 1982–2020. EOF:

empirical orthogonal function.

addition to their shallow nature, the strong variance observed
at the northern tip could also be explained by the variability of
the Shatt-Al-Arab river discharge rates; they fluctuated between
8.2 and 46.6 milliards m2/year throughout the study period (Al-
Saadi, 2021). After detrending both riverine discharge rates and
SST observations at the Gulf ’s northern tip to remove long-
term linear biases, a correlation of 0.65 was found between both
datasets, suggesting that an increase in flow was followed by
an increase in SST (Figure 4). Whereas, the stagnate currents
and shallow nature explain the high variances in the region
surrounding Qatar.

4.2. Gulf’s Warming Rate
Compared to the global and Red Sea SST warming rates of
0.07 and 0.17 (max 0.45)◦C/decade (Lough, 2012; Chaidez et al.,
2017), respectively, the Gulf ’s warming rate was found here
to be 0.41 (±0.14)◦C/decade. Hereher (2020) determined the
Gulf ’s warming trend to be 0.7◦C/decade using observations
fromModerate Resolution Imaging Spectroradiometer (MODIS)
images for the period of 2003 to 2018; this is similar to
the observations obtained here for the same time period
(0.67◦C/decade). In addition, the results obtained here showed
that the Gulf ’s spatial SST warming trend displayed a latitudinal
gradient of 0.22 to 0.59◦C/decade, with steeper trends from
south to north. The only exception to this trend occurred in

the northern tip near the Shatt-Al-Arab riverine discharge; here,
the warming rate (0.41◦C/decade) was slower than that of the
surrounding northern water (≥ 0.5◦C/decade; Figure 3E). In
agreement with the results reported here, Al-Rashidi et al. (2008)
concluded that Kuwaiti waters warmed at a rate of 0.6◦C/decade
for the period of 1985 to 2002.

4.3. Temporal and Spatial Variabilities in
Gulf’s Air-Sea Net Heat Fluxes
Analyzing the region’s air-sea net heat fluxes revealed that
the accumulated air-sea net heat flux during the study period
throughout the Gulf was -1.52 W/m2 (Figure 5A). However,
since 2003 the Gulf has gained 0.5 W/m2 of heat at the air-sea
interface; this trend is likely to continue to increase by 0.3 W/m2

every year, assuming that a similar trend persists.
Spatially, the Gulf was found to lose heat at the center during

the 39-year study period (< 0 W/m2), as indicated by the cooler
colors (blue and purple colors) in Figure 5A. The coastal regions
and the Strait of Hormuz (to the south) gained heat (> 0 W/m2),
as indicated by the green, yellow, and orange colors in Figure 5A.
The net heat flux at the Gulf ’s center exhibited the highest range
(up to 51W/m2); this was double the range in the coastal regions.
Despite the high range of the net heat flux at the Gulf ’s center,
the maximum net heat flux continuously remained below zero,
indicating that persistent cooling occurred throughout the 39-
year study period (Figure 5B); the minimum flux was−62W/m2

(Figure 5C). These results signify the crucial role of the Gulf ’s
center region in cooling the region’s waters; it acts as a regulator
in reducing the high net heat flux intake within the coastal waters.
Though the Gulf continuously lost heat at its center, the net heat
flux trend showed that this cooling decreased at a rate of 7.71
W/m2 per decade. This is critical, as the Gulf ’s waters are likely to
warm faster in the future should this trend continue. This heating
trend was observed throughout the Gulf, ranging between 0.64
and 7.71W/m2 per decade. The strongest heat flux variances were
also found in the Gulf ’s center region, emphasizing that this area
exhibited the largest changes (Figure 5D).

As shown in Figure 6, air-sea heat exchange explained up to
70% of SST variance in the Gulf ’s center and in the Strait of
Hormuz (where SST variance was weakest; Figure 3F). The air-
sea heat exchange only explained up to 25% of SST variance in the
coastal regions, however, where the SST variances were strongest.
This suggests that air-sea heat exchange was least pronounced in
the shallow and dynamic areas of the Gulf.

4.4. SST Temporal Variability and SST
Modes in the Gulf (1982-2020)
The yearly averaged SST time series showed clear interannual
variability at a warming rate of 0.41 (±0.14)◦C/decade (Figure 7).
The SST in the warmest and coolest years was 27.43◦C in 2010
and 25.11◦C in 1991, respectively. Furthermore, the last seven
years (2014–2020) were all within the top ten warmest years,
with an average SST of 27.02◦C. Moreover, > 75% of days
within those seven years experienced SSTs that were warmer
than the 39-year average. Furthermore, the number of warmer
days increased at a rate of ∼2 % per year (Figure 8). This

Frontiers in Marine Science | www.frontiersin.org 8 February 2022 | Volume 9 | Article 809355126

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Al Senafi Atmosphere-Ocean Variability in the Gulf

FIGURE 11 | Time series of PC associated with first three modes for 1982–2020 alongside (A) AMO, (B) ENSO, and (C) IOD indices in blue. PC: principal

component; AMO: Atlantic Multi-decadal Oscillation; ENSO: El Nio-Southern Oscillation; IOD: Indian Ocean Dipole.

warming trend displayed seasonal variability; SST warming was
slowest in mid-winter (December–January) and mid-summer
(July–August) at a rate of< 0.3◦C/decade. This rate then doubled
during the fall (September–October) and spring (March–April).
The faster warming trends during the fall and spring periods will
likely further energize extreme storm events, which are common
during these transitional seasons in the Gulf, should this warming
rate continue (Al Senafi and Anis, 2015; Al Senafi et al., 2019).

In addition to the air-sea cooling at the Gulf ’s center, as
explained in Section 4.3, GDW is another regulator of the Gulf ’s
temperature. Although GDW is poorly understood, various
studies (e.g., Thoppil and Hogan, 2010a,b; Li et al., 2020b) have
suggested that it is convectively driven by cooling of the sea
surface in the northern Gulf, and that it is more pronounced
during late winter-spring, when vertical density stratification is
weakest (Reynolds, 1993). GDW formation was found to occur
within the vicinity of where the Gulf ’s SST warming rate was
fastest (Figure 3E); furthermore it occurred within those months
when the warming rate was also fastest (Figure 8). This suggests
that the formation of this deep water mass could possibly be
disturbed should this warming trend continue.

The SST-standardized anomalies presented in Figure 9 clearly
indicate that 1997 was the period’s “tipping point,” where SST
inverted from being persistently cooler (negative anomalies) to
being warmer (positive anomalies), with the exception of 2008
and 2009, within the 39-year baseline. The computation of EOF
showed that the first three modes together explained 86% of
the variance observed in SST anomalies. The remaining EOF
modes explained less than 3% each of the total SST anomaly
variances. These remaining EOF modes were excluded from

further analysis, as they did not pass the North et al. (1982)
criteria, where the difference between the third and fourth
eigenvalues are proportional to their sampling error magnitude;
thus, the error size is comparable with the EOF themselves.

The EOF (spatial patterns) and PC (time series) for first three
modes are presented in Figures 10, 11, respectively. The PC
time series of the first mode of SST explained 73% of the total
variance, displaying clear positive (e.g., 1995, 1998, and 2010)
and negative (e.g., 1982, 1984, and 1991) anomaly peaks that
were well correlated (0.71) with the AMO index. Further analysis
of the lead-lag correlation revealed a 1–3 month lag, where the
AMO index was found to lead the PC time series of mode 1
(Figure 11A). The warming of the Gulf ’s SST in response to the
AMO warming peaks was consistent with the findings of Alawad
et al. (2020) within the Red Sea; it is likely attributable to changes
in the upper troposphere (200 hPa)meridional winds (namely the
Circum-Global Teleconnection; Ding and Wang, 2005). These
changes impose warm air temperatures (Lu et al., 2002; Hong
et al., 2017) across the Eurasian continents. This may explain why
the strong mode 1 signatures of > 3.5◦C (Figure 10A; yellow-
to-red shading) were located in the Gulf ’s shallowest regions
(Figure 1), while the strongest signature > 4◦C (Figure 10A;
red shading) was located in the shallowest and weakest currents,
off the coast of Qatar. The second EOF mode of SST explained
9.9% of the total variance, demonstrating a latitudinal gradient
(Figure 10B). The PC time series of this mode displayed positive
(e.g., 1982, 1986, and 2015) and negative (e.g., 1983, 1988,
and 1999) peaks that were consistent with the ENSO index,
with a significant correlation of 0.63 and a lag of 4 months
(Figure 11B). The strong latitudinal signature of EOF mode
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2 may be attributable to fluctuations in regional precipitation
following peak ENSO periods. A detailed 40-year study by Al
Senafi and Anis (2015) of the Mesopotamia (Kuwait, Iran, Iraq,
Syria, and Turkey) and Gulf regions concluded that peak ENSO
periods shifted the tropical convection cells eastwards; this in
turn disturbed the moisture-bearing jet stream and increased
precipitation. Wetter ENSO periods would increase Shatt-Al-
Arab discharge; as described in Section 4.1; this would lead to
warming of SSTs in the region’s northern waters.

The third EOF mode explained 3.1% of the total SST anomaly
variance. The strongest signature of the third EOF was located
in the Gulf ’s center, where the influence of air-sea heat exchange
was highest (Figure 6). The PC time series of the third mode
displayed positive (e.g., 1983, 1985, and 1992) and negative (e.g.,
1987, 2010, and 2018) peaks that were consistent with the IOD
index, with a significant correlation of -0.51 and a lag of 5months.
This is similar to the lag period observed by Arun et al. (2005)
for the Gulf region (Figure 11C). Further analysis of the air-
sea net heat fluxes showed that during IOD peak phases, the
heat loss from the Gulf was eight times lower than average. This
was mainly attributed to the reduction of latent heat loss, which
explained 61% of the net heat flux. This reduction in latent heat
flux likely arose from an increase in the moisture influx into the
Gulf from Africa, via Saudi Arabia, during positive IOD periods
(Arun et al., 2005).

5. CONCLUSIONS

The study focused on the Arabian Gulf ’s interannual to multi-
decadal SST variability over the period of 1982 to 2020, using
daily Level 4 GHRSST images. The findings presented here
indicate that the average SST of the Gulf over the last 39
years was 26.7◦C, and that warming occurred at rates of
0.22 to 0.59◦C/decade during this time. The overall warming
displayed seasonal variations; warming during the extreme storm
transitional periods (fall and spring) occurred at double the rate
than in winter and summer. Large swings in seasonal SST were
observed, with minimum andmaximum recorded SSTs of 11.7◦C
and 26.7◦C, respectively.

The results presented here indicate that despite the observed
warming trend, the accumulation of heat during the study period
was −1.52 W/m2, suggesting an overall loss of heat (cooling).
This cooling is critical in lowering the Gulf ’s extreme water
temperatures, which could otherwise result in coral bleaching
and undesired stress to other marine species (Burt et al., 2013;
Sheppard, 2016). However, detailed analysis of the air-sea net
heat fluxes indicated that a reversal from cooling (negative)

to heating (positive) occurred in 2003; this heating rate will
continue to rise at a rate of 0.3 W/m2 per year.

EOF analysis was conducted to characterize the multiple
spatial and temporal patterns of the Gulf ’s SST variability. Local
trends were subtracted prior to EOF analysis to emphasize
interannual to multi-decadal SST variability. In this way, three
dominant EOF modes were identified that contributed to 86%
of the Gulf ’s SST variability. The significant spatial and temporal
correlations (r > 0.51) suggest that throughout the 39-year study
period, the SST variability could be attributed to atmospheric
changes imposed by the AMO, ENSO, and IOD climate modes.
Nonetheless, the findings of this study have to be seen in light of
some limitations that could be addressed in future research. This
study uses ERA5 and GHRSST datasets that have been validated
only in the northern part of the Gulf and during a 1 year period.

A better understanding of the Gulf ’s SST modes can help
reveal the region’s circulation more clearly, within which
GDW plays a major role. The formation and circulation
of dense GDW have been linked to cooler surface waters
(Swift and Bower, 2003; Yao et al., 2014). GDW is critical
in regulating salinity and flushing contaminants that are
introduced into the Gulf. Thus, it is critical to conduct a
detailed observational study to resolve spatial and temporal
variations in sea surface heat, momentum, and mass transfer.
The influence of spatial and temporal variability in SST, as
reported in the present study, should also be investigated
regarding GDW.
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The Skill Assessment of Weather and
Research Forecasting and
WAVEWATCH-III Models During
Recent Meteotsunami Event in the
Persian Gulf
Mohsen Rahimian, Mostafa Beyramzadeh and Seyed Mostafa Siadatmousavi*

School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

This study aims to use a fully realistic high-resolution mesoscale atmospheric and
wave model to reproduce met-ocean conditions during a meteotsunami in the Persian
Gulf. The atmospheric simulations were performed with the Weather and Research
Forecasting (WRF) model by varying planetary boundary layer, microphysics, cumulus,
and radiations parameterizations. The atmospheric results were compared to the
meteorological observations (e.g., air pressure and wind speed) from the coastal
and island synoptic and buoy stations of the nearest area to the meteotsunami
event. The results show that using Mellor-Yamada-Nakanishi-Niino (MYNN) scheme
for planetary boundary and surface layer had the best performance for stations over
the water, whereas applying Mellor-Yamada-Janjic scheme for planetary boundary and
Eta similarity surface layer had the best performance for stations over the land. For
wave simulations, the WAVEWATCH-III model was employed with the well-known WAM-
Cycle4 formulation and a more recent ST6 package. Six WRF experiments and ERA5
wind data were used to force the wave models. The new error parameter was introduced
to identify the optimum wind data for wave simulation. EXP4 configuration which uses
the MYNN scheme for planetary boundary and surface layer was led to minimum error,
while ERA5 severely underestimated Hs and Tp parameters. For the first time, the
Gaussian Quadrature Method (GQM) was implemented in the WAVEWATCH-III model
and combined with a depth scale to be used in the Persian Gulf. This method is
more accurate for non-linear wave-wave interaction than the default Discrete Interaction
Approximation (DIA) method. Lower coefficients for dissipation term were required for
GQM and the resulted bulk wave parameters were improved compared to the DIA
method. The calibrated ST6 formulation with GQM resulted in a more realistic prediction
of wave spectrum than the default settings of the WAVEWATCH-III.

Keywords: meteotsunami, Persian Gulf (PG), ERA5 data, ST3, ST6, DIA, GQM

Frontiers in Marine Science | www.frontiersin.org 1 March 2022 | Volume 9 | Article 834151131

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.834151
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2022.834151
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.834151&domain=pdf&date_stamp=2022-03-11
https://www.frontiersin.org/articles/10.3389/fmars.2022.834151/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-834151 March 7, 2022 Time: 12:23 # 2

Rahimian et al. Modeling of Meteotsunami in Persian Gulf

INTRODUCTION

The Persian Gulf is one of the most important oil tanker highways
in the world, which has been protected from waves induced
by tropical storms and tsunamis over the past few decades (El-
Sabh and Murty, 1989; Al-Hajri, 1990; Lin and Emanuel, 2016).
Although the easterly coastal region in Iran is more susceptible
to tsunami by active faults in the Indian Ocean, there is no
major earthquake fault in the Persian Gulf region that can
produce large tsunami (Ambraseys, 2008). Moreover, tsunami
waves produced in the Indian Ocean rarely propagate into the
Persian Gulf (Rabinovich and Thomson, 2007; Heidarzadeh et al.,
2008); hence, harsh weather is not common in this region
(Nadim et al., 2008; Modarress et al., 2012). On 19 March 2017,
an unexpected ∼3-m-long wave struck the northern shores of
the Persian Gulf, and at least five people were killed in the
port of Dayyer (see Figure 1 for its location). It also led to
extended damages to ships, residential areas, and coastal facilities
adjacent to this port (Salaree et al., 2018; Heidarzadeh et al.,
2020; Kazeminezhad et al., 2021). Salaree et al. (2018) conducted
a field study on the damaged coastline and reconstructed the
initial picture of the whole event. They explained the physical
mechanisms generating the strong long waves during this event
and concluded that a meteorological tsunami was responsible for
this event. Heidarzadeh et al. (2020) studied this meteorological
event using satellite imageries, atmospheric reanalysis products,
and in situ measurements, including sea level data and high-
resolution air pressure data along the southern Persian Gulf.
The rainfall intensity, maximum reflection, and echo top height
images provided by the weather radar confirmed that a strong
convergent system, including the middle and upper troposphere,
had entered the northern Persian Gulf approximately 4 h before
the event and moved to the east (Kazeminezhad et al., 2021).
Then, 2 h before its landfall, the convection system deformed into
a narrow and long hurricane with 70–130 km length, less than
10 km width, and a transverse speed of 24 m/s.

Meteotsunami are shallow-water waves or water level
fluctuations due to atmospheric interactions, which typically
last from minutes to hours (Monserrat et al., 2006). The
development of these long waves depends upon several factors
and has a multi-stage process; but meteotsunami generally
begin with a sudden change in air pressure and/or wind (the
effect of atmospheric turbulence) and are usually accompanied
by mesoscale systems such as frontal passages, storms and
strong winds (squalls), thunderstorms and gravitational waves
of the atmosphere (Monserrat et al., 2006; Shi et al., 2020).
The occurrence of meteotsunami long waves, especially when
followed by high energetic wind-induced waves cause severe
damage to the coastal environment, destroy infrastructure, and
are potentially considered a large threat for local people since they
are generally unexpected (Rabinovich, 2020).

Concerning the nature of the meteotsunami phenomenon,
simulation of meteotsunami requires a high-resolution
atmospheric model to provide a precise estimation of wind
stress and pressure disturbances at the sea level (Shi et al.,
2019). In addition, having an unembellished atmospheric
model is critical in the accurate simulation of meteotsunami

waves (Horvath et al., 2018; Shi et al., 2019) which depends
on various factors such as grid resolution, physics, initial
conditions, and selected boundaries in the simulation (Borge
et al., 2008). Considering the non-linear and turbulent nature of
the atmosphere, small differences in initial condition or model
parameters lead to different representations of perturbations (Shi
et al., 2019, 2020; Mourre et al., 2021). A common approach
to deal with these sensitivities and forecast uncertainties in
numerical weather models is to use an ensemble prediction
(Borge et al., 2008; Horvath and Vilibić, 2014; Mourre et al.,
2021). Horvath and Vilibić (2014) in their study on meteotsunami
Boothbay, examined the sensitivity of high-resolution weather
conditions and its relationship with model parameters, time
step, initial and boundary conditions, and nested strategy.
Belušić et al. (2007) studied meteotsunami events in the Adriatic
Sea in 2003 and found that the wave-convection system is
very sensitive to the microphysics used in the model. Mourre
et al. (2021) evaluated different physical parameterizations in
the implementation of a high-resolution atmospheric-ocean
model with a nested network to predict a meteotsunami that
occurred in Ciutadella (Spain). The results indicate the success
of the extensive expansion of ensemble simulations regarding
the prediction of the ultimate magnitude of meteotsunami.
However, the small-scale characteristics of these disturbances
were highly sensitive to the tuning parameters, which led
to significant differences in the magnitude of the simulated
response at sea level.

This study aims to assess the performance of different
parameterizations for physical processes in a high-resolution
numerical model in simulating the meteorological characteristics
and wind-induced waves during the dominance of meteotsunami
in the Persian Gulf. These simulations were carried out using
Weather Research and Forecasting (WRF) model to determine
the atmospheric parameters, and WAVEWATCH-III model to
determine the wave spectrum. The wind and wave regimes
of the Persian Gulf for a 31-yearly period were evaluated by
Kamranzad (2018). The results indicated that monthly mean
and extreme wave height for Bushehr station in March were
lower than.6 m and higher than 3 m, respectively. As will be
shown in section “Skill Assessment of WAVEWATCH-III,” the
recorded wave height exceeds 1.5 m during the dominance of
the meteotsunami (19–20 March); hence, the skill assessment
of the WAVEWATHC-III model using different wind data is
another goal of the study. The weather stations and buoy
measurements were used for the models’ assessment. The study
area, modeling system, and experimental approach are described
in section “Materials and Methods”. Section “Results” includes
the skill assessment of models, followed by conclusions in section
“Conclusion.”

MATERIALS AND METHODS

Study Area and Observations
The Persian Gulf is a semi-closed marginal sea on a continental
shelf extended in a northwest-southeast direction and is located
within the 24–30◦N latitude and 47–52◦E longitude, respectively
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FIGURE 1 | (A) Weather Research and Forecasting (WRF) domain setup D01 and D02. (B) Topographic map of the Persian Gulf and Gulf of Oman and locations of
synoptic stations (red circle), wave buoys (dark orange rectangle), and radiosonde station (yellow triangle). The Topography data were derived from the
SRTM15 + V2.0 at 15-arc sec resolution.

(see Figure 1). The average depth of this water body is 37 m and
it has access to the Gulf of Oman as well as the Indian Ocean
through the Strait of Hormuz. The length of the Persian Gulf
is approximately 1,000 km, its maximum width is 336 km and
its maximum depth is approximately 90 meters near the Great
Tunb Island; Also, the west and south side of the Persian Gulf
is relatively shallow and has mild slopes (Reynolds, 1993). The
Strait of Hormuz restricts the interaction of the Persian Gulf with
open oceans (Liao and Kaihatu, 2016). Nayak et al. (2016) showed
that the waves formed in the Gulf of Oman have negligible effects
on the evolution of waves in the Persian Gulf due to energy loss
during their crossing the Strait of Hormuz.

Mixed tides with a height of 1 to 2 m dominate most of the
Persian Gulf (Akbari et al., 2016). The climate of the Persian
Gulf is divided into two important seasons and two transitional
periods. The summer season happens from May to September.
In contrast, the winter season starts in November and finishes in
March (Athar and Ammar, 2016). The winds are mainly from the
northwest throughout the year. In winters, between November
and February, wind speeds (mean value ∼5 m/s) are stronger
than in summer (mean value ∼3 m/s) (Thoppil and Hogan,
2010). The most famous climatic phenomenon in the Persian
Gulf region is the north-northwest wind called Shamal wind. It
is a monsoon, systematic, continuous, and strong wind in the
Persian Gulf. In summer, it blows mainly between May and July
while in winter, it occurs between December and early March.
However, this phenomenon is often not accompanied by coastal
floods and generally causes waves between 0.25 to 0.4 meters in
the northernmost coastal areas of the Persian Gulf (Thoppil and
Hogan, 2010; Kazeminezhad et al., 2021).

The meteotsunami on 19 March 2017 occurred during a calm
and cloudy day (Heidarzadeh et al., 2020). At 8:00 AM (+ 4:30
GMT), large long waves affected an area of about 100 km on the
northern coasts of the Persian Gulf and caused more than 1 km

of inundation in coastal and urban zones of Dayyer and Kangan.
Pieces of evidence and field studies show that the height of the
forerunner low-frequency wave exceeded 3 m near the port of
Dayyer and has caused extensive damages in terms of life and
economy in this region (Salaree et al., 2018).

Atmospheric systems generally produce meteotsunami with
a spatial scale of hundreds of kilometers and a time scale
of several hours, which is called mesoscale systems. Because
small disturbances of atmospheric pressure (less than 1 hPa)
and wind speed changes (10 m/s) in mesoscale systems usually
cause disturbances at sea level on a scale of several centimeters,
reinforcement mechanisms are required for large meteotsunami.
Wave velocity in shallow water is highly dependent on water
depth. Most meteotsunamis are reported to occur in semi-
enclosed environments such as gulfs, which indicates the
importance of the shape and geometry of the region (Williams,
2020). Appropriate bathymetry condition (water depth less than
100 m) and appropriate mesoscale atmospheric phenomenon
[e.g., fronts reported by Heidarzadeh et al. (2020)] led to the 2017
meteotsunami event in the Persian Gulf.

The data from several synoptic stations and one radiosonde
station were used to validate the simulation results in the period
of 15–23 March 2017. Surface data were obtained from 5 airport
synoptic stations via Hourly Global Surface (DS3505) datasets
of the National Climatic Data Center (NCDC). Also, hourly
data from Bushehr wave recorder buoy were provided by the
Port and Maritime Organization of Iran1. Upper air atmospheric
station data from the radiosonde data archive of NOAA-ESRL
database were available from the King Fahd International Airport
(K.F.I.A.-Dammam) WMO station code 40417, which were
retrieved from the Wyoming radiosonde database2. All these

1http://www.pmo.ir/en/home
2http://weather.uwyo.edu
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stations are shown in Figure 1B. Among many parameters
recorded at synoptic stations, wind speed and air pressure are
more important for a meteotsunami study (Šepić et al., 2015;
Vilibić et al., 2016; Horvath et al., 2018; Shi et al., 2019, 2020).

In addition to these ground meteorological data, hourly
ERA5 reanalysis data were available via3. This dataset has been
produced by the European Center for Middle-range Weather
Forecast (ECMWF) with a 31-km resolution over the Persian
Gulf. The variations in air pressure measured at different stations
were compared to the ERA5 data during the period 15–23 March
2017 in Figure 2.

Fluctuations of atmospheric pressure on 19 March are
following the period in which meteotsunami has occurred.
Recorded pressure changes at Bushehr (synoptic and buoy)
stations, Kish (synoptic and buoy), Daharan, Doha, and Jubail on
15–23 March 2017 are shown in Figure 2. Average air pressure
begins to decrease at the end of 18 March 2017 and reaches its
minimum value in the middle of 19 March in the shown period.
At northern stations of the Persian Gulf, such as Bushehr and
Kish, air pressure changes sharply and decreases by 4–8 hPa a
few hours after the collision of tsunami-like waves (6:00 UTC).
At Jubail and Daharan stations located in the southern part of
the Persian Gulf, ∼2 hPa decrease in air pressure occurred last
hours of 18 March followed by another drop in a range of 4 hPa,
early morning on 19 March. It indicates that the low-pressure
front was moving from the southwest of the Persian Gulf to its
northeast part. The synoptic conditions of the Persian Gulf region
and its areas at 4:00 and 6:00 AM on 19 March 2017 are shown
in Figure 3 when tsunami-like waves were formed and hit the
northern coasts of the Persian Gulf. Parameters such as average
sea level pressure, the 10 m wind vectors, and wind gusts were
obtained from the reanalysis dataset of ERA5. Since the cyclone
was located in the northwest of the Persian Gulf at this moment,
ERA5 data show the northeast wind direction over the Persian
Gulf; i.e., in the opposite direction to the waves reaching the
northern coasts of the Persian Gulf. The wind direction has been
evaluated at Bushehr and Kish stations and the same pattern was
observed. Thus, the ERA5 results were of good quality during this
event based on stations located in the northern part of the Persian
Gulf (both synoptic station and buoy of Bushehr). No strong
gust wind was observed at these hours over the Persian Gulf;
hence it is more likely that long waves during this meteotsunami
phenomenon were created by atmospheric pressure fluctuations,
which was in accordance with previous studies (Heidarzadeh
et al., 2020; Kazeminezhad et al., 2021).

Modeling System
The wind and wave simulations were performed as explained
in this section.

Wind Model
In this study, the fully compressible, non-hydrostatic
mesoscale Advanced Research WRF (ARW) version 4.34

(Skamarock et al., 2019) is used on a Lambert conformal

3http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
4https://github.com/wrf-model/WRF

projection during 15–23 March 2017. It uses the Arakawa-C
grid and a terrain-following hybrid sigma–pressure coordinate
in the vertical direction for solving the governing equations.
Runge–Kutta scheme is also utilized for the discretization in
time-space. The model incorporates several parameterization
schemes for physical processes including microphysics, cumulus
convection, planetary boundary layer, land surface, and short
and longwave radiations. In this study, WRF is configured with
two nested domains with a horizontal grid spacing of 9 km (D01)
and 3 km (D02), with 231 × 220 and 502 × 304 grid points
(see Figure 1A). The domain center was located on the Kish
Island. The vertical structure in both domains consists of 45
vertical levels from the sea surface to 50 hPa with varying vertical
resolution such that, grid sizes are smaller near the ground and
become coarser with increasing altitude.

High-quality initial and boundary conditions are crucial to
have accurate simulations. These data were derived from the
ECMWF IFS CY41r2 High-Resolution Operational Forecasts
dataset5, which has 0.08

◦

spatial and 6-h temporal resolution.
The time step of the model simulation was set as 27 s in D01
and as 9 s in D02. The WRF Preprocessing System (WPS)
in version 4.0.36 was used to prepare the input data for the
model together with the WPS V4 Geographical Static Data.
To improve the accuracy of geographical data in the model,
the modified IGBP 21-category, 15 arc-seconds, MODIS LULC
database was adopted. The domain size and computational
period were selected according to Heidarzadeh et al. (2020). The
model was initialized at 6:00 PM on 14 March 2017, and the first
6 h of the simulation were taken as spin-up time.

Although the wind field of atmospheric models has high
quality on the oceans and offshore areas, their performance in
semi-closed and closed areas with complex geomorphology still
needs improvements. The wind speed from a model in such
conditions is less than observations in many cases (Cavaleri and
Bertotti, 2003, 2006). Factors such as the position and size of
the simulation domain, spatial resolution, and initial conditions
affect the model results. In addition to selecting the appropriate
dynamic configuration, testing and selecting the appropriate
physical parameterization also reduce the uncertainties of
atmospheric models in calculating the wind field (Belušić et al.,
2007; Vilibić et al., 2008, 2016; Šepić et al., 2009; Horvath and
Vilibić, 2014; Horvath et al., 2018; Linares et al., 2019; Shi et al.,
2019, 2020; Mourre et al., 2021). There are many physical designs
in the WRF model which make it flexible for different climatic
conditions with optimal performance for a range of temporal and
spatial resolutions (Skamarock et al., 2019).

A subset of physical parameterization including the planetary
boundary layer (PBL), cumulus (CU), and the microphysics
(MP), which has been used in previous meteotsunami studies,
were used to optimize the model performance (Belušić et al.,
2007; Šepić et al., 2009; Renault et al., 2011; Horvath and
Vilibić, 2014; Horvath et al., 2018; Denamiel et al., 2019;
Shi et al., 2019; Mourre et al., 2021). To be more specific,
the following schemes have been used; (MP): the Thompson

5http://rda.ucar.edu/datasets/ds113.1
6https://github.com/wrf-model/WPS/releases
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FIGURE 2 | Atmospheric air pressure records during 15–23 March 2017, at the Persian Gulf coastal stations. The red dotted lines denote measured data from
synoptic and buoy station and the black continuous line denote ERA5 data. The black lines denote distinct air pressure disturbances and the purple dashed line
indicates the time of the Persian Gulf meteotsunami.

FIGURE 3 | Mean sea level pressure contours, wind vectors at 10 m, and wind gust (shown by colors) at (A) 4:00 AM UTC; (B) 6:00 AM UTC.

6-class graupel scheme (Thompson et al., 2008) and the
WSM6-class scheme (Hong and Lim, 2006); (CU): the Grell–
Devenyi ensemble scheme (Grell and Dévényi, 2002), the New
Tiedtke Scheme (Zhang and Wang, 2017) and the Kain–Fritsch
scheme (Kain, 2004); (PBL): the Yonsei University scheme

(Hong et al., 2006), the Mellor-Yamada-Janjic (MYJ) scheme
(Janjić, 1994) and the Mellor-Yamada-Nakanishi-Niino (MYNN)
2.5 scheme (Nakanishi and Niino, 2006). The YSU PBL scheme
was used along with the revised MM5 similarity theory surface
layer (Jiménez et al., 2012), while the MYJ and MYNN PBL
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scheme was used along with the Eta similarity scheme (Monin
and Obukhov, 1954) and MYNN scheme (Nakanishi and Niino,
2006) respectively. For all simulations, the Noah–MP (Niu et al.,
2011) land surface scheme was used. The Goddard scheme for
shortwave (Chou and Suarez, 1994) and the Rapid Radiative
Transfer Model [RRTM; Mlawer et al. (1997)] for longwave
radiation was used. Since domain resolution was less than 5 km,
the cumulus parameterization was switched off for the local
domain in all simulations according to Athukorala et al. (2021).
The parameterization schemes incorporated into the model are
summarized in Table 1.

Wave Model
The WAVEWATCH-III (hereinafter WWIII) is a state-of-the-art,
phase-averaged model which numerically solves the conservation
of wave action as below:

dN
dt
=

Stot

σ
(1)

The left-hand side of Eq. (1) includes the local rate of change in
wave action, wave propagation in x and y dimensions, and wave
propagation in σ and θ spaces. The wave action N is equal to E

σ
,

where E is wave energy density and σ is the angular frequency.
The term Stot incorporates a sink and source terms among which
the exponential wind-wave growth (Sin), non-linear quadruplet
(Snl), and dissipation due to white capping (Sds) are important in
deep waters (WAVEWATCH III Development Group WW3DG,
2016).

Several packages are available for Sin and Sds in WWIII.
Janssen (1991) parameterized wind input term as a function
of u∗

C , wave-supported stress, and wind logarithmic profile;
where u∗ is friction velocity and C is phase speed velocity,
respectively. This method needs an iterative process to obtain
u∗ which is valid simultaneously in both wave-supported stress
and wind profile. This method is known as WAM-Cycle4 or ST3
formulation in WWIII.

The whitecap dissipation in ST3 includes weighted linear and
non-linear dependency to wave numbers using δ1 and δ2 = 1−
δ1 coefficients. The Cds is a tuning parameter in this formulation
while k̄, σ̄, ᾱ are mean wave number, mean angular frequency and
mean steepness, respectively.

Sds
(
k, θ

)
= Cds

(
ᾱ2) σ̄[δ1

k
k̄
+ δ2

(
k
k̄

)2
]

N(k, θ) (2)

In this research δ1 and Cds will be considered as
tuning parameters.

The most recent package for wind input and energy
dissipation implemented in WWIII is ST6. The wind input term
includes two parts that depend on wave direction (θ), wind
direction (θw), wind velocity (U), and C. The w1 part controls the
wind input term when cos(θ− θw) is greater than 0; otherwise w2
will be dominant which includes ‘negative wind input’ (Donelan
et al., 2006).

w1 = max2
{

0,
U
C

cos (θ− θw)− 1
}

,

w2 = min2
{

0,
U
C

cos (θ− θw)− 1
}

(3)

w = w1 − a0 w2 (4)

In this study, a0 was set to 0.09 according to Liu et al. (2017).
In Eq. (3), U could be scaled with 32u∗ to avoid overestimation
of energy levels at high frequencies (Liu et al., 2019). This scale
was used in many recent research [e.g., Christakos et al. (2020),
Kalourazi et al. (2020), Beyramzadeh et al. (2021)].

The whitecap dissipation in ST6 includes T1 term which
presents the inherent breaking term, and T2 term which describes
the cumulative effects of short-wave breaking due to longer waves
[Rogers et al. (2012), Zieger et al. (2015)]:

Sds
(
k, θ

)
=
[
T1
(
k, θ

)
+ T2

(
k, θ

)]
N(k, θ) (5)

These T1 and T2 terms have tuning coefficients a1 and a2
which were used for calibration.

Wind vectors, bathymetry, and open boundary conditions are
crucial for wave models. Besides six introduced wind experiments
presented in Table 1, the original ERA5 wind data were used as
wind input for wave simulations. The temporal resolution for all
wind data was 1 hour. Both ST3 and ST6 formulations were used
to reproduce Hs and Tp. Default values for tuning parameters
in ST3 were Cds = -4.5 and δ1 = 0.5. For ST6 formulation,
a1 = 4.75 ×10−6 and a2 = 7 ×10−5 were default values. These ST3
and ST6 formulations were calibrated against AD measurements
and altimeter data using ERA5 wind in the Persian Gulf and the
Gulf of Oman by Beyramzadeh et al. (2021) (hereafter BSD2021).
Their suggested values for tuning parameters were also used
which are Cds = -1.5 and δ1 = 0 for ST3, and a1 = 1.05 ×10−7

and a2 = 1.74 ×10−6 for ST6. Therefore, ERA5 wind data will be

TABLE 1 | List of the physical options for WRF modeling.

Ensemble Microphysics Cumulus Planetary
boundary layer

Longwave
radiation

Shortwave
radiation

Surface layer
physics

Land Surface
physics

EXP1 Thompson New Tiedtke YSU RRTM Goddard Revised MM5 Noah–MP

EXP2 Grell–Devenyi MYJ RRTM Goddard Eta Similarity Noah–MP

EXP3 Kain-Fritsch MYNN RRTM Goddard MYNN Noah–MP

EXP4 WSM6 Kain-Fritsch MYNN RRTM Goddard MYNN Noah–MP

EXP5 New Tiedtke YSU RRTM Goddard Revised MM5 Noah–MP

EXP6 Grell–Devenyi MYJ RRTM Goddard Eta Similarity Noah–MP
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assessed using two sets of coefficients: (1) described default tuning
values for ST3 and ST6 formulations (2) suggested calibration
values by BSD2021 for the Persian Gulf.

The bathymetry data were extracted from The General
Bathymetric Chart of the Oceans (GEBCO) which were released
with high spatial resolution 0.004

◦

in 2019. Hourly boundary
conditions were extracted in the form of directional wave
spectra from a global wave modeling. Directional wave spectra
were implemented along the southern (23

◦

N, 59.2
◦

− 61
◦

E)
and eastern (61

◦

E, 23
◦

− 25.2
◦

N) open boundaries of the
computational domain. More details about the global model were
presented in BSD2021.

The computational grid in the WWIII model covers 47.2
◦

−

61
◦

E and 23
◦

− 31
◦

N using a rectangular grid with 0.04
◦

× 0.04
◦

resolution. Following Siadatmousavi et al. (2012), 30 frequencies
with geometrical distribution were considered in the range of
0.04–0.63 Hz. Moreover, 36 directions with 10

◦

resolution were
applied. Four time-steps are needed in the WWIII model: (1)
maximum global time-step was set as 360 s; (2) the maximum
CFL time-step for x-y was set as 180 s; (3) the maximum CFL
time-step for k-theta was set as 360 s; (4) time-step for source
term was set as 30 s.

The non-linear quadruplet wave-wave interaction (Snl) mainly
controls wave spectrum evolution in wave models. It is the
most time-consuming term in simulations; therefore, the DIA
(Discrete interaction Approximation) method proposed by
Hasselmann et al. (1985) has been presented for operational
applications. Resio and Perrie (2008) and Perrie et al. (2013)
compared the obtained Snl term for the JONSWAP spectrum
with different peak enhancement parameters (γ = 1, 3.3, and
7) against the exact solution (Webb-Resio-Tracy method). For
fully developed spectrum (γ = 1), the positions of positive and
negative lobes are identical with the exact solution, but the
DIA overestimates (underestimates) positive (negative) lobes. As
a consequence, more dissipation and more wind input energy
are needed on forward and rear faces, respectively. Simulated
Snl term with the DIA deviates from the exact solution with
increasing γ parameter. Furthermore, spurious positive and
negative lobes have appeared on the rear face of the spectrum. It is
inferable that the deficiencies of the DIA method in reproducing
Snl the term should be compensated with other sink and source
terms (Sin and Sds). It is expected that the wind input and
whitecap calibration with the DIA method might result in
unrealistic coefficient values.

The Gaussian Quadrature Method (GQM) is a recent method
to estimate Snl term in deep water conditions, developed by
Lavrenov (2001) and implemented as a portable Fortran module
in the TOMWAC model by Benoit (2005). The GQM method
strongly depends on the integration resolution. Rough, medium,
and fine resolutions were evaluated in duration and fetch limited
test cases, slanting fetch, and test cases with varying wind
direction. More agreement with the exact solution is expected
when medium and fine resolutions were applied, while they are
more expensive than rough resolution and the DIA method
(Benoit, 2005, 2007; Gagnaire-Renou et al., 2009; Gagnaire-
Renou et al., 2010). For the first time, the GQM with the medium
resolution was implemented in the WWIII model and used to

simulate wind waves during the presence of meteotsunami in the
Persian Gulf. Similar to the DIA, this method was combined with
a depth scale proposed by Komen et al. (1994) to be used in the
shallow water of the Persian Gulf.

Statistical Indices
For this part, three statistical indices were applied to skill assess
the WRF and WWIII models against measurements: mean bias
error (MBE), root mean square error (RMSE), and index of
agreement (d) presented by Willmott (1982):

MBE =
∑

(Mi − Oi)

N
(6)

RMSE =
√

1
N

∑
(Mi − Oi)2 (7)

d = 1−
(Mi − Oi)

2∑
(
∣∣Mi − Ō

∣∣+ ∣∣Oi − Ō
∣∣)2 (8)

in which Mi and Oi are modeled and observed data,
respectively. N is the total number of observations. All indicators
are calculated with hourly data. Note that d is a dimensionless
index that quantifies the agreement between the two series
of data; the value of d index larger than.5 indicates good
performance of the model.

RESULTS

Skill Assessment of Weather and
Research Forecasting Model
Taylor diagram and statistical parameters (MBE) for different
stations and different experiments are designated in Figures 4, 5.
Also, the value of the agreement coefficient parameter (d) for
each station is given in Table 2. Taylor diagram is a statistical
summary that presents the correlation coefficient, normalized
standard deviation and root mean square error (Taylor, 2001).
As seen from Figure 4, EXP1 and EXP2 were superior to other
experiments at Bushehr and Kish stations for predicting wind
pressure and speed. The agreement index and the correlation
for wind speed for all experiments at Bushehr station were more
than 0.6, indicating that all of them had acceptable performance
according to Borge et al. (2008). The correlation coefficients
between wind speed data from observations and simulations
at Kish station were less than.5. At Bushehr buoy station,
EXP4 had good performance for pressure, and EXP2 and EXP4
had good performance for wind speed. The MBE values of
surface air pressure at Bushehr synoptic station, Bushehr buoy,
and Kish station indicate that pressure values are generally
overestimated. No trend exists for wind speed; e.g., the wind
speed at Bushehr synoptic station is underestimated while it is
overestimated at Bushehr buoy station. At Kish station, unlike
other experiments, the MBE values for EXP3 and EXP4 were
negative. The MBE value for EXP2 at this station was close to
zero. In general, according to Figure 4 and Table 2, at northern
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FIGURE 4 | Taylor diagram of surface air pressure and wind speed at (A) Bushehr INTL, (B) Kish, and (C) Bushehr buoy for six WRF experiments and ERA5 data.
Right charts show mean bias error for pressure and wind speed. Standard deviation and RMSE are normalized by the standard deviation of observations at the
relevant temporal frequency.

Gulf stations, EXP3 and EXP4 (using Mellor-Yamada-Nakanishi-
Niino scheme for planetary boundary layer and surface layer)
slightly overestimated the surface pressure at the ground level
stations and underestimated the wind speed. In contrast, over
the water body (i.e., at Bushehr buoy), they tend to reduce the
amount of surface pressure and relatively increase the wind speed
compared to other schemes.

As shown in Figure 5, at Daharan, Jubail, and Doha stations,
EXP2 and EXP4 configurations were more successful than other
combinations for surface pressure and wind speed estimation,
respectively. At these ground-level stations, the MYNN boundary
layer scheme increased surface pressure and relatively decreased
wind speed compared to YSU and MYJ schemes. The results of
combining the MYNN planetary boundary layer scheme and the
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FIGURE 5 | Taylor diagram of surface air pressure and wind speed at (A) Jubail, (B) Dhahran, and (C) Doha stations. Right charts show mean bias error for pressure
and wind speed.

Thompson microphysics scheme were better than the MYNN
and WSM6 microphysics scheme for pressure and wind speed
estimation. Unlike stations of the northern Persian Gulf, at these
stations (except the three ensembles No. 3, 4, and 5 at Doha
station), the estimation of surface pressure was less than the
observations. Wind speed was underestimated at Doha station

and overestimated at Jubail and Daharan stations. In general,
the MYJ boundary layer scheme, which is a local influenced
scheme, resulted in a better estimation of wind speed than
two non-local YSU and local MYNN schemas in the Persian
Gulf meteotsunami occurrence period. Regarding the index of
the agreement for pressure and wind speed obtained from
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TABLE 2 | Index of agreement (d) between model results and in situ observations at the different synoptic stations and wave buoys considered in the present study.

Parameter Ensemble Bushehr INTL Bushehr buoy Kish Jubail Dhahran DOHA

d

Surface pressure EXP1 0.903 0.920 0.802 0.887 0.866 0.913

EXP2 0.892 0.902 0.811 0.888 0.855 0.900

EXP3 0.828 0.917 0.700 0.914 0.901 0.892

EXP4 0.846 0.942 0.666 0.930 0.919 0.876

EXP5 0.870 0.932 0.778 0.921 0.893 0.892

EXP6 0.869 0.914 0.803 0.904 0.875 0.897

ERA5 0.852 0.957 0.922 0.964 0.825 0.941

Wind speed EXP1 0.750 0.673 0.668 0.773 0.537 0.696

EXP2 0.726 0.727 0.673 0.764 0.727 0.755

EXP3 0.685 0.660 0.615 0.762 0.562 0.654

EXP4 0.682 0.703 0.535 0.777 0.666 0.620

EXP5 0.706 0.688 0.641 0.787 0.657 0.675

EXP6 0.727 0.661 0.637 0.763 0.703 0.734

ERA5 0.735 0.772 0.721 0.756 0.694 0.850

The bold numbers show the best experiments at each station which can be easily compared with ERA5 shown underlined.

FIGURE 6 | Time series of the observed (red dotted line) and model-predicted air pressure (hPa) and wind speed (colored solid line) at the Bushehr synoptic and
buoy stations.

different ensembles of the WRF model as well as ERA5 data,
improvements at some stations were obtained using WRF model
ensembles compared to ERA5 data.

The time series of pressure and wind speed from different
WRF configurations and ERA5 data at two synoptic stations and
Bushehr buoy are designated in Figure 6. The transverse of a low-
pressure system has been resolved by all scenarios on 19 March
and 20 March in all simulations.

Regarding MBE at these two stations, which is also
characterized in Figure 4, the predicted pressure values in all
simulations were greater than the observations. The EXP4 had
better estimates of pressure changes on the water surface than
on land. Wind speed time-series changes also indicated that
the overall trends of simulations were close to observations;
however, all of them underestimated the wind speed during peaks
(including meteotsunami occurrence) at the Bushehr synoptic

station. The configurations EXP2 and EXP1 outperformed others
in reproducing wind speed at this station. In contrast, all
experiments overestimated the wind speed at the Bushehr buoy.
The worst-case was EXP6 which predicted 20 m/s wind speed at
the moment of meteotsunami occurrence.

The results of the WRF simulated and measured radio-
sounding data at 12 UTC on 19 March 2017, are compared
and presented in Figure 7. In general, all simulations accurately
reproduced the temperature and moisture content of the
atmosphere but overestimated the moisture content in the
upper troposphere. Also, at pressure levels less than 250 hPa,
the temperature value was overestimated in all simulations.
The same occurred near the ground surface by EXP1 and
EXP2 parametrizations. The temperature changes were smooth
in EXP3. This configuration showed a sudden temperature
inversion in the middle of 500–700 hPa pressure level; however,
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FIGURE 7 | Skew-T diagrams from six different WRF parameterizations at 12 UTC 19 March 2017. The continuous black line represents temperature, and the
continuous blue line represents dew point temperature variations along the vertical atmosphere.

this configuration was not able to simulate temperature changes
in the upper troposphere. EXP2 parameterization had a better
ability to estimate moisture content in the atmosphere. The
closeness of the dew point temperature to the air temperature
at pressure levels of 300–700 hPa was well simulated by this

parametrization. The maximum wind speed was observed at a
pressure level of 250 hPa at the measuring station; however,
it was estimated to occur close to 500 hPa in all simulations.
In sum, the EXP2 configuration (using Mellor-Yamada-Janjic
scheme for the planetary boundary layer, Grell–Devenyi cumulus
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FIGURE 8 | Simulated maximum radar reflectivity (mDBZ) at 4:00 AM 19 March 2017 for six different WRF parameterization.

scheme, and Thompson microphysics scheme) provided the most
realistic results regarding atmospheric moisture content and
vertical temperature parameter in the Persian Gulf during the
period of meteotsunami event on 19 March 2017.

The maximum radar reflectivity has been investigated to
further evaluate the intensity and structure of convective clouds
and assess the sensitivity of the mesoscale simulations to the
choice of the microphysics and convective parameterization
(see Figure 8). The results from the innermost model domain
were used. Note that in both outermost and innermost
domains, heat and moisture tendencies were determined
by microphysics parameterization. Therefore, the effects of
convective parameterization propagated from the outermost
domain to the innermost domain. Model-derived maximum
radar reflectivity at 4:00 AM 19 March 2017 showed that
simulations with WSM6 microphysics produced slightly stronger
reflectivity, especially in the southern part of the domain.

Comparisons with radar data showed that in this area,
both WSM6 and Thompson microphysics provided excessive
reflectivity [cf. Figure 10 in Kazeminezhad et al. (2021)]. Also,
simulations with the Kain–Fritch scheme provided too intense
radar reflectivity. The overall shape of maximum reflectivity
distribution at this moment was well simulated by EXP2
parametrizations.

The maximum reflectivity index greater than 60 dbz was
introduced by Šepić and Rabinovich (2014) and Kazeminezhad
et al. (2021) as a signature for convective cells which followed
with meteotsunami formation in the domain; however, a lower
value of 40 dbz was also considered as a meteotsunami source in
the Gulf of Mexico (e.g., Shi et al., 2019). The hourly simulated
maximum reflectivity index was presented in Figure 9 using
EXP2 from 12:00 to 4:00 AM UTC 19 March. Two nearly
horizontal and vertical convective systems were entered the
Persian Gulf at 12:00 AM from west and south, respectively.
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FIGURE 9 | Simulated maximum radar reflectivity (mDBZ) using EXP2 configuration on 19 March 2017 at (A) 12:00 AM; (B) 1:00 AM; (C) 2:00 AM; (D) 3:00 AM;
and (E) 4:00 AM.

As time passed, the southerly vertical system weakened and
eventually disappeared, while the westerly horizontal system
strengthened to 55–60 dbz and spatially extended from 1:00
to 02:00 AM. It slightly decreased at 3:00 AM UTC; however,
increased to 55–60 dbz at 4:00 AMUTC again as it moved
eastward. Described pattern for simulated maximum reflectivity
from 12:00 to 4:00 AM is in agreement with Bushehr weather
radar data described by Kazeminezhad et al. (2021).

Skill Assessment of WAVEWATCH-III
In Figure 10, Simulated Hs and Tp parameters with ST3 and ST6
packages of WWIII model for eight experiments were compared
to buoy measurements at Bushehr during 15–23 March. The

performance of the model using WRF experiments was close
with small differences; e.g., EXP1 parameterizations resulted in
the lowest absolute MBE and high RMSE for Hs hindcast. Also,
EXP3 led to ∼0.1 Hs underestimation and low RMSE. Unlike
Hs, EXP1 parameterization has severely underestimated Tp. The
most successful configuration for reproducing Tp was EXP3.

Furthermore, ERA5 data with default coefficients of the
model (ERA5D hereafter) severely underestimated Hs and Tp
parameters. This experiment presented the worst performance
in reproducing Hs. Unlike ERA5D, applying ERA5 wind data
with the calibrated tuning values (ERA5 experiment) proposed
for the Persian Gulf by BSD2021, considerably improved both Hs
and Tp predictions. It is worth mentioning that the ST6 is more
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FIGURE 10 | Simulated Hs and Tp compared with buoy measured data at Bushehr. The left and right panels are for ST3 and ST6 packages, respectively. (A,D)
depict estimated MBE, RMSE, and d indices for Hs; (B,E) are the same as (A,D) but for Tp. (C,F) the εtot from Eq. (9).

sensitive than ST3 to wind experiments. To determine the best
configuration, the following error parameter tot was defined:

εtot = |MBE|Hs + RMSEHs + |MBE|Tp + RMSETp (9)

This error parameter was evaluated for eight experiments and
results are presented in Figures 10C,F. EXP4 parameterizations
using ST3 resulted in the lowest tot , while EXP4, EXP5
parameterizations and ERA5 experiments using ST6 could result
in a similar low tot value at Bushehr buoy; hence EXP4 at Bushehr
station could be selected as the optimum configuration when
either ST3 or ST6 was applied. ERA5D using both ST3 and ST6
packages led to high tot which emphasized the importance of
model calibration. The accuracy of ST3 was slightly better than
ST6 at this station which is in accordance with BSD2021.

The time series of simulated and measured Hs, Tp and
mean wave direction were presented in Figure 11. According
to wind evaluations presented in Figure 10, EXP4 and ERA5

parameterizations were selected for further investigations using
ST3 and ST6 formulations. As it is clear, Hs was underestimated
by the ERA5 experiment at Bushehr buoy during events on 16–17
March and 19–20 March. In contrast, bulk wave parameters from
EXP4 were in good agreement with the trend of measurements;
hence, the ERA5 wind data was not suitable for wave hindcast
during the dominance of meteotsunami in the Persian Gulf, while
EXP4 parameterization led to reasonable performance when
either ST3 or ST6 package was used with the default tuning values.

In Table 3, simulated Hs and Tp were used to assess the
importance of Snl term in the model. In this evaluation, both
ST3 and ST6 packages were used with EXP4 wind data. Since
the GQM has been applied with ST3 and ST6 for the first time
in this study, a calibration was performed; hence Cds = −4 and
δ1 = 0 were obtained for ST3, and a1 = 2.75 ×10−6 and a2 = 5
×10−5 were determined for ST6. For each package, four setups
were considered: (1) Default tuning values for Sds term and the
DIA method for Snl term; (2) Default tuning values for Sds term
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FIGURE 11 | Time series of simulated bulk wave parameters and buoy data (red dots) at Bushehr using different configurations.

and GQM method for Snl term; (3) Calibrated values for Sds and
the DIA method for Snl term; (4) Calibrated values for Sds and the
GQM method for Snl term.

Following results inferred from Table 3: (1) use of calibrated
values for Cds and δ1 (Cds = -4 and δ1 = 0) with the GQM were
resulted in tot = 1.5085 which was identical to the employment
of default values (Cds = −4.5 and δ1 = 0.5) and the DIA
method (tot = 1.5087). The value of δ1 = 0 with the GQM was
in agreement with the findings of Rogers et al. (2003). Default
tuning values in Sds term with the GQM and calibrated tuning
values for Sds term with the DIA method for Snl term were
the worst cases with highest tot . (2) Similar to ST3, obtained
tuning values (a1 = 2.75×10−6, a2 = 5×10−5) for ST6 when
the GQM was considered for Snl term were lower than default
values (a1 = 4.75 ×10−6, a2 = 7×10−5). The GQM using
calibrated values outperformed other setups according to tot ; the
improvement was marginal compared to the DIA method with
default values though.

The wave spectrum evolution simulated by ST3 and ST6
packages using the GQM and DIA methods were compared in
Figure 12. Based on results presented in Table 3, default tuning
values for white capping terms were applied in combination with

the DIA, while calibrated values were considered when the GQM
was employed. The highest energy density occurred during 16–17
March. The GQM method in the model has resulted in sharper
peaks in the spectrum than the DIA method. As shown in several
studies, the spectral peak was estimated smoother and lower than
reality by the DIA (Gagnaire-Renou et al., 2010; Rogers and
Van Vledder, 2013), and the GQM could improve this deficiency
in the wave model.

The energy content close to the peak of the spectrum was also
more intense for ST6 Than ST3. During the high energy event
of 16–17 March, ST6 resulted in higher energy content, even in
the high-frequency tail of the spectrum. It is following the results
of Kalourazi et al. (2020) who compared different formulations
during hurricane Ivan’s passage over the Gulf of Mexico. This
pattern was also confirmed by ideal and field tests in previous
studies (e.g., Zieger et al., 2015; van Vledder et al., 2016). Having
more energetic predictions over the entire frequency band also
occurred for other events during 19–20 March when ST6 with
the GQM was used as compared with other combinations.

The main reason for deviation in the model performance by
ST3 and ST6 packages could be explained by the contribution of
Sin, Sds, and Snl terms to Stot in Eq. (1). The spectrum evolution of
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TABLE 3 | The ST3 and ST6 packages using EXP4 wind data with two methods DIA and GQM for Snl term were evaluated against buoy measured data at Bushehr.

Bushehr Buoy Hs Tp

Methods Setup MBE RMSE d MBE RMSE d tot

ST3 Default/DIA −0.0427 0.2612 0.9138 0.0111 1.1937 0.6509 1.5087

Default/GQM −0.0873 0.2630 0.9095 −0.1362 1.1636 0.6726 1.6501

Cds = –4.0,δ1 = 0/DIA −0.0409 0.2656 0.9123 0.1104 1.2006 0.6679 1.6175

Cds = –4.0,δ1 = 0/GQM −0.0591 0.2650 0.9123 0.0322 1.1522 0.6667 1.5085

ST6 Default/DIA −0.0525 0.2917 0.9059 0.0861 1.2028 0.6377 1.6331

Default/GQM −0.0908 0.2931 0.9019 −0.0393 1.1744 0.6476 1.5976

a1 = 2.75×10−6, a2 = 5×10−5/DIA −0.0275 0.3020 0.9034 0.1326 1.2121 0.6346 1.6742

a1 = 2.75×10−6, a2 = 5×10−5/GQM −0.0620 0.2989 0.9026 0.0191 1.1827 0.6436 1.5627

The optimum setups were identified by bold-underlined.

FIGURE 12 | The wave spectrum evolution by ST3 (A,B) and ST6 (C,D). Snl was calculated with the DIA method in panels (A,C) and with the GQM method in
panels (B,D).

Stot (not shown here) indicates that the energy content is close to
the peak of Stot was higher for ST6 than for ST3. This explains the
peak wave period overestimation by ST6. Also, when the GQM
was used for Snl instead of DIA, a concentrated positive lobe at
slightly higher frequencies occurred. Furthermore, the negative
lobe was less extended to higher frequencies for the GQM than for
the DIA method. As a consequence, more energy is transferred to
high frequencies when GQM was employed which alleviated the
wave peak period overestimation.

CONCLUSION

Ensemble prediction is a practical approach to handle
uncertainties in numerical model predictions. This is
essential during complex meteorological conditions such as
meteotsunamis due to the importance of small-scale atmospheric
processes (Mourre et al., 2021). This study skill assessed the
performance of the WRF physics ensemble of a high-resolution
modeling system in retrieving atmospheric processes which led to
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recent meteotsunami in the Persian Gulf. Numerical experiments
with initial and boundary conditions driven from the ECMWF
IFS CY41r2 high-resolution operational analysis database were
used to study the detailed representation of surface air pressure
and wind speed during 15–23 March 2017 in the Persian Gulf.
Six experiments were used with 2 microphysics (Thompson and
WSM6), 3 cumulus physics schemes (New Tiedtke, Kain-Fritsch,
and Grell–Devenyi), and 3 planetary boundary layer schemes
(YSU, MYJ, and MYNN) along with Goddard and RRTM as
short-wave and long-wave radiation schemes.

Using Mellor-Yamada-Nakanishi-Niino scheme for planetary
boundary layer and surface layer, EXP3 and EXP4
parameterizations overestimated surface pressure at the ground
level stations and underestimated the wind speed. However,
for stations inside the water body, it results to lower surface
pressure and relatively higher wind speed compared to
other experiments. The results indicated that combining
MYNN planetary boundary layer scheme and the Thompson
microphysics scheme provided the most reliable results for
pressure and wind speed predictions. Also, wind speed is
estimated better for either the MYJ or MYNN boundary
layer scheme than non-local YSU during the Persian Gulf
meteotsunami event. It implied that the turbulent eddies during
this time period were small over the Persian Gulf and localized in
nature. In general, EXP4 parameterization (using MYNN scheme
for planetary boundary layer and surface layer) had the best
performance at stations over water and EXP2 parameterization
(using MYJ scheme for planetary boundary layer and Eta
similarity for surface layer) had the best performance at
stations on land.

Additional numerical experiments were performed to
evaluate the sensitivity of WRF simulations to the selection
of microphysics and convective parameterization using heat
and moisture content in the atmosphere and maximum radar
reflectivity. The results showed that all simulations were
successful in reproducing temperature and moisture content in
the atmosphere, but they overestimated the moisture content
in the upper troposphere. Also, simulations with WSM6
microphysics produced slightly stronger reflectivity, especially
at the southern part of the domain. Radar data indicated that
in that area, both WSM6 and Thompson microphysics provided
excessive reflectivity.

Both ST3 and ST6 packages in the WWIII model were used
with six WRF experiments and ERA5 wind data to reproduce Hs
and Tp during 15–23 March 2017. Two sets of tuning parameters
were used when ERA5 wind data were used: (1) default tuning
values; (2) calibrated tuning values proposed by BSD2021. Buoy
measurements at Bushehr were used for model assessments.
A new error parameter was introduced to determine the most
suitable wind data for the wave model during the dominance of

meteotsunami in the Persian Gulf. The lowest error was obtained
when wind data were produced by the EXP4 parameterization.
The ERA5 data led to the severe underestimation of Hs and
Tp in the model.

For the first time, the exact GQM was implemented in the
WWIII model to compensate for the deficiencies of the DIA
in deep water. The GQM could be faster than available exact
solutions in the third-generation wave models. The preliminary
calibration of tuning parameters for Sds the term was performed
when the GQM was applied for Snl term in the wave model.
It is inferable that slightly better performances of the model
relative to the DIA method were achieved when lower tuning
values were applied.

Conducting two-way coupling between atmosphere, ocean,
and wave models using the new implemented Snl term
for reproducing meteotsunami forerunner longwave and its
interaction with high-frequency wind waves would be the next
step to better study this meteotsunami event.
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Modelling of the Destructive Meteotsunami of 15 June, 2006 on the Coast of
the Balearic Islands. Pure Appl. Geophys. 165, 2169–2195. doi: 10.1007/s00024-
008-0426-5
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This work implements a dynamical downscaling approach, based on a set of nested two-
dimensional hydrodynamic models, to quantify the expected changes in the total sea level
climate and its components for the Uruguayan coast, using surface wind and sea level
pressure projections from global climate models generated during the Phase 5 of the
Coupled Models Inter-Comparison Project, considering three time horizons: historical
period (1986-2005), short term (2027-2045) and long term (2082-2100), and the future
scenarios RCP 4.5 and RCP 8.5. It is concluded that the main contribution to the projected
changes in the area is the regional mean sea level rise, followed in importance by the effect
that the increase in the water depth has on the amplitude of the tidal components.
Moreover, it is concluded that changes in the meteorological residuals (or surges),
associated with potential changes in the atmospheric circulation patterns, are negligible
in the study area. The obtained results reinforce the need to resort to dynamic downscaling
for projecting total sea level changes in areas characterized by wide and shallow continental
shelfs and estuaries, as this approach allows to resolve the interactions that may arise
between tides, surges and the mean sea level rise, something that cannot addressed with
an approach based solely on statistical downscaling.

Keywords: sea level rise, dynamical downcsaling, climate change, tide-surge interaction, non-linear effect
1 INTRODUCTION

The planning of coastal adaptation measures to climate change requires projections of the changes
that are expected to occur in the maritime agents (i.e. waves and sea level) in the future under
different scenarios and for different time horizons. There are several studies aimed at quantifying
future changes in the waves and sea level climates at global or regional scales (e.g. Hemer et al., 2015;
Vousdoukas et al., 2016; Camus et al., 2017; Casas-Prat et al., 2017; Wandres et al., 2017; Meucci
et al., 2020). All these studies share a common line of work where results from global climate models
(GCM), such as surface winds and sea level pressures (SLP), are used to project changes in the
variables of interest in a certain domain, resorting to one of the two methodologies available to this
end, known as statistical and dynamic downscaling.

Statistical downscaling methods are based in training statistical models that relate predictor
(winds and SLP) and predictand (waves and/or sea levels) variables. These methods are inexpensive
in.org March 2022 | Volume 9 | Article 8463961150
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from a computational point of view, which makes it possible to
use a large number of GCMs, allowing to improve the
quantification of the uncertainty involved and the consensus of
the projected changes (Perez et al., 2015). In fact, the studies
using statistical downscaling methods usually use all GCM
results available (e.g. Wang et al., 2014; Camus et al., 2017).
On the other hand, dynamic downscaling is based on the use of
physics-based numerical models that are forced with wind and
SLP fields time series obtained from the GCM, resulting in high
computational costs and, also, in more demanding requirements
in terms of spatial and temporal resolution of the GCM used to
force the models (e.g. Vousdoukas et al., 2016).

When looking at changes in the sea level, an advantage of the
dynamical downscaling over the statistical downscaling is that
the use of physic-based numerical models allows for considering
the non-linear interactions between the different components
that make up the total sea level and its change, namely: mean sea
level rise, astronomical tides (or tides) and meteorological
residuals (or surges). Unlike dynamical downscaling, the
statistical downscaling approach can only determine changes
directly associated with changes in atmospheric patterns (see e.g.
Camus et al., 2014).

Uruguay has more than 600 km of coast, encompassing both
the Rı  o de la Plata estuary and the Atlantic Ocean (Figure 1).
Along the coast, meteorological residuals and astronomical tides
have the same order of magnitude and are important
components of the total sea level (Santoro et al., 2013). The
main component of the astronomical tide is M2, with amplitudes
of up to 15 cm, followed by component O1 in most of the coast
(Ferna ndez & Piedra-Cueva, 2011). Regarding the variability of
the M2 amplitude along the coast, there is a tendency of higher
amplitudes around Colonia and Montevideo, and lower
Frontiers in Marine Science | www.frontiersin.org 2151
amplitudes between these and towards the ocean. Studies based
on in situ measured sea level data showed that the magnitude of
the meteorological residuals (or surges) decrease from the inner
part of the estuary towards the ocean (Fossati et al., 2013; Santoro
et al., 2013).

Despite the importance of specifically knowing how total sea
level will change along the Uruguayan coast, there are few
studies in relation to this. While there are global studies about
mean sea level change projections (e.g. IPCC, 2013; Slangen
et al., 2014; Carson et al., 2016), there are no global or regional
studies that determine the change in the total sea level climate
for this zone.

The objective of this work is to quantify the expected changes
in the total sea level climate and its components for the
Uruguayan coast, using surface wind and SLP projections from
GCM generated during the Phase 5 of the Coupled Models Inter-
Comparison Project (CMIP5) (Taylor et al., 2012) in the
framework of the WRCP (World Climate Research Program),
which are presented in the IPCC fifth report (IPCC, 2013). At the
moment, the latest report published by the IPCC is the AR6 (only
draft, final publication is expected on September 2022) where the
CMIP6 (Eyring et al., 2016) is presented, providing the state of
the art climate models; in addition, the Special Report on the
Ocean and Cryosphere in a Changing Climate (IPCC, 2019)
brings together recent research regarding sea level projections.
Nevertheless, at the time of initiating this work only information
from IPCC AR5 was available, so this is the one used. Three time
horizons are considered: historical period (1986-2005), short
term (2027-2045) and long term (2082-2100), and two future
scenarios RCP 4.5 and RCP 8.5 (Moss et al., 2010). Given
characteristics of the continental shelf and of the Rı  o de la
Plata estuary (Figure 1), it is expected that non-linear
interactions between sea level rise and tides and surges would
play a significant role in the estimation of projected changes, so a
dynamic downscaling scheme is adopted in this work.

The rest of the document is organized as follows. Sections 2
and 3 describes the methodology and the data used in this study.
Obtained results are presented in section 4 and discussed in
section 5, while section 6 summarizes the main conclusions.
2 METHODS

2.1 General Methodology
To obtain sea level projections in the study area, a dynamic
downscaling methodology is adopted, based on the
implementation of two nested hydrodynamic models. The
nested models are called regional and local model, and are
forced by the inflows from the tributaries of the Rı  o de la Plata
estuary, surface winds and SLP, and tides at its outer
oceanic boundaries.

To determine the future sea level climate, the hydrodynamic
models are forced with the wind and SLP projections of the
GCMs listed in Table 3. Results are obtained for three time-
horizons: historical, short term (2027-2045) and long term
(2082-2100); and for two representative concentration
FIGURE 1 | Study area and in-situ measurements stations along with the
bathymetry of the area.
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pathways scenarios: RCP 4.5 and RCP 8.5. Figure 2 shows an
outline of the methodology. On the one hand, the models are
forced with winds and SLP from the CFSR reanalysis (Saha et al.,
2010). Sea level time series obtained with this forcing are
validated using measured data to later be considered as the
ground true (Figure 2, left panel). On the other hand, models are
forced with GCM winds and SLP for both the historical period
and the future periods. First, results from the historical period are
used to evaluated whether the models correctly represent the sea
level climate in the study area when forced with GCMs. Then,
changes in the sea level climate are quantified by comparing
historical and future periods for each GCM (Figure 2,
right panel).
2.2 Hydrodynamic Models Setup
Hydrodynamic modeling is carried out by means of two nested
numerical models. Figure 3 shows the domains used in the two
models, along with a detail of the inner part of the Rı  o de la
Plata estuary.

The first model encompasses the domain comprised by the
South Atlantic Ocean (regional model; Figure 3, left panel), and
is forced by astronomical tides at the ocean boundaries, average
inflows from the Parana and Uruguay rivers, and by surface
winds and SLP in the free surface. In particular, the astronomical
tide is imposed at the ocean boundaries as the superposition of
13 tidal components (M2, N2, S2, K2, 2N2, O1, Q1, K1, P1, Mf,
Mm, Mtm, MSqm) obtained from FES2004 global ocean tide
atlas (Lyard et al., 2006). The objective of the regional model is to
generate the total sea levels time series to be imposed at the
oceanic boundaries of the local model (Figure 3; central panel).
The regional model is based on MOHID (Mateus and Neves,
2013) and was previously calibrated and validated for this
domain (Martı  nez et al., 2015; Jackson et al., 2021). The most
relevant characteristics of its implementation are presented
in Table 1.
Frontiers in Marine Science | www.frontiersin.org 3152
The local model is an implementation of TELEMAC-
MASCARET (Hervouet, 2007), in its 2D version, to a domain
that includes the estuary of the Rı  o de la Plata and its continental
shelf (Figure 3, central panel). TELEMAC has been successfully
applied in several estuarine dynamics studies (Briere et al., 2007;
Jones and Davies, 2008; Guillou & Chapalain, 2012; Huybrechts
et al., 2012; Huybrechts & Villaret, 2013; Luo et al., 2013; Sathish
Kumar & Balaji, 2015). The vertically integrated two-
dimensional hydrodynamic TELEMAC-2D model solves the
momentum and continuity equations using finite elements on
unstructured meshes. The equations are simplified assuming
incompressible fluid, vertical homogeneity, and hydrostatic
pressure distribution. The model is forced by surface winds
and SLP on the free surface, mean inflows from the Uruguay,
Parana and Santa Lucı  a rivers (Figure 3, right panel), and from
the sea level time series coming from the regional model at the
open oceanic boundaries. The time step used for running
the model is 60 seconds and results are saved at every node of
the mesh every 1 hour. Table 1 summarizes most relevant
characteristics of the implementation of the local model.
2.3 Calibration and Validation of the
Local Model
The calibration of the model was carried out using data measured
during the period 1985 to 2005, forcing the models with the
CFSR reanalysis, varying the Manning number and testing
different formulations for the wind shear stress. More than 40
calibration simulations were carried out, comparing the obtained
results against sea levels measured at 3 stations on the
Uruguayan coast, namely: La Paloma, Montevideo and Colonia
(see Figure 1).

Validation is performed by comparing the results obtained
with the calibrated model and the sea level data measured at the 6
stations shown in Figure 1. The goodness of the model is
analyzed by estimating bias (BIAS), mean square error (RMSE)
FIGURE 2 | Flowchart representing general methodology.
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and correlation coefficient (r) at each station, as expressed by
equations 1, 2 and 3 respectively,

BIAS = ym − yo Equation 1

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ym − yo)

2
q

Equation 2

R =
S(ym − ym) − (yo − yo)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(ym − ym)

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(yo − yo)
2

p Equation 3

where ym refers to the modeled data and yo to the measured
(observed) data. In addition, scatter diagrams are presented for
total sea level and for the meteorological residual, showing data
density according to a color scale, superimposed by a quantile-
quantile plot (25 quantiles are considered, evenly spaced on the

Equation 1

Equation 2

Equation 3
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Gumbel scale, between 0.001 and 0.999). Once validated, results of
the model are considered the ground true for subsequent analyzes.

2.4 Projections of Change in Sea Level
Climate
The analysis of the sea level projections obtained by forcing the
numerical models with the GCM is carried out focusing on
different spatial and temporal scales, using a series of evenly
spaced nodes located along the Uruguayan coast, from
Conchillas to Chuy (see e.g. Figure 8A).

Table 2 lists the different components of the total sea level that
are considered in the analysis. Total Sea Level (TSL) is arguably the
most important variable to be considered when analyzing changes in
sea level climate form a coastal engineering and coastal management
viewpoint. However, to better understand these changes, their origin
and their interactions, other variables are analyzed as well, namely:
TABLE 1 | Features of the setup for both regional and local hydrodynamic models.

MODELS FEATURES

REGIONAL LOCAL

Model MOHID - 2D TELEMAC-2D
Grid Structured; Latitude-Longitude with constant discretization of

0.1°
Finite volumes; From 7 km side triangles in the ocean border to 1 km in the
Uruguayan coast

Boundary Conditions Tributary flows (Uruguay, Parana and Santa Lucia); Surface
pressure and winds (10 m); Astronomical tide in open boundary

Tributary flows (Uruguay, Parana and Santa Lucia); Surface pressure and
winds (10 m); Sea level elevation from regional model in open boundary

Flow rates Uruguay-Parana Guazu 20.000 m3/s; Parana Las Palmas 5.000
m3/

Uruguay-Parana Guazu 20.547 m3/s; Uruguay- Parana Las Palmas 5.825
m3/s; Santa Lucı  a 180 m3/s

Atmospheric forcing NCEP-CFSR (model validation and reference data, 6 hr
resolution); CMIP5 (projections, 3 hr resolution)

NCEP-CFSR (model validation and reference data, 1hr resolution); CMIP5
(projections, 3 hr resolution)

Time step 180 s 60 s
Periods and climate
scenarios simulated

Historical (1985-2005); Short term (2026-2045, RCP 4.5 RCP 8.5); Long term (2082-2100, RCP 4.5 RCP 8.5)

Mean sea level Historical: 0,91 m; Short and long term: according to IPCC et al., 2013.
Model output Sea level every 1 hr for all grid points
FIGURE 3 | Nested hydrodynamic models scheme used in this study.
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sea level without regional sea level rise (SLWR),modelmean sea level
(MSLmodel), meteorological residuals (surge or meteorological tides;
Tmet) and tides (or astronomical tides; Tast).

MSLimposed is the imposed regional sea level rise and in
consequence is uniform in the entire domain and does not
depend on atmospheric forcing. On the other hand, MSLmodel

does depend on atmospheric forcing, but it has a spatial scale
similar to that of the analysis region, being approximately
uniform throughout the local domain. Both MSLimposed and
MSLmodel are removed from the results to better analyze the
other components of the sea level signal.

Changes in Tmet and Tast are analyzed separately because
they have different origin. While Tmet depends on the
atmospheric forcing, Tast does not depend on the atmospheric
forcing but can be affected by the nonlinear interactions with
Tmet and by the change in the MSL.

To obtain Tmet at each point, firstMSLmodel is subtracted from
the SLWR in order to avoid the influence of sea level components
of spatial and temporal scales greater than that of the
meteorological events (synoptic scale), and then the Doodson
filter (Pugh, 1987) is applied to filter out astronomical tides from
the signal. To obtain Tast, an harmonic analysis is carried out
using T-Tide toolbox (Pawlowicz et al., 2002), and only the
amplitudes of the M2 and O1 components is analyzed, as these
are the two most relevant components along the Uruguayan
coast (Fossati et al., 2013).
Frontiers in Marine Science | www.frontiersin.org 5154
For each variable the projected changes are evaluated by
looking at changes in its mean value and in the 1% and 99%
quantiles (the latter two representatives of extreme low and high
conditions). Changes are evaluated considering results from each
GCM separately and also by looking at the ensemble of
the results.

2.5 Significance of the Projected Changes
The significance of the changes is analyzed only for the SLWR
and its components. To analyze the significance of the changes
projected by each GCM, the Student-t test was applied to the
series of annual values of the three analyzed statistics (i.e. series
of annual mean and of 1% and 99% quantiles; see e.g. Casas-Prat
et al., 2017 and Hemer et al., 2013). Null hypothesis in this test is
that the distribution of the annual statistics is the same in the
historical period and in the future periods.

On the other hand, for the analysis of the ensemble of the
results, the significance of the change is determined following a
methodology similar to that used in Wandres et al. (2017) and
Camus et al. (2017). For each model, the difference between the
statistic estimated from projections and the one estimated in
the historical period is calculated. Then, if the mean of the
differences is greater than the standard deviation, and if at least 6
of the 7 models project the same direction of the change (increase
or decrease), then the change in is said to be significant (i.e. when
working with the ensemble of the results, a change is considered
significant if both conditions are met).
3 DATA

3.1 Measured Sea Level Series
Sea level data measured at six stations located in the study area
are used for the calibration and validation of the local model. Of
these, five stations are located along the Uruguayan coast and
one in the inner part of the Rı  o de la Plata estuary (Figure 1).
Only years with less than 50%missing data are used in this study,
considering the time period 1985-2005. Figure 4 shows the data
availability at each station.
TABLE 2 | Sea level components considered in the analysis.

Sea level components considered in the analysis

MSL Mean sea level
MSLimposed Regional mean sea level, imposed as boundary condition
MSLmodel Model mean sea level

MSLmodel = MSL – MSLimposed

Tmet Meteorological tide
Tast Astronomical tide
SLWR Sea level without regional sea level rise

SLWR = MSLmodel + Mmet + Mast
TSL Total sea level

TSL = MSLimpuesto + SLWR
FIGURE 4 | Measured data available in each station (only years with less than 50% missing data are considered).
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3.2 Reanalysis CFSR
The calibration and validation of the hydrodynamic model is
carried out by forcing it with hourly wind and SLP fields from the
atmospheric reanalysis of the National Centers for
Environmental Prediction NCEP-CFSR of USA (Saha et al.,
2010). Wind data have a spatial resolution of 0.205°x0.204°,
and SLP data have a spatial resolution of 0.312°x0.312° 1. Here,
only the data covering the historical period (1985-2005) is used.

3.3 Global Climate Models (GCMs)
To obtain sea level projections, the 2D hydrodynamic models are
forced with wind and SLP fields of the seven GCM from the
CMIP5 listed in Table 3. The selection of these models is made
on the basis that these were the only models (at the moment of
downloading, january 2019) having the required variables with
temporal resolution of three-hours or higher. In all cases only
r1i1p1 runs were used, and all data was downloaded through the
Earth System Grid Federation2.

3.4 Mean Sea Level Rise
Regional sea level rise projections from IPCC AR5 (Church et al.,
2013; IPCC, 2013) are used for climate scenarios RCP 4.5 and RCP
8.5 (data available from the Hamburg University3). Regional mean
sea level rise data, relative to the baseline period 1986-2005, is
available in a global domain with a 1°x1° resolution. In this work,
the increase in mean sea level (we considered mean values of
increase from the data set) is considered as uniform in space and is
added to the boundary condition of the hydrodynamic model.
This uniform regional mean sea level rise value is estimated as the
spatial mean of the regional mean sea level rise within the
computational domain of the hydrodynamic model, which
includes the Rı  o de la Plata and part of the Atlantic Ocean [lat
(-54.2, -22) lon (-70, -45.5); see Figure 2].

Table 4 summarizes the estimated values of the regional sea
level rise for four time-horizons and the mean rise for 2081-2100
period, for the two scenarios analyzed. It is noted that these values
are in agreement with the values obtained when considering the
regional sea level rise at the nodes closest to the Uruguayan coast
(i.e. average regional sea level rise within the computational
domain is in agreement with sea level rise projected for the
Uruguayan coast and the Rio de la Plata estuary).
1https://rda.ucar.edu/.
2https://esgf-node.llnl.gov.
3https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/ar5_sea_level_rise/
catalog.html.

Frontiers in Marine Science | www.frontiersin.org 6155
4 RESULTS

4.1 Local Model Calibration and Validation
The calibration of the local model results in choosing the Flather
(1976) formulation for the wind shear stress and a non-uniform
Manning number for the domain (0.007 in the inner zone of the
estuary and 0.15 in outer and middle zones). Regarding
validation, Figures 5, 6 show the scatter plots and the
quantile-quantile plots for each station for total sea level (TSL)
and meteorological residuals (or surge, Tmet; see Projections of
Change in Sea Level Climate), respectively. In addition, Table 5
lists RMSE and correlation coefficient for the different stations
for both variables, along with the bias for the TSL.

In Figure 5 it is observed that in all the stations the scatter
points are aligned with the line 1-1 (indicated in red). In the case
of Punta del Este, it is observed that the quantile-quantile plot
shows a negative bias for all quantiles, in agreement with the high
bias and RMSE and low correlation estimated for the TSL for this
station (see Table 5). TSL at the rest of the stations present high
correlation coefficients and RMSE values around 25 cm
(Table 5). In Figure 6 it is noted that the scatter plots tend to
be aligned with the identity line, although some points depart
form the trend in some stations; in all cases the quantile-quantile
plots are clearly aligned with the identity line. These is consistent
with the large correlation coefficients listed for Mmet in Table 5,
although in this case the lowest correlations are obtained Punta
del Este and La Paloma stations. Regarding astronomical tide, the
model overestimates the amplitudes, reaching around 0.07 m
and 0.04 m global RMSE values for M2 and O1 constituents
respectively (considering only the coastal stations from
Figure 1). Differences between measured and modeled
amplitude and phase for each station are shown in Table S1.
Nevertheless the model represents correctly the regional trend of
the tide.

In general terms, the model correctly represents both the total
sea levels and the meteorological component along the entire
coast. These validated results are considered as the reference
results from now on.

4.2 GCMs Historical Period
Figure 7 shows the quantile-quantile plots comparing TSL series
obtained with the GCM with the reference series obtained with
the CFSR at the 6 coastal stations presented in Figure 1, for the
historical period. For the sake of readability, from now on when
referring to results of a GCM, reference is made to the results
obtained with the hydrodynamic model forced with that
TABLE 3 | CMIP5 models used in this study: name, institution, country and spatial resolution.

Model Institute Spatial resolution [°latx°lon]

S1.0 CSIRO-BOM (Australia) 1.25 x 1.9
CMCC-CM Centro Euro-Mediterraneo per I cambiamenti Climatici (Italy) 0.75 x 0.75
CNRM-CM5 Centre National de Recherches Meteorologiques (France) 1.4 x 1.4
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory (USA) 2 x 2.5
HadGEM2-ES Met Oficce Hadley Centre (UK) 1.25 x 2
IPSL-CM5A-MR Institut Pierre-Simon Laplace (France) 1.25 x 2.5
MIROC5 MIROC (Japan) 1.4 x 1.4
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particular GCM. It is observed that the results get worse for the
stations located at the inner part of the estuary (Colonia, Juan
Lacaze and Pilote Norden).

For the stations located at the outer part of the estuary and at
the oceanic coast, a good performance is observed for all the
GCM for low and middle quantiles; however, most of the GCM
underestimate the high quantiles, with underestimations of up to
40 cm in La Paloma and 60 cm in Montevideo for the GFDL-
ESM2G model. Exceptions are results from the MIROC5 and
CMCC-CM models, for which the highest quantiles are well
represented and tend to improve from La Paloma to Montevideo.

On the other hand, for stations at the inner part of the estuary,
good results are observed for the MIROC5 and CMCC-CM
models in the entire range of quantiles, while the rest of the
models overestimate (underestimate) low (high) quantiles:
Frontiers in Marine Science | www.frontiersin.org 7156
lowest quantiles are overestimated by up to 30 cm, while
highest quantiles are underestimated by up to 90 cm.

4.3 Projections
4.3.1 Changes in TSL
Figure 8 shows changes in the mean (left panels), 1% quantile
(center panels) and 99% quantile (right panels) of the TSL, for
both the short term (2027-2045) and long term (2082-2100)
projections, and for both RCP scenarios. For the mean, a
constant change is projected along the coast, while for the 1%
and 99% quantiles it is observed that the projections of change
vary along the coast.

For the 1% quantile, a pattern of spatial variability is observed
with a maximum around Colonia and a minimum between Juan
Lacaze and Montevideo. In the short term, the range of projected
A B C

D E F

FIGURE 5 | Scatter plot and qq-plot (black) from modeled total sea level (m) vs measured total sea level (m) in: (A) La Paloma, (B) Punta del Este, (C) Montevideo,
(D) Juan Lacaze, (E) Colonia and (F) Pilote Norden. Only years with less than 50% hourly missing data considered. Read line represents 1-1 and colorscale
represents data density (blue less data – yellow more data). 25 equispaced quantiles shown with Gumbel scale ranging from 0.001 to 0.999.
TABLE 4 | Mean sea level change used in this work for RCP 4.5 y RCP 8.5 scenarios.

Mean sea level change (m)

RCP 4.5 RCP 8.5

2026 0.100 0.103
2045 0.189 0.204
2081 0.385 0.505
2100 0.492 0.729
2081-2100 mean 0.458 0.635
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changes is similar for both RCP scenarios. In the long term, the
same spatial pattern is observed as in the short term, but with
different ranges of variation for the different RCP (associated
with differences in the mean sea level rise), and with larger
differences between maximums and minimums.

On the other hand, changes in the short term of the 99%
quantile shows a very similar range for the two scenarios and a
relatively uniform pattern all along the coast. Whereas in the
long term a marked spatial distribution is observed, with
maximum values in the inner area of the estuary and a relative
maximum around Montevideo, with similar behavior observed
for both scenarios, although with different ranges of values.

From Figure 8 it is clear that the mean sea level rise
dominates the projected changes in the TSL, therefore it is
Frontiers in Marine Science | www.frontiersin.org 8157
relevant to analyze changes in the SLWR and its components
to better quantify and understand other sources of changes and
their interactions.

4.3.2 Changes in the SLWR
Figure9 shows theprojectedchanges in themeanand in the1%and
99%quantiles of the SLWR, for the longand short termand for both
RCP scenarios, aswell as the significanceof the changes. It shouldbe
noted that the Student-t test, applied to each member of the
ensemble, rejected the null hypothesis (i.e. changes are statistically
significant) for all the nodes and for all the models and scenarios
analyzed (for SLWR and for the variables Tmet and Tast analyzed
next); therefore in Figure 9 and in those that follow, only the result
of the significance of the changes in the ensembles is included.
A B C

D E F

FIGURE 6 | Scatter plot and qq-plot (black) from modeled meteorological tide (m) vs measured meteorological tide (m): (A) La Paloma, (B) Punta del Este,
(C) Montevideo, (D) Juan Lacaze, (E) Colonia and (F) Pilote Norden. Only years with less than 50% hourly missing data considered. Read line represents 1-1 and
colorscale represents data density (blue less data – yellow more data). 25 equispaced quantiles shown with Gumbel scale ranging from 0.001 to 0.999.
TABLE 5 | Stadistics obtained comparing modeled total sea level (BIAS, RMSE and r) and meteorological tide (RMSE and r) with measures in La Paloma, Punta del
Este, Montevideo, Colonia, Juan Lacaze and Pilote Norden.

Station Total sea level Meteorological tide

BIAS (m) RMSE (m) r RMSE (m) r

La Paloma -0.09 0.24 0.77 0.18 0.78
Punta del Este -0.12 0.31 0.65 0.2 0.79
Montevideo -0.002 0.25 0.8 0.19 0.85
Colonia -0.08 0.28 0.82 0.19 0.88
Juan Lacaze -0.02 0.25 0.84 0.19 0.87
Pilote Norden -0.11 0.29 0.84 0.19 0.87
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The change in themeanof the SLWRassembly is practically null
and not significant along the entire coast, except for the innermost
nodes in the long term, which indicates that the change in themean
of the TSL comes almost entirely from the increase in the mean sea
level. On the other hand, the change in the 1% and 99% quantiles
shows the same spatial patterns observed in the TSL.

The 1% quantile of the SLWR shows values very close to 0 in
the short term along the entire coast for every scenario, although
some significant negative changes are observed in the ensemble
(less than 5 cm) for the RCP 8.5 scenario. In the long term, the
spatial pattern of the changes is clearer, and the changes in the
ensemble are significant in the inner zone of the estuary, between
Juan Lacaze and Montevideo, as well as on the oceanic coast,
from La Paloma to the East, for both scenarios. These changes
show a minimum in the inner zone of the estuary, a relative
minimum between Juan Lacaze and Montevideo, as well as a
decrease from Punta del Este towards the east. It is noted that in
the long term all the models show the same spatial pattern.

The 99% quantile of the SLWR shows significant changes in
most of the coast for both future horizons and both scenarios. In
Frontiers in Marine Science | www.frontiersin.org 9158
the short term, the change is practically uniform along the coast
for both scenarios, and the ensemble shows positive changes of
less than 5 cm. In the long term, the same spatial pattern as for
the change in TSL is observed, although in this case the
maximums in the RCP8.5 scenario are more pronounced,
which could be associated to either changes in the atmospheric
patterns or to non-linear effects produced by the depth increase
due to the mean sea level rise.

4.3.3 Change in the Meteorological Residuals (Tmet)
Figure 10 shows the changes in the 1% and 99% quantiles of the
Tmet (by its definition, the mean value of Tmet is always zero). The
objective of analyzing this variable is to focus attention on the
changes in sea level produced by changes in the atmospheric
patterns in the region.

It is observed that the projected change for the 1% quantile is
small along the entire coast for all models and RCP scenarios,
barely exceeding one centimeter in the short term and two
centimeters in the long term. The maximum change in the 1%
quantile occurs for the GFDL-ESM2G model in the long term
A B C

D E F

FIGURE 7 | QQ-plots of data obtained from the local model forced with each GCM (Modeled) vs reference data (Reference) for the historical period (1986-2005):
(A) La Paloma, (B) Punta del Este, (C) Montevideo, (D) Juan Lacaze, (E) Colonia and (F) Pilote Norden. 25 equispaced quantiles shown with Gumbel scale ranging
from 0.001 to 0.999.
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and for the RCP 8.5 scenario, with a decrease of only 2 cm. It is
noted that changes in the ensemble are not significant in all cases.

In general terms, the changes in the 99% quantile are small,
although there is a slight trend towards positive changes towards
the east, reaching values that exceed 5 cm in the short and long
term for some of the models. In the inner area of the estuary,
changes are negligible for all models. The model that shows the
greatest changes is the CMCC-CM in all cases. The ensemble
shows a clear trend to larger positive changes towards the east,
with values not exceeding 2 cm in any case. As in the previous
case, changes in the ensemble are not significant, mainly due to
the great dispersion of the results.

4.3.4 Changes in the Astronomical Components
(Tast)
Figure 11 shows the projected changes in the amplitude of the
tidal components M2 (right panel) and O1 (left panel), including
the amplitude of both components for the historical period.

In the case of the M2 amplitude, it is seen that the spatial
pattern of the changes along the coast is repeated in the short and
long term, showing mostly positive changes for the amplitude of
this component along almost the entire coast, with increases of
about 1 cm in the short term and between 2 cm and 5 cm in the
long term. It is noted that both the amplitude calculated for the
historical period and the projected change have the same pattern,
with relative maxima and minima almost coinciding in space.
There is a relative minimum between Colonia and Juan Lacaze,
with zero change in both the short and long term; then, there is
another minimum in the amplitude between Montevideo and
Punta del Este, also associated with zero change. In turn, near
Frontiers in Marine Science | www.frontiersin.org 10159
Punta del Este there is a significant negative change in both the
short and long term. On the other hand, the largest projected
changes occur for the largest amplitudes, in the inner zone of the
estuary, where the maximum change in the short term reaches
1.5 cm and in the long term exceeds 4 cm for RCP 4.5 and 6 cm
for RCP 8.5. Between Juan Lacaze and Montevideo there is a
relative maximum in the amplitude of the M2 component that
exceeds 30 cm; the changes for both time horizons also present a
relative maximum in this zone, with short-term changes barely
reaching one centimeter, and long-term changes exceeding 2 cm
for RCP 4.5 and 4 cm for RCP 8.5. It should be noted that within
each scenario and time horizon the dispersion of the results of
the different models is small, resulting in all projected changes
being significant for practically the entire coast. In addition, in
the short term there is almost no difference in the projected
changes for the different scenarios, while in the long term there
are some differences between the scenarios, particularly in the
magnitude of the projected changes.

The O1 component shows a similar behavior to that observed
for the M2 component: the spatial pattern of the projected
changes is similar to that of the amplitudes, with greater
changes projected in the zones of higher amplitudes. Short-
term changes show greater dispersion between models (with
respect to that observed in M2), although they do not exceed one
centimeter in any case. In the long term, there is a slight
difference between scenarios, and the maximum change does
not reach 4 cm for the RCP 4.5 scenario and barely exceeds 4 cm
for the RCP 8.5 scenario, where the amplitude of the component
is approximately 20 cm. As for the M2 component, the changes
in the ensemble are significant along the coast.
A D G

B E H

C F I

FIGURE 8 | Change in mean (A–C), change in 1% quantile (D–F) and change in 99% quantile (G–I) of TSL obtained from local model forced with each GCM and
ensemble (black), along the coast for short (2026-2045) and long term (2082-2100) and for RCP 4.5 (continuous lines) and RCP 8.5 (dotted lines). E.g.: change in
99% quantile for the short term is calculated as the difference between 2045-2026 99% quantile and 1985-2005 99% quantile. (A, D, G): coastal grid cells. (B, E,
H): change for short term. (C, F, I): change for long term.
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5 DISCUSSION

The results obtained by modeling the historical period, forcing
the hydrodynamic models with the GCMs, show that a better
representation of the sea level climate is achieved at the stations
located in the outer estuary zone and in the oceanic coast. In
particular, most GCMs underestimate the higher quantiles at all
stations (except CMCC-CM at La Paloma, Punta del Este and
Montevideo, and MIROC 5 at La Paloma), while the lower
quantiles are well represented at the outer stations and
overestimated at the inner stations. The models that best
represent current sea level climate in the region are MIROC5
and CMCC-CM, which have a spatial resolution of 1.4°x1.4° (the
lowest resolution among the 7 GCMs used) and 0.75°x0.75° (the
highest resolution), respectively; thus, there seems to be no
dependence between the resolution of the GCMs and their
performance in modeling sea level climate. In any case, none
of the models present results clearly at odds with the reference
climatology, therefore it is reasonable to retain all of them when
analyzing projections of change in order to have the widest
possible range of results.

When analyzing the changes in TSL for all scenarios and
future periods, it is observed that the change in the mean is
uniform along the coast, dominated mainly by the increase in
regional mean sea level. When analyzing the changes in the 1%
and 99% quantiles of the SLWR, the influence of other
components is observed, with a spatial pattern of changes that
is not always uniform along the coast, which also emerge when
Frontiers in Marine Science | www.frontiersin.org 11160
analyzing the 1% and 99% quantiles of the TSL. The analysis of
SLWR allows focusing attention on the changes induced in the
tidal and surge wave dynamics resulting from the increase in
the water depths due to the regional mean sea level rise. While
the distribution of the 1% SLWR quantile does not yield
additional information to that already observed in the
distribution of the 1% TSL quantile (the SLWR shows almost
overlapping changes for both scenarios, both in the short and
long term), the analysis of the 99% SLWR quantile shows that in
the long term for the RCP 8.5 scenario the change intensifies,
obtaining differences of more than 5 cm between the maximum
changes of the ensemble for each RCP scenario. It is possible to
relate the latter to the interaction between tidal wave propagation
and mean sea level rise, as in the future the difference between the
mean sea level rise for both scenarios increase (see Table 4).

Regarding the meteorological residuals, both the 1% and 99%
quantiles show changes close to 0 and not significant along the
coast, for both the short and the long term. This indicates that
the changes observed in the TSL are not associated with changes
in the atmospheric circulation patterns. There are no previous
studies of this type for our region, neither at global nor regional
scales, but it is interesting to note that Vousdoukas et al., 2016)
reach the opposite conclusion for the European coasts: these
authors perform a dynamic downscaling of sea levels, forced with
surface winds and SLP from 8 GCMs (without considering
astronomical tides), finding that the increase in extreme levels
associated with meteorological events along the European coast
range from 15% to 40% in certain regions.
A D G

B E H

C F I

FIGURE 9 | Change in mean (A–C), change in 1% quantile (D–F) and change in 99% quantile (G–I) of SLWR obtained from local model forced with each GCM and
ensemble (black), along the coast for short (2026-2045) and long term (2082-2100) and for RCP 4.5 (continuous lines) and RCP 8.5 (dotted lines). E.g.: change in
99% quantile for the short term is calculated as the difference between 2045-2026 99% quantile and 1986-2005 99% quantile. (A, D, G): coastal grid cells and
significance for the ensemble change for each scenario (the symbol indicates statistical significance of the ensemble change). (B, E, H): change for short term. (C, F,
I): change for long term.
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On the other hand, the changes in the amplitude of the M2
and O1 astronomical components along the coast were shown to
be very similar between models. The general trend is to have
large changes in areas of large tidal amplitude, and larger ratio
between change and current amplitude for the O1 component
than for the M2 component, with the former showing changes
that reaches 4 cm for a current amplitude of 20 cm. It is also
noted that the change in the astronomical components is not
influenced by the atmospheric, as the 7 GCMs projected quite
similar changes forcing (i.e. there are no strong tide-surge
interaction affecting the changes), implying that changes in the
astronomical tide amplitudes are due to the imposed regional
mean sea level rise and the resulting increase in water depths.

From the previous analysis, it is clear that the main
contribution to the change in the TSL is the regional mean sea
level rise. Then, the analysis of the signals obtained by
subtracting this contribution (SLWR and its components),
shows that the change in the astronomical tide resulting from
the increase in the regional mean sea level is especially important,
and that it is from this interaction that arises the spatial patterns
observed in the 1% and 99% quantiles (mainly in the latter).
Moreover, since the change in MSLmodel is constant along the
coast, it is understood that it does not contribute significantly to
Frontiers in Marine Science | www.frontiersin.org 12161
the observed spatial patterns. On the other hand, the changes in
the 99% quantile of the meteorological residual does not present
the spatial pattern observed in TSL and SLWR, but shows
minimum values along the coast towards the inner zone of the
estuary and grows outwards. In contrast, the change along the
coast in the tidal components does present a spatial pattern that
agrees with that observed in the SLWR, especially in the inner
zone of the estuary, where the change for the M2 and O1
component are maximum. In particular, the M2 component
presents a relative maximum that encompasses the zone of
maximum change around Montevideo observed in the TSL
and SLWR, which leads to think that it may also be
contributing significantly to these, although for the M2
component the zone of change extends almost to Punta del
Este, unlike for the SLWR. All the above agrees with the fact that
changes in the 99% quantile intensify in the long term with the
more severe scenario, given that the difference in regional mean
sea level rise between scenarios increases in the long term. It is
noted that this result is consistent with that of Pickering et al.
(2012); Pelling et al. (2013) and Idier et al. (2017) for the
European shelf, where they analyzed the effect of the mean sea
level rise on the astronomical tide, confirming the importance of
the interaction between the mean sea level change and the tides:
A D

B E

C F

FIGURE 10 | Change in 1% quantile (A–C) and change in 99% quantile (D–F) of Tmet obtained from local model forced with each GCM and ensemble (black), along
the coast for short (2026-2045) and long term (2082-2100) and for RCP 4.5 (continuous lines) and RCP 8.5 (dotted lines). E.g.: change in 99% quantile for the short
term is calculated as the difference between 2045-2026 99% quantile and 1986-2005 99% quantile. (A, D): coastal grid cells. (B, E): change for short term. (C, F):
change for long term.
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Idier et al. (2017) concludes that changes of up to +/-15% are
reached in the amplitudes of the most important tidal
components in the region, such as M2, S2, N2, among others;
Pickering et al. (2017) investigated the effect of mean sea level
rise on the tides globally, concluding that significant changes
occur in the M2 and S2 constituents in most shelf seas.
Moreover, Haigh et al. (2020) does a comprehensive review of
past and future non-astronomical changes in tides, concluding
regional increases and decreases in tides are likely to occur in
response to MSL rise, changes in coastal morphology and
variations in ice sheets extension, affecting particularly shelf
seas and coastal waters; Howard et al. (2019) provided a
synthesis of results of projections of 21st century change in
extreme sea levels around the coast of the United Kingdom
and reached similar conclusions as this work, finding projections
dominated by the effects of the mean sea level rise and changes in
tidal amplitudes induced by it, also noting that the tidal changes
do not depend on the atmospheric forcing (i.e. on the GCM
forcing model), being these highly uncertain, what makes
changes in tidal amplitudes more robust.
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There are certain limitations in this work that are worth
highlighting. First, the number of GCMs available for analysis
was relatively small, which is detrimental to the robustness of the
projections; although criteria have been implemented to
determine when a change is significant, having a small number
of models increases the risk of not being able to differentiate
between climate trends and the internal variability of the GCMs
used. In any case, this problem may be overcome in future
studies using the growing number of GCM results made available
by CMIP for dynamic downscaling. A second limitation is
related to the use of two-dimensional models, since they
cannot capture variations in mean sea level due to changes in
the baroclinic structure of the oceans; Hermans et al., 2020 have
shown that this effect is significant in the case of the North Sea, so
it should be included in future studies in order to analyzes its
relevance in this region. Lastly, this work used sea level rise
projections corresponding to AR5 (IPCC, 2013), which were
improved in the SROCC (IPCC, 2019) and for AR6 (Fox-
Kemper et al., 2021). However, comparison of CMIP5 and
CMIP6 shows that there are no qualitative differences in sea
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FIGURE 11 | Change in O1 component amplitude (A–D) and change in M2 component amplitude (B–H) obtained from local model forced with each GCM and
ensemble (black), along the coast for short (2026-2045) and long term (2082-2100) and for RCP 4.5 (continuous lines) and RCP 8.5 (dotted lines). E.g.: change in
M2 component for the short term is calculated as the difference between 2045-2026 M2 amplitude and 1986-2005 M2 amplitude. (A, E) coastal grid cells coastal
grid cells and significance for the ensemble change for each scenario (the symbol indicates statistical significance of the ensemble change), (B, F): component
amplitude, (C, G): change for short term, (D, H): change for long term.
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level rise projections, and that quantitative differences are limited
to a few centimeters (see e.g. Hermans et al., 2020, Lyu et al.,
2020), so it seems that updated regional sea level rise values
would lead to similar results in our work.
6 CONCLUSIONS

From the analysis of the changes projected for the different
components of the total sea level along the Uruguayan coast, it is
concluded that the main contribution to the projected changes is
the regional mean sea level rise, followed in importance by the
effect that the increase in the water depth has on the amplitude of
the tidal components. Moreover, it is concluded that changes
in the meteorological residuals, associated with potential changes
in the atmospheric circulation patterns, are negligible in the
study area. This in turn reinforces the need to resort to dynamic
downscaling for studies of these characteristics, since this
approach allows to resolve the interactions that may arise
between tides, surges and the mean sea level rise, something
that cannot addressed with an approach based solely on
statistical downscaling.

Regarding the magnitude of the projected changes for the
Uruguayan coast, there are two regions along the coast that
deserve special attention, as there is where the greatest increases
in the 99% quantile of the TSL is projected: from Colonia
towards the inner part of the estuary and the coastal zone
around Montevideo. In the long term (2082-2100) the
ensemble shows increases of up to 52 cm in Colonia and
50 cm around Montevideo for RCP 4.5, with around 46 cm
explained by the 2081-2100 mean sea level rise. For RCP 8.5, the
ensemble shows increases up to 74 cm in Colonia towards the
inner part of the estuary and 71 cm around Montevideo, where
64 cm comes from 2081-2100 mean sea level rise.
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Over recent decades, the Arctic Ocean has experienced dramatic variations due to
climate change. By retreating at a rate of 13% per decade, sea ice has opened up
significant areas of ocean, enabling wind to blow over larger fetches and potentially
enhancing wave climate. Considering the intense seasonality and the rapid changes to the
Arctic Ocean, a non-stationary approach is applied to time-varying statistical properties to
investigate historical trends of extreme values. The analysis is based on a 28-year wave
hindcast (from 1991 to 2018) that was simulated using the WAVEWATCH III wave model
forced by ERA5 winds. Despite a marginal increase in wind speed (up to about 5%),
results demonstrate substantial seasonal differences and robust positive trends in
extreme wave height, especially in the Beaufort and East Siberian seas, with increasing
rates in areal average of the 100-year return period up to 60%. The reported variations in
extreme wave height are directly associated with a more effective wind forcing in emerging
open waters that drives waves to build up more energy, thus confirming the positive
feedback of sea ice decline on wave climate.

Keywords: wind extremes, wave extremes, Arctic Ocean, climate change, non-stationary statistics
1 INTRODUCTION

Arctic sea ice extent has been declining sharply at a rate of 13% per decade and with thickness
reducing about 66% over the past 60 years (see IPCC, 2019). Variations of the sea ice cover have
been the cause of notable changes to meteorological and oceanographic conditions in the Arctic
Ocean (e.g. Thomson and Rogers, 2014; Liu et al., 2016; Stopa et al., 2016; Thomson et al., 2016;
Waseda et al., 2018; Casas-Prat and Wang, 2020). Emerging open waters—see the minimum sea ice
extent in September 1991 and September 2018 in Figure 1 —provide longer fetches for surface
waves to build up more energy and increase in magnitude (Thomson and Rogers, 2014; Thomson
et al., 2016). Concurrently, an increase of wave height impacts profoundly on the already weak sea
ice cover by enhancing breakup and melting processes in a feedback mechanism (Thomson et al.,
2016; Dolatshah et al., 2018; Passerotti et al., 2022). In addition, coastlines and coastal communities
have been impacted by intensifying erosion with coastline retreat rates up to 25 m per year (e.g.
Jones et al., 2009; Gunther et al., 2015).

Ocean climate evaluated from satellite observations (Liu et al., 2016) for the months of August
and September—the period of minimum ice coverage—reveals weak or even negative trends of
average offshore wind speeds over the period between 1996 and 2015, while notable upward trends
in.org May 2022 | Volume 9 | Article 8020221165
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were detected in the higher 90th and 99th percentiles across the
entire Arctic Ocean, except for the Greenland sea. Unlike winds,
waves showed more substantial increasing rates even for average
values, especially in the Chukchi, Laptev, Kara seas and
Baffin Bay.

Satellite observations have temporal and spatial limitations,
which are exacerbated in the Arctic where most of the altimeter
sensors do not usually cover latitudes higher than 82°. Numerical
models, on the contrary, provide more consistent data sets for
climate analysis in this region. Stopa et al. (2016) estimated
trends using a 23-year model hindcast and found that simulated
average wind speed exhibits a weak increasing trend, especially in
the Pacific sector of the Arctic Ocean, slightly differing from the
satellite-based observations in Liu et al. (2016). Average wave
heights, however, were found to be consistent with altimeter
data. Waseda et al. (2018) used the ERA-Interim reanalysis
database (Dee et al., 2011) to evaluate the area-maximum wind
speed and wave height in the months of August, September and
October from the period 1979-2016 in the Beaufort, Chukchi,
East Siberian and Laptev seas. Their analysis indicated robust
increasing trends for both variables, with most significant
changes in October: ≈0.06ms-1 per year for wind speed
and ≈2cm per year for mean significant wave height. Recently,
Casas-Prat and Wang (2020) simulated historical (1979-2005)
and future (2081-2100) sea state conditions to evaluate changes
in regional annual maximum significant wave height, under high
baseline emission scenarios (RCP8.5). Their results indicated
that wave height is projected to increase at a rate of
Frontiers in Marine Science | www.frontiersin.org 2166
approximately 3 cm per year, which is more than 0.5% per
year in terms of annual maxima.

Previous assessments of ocean climate in the Arctic have
focused on annual or monthly values and often paid specific
attention to summer months. A comprehensive evaluation of
climate and related changes cannot, however, ignore extremes.
Classically, extreme metocean conditions are estimated with an
extreme value analysis (EVA), where observations are fitted to a
theoretical probability distribution to extrapolate values at low
probability levels, such as those occurring on average once every
100 years (normally referred to as the 100-year return period
event, see Ochi, 2005; Bitner-Gregersen and Toffoli, 2014;
Thomson and Emery, 2014; Clancy et al., 2016; Meucci et al.,
2020, for examples of applications in different fields of ocean
engineering, physical oceanography and climate). Therefore, the
EVA has to rely on long records spanning over one or more
decades (observations typically cover more than a 1/3 of the
return period), to be statistically significant. Motivated by the
need of very long time series, the EVA requires the fundamental
assumption that the statistical properties of a specific variable do
not change over time, namely the process is stationary. For the
strongly seasonal and rapidly changing Arctic environment,
however, the hypothesis of stationarity cannot hold for an
extended period of time. The inevitable time-dependency of
the statistical distribution of a certain environmental stochastic
process translates into a time-dependency of the parameters of
the associated extreme value distribution (see more details in e.g.
Renard et al., 2013; De Leo et al., 2021), invalidating the
fundamental assumption of the EVA.

An alternative approach that better fits the highly dynamic
nature of the Arctic is the estimation of time-varying extreme
values with a non-stationary analysis (see, for example, Coles
et al., 2001; Mendez et al., 2006; Galiatsatou and Prinos, 2011;
Cheng et al., 2014; Mentaschi et al., 2016; De Leo et al., 2021, for
a general overview). There are a number of methods for the
estimation of time-varying extreme value distributions from
non-stationary time series. A functional approach is the
transformed-stationary extreme value analysis (TS-EVA)
proposed by Mentaschi et al. (2016). The method consists of
transforming a non-stationary time series with a normalisation
based on the time-varying mean and standard deviation into a
stationary counterpart, for which the classical EVA theory can be
applied. Subsequently, an inverse transformation allows the
conversion of the EVA results to time-varying extreme values.

Here we apply the TS-EVA method to assess time-varying
extremes in the Arctic Ocean. The assessment is performed on a
data set consisting of a long-term hindcast—from January 1991
to December 2018—that was obtained using theWAVEWATCH
III (WW3, Tolman, 2009) spectral wave model forced with ERA5
reanalysis wind speeds (Hersbach et al., 2019). A description of
the model and its validation is reported in Section 2.1. Model
data are processed with the TS-EVA to determine extreme values
for wind forcing and wave height. Long-term trends are
investigated with a nonseasonal approach; seasonal variability
is considered with a concurrent seasonal method (Section 2.2).
Results are discussed in terms of regional distributions and areal
FIGURE 1 | Regions of the Arctic Ocean used in this study with lines
showing sea ice extent in September of 1991 (blue) and 2018 (red). Sea ice
concentration dataset from ERA5 reanalysis.
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averages in Sections 3 and 4. Concluding remarks are presented
in the last Section.
2 METHOD

2.1 Wave Hindcast
A 28-year (from 1991 to 2018) wave hindcast of the Arctic Ocean
(Cabral et al., 2021) was carried out with the WAVEWATCH III
(WW3) spectral wave model—version 6.07—to build a database
of sea state conditions, which is consistent in space and time. A
regional model domain covering the area above latitude 53.17°N
was set up in an Arctic Polar Stereographic Projection with a
horizontal resolution varying from 9 to 22 km (this configuration
was found to optimise the accuracy of model results in relation to
recorded data and computational time). The bathymetry was
extracted from the ETOPO1 database (Amante and Eakins,
2009). The regional set up was then forced with ERA5
atmospheric data and sea ice coverage (Hersbach et al., 2019).
The model physics were defined by the observation-based ST6
source term package (Liu et al., 2019), which accounts for wind-
wave interaction and white capping dissipation processes, and
the discrete interaction approximation (DIA, see Komen et al.,
1984), which describes nonlinear interactions. The model was
run without wave-ice interaction modules as the focus is on the
open ocean and not the marginal ice zone; regions of sea ice with
concentration larger than 25% were therefore treated as land.
Note that higher thresholds of sea ice concentration are not ideal
as they would produce significant wave attenuation (see for
Frontiers in Marine Science | www.frontiersin.org 3167
example Kohout et al., 2020; Alberello et al., 2021), requiring
specific waves-in-ice physics. Boundary conditions were imposed
on the regional model to account for energetic swells coming
from the North Atlantic. To this end, boundaries were forced by
incoming sea states from WW3 global runs with 1-degree spatial
resolution (see Zieger et al., 2015, for general details of the set
up). The global model used ERA5 wind forcing and the ST6
source term package. Simulations were run with a spectral
domain of 32 frequency and 24 directional bins (directional
resolution of 15 degrees). The minimum frequency was set at
0.0373 Hz and the frequency increment factor was set at 1.1,
providing a frequency range of 0.0373-0.715 Hz. Grid outputs
were stored every 3 hours.

Calibration of the ST6 source terms only requires adjustments
of the wind-wave growth parameter (CDFAC, see e.g. Fernandez
et al., 2021, for a discussion on model sensitivity to this
parameter). This was performed by testing the model outputs
(significant wave height) against altimeter data across six
different satellite missions (ERS1, ERS2, ENVISAT, GFO,
CRYOSAT-2 and Altika SARAL, see Queffeulou and Croize-
Fillon, 2015) and for the period August-September 2014. The
best agreement for the regional set up was achieved for CDFAC =
1.23 with correlation coefficient R=0.95, scatter index SI ≈ 1%
and root mean square error RMSE ≈ 0.3mm (see e.g. Thomson
and Emery, 2014, for details on error metrics). The configuration
was further validated by comparing all modelled significant wave
height values against matching altimeter observations for an
independent period of four years from 2012 to 2016. Figure 2A
shows the regional model outputs versus collocated altimeter
A B

D

E

F

G

C

FIGURE 2 | Validation of significant wave height for the period 2012–2016 with ST6 core physics. Comparison against altimeter observations: (A) all data and
(B) 90th percentile. Comparison against ERA reanalysis: (C) all data and (D) 90th percentile and above. The black line represents the 1:1 agreement and the red
lines are the linear regression. Regional distribution of error metrics (in relation to altimeter observations and data in the 90th percentile): (E) correlation, (F) scatter
index, and (G) root mean square error.
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data for the validation runs. Generally, the model correlates well
with observations: R = 0.97, SI = 16%, and RMSE = 0.38m. The
residuals between model and altimeters as a function of the
observations are reported in Figure 2B for data in the 90th

percentile. The comparison indicates a satisfactory level of
agreement for the upper range of wave heights (Hs > 4m): R =
0.86, SI = 11%, and RMSE = 0.63m. Model outputs are also
consistent with ERA5 reanalysis, with a R = 0.99, RMSE = 0.27m
and NBIAS of 2.3% for all data (Figure 2C), and R = 0.95,
RMSE = 0.52m and NBIAS of 1.4% for the upper percentiles
(Figure 2D). Note, however, that the WW3 model hindcast used
herein predicts slightly higher wave heights and is marginally
more accurate in replicating satellite observations than ERA5
(see assessment of ERA5 performance in Law-Chune et al., 2021)
due to enhanced spatial and temporal resolution, making it more
suitable for the present analysis.

The regional distribution of model errors (with respect to
altimeter observations and for data in the 90th percentile) is
reported in Figures 2E–G. The model performed well across the
entire Arctic Ocean with no specific regions affected by
significant errors, noting that the analysis is limited to deep
water regions where altimeter data is not contaminated by land.

The validation above considers matches of collocated values
in time and space. An extreme value analysis applied to model
results would require a further validation of e.g. 100-year return
period significant wave height against in-situ or remotely sensed
observations. Long duration (more than 20-years) in-situ buoy
records are not available in the Arctic. Although altimeter data
can be used for long term statistical analysis (Vinoth and Young,
2011; Takbash et al., 2019), low observation density and
contamination of land and sea ice in the satellite footprints
result in significant under-sampling and thus uncertainties of
extreme value estimates (Takbash and Young, 2019). Thereby,
the lack of reliable independent long term observations hampers
a thorough verification of an extreme value analysis.

2.2 Transformed Stationary Extreme
Value Analysis
The TS-EVA method developed by Mentaschi et al. (2016) is
applied herein without any modifications, to extract time-
varying information on climate extremes. In this section,
Frontiers in Marine Science | www.frontiersin.org 4168
we only provide a brief summary of the approach, while a
more detailed discussioncan be found in Mentaschi et al.
(2016); De Leo et al. (2021).

The method is based on three main steps. In the first step, the
original non-stationary time series (see an example of significant
wave height for the Kara sea in Figure 3A, where an initial
downward trend between 1993 and 1999 is followed by a clear
positive trend) is transformed into a stationary counterpart that
can be processed using classical EVA methods. The
transformation is based on the following equation:

x tð Þ = y tð Þ − Ty tð Þ
Sy tð Þ (1)

where y(t) is the non-stationary time-series, x(t) is the stationary
counterpart, Ty(t) is the trend of y(t) and the Sy(t) is its standard
deviation. Computation of Ty(t) and Sy(t) relies on algorithms
based on running means and running statistics. This approach
acts as a low-pass filter, which removes the variability within a
specified time window W (hereafter this approach is referred to
as nonseasonal). The time window has to be short enough to
incorporate the desired variability, but long enough to eliminate
noise and short-term variability; the optimal length for W was
found to be 5 years due to the rapid sea ice melting occurring in
the last few decades. The transformation results in time series
with zero trend, zero mean and a standard deviation of one. In
order to further verify stationarity, Mentaschi et al. (2016) also
recommend that the skewness and kurtosis are approximately
constant as a function of time. In the present application,
representative transformed time series for each of the major
Artic Ocean basins (Figure 1) were examined and their skewness
and kurtosis evaluated. In all cases these values varied by less
than 15% over the full duration of the model data set, in
agreement with test results reported by Mentaschi et al. (2016).
Thereby, we concluded that the transformed time series are
approximately stationary.

In the second step, the stationary time-series x(t) is processed
with a standard EVA approach. Herein, a peaks-over-threshold
method (POT, see e.g. Thomson and Emery, 2014, for a general
overview) was applied to extract extreme values from the records
with a threshold set at the 90th percentile. A Generalised Pareto
Distribution (GPD, e.g. Thomson and Emery, 2014).
A B

FIGURE 3 | TS-EVA of the projections of significant wave height for a point located in the Kara Sea. The time series of Hs (m), its long-term trend and standard
deviation computed with a time window of 5 years obtained with (A) the nonseasonal approach and (B) with the seasonal approach.
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F xð Þ = 1 − 1 + k
x − A
B

� �−1
k

" #
(2)

where A is the threshold and B and k are the scale and shape
parameters respectively, was fitted to the data in order to derive
an extreme value distribution; a Kolmogorov Smirnov test (see
e.g. Chu et al., 2019) was applied to validate the fit. Note that the
parameters A and B are time-dependent and change with trends,
standard deviation, and seasonality in the TS-EVA approach. To
ensure statistical independence, peaks were selected at least 48
hours apart. Furthermore, to ensure a stable probability
distribution, a minimum of 1000 peaks was selected for each
grid point of the model domain (Meucci et al., 2018), meaning
that regions free of sea ice less than about two months per year
were excluded from the analysis.

It should be noted that the selection of the threshold affects
the estimate of extreme values. The threshold has to be neither
too high, in order to include sufficient data points and hence
ensure a stable fit of equation 2, nor too low, so that non-extreme
values are excluded from the analysis. For significant wave
height, the threshold is normally a percentile value from 90th,
as in this study, to 95th percentile or a value that sets a minimum
number of events (e.g. 1,000) (Alves and Young, 2003 Caires and
Sterl, 2005; Vinoth and Young, 2011; Takbash et al., 2019;
Meucci et al., 2018). Extensive sensitivity analysis against buoy
data (Vinoth and Young, 2011; Takbash et al., 2019) suggests
these thresholds result in unbiased estimates of extreme value
significant wave height.

The third and final step consists of back-transforming the
extreme value distribution into a time-dependent one by
reincorporating the trends that were excluded from the
original non-stationary time series. As the resulting
distribution is different for each year within the time series, the
TS-EVA method enables extrapolation of partial return period
values for any specific year. Therefore, after fitting a GPD
distribution to the stationary time series and transforming to a
time-varying distribution, it is possible to obtain the N-year
return levels for any specific year within the original time series.
For this study, we use the 100-year return level, which is
commonly used in climate and ocean engineering applications
(see, e.g. Ochi, 2005; Bitner-Gregersen and Toffoli, 2014; Bitner-
Gregersen et al., 2014; Thomson and Emery, 2014; Clancy et al.,
2016; Bitner-Gregersen et al., 2018; Meucci et al., 2020).

Effects of the seasonal cycle (see e.g. Figure 3B) can be
accounted for by incorporating seasonal components in the
stationary time-series x(t). To this end, trend Ty(t) and standard
deviation Sy(t) in equation (1) are expressed as Ty(t)=T0y(t)+sT(t)
and Sy(t)=S0y(t)×sS(t), where T0y(t) and sT(t) are the long-term and
seasonal components of the trend and S0y(t) and sS(t) are the long-
term and seasonal components of the standard deviation.
Parameters T0y(t) and S0y(t) are computed by a running mean
acting as a low-pass filter within a given time window (W). The
seasonal component of the trend sT(t) is computed by estimating
the average monthly anomaly of the de-trended series. The
seasonal component of the standard deviation sT(t) is evaluated
as the monthly average of the ratio between the fast and slow
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varying standard deviations, Ssn(t)/S0y(t), where Ssn is computed by
another running mean standard deviation on a time window Wsn

much shorter than one year. As for the non-seasonal approach, the
time window W was set to 5 years to estimate the long-term
components, while a time windowWsn of 2 months was applied to
evaluate the intra-annual variability (seasonal components). Note
that the length of the seasonal windowWsn is chosen to maximise
accuracy and minimise noise. The resulting stationary time series
x(t) is analysed with an EVA approach to fit an extreme value
distribution, which is then back-transformed to a time-dependent
one. The seasonal approach enables the extrapolation of partial
extreme values such as the 100-year return period levels for
each month.
3 NONSEASONAL TRENDS

3.1 Wind Extremes
Atmospheric forcing over the ocean is described by the wind
speed at 10 metres above the sea surface, (U10, see e.g.
Holthuijsen 2007), and it is applied herein to investigate the
100-year return levels for wind extremes. Figure 4 shows
examples of regional distribution of the 100-year return period
levels for wind speed U100

10 and 95% confidence interval (CI95)
width for the years 1993 and 2018, i.e. beginning and end of the
considered period. The regional distribution of the differences
between the two years is also displayed in the figure to highlight
the substantial change that has occurred. Extreme winds are
estimated to reach approximately 25ms-1 in the Baffin Bay,
Greenland, Barents and Kara seas (i.e. the Atlantic sector of
the Arctic Ocean, see Figure 1 for the geographical location of
sub-regions), with peaks up to 40ms-1 along the Eastern coast of
Greenland. Extreme winds in the Pacific Sector, i.e. the Beaufort,
Chukchi, East Siberian and Laptev seas recorded lower U100

10 ,
reaching values up to 20 ms-1. Confidence intervals were
normally narrow over the ocean with extremes varying within
the range of ±2.5 ms-1 (peaks up to ± 5ms-1 were reported over
land, especially in Greenland). The magnitude of extreme wind
speeds predicted here is generally consistent with values
determined with classical EVA methods in the Atlantic sector
of the Arctic Ocean (Breivik et al., 2014; Gallagher et al., 2016;
Bitner-Gregersen et al., 2018).

The TS-EVA analysis, nevertheless, shows that extremes have
only been changing marginally for the past three decades
(Figure 4). The long term trends of U100

10 are shown in
Figure 5, which reports areal averages as a function of time for
each sub-region. In the Atlantic sector, U100

10 showed a weak drop
in the Norwegian and Greenland seas, with a total decrease of
about 3ms-1 over the period 1993-2018 (a rate of -0.12ms-1 per
year). More significant drops were recorded along the Western
coast of Greenland (i.e. Fram Strait, Eastern Greenland sea),
where U100

10 reduced at a rate of -0.24ms-1 per year. The Baffin
Bay and the Barents sea showed negligible changes, with U100

10

remaining approximately constant. The opposite trend was
reported on the Eastern side of the Atlantic sector (i.e. the
Kara sea), where wind speed showed a weak increase with a
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rate of 0.04ms-1 per year. The Pacific sector, on the contrary, was
subjected to more consistent trends across the sub-regions. The
East Siberian and Chukchi seas show weak positive trends of
about 0.16 and 0.12 ms-1 per year, respectively. A similar increase
was also observed in the Western part of the Beaufort sea. The
Laptev sea recorded the lowest rate of increase in the Pacific
sector, with U100

10 increasing at a rate of 0.04ms-1 per year.

3.2 Wave Extremes
The energy content of the sea state is historically represented by
the significant wave height (Hs, see Holthuijsen 2007), which is
used to describe wave extremes. Figure 6 shows the 100-year
return levels for significant wave height (H100

s ), confidence
intervals and differences between years 1993 and 2018. It
should be noted that regions covered by sea ice for most of the
year are not considered in this analysis and thus they are colour-
coded with white in the figure. The Atlantic sector experiences
high H100

s (>10 m) due to the energetic North Atlantic swell
penetrating the Arctic Ocean. Likewise, the Pacific sector
experiences significant values of H100

s (>5 m), despite a
substantial sea ice cycle that limits fetch lengths for a large
fraction of the year. Generally, the 95% confidence intervals vary
within ±1.5m at the beginning of the examined period (1993)
and widen in more recent years (2018) in regions of significant
Frontiers in Marine Science | www.frontiersin.org 6170
sea ice decline (see Figures 6D, E), with range increasing up
to ±2.5m.

There is a clear difference of H100
s between 1993 and 2018.

More specifically, H100
s increases substantially, up to 4 m, in the

emerging open waters of the Pacific sector (the Beaufort,
Chukchi and East Siberian seas, cf. sea ice margins in
Figure 1). Variations are typically smaller in the Laptev and
Kara seas, with increments of about 2 m, on average. Notable
increases of H100

s (up to 6 m) occur nearby the sea ice margins.
Here, the seasonal sea ice cycle is still significant, introducing
uncertainties related to the exact position of sea ice and limiting
the amount of data available for the analysis that result in larger
confidence intervals (up to ± 4 m). Extremes in the Atlantic
sector, surprisingly, show an overall decrease, with H100

s

dropping by about 1-2 m. Note, however, that this is a region
in which the sea ice extent has not changed dramatically over this
period and the decrease is a direct consequence of the drop of
wind speed (see Figure 4). Similarly to the Laptev and Kara seas,
regions closer to sea ice such as the Fram straits and the Northern
part of the Barents sea experienced a sharp growth, with H100

s

increasing up to 5 m between 1993 and 2018 (but with notably
large uncertainties).

Temporal variations of the aerial average of H100
s are reported

in Figure 5 for different basins. A consistent increase of H100
s is
A B

D E

C

FIGURE 4 | (U100
10 ) (ms-1) obtained with a POT analysis (90th percentile threshold) and a GPD distribution with the TS-EVA nonseasonal approach for (A) 1993 and

(B) 2018. (C) The difference between estimates for 2018 and 1993. Width of 95% confidence interval for U100
10 for (D) 1993 and (E) 2018.
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evident in the emerging open waters of the Beaufort, Chukchi,
East Siberian, Laptev and Kara seas. Variations in the Beaufort
and East Siberian seas are the largest, with a total increase over
the period 1993-2018 of approximately 16 cm per year. The
Frontiers in Marine Science | www.frontiersin.org 7171
Chukchi and Laptev seas also experienced a substantial growth of
H100

s , with an increase of 6 cm per year, while H100
s increased by

approximately 4 cm per year in the Kara sea. In contrast, the
Atlantic sector reports only weak upward trends, with the Baffin
FIGURE 5 | Temporal variation of the Areal-averages of H100
s (blue) and U100

10 (red) estimated by nonseasonal TS-EVA approach for each sea in the Arctic Ocean.
A B

D E

C

FIGURE 6 | H100
s (m) obtained with a POT analysis (90th percentile threshold) and a GPD distribution in the TS-EVA nonseasonal approach for (A) 1993 and (B) 2018. (C)

The difference between estimations for 2018 and 1993. Width of 95% confidence interval for H100
s for (D) 1993 and (E) 2018.
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Bay and Greenland sea showing an increase of 1.6 cm per year.
The Barents sea experienced no notable long-term variations,
while the Norwegian sea reported a drop in H100

s of about 4 cm
per year. We note that, as these latter regions are predominantly
free from sea ice, the downward trends are associated with the
decline of wind speeds over the North Atlantic (results are
consistent with finding in Breivik et al., 2013; Bitner-Gregersen
et al., 2018). It is worth noting that negative trends for the North
Atlantic are expected to continue in the future as indicated by
projections based on RCP 4.5 and RCP 8.5 emission scenarios
(Aarnes et al., 2017; Morim et al., 2019). Wave height, however,
is predicted to increase at high latitudes of the Norwegian and
Barents seas over the next decades as a result of ice decline
(Aarnes et al., 2017), confirming the positive trend in wave
extremes that is already arising close the ice edge (see Figure 6).
The contrast between an overall decrease of wave height as a
result of wind speed decline and the increase of wave height due
to emerging open waters in winter is also a distinct feature in the
North Pacific (cf. Shimura et al., 2016).

The increase in U100
10 is small over the modelled period (up to

about 5% and confined to the Chukchi and Kara Seas; Figure 4C)
and it cannot fully explain the more substantial increase of H100

s

(up to about 60%; Figure 6C) that is observed around the entire
Arctic Ocean, with the Beaufort, Chukchi, East Siberian and Laptev
seas being the most significant examples. Nevertheless, it can still be
argued that the increase in H100

s is caused by an increase in
magnitude/frequency of storms or changes in wind direction. It
should be noted, however, that increases in either the magnitude or
frequency of storms would also results in notable changes in U100

10 ,
which are not reported herein. Changes in the prevailing wind
directions over Beaufort, Chukchi and East Siberian seas have been
reported but are only marginal (Stegall and Zhang, 2012), further
suggesting that direct contributions from the wind field are
negligible. Conversely, sea ice decline correlates more robustly
with the increase of H100

s as substantiated by the temporal
variation of the yearly, aerial average of sea ice area in Figure 7
Frontiers in Marine Science | www.frontiersin.org 8172
and aerial average of H100
s in Figure 5 (see also the remarkable

agreement between regions where H100
s has increased significantly,

Figure 6C, and the areas where sea-ice has decreases, Figure 1).
Therefore, negative trends of sea ice area remain the most robust
cause for longer fetches in emerging open waters, contributing to
more effective atmospheric forcing and driving waves to grow in
magnitude. This coincides with an enhanced stage of development
for the wave fields associated with the 100-year return level, as
demonstrated by positive trends of the 100-year wave age (WA100;
Figure 7). The latter is a measure of the strength of the wind
forcing and wave growth, and it is computed as C100

p =U100
10 , where

C100
p is the phase speed linked to the 100-year peak wave period,

which is estimated from a population of peak wave periods
associated with the selected significant wave height events (cf.
Ochi, 2005). In addition, it is also worth mentioning that regions
mostly free of sea-ice, such as the Greenland Sea, have shown very
little change in H100

s and WA100 (Figures 5, 7).
4 SEASONAL VARIABILITY

4.1 Wind Extremes
Figures 8, 9 show the monthly values of U100

10 for 1993 and 2018,
respectively. During the autumn and winter season (October to
February), U100

10 ranges between 20 and 30ms-1, with peaks along
the Greenland coast (Denmark and Fram Straits) up to 50ms-1.
In the spring and summer months (March to September), U100

10

ranges between 10 and 30ms-1 with again the highest winds
reported in the western Greenland sea. Note that the seasonal
approach returns a geographical distribution of extremes that is
similar to the one obtained with the nonseasonal approach, but it
captures more extreme season-related events. The seasonal
component tends to shift the tail of the time-varying extreme
value distribution into higher frequencies, resulting in higher
estimated extremes for all seasons (months).
FIGURE 7 | Temporal variation of the yearly areal-average of sea ice area (sea ice extent, blue line) and aerial-average of wave age associated with 100-year events
(red line). Areal trends are shown as dashed lines.
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Differences between U100
10 for 1993 and 2018 are reported in

Figure 10. Generally, differences range between 1 and 3ms-1 and
are quite consistent across all seasons. The Pacific sector
experiences an increase, while the Atlantic sector and the
central Arctic are subjected to a reduction of U100

10 . The most
significant changes are observed in the western Greenland sea
during the winter season (December to February), where
reductions up to -5ms-1 were detected. It is interesting to note
that the regional distribution of differences is similar for each
month, denoting a homogeneous change of extreme winds across
the Arctic Ocean throughout the year. Note also that differences
obtained with the seasonal approach are consistent with those
estimated with the nonseasonal method.

4.2 Wave Extremes
The seasonal variations of H100

s are presented in Figures 11, 12 for
1993 and 2018, respectively. The minimum sea ice coverage in
1991-1993 is shown as a dashed lines in Figure 12. Extreme wave
height, as expected, is subjected to a substantial seasonal variation.
The highest values are found in the region encompassing the
Greenland and Norwegian Seas, where energetic swells coming
from the North Atlantic Ocean propagate into the region (cf. Liu et
al., 2016; Stopa et al., 2016). The highest H100

s in this region reaches
values up to 18 m in the winter months (December to February),
concomitantly with strong winds (Figures 8, 9), and reduces to
about 5 m in the summer (June and July). Over the past three
decades, however, the general trend shows a consistent reduction in
this region at a rate of 4 cm per year regardless of the season (see
maps of differences in Figure 13 and trends of areal-averages in
Figure 14). These results are in agreement with the results obtained
with the nonseasonal approach. Nevertheless, extreme waves
Frontiers in Marine Science | www.frontiersin.org 9173
penetrate further North in the emerging open waters of the
Northern Greenland, Barents and Kara seas, especially during the
autumn (September to November) and winter (December to
February) seasons in recent years. Consequently, there is a
dramatic increase of H100

s in these regions with values up to 13 m
in 2018. This corresponds to an average increasing rate of
approximately 12 cm per year, with peaks of about 35 cm per
FIGURE 8 | U100
10 (ms-1) for 1993 obtained with a POT analysis and a

GPD distribution for the TS-EVA seasonal approach. Data obtained from the
ERA5 dataset.
FIGURE 9 | U100
10 (ms-1) for 2018 obtained with a POT analysis and a

GPD distribution for the TS-EVA seasonal approach. Data obtained from the
ERA5 dataset.
FIGURE 10 | Monthly differences in U100
10 between estimates for 2018

and 1993.
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year nearby the sea ice margins. Based on future projection, this
positive trend is expected to continue (Aarnes et al., 2017).

In regions subjected to the sea ice cycle, wave extremes in
1993 used to build up in late spring or early summer (June), and
Frontiers in Marine Science | www.frontiersin.org 10174
reach their maximum of up to 12 m in a confined area of the
Beaufort sea in autumn (October). In more recent years (2018),
extreme waves already have a significant presence earlier in
spring (May), primarily in the coastal waters of the Beaufort
sea and the East Siberian sea (Figure 13). From June to
November, there is a rapid intensification of the sea state and
extremes span from a few metres in June to about 16 m in
FIGURE 11 | H100
s (m) for 1993 obtained with a POT analysis and a GPD

distribution for the TS-EVA seasonal approach. Data obtained from the 28-
year wave hindcast with ERA5 wind forcing.
FIGURE 12 | H100
s (m) for 2018 obtained with a POT analysis and a GPD

distribution for the TS-EVA seasonal approach. Data obtained from the 28-
year wave hindcast with ERA5 wind forcing. Dashed lines represent the
minimum sea ice coverage in the period between 1991-1993 for each month.
FIGURE 13 | Monthly differences in H100
s between estimates for 2018 and

1993. Dashed lines represent the minimum sea ice coverage in the period
between 1991-1993 for each month.
FIGURE 14 | Areal-averages of H100
s in meters estimated by the seasonal

TS-EVA approach for each sea in the Arctic Ocean for winter (blue), spring
(light green), summer (red), and autumn (light blue).
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November, with an average growth rate of 12 cm per year, over a
region encompassing the whole Beaufort, Chukchi and East
Siberian seas. These secluded areas, which are the most prone
to positive long-term variations of wind speed (Figure 10) and
sea ice retreat (see Figure 7 and Strong and Rigor, 2013), are now
experiencing sea state extremes comparable to those reported in
the North Atlantic. It is also worth noting that significant
changes are also apparent for the western part of the East
Siberian sea and the nearby Laptev sea at the end of autumn
(November). These regions, which used to be entirely covered by
sea ice by November in the earliest decade, are now still
completely open with H100

s recording changes up to 8 m (a
rate of 32 cm per year since 1993).
5 DISCUSSION

A non-stationary extreme value analysis (TS-EVA, Mentaschi
et al., 2016) was applied to assess long-term and seasonal
variability of wind and wave extremes (100-year return period
levels) in the Arctic Ocean. This non-conventional approach is
dictated by the highly dynamic nature of the Arctic, which has
been undergoing profound changes over the past decades (Liu
et al., 2016; Stopa et al., 2016) and invalidating the basic
hypothesis of stationarity that is fundamental for classical
extreme value analysis. Estimation of extremes was based on a
28-year (1991-2018) database of 10-metre wind speed and
significant wave height, with a temporal resolution of three
hours. Wind speed was obtained from the ERA5 reanalysis
database and subsequently used to force the WAVEWATCH
III spectral wave model. An Arctic Polar Stereographic
Projection grid with a horizontal resolution spanning from 9
to 22 km was applied. The model was calibrated and validated
against satellite altimeter observations, producing good
agreement with a correlation coefficient R = 0.97, scatter index
SI = 16% and root mean squared error RMSE =.036m.

The TS-EVA extreme value analysis consisted of
transforming the original non-stationary time series of wind
speed and wave height into a stationary counterpart and then
applying standard peak-over-threshold methods to evaluate
extreme values with a return period of 100 years over a
running window of 5 years. Non-stationarity was then
reinstated by back-transforming the resulting extreme value
distribution. Two different approaches were applied to the data
sets: a nonseasonal approach, which returns yearly estimates of
extremes and enables evaluation of long-term variability; and a
seasonal approach, which incorporates a seasonal variability
enabling estimation of extremes for specific months.

The nonseasonal approach showed a weak long term
variability for the 100-year return period values of wind speed.
An increase of approximately 3ms-1 from 1993 to 2018 (a rate of
≈ 0.12 ms-1 per year since 1993) was reported in the Pacific
sector, especially in the regions of the Chukchi and East Siberian
seas and, more marginally, in the Beaufort sea and part of the
Laptev sea. A decrease of roughly 31ms-1 (-0.12ms-1per year) was
found in most of the remaining regions of the Arctic, with peaks
Frontiers in Marine Science | www.frontiersin.org 11175
in the Eastern part of the Greenland sea (≈ -0.2ms-1 per year).
Conversely, the growth in wave extremes is dramatic and it
cannot be attributed to these mild trends in wind extremes,
noting that the latter also exclude feedback from possible
increases in magnitude/frequency of storms. As wind direction
is steady over the Arctic Ocean, changes in the wave field are
primarily driven by the substantially longer fetches emerging
from sea ice decline that allow waves to build up more energy
despite a marginal increase of wind speed. Large changes, in this
respect, were found in the Pacific sector encompassing the area
between the Beaufort and East Siberian seas, where wave height
extremes have been increasing at a rate of approximately 12 cm
per year, which results in an overall increase of ≈ 60% from 1993
to 2018. The enhanced wave climate in the Beaufort sea is
particularly remarkable since wind extremes are stable and sea
ice area is reduced by about 13% during the past three decades
(Figures 5, 7), reinforcing the argument that sea ice decline
exerts a positive feedback on fetches and, concurrently, wave
growth as substantiated by the robust increasing trend of wave
age, a measure of the strength of wind forcing and wave growth
(Figure 7). The Atlantic sector, on the contrary, experienced a
notable decrease of wave extremes at the rate of -4 cm per year;
this is consistent with a reduction of wind extremes and with
general climate trends observed in Liu et al. (2016). For regions
closer to the sea ice edge, where emerging open waters have been
replacing pack ice, the 100-year return period levels of wave
height exhibit the opposite trend, with a sharp increase of wave
extremes at an extremely large local rate of 35 cm per year. It
should be noted, however, that estimates of long term trends
closer to the sea ice edge are more uncertain due to lack of data in
the earlier years, where sea ice covered the ocean more
substantially. Nevertheless, it is worth reflecting on the
consequences that a sharp upward trend of wave extremes can
have on already weak sea ice. As extremes become more extreme,
there is negative feedback accelerating sea ice dynamics (Vichi
et al., 2019; Alberello et al., 2020; Alberello et al., 2021), break up
(Passerotti et al., 2022) and melting processes (Dolatshah et al.,
2018), further contributing to sea ice retreat.

The seasonal approach shows a more detailed picture of
climate, providing a combined seasonal and long-term
variability. Wind extremes distribute uniformly over the Arctic,
with peaks in the autumn and winter periods spanning from
20ms-1 in the Pacific sector to 30ms-1 in the North Atlantic.
Spring and summer months still exhibit significant extremes up
to 20ms-1, with a more homogeneous regional distribution. Over
the entire 28-year period, trends are mild and stable through the
seasons, consistent with those found with the nonseasonal
approach. Variability of wave extremes is again more
substantial than wind. In the Pacific sector, the decline of sea
ice extent allows a rapid intensification of extremes in the spring
(May and June); average growth rates span from 1 cm per year in
spring to 12 cm per year in late summer and early autumn. In the
Atlantic sector, in response to a notable drop of wind speed, a
consistent decrease of wave extremes results all year-round.
Nevertheless, the emerging waters of northern Greenland and
Barents sea showed the opposite trend with an increase of wave
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height at a very large rate up to 32 cm per year closer to the sea
ice margin.
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Uludağ University,
Turkey

Reviewed by:
Prabhakar V.,

Vellore Institute of Technology (VIT),
India

Wei-Bo Chen,
National Science and Technology

Center for Disaster Reduction (NCDR),
Taiwan

Prasad Bhaskaran,
Indian Institute of Technology

Kharagpur, India

*Correspondence:
William Perrie

william.perrie@dfo-mpo.gc.ca

Specialty section:
This article was submitted to

Physical Oceanography,
a section of the journal

Frontiers in Marine Science

Received: 01 February 2022
Accepted: 06 May 2022
Published: 30 June 2022

Citation:
Perrie W, Toulany B and

Casey M (2022) A Generalized
Two–Scale Approximation
for Ocean Wave Models..
Front. Mar. Sci. 9:867423.

doi: 10.3389/fmars.2022.867423

ORIGINAL RESEARCH
published: 30 June 2022

doi: 10.3389/fmars.2022.867423
A Generalized Two–Scale
Approximation for Ocean
Wave Models
William Perrie*, Bechara Toulany and Michael Casey

Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada

The two-scale approximation (hereafter, TSA) was previously presented as a new method
to approximate and estimate transfer rates in wind – wave spectra. It was shown to
perform well for a variety of idealized and observed sea state conditions and to compare
well with respect to the total Boltzmann integral for nonlinear quadruplet wave-wave
interactions. Here, we present a generalized formulation of TSA, allowing for multiple
peaked spectra, sheared spectra, sea – swell combinations, etc. This formulation is
implemented in a modern operational wave model, WAVEWATCHIII™, and shown to
provide a significant improvement over the standard approximation used in wave models,
the discrete interaction approximation (DIA). Additional tests involve the simulation of
waves generated in Hurricane Teddy (2020).

Keywords: ocean surface waves, nonlinear wave-wave interactions, two-scale approximation, wind-generated
waves, WAVEWATCHIII (WW3) wave model
1 INTRODUCTION

In operational forecast models for surface waves, like WAVEWATCHIII™ also denoted WW3, the
quadruplet nonlinear wave-wave interactions Snl have a central role for the growth and development
of ocean waves. This is suggested by several earlier studies such as SWAMP Group (1985); Komen
et al. (1994); Holthuijsen (2007), whereby Snl contributes energy to the ‘forward face’ of the
spectrum, where frequencies are less than the spectral peak fp, transferring energy from elsewhere in
the spectrum. This accounts for the spectral down-shifting process in growing seas (Hasselmann
et al., 1973). By comparison, the other source terms for the development and evolution of wind -
waves, such as wind forcing input Sin(f, q) and wave dissipation, Sds(f, q) largely operate locally in
spectral space, adding or subtracting local energy at given frequency – direction locations, (f, q),
(Komen et al., 1994; Holthuijsen, 2007; WW3DG, 2016). There is a long history of studies related to
these latter physical processes in simulations of ocean surface waves, like workshops reported by
Swail et al. (2021), or specific studies like that given by Hsiao et al. (2020).

In recent years several formulations have been constructed for Snl. These include the Discrete
Interaction Approximation (DIA) from Hasselmann and Hasselmann (1985), which provides the
operational parameterization used in most modern spectral waves models, such as WAM by
WAMDI Group (1988), WAVEWATCHIII™, hereafter WW3, (WW3DG, 2016) and SWAN by
Booij et al. (1999). Although there are known biases in the DIA formulation (Tolman, 2013), it
continues to be used in forecasts because new formulations for Snl have yet to be found that can
in.org June 2022 | Volume 9 | Article 8674231178
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surpass DIA in combined forecast skill, computational efficiency
and stability. A generalization of DIA was presented by Tolman
and Grumbine (2013). Besides DIA, the WW3 model also has a
formulation for the full integration for the Boltzmann integral
based on Webb (1978); Tracy and Resio (1982); Resio and Perrie
(1991), and Van Vledder (2006), denoted WRT (for Webb,
Resio, and Tracy). More recently, motivated by deficiencies in
DIA, Resio and Perrie (2008) proposed the Two-Scale
Approximation, TSA, to represent the nonlinear transfer, Snl.
This has been implemented into WW3 by Perrie et al. (2013).

In the TSA approach, the wave spectrum is assumed to be
decomposed into a 1st order or ‘broad-scale’ component, and a
2nd order or ‘local-scale’ component. The broad-scale term is
given a parametric spectral representation, and the local-scale
term is defined as the residual of the spectrum, once the broad-
scale term is subtracted out. The local-scale term in the
approximation is quite important because it provides the
degrees of freedom needed in the detailed balance source-term
formulation that were preserved by the 2nd order local-scale term
in the approximation, as discussed by Resio and Perrie (2008),
motivated by earlier presentations, for example Komen
et al. (1994).

Resio and Perrie (2008) showed that, compared to DIA, the
TSA can give significantly increased accuracy for the nonlinear
spectral transfers, Snl, using tests with idealized wave spectra that
were motivated by the Joint North Sea Wave Project
(JONSWAP) of Hasselmann et al. (1973). Additional
confirmation was given by Perrie and Resio (2009) using
measured wave spectra from field experiments in Currituck
Sound (North Carolina, U.S.A.), and observed open-ocean
waverider buoy data off the U.S. Army Field Research Facility
(Duck, North Carolina) during Hurricane Wilma (2005).

Perrie et al. (2013) implemented TSA into WW3, and
performed tests for wave spectra based on field measurements
and waves generated during Hurricane Juan (2001), confirming
that results from TSA can surpass those of DIA. They concluded
that TSA can generally work well in situations where its basic
assumptions are met, that the broad-scale term represents most
of the spectrum and the rest of the spectrum can be represented
by the local-scale term. These conditions are largely met in tests
based on JONSWAP-type spectra, or evolutionary cases where
winds are generally constant, spatially and temporarily, or some
conditions during storm-generated waves like Hurricanes Juan
or Wilma.

However, there are clearly more complicated cases of ocean-
surface waves that go beyond TSA’s basic assumptions. These
include severe cases of complex wave systems, such as storm
cases where the winds rapidly change speed or direction, with
combinations of intense windsea-swell interactions, multiple
spectral wave peaks and strong directional shears. In these
situations, TSA does not represent the development of a
secondary, or tertiary spectral peak well, because the 1st order
broad-scale term may be dominated by the low-frequency (fp1)
energy, and the 2nd order local-scale term focuses on
representing the developing wind-sea component of the wave
spectra. We address these cases in the present study.
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Here, we propose a slight generalization to TSA in order to
give a second 1st order broad-scale term, corresponding to a
second broad-scale peak (fp2), with a peak direction (qp2) that
may differ from that of the first broad-scale term (qp1). This
approach is denoted ‘multiple TSA’ or mTSA, which can be
further generalized with additional 1st order broad-scale terms.
Section 2 gives a presentation of the mTSA methodology.
Implementation within WW3 and hypothetical test cases are
considered in section 3. Simulations of waves generated during
extratropical Hurricane Teddy (2020) are given in section 4.
Discussion and conclusions are given in section 5.
2 GENERALIZATION OF THE TSA
METHODOLOGY

(a) The Wave Model
Models for simulation of ocean surface waves, such as WW3, are
formulated in terms of parameterizations for the nonlinear wave-
wave interactions, Snl(f, q), with other source terms, such as wind
input to waves, Sin(f, q), and wave dissipation, Sds(f, q). WW3 is
based on the well-known balance equation for spectral action
density, expressed as n(f,q), where (f, q) denote frequency and
direction; it is an open-source modern 3rd generation wave
model (WW3DG, 2016). Version 5.16 is used in this study.
Detailed discussion of WW3 model physics and characteristics is
given by WW3DG (2016) for both regional and global
applications. As noted in the Introduction, the basic three
source terms in deep water are the nonlinear wave-wave term
Snl(f, q), wind input, Sin(f, q), and wave dissipation, Sds(f, q). As
described by Perrie et al. (2013), the implementation of TSA
within WW3 follows the methodology used in implementing
DIA or WRT in third generation wave models like WAM and
WW3, respectively (WAMDI Group, 1988; Van Vledder, 2006;
Tolman, 2009). We assume an explicit forward – time scheme for
the difference equations, for the 2-dimensional ocean wave
spectrum F(f, q). In terms of the nonlinear wave-wave
interactions Snl, the integration is semi-implicit, requiring a
diagonal term to estimate Snl at succeeding time-steps. This
term is the diagonal of the partial derivative of Snl(f, q) with
respect to spectral energy F(f, q), where f, q are spectral frequency
and direction. Thus, only array elements with equal f and q in
both the source and spectrum terms are used; the diagonal term
may be written as Li, where

Li =
∂ Snlð Þ
∂ F

(1)

which must now be determined for TSA.

(b) The Two-Scale Approximation
In evolving wind and wave conditions, the TSA formulation
works well in many sea state conditions, for example, simple
fetch-limited or duration-limited wave growth. However, when
the wind direction changes rapidly, the TSA formulation needs
to be modified to allow the broad-scale term to take into account
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more complicated spectral situations such as multi-peaked
spectra. If there is a significant misalignment of TSA’s broad-
scale term with respect to waves generated by sudden wind
direction changes, the original TSA formulation of Resio and
Perrie (2008) may not able to provide a reliable representation of
the nonlinear transfer, Snl.

In its original formulation, TSA is based on the WRT
formulation for Snl(f, q), which is due to Webb (1978); Tracy
and Resio (1982) and Resio and Perrie (1991). In this approach,
the nonlinear transfer of action density from one spectral
wavenumber k3 to another, k1, is represented by a transfer
function T(k1,k3),

∂ n k1ð Þ
∂ t

=
ðð
T k1, k3
� �

dk3 (2)

which may be expressed as

T k1, k3
� �

= 2∮ n1n3 n4 − n2ð Þ + n2n4 n3 − n1ð Þ½ �C k1, k2, k3, k4
� �

ϑ

k1 − k4
�� �� − k1 − k3

�� ��� � ∂W
∂h

����
����
−1

ds

≡ e 2∮ N3Cϑ
∂W
∂h

����
����
−1

ds

(3)

where ϑ is the Heaviside function, k4=k1+k2-k3 where k2=k2(s,k1,
k3). Here, ni is the action density at ki, and the locus of possible
wave-wave interactions is specified by the contour s satisfying the
resonance condition,

W = w1 + w2 − w3 − w4 = 0 (4)

and where ŋ is the local orthogonal to contour s.
In the original TSA of Resio and Perrie (2008), a given

spectrum niis decomposed into a 1st order, or broad-scale,
term n̂ i and a 2nd order, local-scale term n0i, where n̂ i is given
a parametric JONSWAP-type form following Hasselmann et al.
(1973), thereby depending on only a few parameters. The local-
scale term n̂i> is the residual,

n0i = ni − n̂ i (5)

with the same number of degrees of freedom as the input
spec t rum n i . TSA becomes qu i t e accura te i f the
parameterization for n̂ i can be selected so that n̂i is small.
However, to have optimal computational efficiency, the
methodology will try to minimize the number of parameters
used for n̂ i because application of large multi-dimensional sets of
pre-computed matrices for n̂ i is time-consuming.

For complicated wave conditions, for example multi-peaked
spectra ni, the challenge of selecting n̂ i hat is dependent on a
relatively small parameter set can be somewhat mitigated by
application of multiple broad-scale terms, or for example in this
paper, two broad-scale terms,

n̂ i = n̂ 1i + n̂ 2i (6)
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where n̂ 1i and n̂ 2i are both given JONSWAP-type parametric
forms, corresponding to two peaks, fp1 and fn2, in the given
spectrum ni. Therefore, following the original TSA methodology,
the residual local-scale n0i term may be determined by
subtracting,

n0i = ni − n̂ 1i − n̂ 2i (7)

Thus, in the usual manner of Resio and Perrie (2008), we
partition the action density term, ni, and write the transfer
integral T in equation (3) in terms of the sum of interactions
involving broad-scale terms, which we pose as n̂ 1i + n̂ 2i, denoted
B, local-scale terms n0i, denoted L, and the cross interactions
among n̂ 1i + n̂ 2i and n0i, denoted X. Thus, the nonlinear transfer
interactions Snl can still be represented as,

Snl f , qð Þ = B + L + X (8)

and B can be pre-computed and depends on JONSWAP-type
parameters xi,

Snl f , qð Þbroad−scale= B f , q, x1,…xnð Þ (9)

The objective of this slightly generalized TSA is to accurately,
efficiently approximate L+X, by neglecting terms involving n02
and n04 thereby simplifying equation (8). This follows Resio and
Perrie (2008) in assuming that the local-scale terms (n02 and n04)
are deviations around the associated broad-scale terms (n̂ 2 and
n̂ 4) which capture most of the spectral energy; and with their
positive/negative differences and products, the former tend to
cancel, as we move along the interaction loci. This approach is
validated by mTSA’s ability to give results that compare well with
those of WRT.

Thus, Resio and Perrie (2008) show that eliminating n02 and
n04 gives

Snl k1ð Þ = B + L + X = B +
ðð
∮ N3

∗C
∂w
∂ n

����
����
−1

dsk3dq3dk3 (10)

where N3
∗ is given by

N3
∗ = n̂ 2n̂ 4 n03 − n01

� �
+ n01n

0
3 n̂ 4 − n̂ 2ð Þ + n̂ 1n

0
3 n̂ 4 − n̂ 2ð Þ

+ n01n̂ 3 n̂ 4 − n̂ 2ð Þ (11)

and they use known scaling relations to obtain

∂ n1
∂ t

=
k
k0

� �−19=2�
B

ς

ς0

k
k0

� �p� �3

+ ½ ς
ς0

k
k0

� �pðð
n̂ 1n

0
3 + n01n̂ 3 + n01n

0
3

� �
Lpk∗dq∗dk∗

+
ς

ς0

k
k0

� �p� �2ðð
n01 − n03
� �

Ldk∗dq∗dk∗

� 

�

(12)

+[

]
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with

Lp = ∮ C
∂W
∂ n

����
����
−1

n̂ 4 − n̂ 2ð Þds

Ld = ∮ C
∂W
∂ n

����
����
−1

n̂ 2n̂ 4ð Þds
(13)

where the so-called ‘pumping’ and ‘diffusion’ terms are Lp and
Ld following Webb (1978)’s notation. Here, superscript p is the
equilibrium-range power law, for example f-4 or f-5, and (z/z0) is
related to a linear scaling coefficient for the n̂ i terms; (k/k0) is the
ratio of the spectral peak wavenumber for the spectrum being
integrated to that of the reference spectrum. Coordinates q* and
k* are

q∗ = q3 − q1; k∗ = k3 − k1ð Þ=kp : (14)

For a f-5 JONSWAP spectrum, ς is the Phillips’ coefficient in
equation (12), whereas for an f-4-type spectrum like E(f) ≈ bf-4,
then ς is b, and generally any linear multiplicative term that
scales the spectrum. The power of ς is the number of broad-scale
densities (n̂ i) in the integrals used in matrices, Ld and Lp. The
scaling factor for wavenumber k is from the wavenumber
dimensions of the coupling coefficient (~k6), Jacobian (~k1/2),
and the phase space terms (dskdk~k3).

From equations (12) and (13), the diagonal terms for WRT
are,

Ljn1 = ∂ Snl
∂ n1

= 2
ðð
∮ n3 n4 − n2ð Þ − n2n4½ �Cϑ ∂W

∂ n

����
����
−1

dsdk3

Ljn3 = ∂ snl
∂ n3

= 2
ðð
∮ n1 n4 − n2ð Þ + n2n4½ �Cϑ ∂W

∂ n

����
����
−1

dsdk3

(15)

and neglecting of terms involving n02and n04, we find for TSA, or
in this case, mTSA,

LTSAjn1 =
∂ STSAnl
∂n 1

= 2
ðð
∮ n̂ 3 + n03

� �
n̂ 4 − n̂ 2ð Þ − n̂ 2n̂ 4

	 

Cϑ

∂W
∂ n

����
����
−1

dsdk3

LTSAjn3 = ∂ STSAnl
∂n 3

= 2
ðð
∮ n̂ 1 + n01

� �
n̂ 4 + n02
� �

+ n̂ 2n̂ 4

	 

Cϑ

∂W
∂ n

����
����
−1

dsdk3

(16)

These terms are central to the mTSA semi-implicit
implementation within WW3.

(c) Equilibrium Range Constraints
Operational wave models like WW3 are restricted in the sense
that they have a finite discrete spectral grid. mTSA’s broad-scale
terms n̂ 1i + n̂ 2i typically depend on a few parameters for
each broad scale term, such as peak frequency fp, peak
direction, qp, Phillips coefficient b, peakedness g, spectral width
parameters sa and sb for the forward and rear faces of the
Frontiers in Marine Science | www.frontiersin.org 4181
spectral peak, and a spreading distribution, ~cosm(q-qp) around
the spectral peak direction qp. However, when the spectral peak
fp is too close to the highest frequency of the discrete spectral
computational grid, it is not possible to define b in terms of the
equilibrium range of the spectrum, in the usual manner,

b = 〈
E fð ÞCg fð Þk2:5

2p
〉equilibrium−range (17)

where the equilibrium range is assumed as ~2 or 3 × fp, and Cgis
the group velocity (Donelan et al., 1985). In these cases, a simple
practical approach is to define b in terms the highest discrete
frequency above fp, and below the equilibrium range, which may
be nonexistent in this case (more on this below). This is an
approximation in terms of the expected value for b; had the
frequency grid extended to a higher limit with an equilibrium
range, a more accurate estimate would be possible. In this way, a
modified definition of b allows the WW3 forecast model to
continue with the computation, providing an estimate for b. This
approach is consistent with that of previous third generation
wave models. However, the issue regarding the calculation of b
can become critical if there are multiple spectral peaks,
particularly regarding the region between two spectral peaks.

The mTSA approach allows generalization of the broad-scale
term, allowing more than one broad-scale parametric term,
corresponding to multi-peaked spectra. It is shown in test
cases in the next section, that this modification allows the
mTSA approach to rather accurately represent a fully
integrated formulation of the nonlinear wave -wave transfer, in
terms of the WRT estimates. For example, in test cases involving
windsea-swell interactions, with two or more changing spectral
peaks, each with differing peak frequency directions, we
represent the double peak as two separate peaks in the mTSA
formulation, and invoke the broad-scale parameterization twice
to simulate each separately. The procedure for determining
JONSWAP parameters for two broad-scale terms for a double-
peaked spectrum is given in the Appendix.

An issue is the high-frequency equilibrium range. When there
is only a single peak frequency, the equilibrium range is typically
about 2~3 times the peak frequency fp and is represented by
spectral tail with f -4 variation, following Resio et al. (2004), and
earlier studies. The f -4 spectral tail is matched to the upper limit
of the discrete frequency spectrum, which allows an equilibrium
range Phillips coefficient to be defined, denoted b in the notation
of Resio et al. (2004). This is a key term in the broad-scale
parameterization. Moreover, there are clearly instances where a
given wind-wave spectrum may have a spectral tail which does
not follow the f-4 distribution. But that is not a problem for the
mTSAmethodology. In any case, whatever the distribution of the
spectral tail, whether f-4 or f-5 or f-4.5 etc., we construct the broad-
scale spectrum using a JONSWAP-type parameterization as
discussed in this section and in the Appendix. Whatever
mismatch occurs is then reconciled by the residual local-scale
term, as identified in equation (7).

In the mTSA formulation, while there may be two or more
peaks, we represent the spectrum in terms of just two peaks in
this paper, where the second peak fp2 is required to be more than
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2 frequency bins higher than the first peak fp1; otherwise we
represent the spectrum with a single broad-scale term, and
mTSA becomes just the standard TSA formulation. For the
second peak fp2, the upper part of the spectrum above fp2 is
used to define the equilibrium range and the Phillips coefficient
b, in the usual manner. If there are enough frequency bins
between the two peaks, we define an equilibrium range ~ 2-3×fp2,
and calculate a Phillips-type coefficient, denoted here as “b“.
Otherwise we just use the highest frequency bin above fp2, as a
proxy to define the b term, to allow the simulation to proceed.

The region between the two peaks (fp1 and fp2) is a challenge.
The peaks must be separated by at least one frequency bin, to
allow definition of two broad-scale terms. In this case, if there are
enough frequency bins between fp1 and fp2, we define an
equilibrium range ~ 2-3×fp2, and calculate a Phillips-type
coefficient b for the broad-scale term associated with fp1, in the
usual manner. However, if fp1 and fp2 are separated by only a very
small region, then for the lower of the two spectral peaks, fp1, we
represent the energy of its equilibrium range by the minimum
spectral energy between fp1 and fp2, thus defining b for the lower
of the two spectral peaks. Thus, each of the two peaks, fp1 and fp2,
has its own b coefficient, peak direction, qp1 and qp2, and its own
broad-scale term.

For an assumed two-peaked spectrum, each of the two broad-
scale terms requires a directional spreading distribution function.
As with the original TSA formulation, the directional spreading
distribution for each of the two broad-scale terms is assumed to be
of the form ~cosm(q - qp) where the integral exponentm is selected
so that the broad-scale spreading at the respective spectral peak
(fp1 or fp2) can approximate that of the given input spectrum F
(fp,q), for whatever directional distribution this is.
3 HYPOTHETICAL TEST CASES

(a) Sheared Spectrum
The initial test case considers a sheared spectrum, with swell
propagating to the west at 0°, and higher frequency wind-waves
at higher frequency propagating to the north at 270° as shown in
Figure 1C. Within WW3, the convention for winds is always the
Meteorological Convention; direction from, clockwise from
North. For waves, it is direction to, counterclockwise from East.

Figure 1 shows comparisons for the 1-D (1-dimensional) and
2-D action density and nonlinear transfer, Snl, for the three
formulations, namely DIA, multiple-TSA (denoted mTSA), and
WRT. We do not show the single TSA (denoted sTSA) case,
because as in the more basic JONSWAP-type cases considered by
Perrie et al. (2013), the broad-scale term n̂ i is able to fit the swell
spectral peak region rather well (Figure 1A), and therefore sTSA
and mTSA are essentially the same in this case.

However, this case shows that there is a notable mismatch
between n̂ i and the given test case action, ni, in the high-
frequency region, where the energy is almost zero. Thus, the
role for the local-scale term n0i is relatively important in this latter
region. Resultant 1-D estimates for the nonlinear transfer Snl
given by mTSA are able to match those of WRT well, compared
Frontiers in Marine Science | www.frontiersin.org 5182
to DIA, as shown in Figure 1B, as well for 2-D results shown in
Figures 1D–F. By comparison, DIA results have magnitudes that
are too large in the positive and negative lobe regions as shown in
Figure 1B. While detailed patterns for mTSA and WRT are
shown to compare well in Figures 1D, E, DIA results appear
distorted in Figure 1F, particularly in the high frequency portion
of the spectrum.

(b) Evolving Sheared Spectrum, No Wind
or Dissipation
The second test case consists of simply letting the sheared
spectrum in case 1 evolve, without wind input or wave
dissipation, or other source terms, like the propagation of swell
waves. As the nonlinear transfer is conservative, no change in total
energy is expected. 2-D results are presented in Figure 2 after time
evolution of 5 hours. Here, we see that, as in the initial conditions
given in Figure 1, estimates for the nonlinear transfer Snl given by
both sTSA and mTSA are able to match those of WRT well,
compared to DIA. As in the first test case, compared to the results
from TSA and WRT, (which compare well with each other), DIA
results have detailed patterns that appear distorted, particularly in
the high frequency portion of the spectrum. The implications of
these differences particularly appear to show up as energy growth
in high frequency regions of the spectrum as indicated in Figure 2,
e.g. the smaller waves that might be central to satellite
backscattering from synthetic aperture radars.

(c) Evolving Sheared Spectrum, Growing
Wind-Sea Opposing Swell Direction
The third test case considers the same initial wave spectrum as in
the first case in Figure 1; however there is now a constant west-
to-east wind blowing opposite the main westward swell
direction, at 20 m/s, with an initial secondary wind-sea to the
north, as shown in Figure 1, orthogonal to the assumed wind
direction. See Figure 3. The main low-frequency swell direction
is to the west. The formulations for wind input, Sin, and wave
dissipation, Sds, are given by the ST4 source terms of Ardhuin
et al. (2010), as implemented within WW3.

Results are shown after the system has evolved for 10 hours.
The wind speed of 20 m/s is relatively strong. After 10 hours of
time evolution, the new wind-generated waves are the dominant
feature in the spectrum of this system. However, in each of the
simulations shown in Figure 3, we see that westward
propagating swell remains mostly unchanged by the nonlinear
transfer Snl, regardless of which formulation is used, WRT, sTSA,
mTSA, or DIA. Minor variations are obtained in the swell results,
due to DIA formulation and more so in the sTSA results,
compared to results from WRT or mTSA.

By comparison, results for the eastward propagating wind-sea
driven by 20 m/s wind, imposed on the initial conditions of a
northward wind-sea, and a westward propagating swell are a
different story. We see that the results for the 2-D action density
and the nonlinear transfer Snl, given by mTSA, are largely able to
compare to those of WRT relatively well, compared to those of
DIA or sTSA. Differences between results of WRT and mTSA are
comparatively minor.
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By comparison, DIA results have variations in frequency
regions around the spectra peak of the northward-propagating
wind-sea region. In terms of direction, these effects are most
notable in the northeastward direction, approximately
diagonal between the northward propagating wind sea, and
Frontiers in Marine Science | www.frontiersin.org 6183
the new eastward-propagating wind-generated waves. Results
from sTSA show notable biases throughout much of the
spectrum, although the overall shape of the 2-D action
density is rather similar to that of mTSA. For varying 2D
distributions, it is not completely clear how to assign a single
A B

D

E F

C

FIGURE 1 | JONSWAP spectrum with cos2q directional distribution for g=3.3 and secondary shear spectrum showing (A) decomposition into broad-scale and
local-scale terms normalized by the f4 equilibrium range variation, (B) 1-d variation if DIA, WRT and mTSA (units: m2), (C) 2-d action density ni, (D) Snl(f, q) results
for WRT, (E) mTSA, and (F) DIA. Color-bar for DIA, mTSA and WRT scales to ±3.13×10-3, ±3.10×10-4, and ±2.60×10-4, respectively. Color-bar for n(f, q) scales
to 13.3. Other parameters are fp=0.1, Phillips’ a=0.0081, spreading sA=0.07, sB=0.09. Source terms is STO. The 1st peak is at 0.0799 Hz, the 2nd at 0.135 Hz,
shifted 90° with respect to the 1st. Both distributions assume JONSWAP spectra, with g=3.3.
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number to express error. If we take maximum Hs as a kind of
qualitative expression of mismatch, then relative to WRT,
mTSA has an error of about 1.9% in maximum Hs,
compared to 8.7% for DIA.

The overall dominance of the new wind-generated waves
propagating to the east is clear after 10 hours. The effects of
nonlinear wave-wave interactions between the new wind-generated
waves propagating to the east, and the initial conditions involving
wind-sea propagating in the northern direction are relatively minor.

(d) Evolving Sheared Spectrum, Growing
Wind-Sea Parallel to Initial Wind-Sea
The fourth test case is similar to the third case, except now the
20 m/s wind is blowing south to north, orthogonal to the main
east-to-west swell direction, and parallel to the initial secondary
wind-sea, also to the north. See Figure 4. The formulations for
wind input, Sin, and wave dissipation, Sds, are given by the ST4
source terms of Ardhuin et al. (2010), as implemented within
WW3. The simulation is for 5 hr.
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As in test case 3, we see that westward-propagating swell
remains largely unchanged by the nonlinear transfer Snl,
regardless of the formulation; WRT, sTSA, mTSA or DIA.
Minor variations are obtained in the swell spectrum due to the
DIA formulation, particularly in the southwestern direction, and
more so for the results from sTSA, which shows apparent
‘smoothing’ of the westward swell spectrum. Results for the
northward propagating wind-sea imposed on the initial
conditions and the new generating north-propagating wind-sea
waves are dominant features of the simulations.

As in the previous test cases (Figures 1–3), we see again that
simulation results given by mTSA are able to match those ofWRT
rather well, compared to those fromDIA or sTSA. By comparison,
DIA results have more northerly-propagating wind-sea region and
more directional spreading than results suggested by mTSA and
WRT; these similar tendencies for more directional spreading and
more smoothing are also notable in results from sTSA. The initial
wind-sea in the northern direction is effectively ‘assimilated’ into
the new wind-generated waves propagating in the northern
A

B

C

D

FIGURE 2 | Evolving spectra starting with initial conditions as Figure 1,
after time of 5 hours evolution, with no wind: (A) DIA, (B) single-TSA, or
sTSA, (C) multiple TSA, or mTSA, (D) WRT, showing 2-D energy in the left
column and 2-D Snl in the right. Same color bars and scales as Figure 1. Hs
remains constant. Total energy is conserved; Hs is 2.12m.
A

B

D

C

FIGURE 3 | Evolving spectra starting with initial conditions as Figure 1, after
time of 10 hours evolution, with 20m/s wind opposing the swell, from west to
east and ST4 source terms: (A) DIA, (B) single-TSA, or sTSA, (C) multiple
TSA, or mTSA, (D) WRT, showing 2-D energy in the left column and 2-d Snl

in the right. Hs (m) as indicated. Same color bars and scales as Figure 1.
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direction. There is no apparent impact of the west-propagating
swell on the newly-generated north-propagating wind-sea.

As in test case 3, the wind speed of 20 m/s is relatively strong,
and after 5 hours of time evolution, the new wind-generated waves
are the dominant feature in the 2-D spectrum of this system. The
effect of the west-propagating swell on the new wind-sea is rather
minor and only evident in directional components in the
northwest direction, adjacent to the swell propagation direction.
However, variations due to differing formulations for Snl are
evident. We see that after 5 hours evolution, the results for the
simulation given by mTSA are able to match those of WRT
relatively well, compared to DIA or sTSA.

By comparison, DIA results have magnitudes that are too
large, in both the negative high frequency regions, and also in
frequencies of the region around the spectra peak of the north-
propagating wind-sea region. In terms of direction, the DIA
effects result in more broadly distributed directional spreading of
the new wind-sea, rather than to have dominantly north-
propagating waves. This tendency of bias and excessive
Frontiers in Marine Science | www.frontiersin.org 8185
directional spreading is accentuated in the sTSA results. In
terms of error, if we take maximum Hs as a qualitative
expression for mismatch, then relative to WRT, mTSA has an
error of about 2.0% in maximum Hs, compared to 4.3% for DIA.

The overall dominance of the new wind-generated waves
propagating northward is clear after the 5-hour time evolution. The
effects of nonlinear wave-wave interactions between the new wind-
generated waves propagating to the north, and the initial conditions
involving swell propagating to the west are relatively minor.
4 HURRICANE TEDDY (2020)

A detailed discussion of Hurricane Teddy’s development is given
by Blake (2021). Teddy began as a strong tropical wave off the
west coast of Africa on 10 September, 2020, accompanied by a
large area of deep convection, which eventually led to the
formation of a tropical depression near 0600 UTC 12
September to the southwest of the Cabo Verde Islands. The
“best track” of Teddy’s path is given in Figure 5A. Rapid
intensification started late on 15 September and Teddy became
a hurricane on 16 September, about 1300 km east-northeast of
Barbados as it turned northwestward.

By 16 September Teddy’s intensity levelled off at about 85 kt,
and with changing shear conditions, it started another
intensification by the next day. Teddy strengthened into a
major hurricane near 1200 UTC 17 September while centered
about 900 km east-northeast of Guadeloupe, reaching a peak of
120 kt near 0000 UTC on 18 September and then beginning to
weaken, due to an eyewall replacement, and later due to an
increased shear. Teddy dropped below major hurricane status by
0000 UTC 20 September and continued to steadily weaken that
day, although its 50-kt and hurricane-force wind fields
remained large.

On 20 September, Teddy was centered about 700 km
southeast of Bermuda when the synoptic environment
changed, causing it to turn northward and then north-
northeastward on 21 September, when it passed about 370 km
east of Bermuda. The weakening trend stopped late on 21
September due to interactions with a negatively tilted trough,
causing an increase in its maximum wind speed and size.
Thereafter, Teddy moved rapidly northward and then north-
northwestward due to the flow around the trough, and it became
a very large cyclone. The extent of tropical-storm-force winds
from 0000 UTC 22 September to 1200 UTC that day more than
doubled in size in only 12 hours, as confirmed by aircraft and
scatterometer data, and a secondary peak intensity of 90 kt
between 0600 and 1200 UTC was achieved.

This trough interaction also started Teddy’s extratropical
transition process. Teddy’s wind field became more asymmetric,
frontal features formed away from the center, and the convection
become less centralized. As Teddy moved across cooler water it lost
deep convection in the core, and quickly weakened and transitioned
to an extratropical low after 0000 UTC 23 September. At this point
it was centered about 300 km south of Halifax, Canada. Teddy
turned northward and then north-northeastward and made landfall
near Ecum Secum, Nova Scotia, Canada, at 1200UTC that day, with
A

B

D

C

FIGURE 4 | Evolving spectra starting with initial conditions as Figure 1, after
time of 5 hours evolution, with 20m/s wind to the north and ST4 source terms:
(A) DIA, (B) single-TSA, or sTSA, (C) multiple TSA, or mTSA, (D) WRT, showing
2-D energy in the left column and 2-D Snl in the right. Hs (m) as indicated.
Same color bars and scales as Figure 1. Hs is indicated.
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sustained winds of 55 kt. It continued to weaken as it moved across
eastern Nova Scotia and the Gulf of St. Lawrence, and was later
absorbed by a larger low-pressure system.

Surface wave and meteorological conditions were compared
with model estimates at four buoys (41049, 44008, 44137, and
44139) deployed by the National Data Buoy Center (NDBC) and
Environment Climate Change Canada (ECCC). These are located
in Figure 5B. The peak wind speed at 41049, the most southern of
these buoys, was about 22 m/s at 06:00 UTC on Sept 20. Wave
conditions increased rapidly as Hurricane Teddy approached, with
significant wave heights (Hs) reaching about 9 m at this buoy.

(a) The Wave Model
The computational domain for implementation of WW3 for the
simulation of waves generated by Hurricane Teddy consists of
the nested grid system shown below in Figure 6. This nested
system has a relatively coarse-resolution (0.5°) large-scale grid
which extends from 20°N to 65°N, and from 40°W to 75°W for
the Northwest Atlantic. Within this domain, a relatively high-
resolution subdomain is nested from 42°N to 52°N and from 55°
W to 72°W, focused on the waters off northern New England and
the Canadian Maritimes Provinces, as shown in Figure 6. These
grid resolutions are selected to provide a relatively reliable degree
of accuracy in simulating swell and wind-generated waves
energy. The directional resolution is 10° and 29 frequency bins
are used, spaced logarithmically using fn+1 = 1.10 fn ranging
from 0.04118 Hz to 0.5939 Hz. The model global time step
is 600 s. As mentioned earlier, the ST4 source terms are used
following Ardhuin et al. (2010), for wind input Sin and wave
dissipation Sds.
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(b) Winds
Wind fields to drive the wave models for Hurricane Teddy are
obtained from Environment and Climate Change Canada
(ECCC). For the coarse-grid Northwest Atlantic domain, 3-
hourly ECCC global wind products are used with 0.24
resolution on a latitude-longitude grid. For the high-resolution
Atlantic Canada domain, 1-hourly ECCC regional wind products
are used with 10 km resolution based on a polar-stereographic
projection. These are routine forecast products that are posted
daily by ECCC (https://dd.weather.gc.ca/). The ECCC global
wind data are already on a latitude-longitude grid, and so need
no further processing. The ECCC regional model has wind
components on the polar-stereographic grid of the weather
model simulation, and need to be rotated to our latitude-
longitude reference frame in order to be ingested into WW3,
which then performs interpolations in space and time as needed.

(c) Wave Model Estimates
Figure 6 compares significant wave height distributions from
WW3 using the four formulations implemented for the
nonlinear wave-wave transfer Snl term. These are the three
formulations used in this study; DIA, WRT, and mTSA. A
fourth simulation is denoted mTSA4, which uses the tuning
for ST4 for the Northwest Atlantic as determined by Perrie et al.
(2018); the latter was a study of waves generated by three intense
nor’easter storms, and different wave models implemented on
coarse- and fine-resolution nested grid systems that are similar to
those used in Figure 6. The tuning of ST4 reflects regional
characteristics of the Northwest Atlantic and the southern Gulf
of Maine, and was shown to give enhanced results.
A B

FIGURE 5 | (A) Figure 5 Best track for Hurricane Teddy, 12-23 September 2020. (B) Fourteen NDBC and Canadian buoys used in this study.
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FIGURE 6 | Maps of significant wave height, at the peak of Hurricane Teddy, showing (A) WW3-DIA, (B) WW3-mTSA, (C) WW3-m
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In these simulations, WW3 is driven by the ECCC wind fields
as Teddy propagated from the area around Bermuda, to Nova
Scotia as described in the previous section. In terms of the Hs
spatial distributions, the results from DIA and WRT appear to
exhibit slightly larger Hs values that those of mTSA. However, as
expected, this can be compensated for by applying the ST4
tuning suggested by Perrie et al. (2018), which results in higher
values in the simulation results for mTSA4.

Overall, the qualitative features of the Hs area distributions
and wave directions are similar in these four simulations, with
respect to the propagation of the wave fields, the overall
directional patterns of the waves, and the peak wave directions.
Consistent with fetch-limited growth results reported in previous
studies by Perrie et al. (2013), mTSA appears to give results that
are biased low, whereas results from DIA are biased high
compared to those of WRT, using the standard ST4 source
terms. These differences in results from respective different Snl
formulations may be somewhat modulated by the inherent
nonlinearity, numerical instability etc. present in the WW3
model system.

(d) Comparison of Hs Time Series
To estimate the reliability of the model simulations using the
different nonlinear transfer Snl formulations, we conducted
comparisons with measured significant wave heights, Hs, with
observations at four buoys in the model domain whose locations
are shown in Figure 5B. Comparisons were made between time
series of buoy measurements of significant wave heights, Hs, and
the model simulations for Hurricane Teddy, using the
implemented Snl formulations; DIA, mTSA, mTSA4 and WRT.
Buoy observations are generally reported at 30-minute intervals.

Figure 7 shows Hs time series and scatter plots at four
selected buoys along Teddy’s storm track. These are buoy
Frontiers in Marine Science | www.frontiersin.org 11188
41049 near Bermuda, 44008 off Cape Cod, 44137 off Nova
Scotia and 44139 near the southern tip of the Grand Banks.
These four were selected in order to have additional discussion
regarding 1-D and 2-D spectra, in the sections that follow. A
summary of statistics for specifically these 4 buoys, plus an
additional 10 other buoys along, or near, the storm track of
Teddy, indicated in Figures 5A, B is presented in Table 1, in
terms of root mean square error (RMSE), bias, correlation
coefficient (corr), and scatter index (SI). In this computation of
statistics, only data within ± 3 days of the passage of the storm by
a given buoy are used; these data are indicated in Figure 7. Note
that the full observational time series are indicated by red stars
(*), with the points used to calculated statistics (within ± three
days of the peak) marked by black circles ʘ overlaying the red
stars (*).

In terms of capturing the storm peak values and model biases,
the Hs time series and scatterplots in Figure 7 appear to suggest
similar behaviors for all formulations, DIA, mTSA, mTSA4 and
WRT. Statistical indices in Table 1 also reflect this finding, with
mTSA4 tending to overpredict the peak Hs values and mTSA
tending to underpredict these values. This suggests the general
approach, that in implementing WW3 for specific regional
applications, it important to perform some careful tuning of
the basic ST4 source terms of Ardhuin et al. (2010), to reflect the
associated regional characteristics. This trend is also reported in
the statistical indices in Tables 1 and 2 for the 14 buoys shown in
Figure 5B along, or near, Teddy’s storm track. mTSA4 is able to
outperform mTSA in terms of improved RMSE, reduced bias,
improved correlation coefficient, and scatter index. However,
although results from mTSA4 appear to compare somewhat
favorably with measurements at buoys 41049 and 44008, the
mTSA4 results at buoys 44137 and 44139 appear to have notable
overestimates. Thus, the performance is not unequivocal.
A

B D

C

FIGURE 7 | Time series comparisons for significant wave heights Hs for Hurricane Teddy in 2020; shown for buoys: (A) 41049, (B) 44008, (C) 44137, (D) 44139.
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(e) Impacts of Model Tuning
Because ST4 was originally tuned for DIA by Ardhuin et al.
(2010) for simulation of waves for global ocean studies it tends to
perform well. In fact, statistical indices in Table 1 suggest that
DIA can outperform the other simulations; those using mTSA,
mTSA4 and WRT. Occasionally, for some of the statistical
indices, mTSA4 can outperform the other simulations, for
example at buoy 44066 at the edge of the Continental Shelf off
the coast of Delaware USA.

As reported by Perrie et al. (2018) the tuning of ST4 consists
of adjustments to parameters BETAMAX, the wind-wave growth
parameter, and ZALP, the wave age shift of the long waves to
account for gustiness, respectively, 1.75 and 0.008, to give
optimal simulation skill for waves generated by three
nor’easters for the Northwest Atlantic and Gulf of Maine
region. It is anticipated that additional tuning could also
produce more improvements to the performance of mTSA4.
But that is not the objective of this study. In any case, it is
interesting to compare the results from mTSA4 with those from
mTSA and WRT. Table 2 suggests that for the four selected
buoys, results from mTSA4 are generally better than those from
WRT or mTSA.
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(f) 1-D Wave Spectra
Comparisons between 1-D wave spectra at the peak of the buoy
measurements are shown in Figure 8 for Hurricane Teddy. The
simulated 1-D spectra are all essentially dominated by single-
peaked spectra. Some of the comparisons show large
discrepancies between model simulations and observed data. It
is evident that as the peak of the storm passes the buoy locations,
each will experience changing wind directions, and therefore
interactions between swell and wind-waves are present. These
interactions are evident in the comparisons that are shown.

We consider the simulations from the different Snl
formulations. Buoy 41049 off Bermuda shows a dominant peak
near 0.07 Hz and a secondary peak near 0.09 Hz. Only mTSA4
shows any (minor) indication of the secondary peak. All
simulations underestimate the primary peak. mTSA provides a
notable underestimate compared to the observations or compared
to the other simulations like mTSA, DIA and WRT.

Results for buoy 44008 off Cape Cod are somewhat similar to
those of 41049. The observed data indicate some indication of a
secondary spectral peak at about 0.11 Hz, and a primary peak at
about 0.07 Hz. All model simulations tend to also have indications
TABLE 1 | Statistics for Hs (m) from WW3 wave model compared to measurements at 14 buoys along or near the storm track of Hurricane Teddy, for root mean
square error (RMSE), bias, correlation coefficient (corr) and scatter index (SI).

Model RMSE Bias Corr SI (%)

mTSA 0.651 -0.526 0.930 32.02
mTSA4 0.495 -0.195 0.937 24.19
WRT 0.532 -0.357 0.936 26.54
DIA 0.438 -0.181 0.941 21.80
June 2022 | Volume 9 | Article 8
TABLE 2 | Statistics for Hs (m) from WW3 wave model compared to measurements at 4 buoys along or near the storm track of Hurricane Teddy, for root mean square
error (RMSE), bias, correlation coefficient (corr) and scatter index (SI).

Buoy41049

RMSE Bias Corr SI (%)

mTSA 1.014 -0.874 0.936 31.03
mTSA4 0.736 -0.401 0.941 22.55
WRT 0.782 -0.53 0.936 23.93
DIA 0.678 -0.3 0.932 20.77
Buoy44008
Model
mTSA 0.595 -0.508 0.97 24.81
mTSA 0.466 -0.123 0.972 19.43
WRT 0.482 -0.351 0.977 20.12
DIA 0.389 -0.178 0.978 16.25
Buoy44137
Model
mTSA 0.56 -0.408 0.984 21.75
mTSA4 0.643 0.043 0.987 25.01
WRT 0.486 -0.206 0.983 18.9
DIA 0.409 0.009 0.985 15.91
Buoy44139
Model
mTSA 0.539 -0.388 0.978 19.61
mTSA4 0.64 0.095 0.978 23.28
WRT 0.516 -0.19 0.973 18.8
DIA 0.467 0.013 0.972 17
Values in bold denote best results.
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of the occurrence of the secondary peak, e.g. a ‘wiggle’, but none
simulate well the details suggested by the observed data. Also no
simulation captures the primary peak, although mTSA4 and DIA
appear to come close to so doing, whereas results from WRT
and mTSA increasingly underestimate the observed peak
data, respectively.

Results for buoy 44137 off Nova Scotia are similar to those of
41049, with a dominant peak around 0.06 Hz and a secondary peak
at about 0.08 Hz. Different from the results at 41049, here the results
from mTSA4 appear to capture the secondary peak, but notably
overestimate results at the primary peak, as do results from WRT.
By comparison, results from DIA and mTSA appear to provide a
somewhat favorable simulation of the primary spectra peak.

Results for buoy 44139 on the Grand Banks are notable because
of the double peak, a low frequency possible swell peak at about
0.06 Hz, and a higher wind-waves peak at about 0.09 Hz. In this
case, all the simulations appear to provide some indication of the
secondary wind-waves peak, although all present underestimates,
with mTSA4 giving the best simulation. For the primary peak,
mTSA4 provides an overestimate, whereas the other three manage
to give somewhat reasonable simulations.
Frontiers in Marine Science | www.frontiersin.org 13190
(g) 2-D Wave Spectra
Comparisons between observed 2D wave spectra and model
simulations for Hurricane Teddy at about its peak are shown
in Figure 9 for buoys 41049 and 44008. Results for the buoy
measurements are calculated following the Longuet-Higgins
approximation for the Fourier expansion method as
recommended by the NDBC website (www.ndbc.noaa.gov/
measdes.shtml). The observed data in Figure 9 at both buoys
show the response of the wave spectra to turning winds, as the
hurricane passes by and as the primary peak modulates to the
new direction of the developing wind-waves.

Model simulations suggest qualitatively similar results.
Although the observed main directions of the low frequency
primary peak and the developing secondary peak are
approximately consistent with the simulations, the modelled
maximum energy values are generally overestimated compared
to the observed values, 92.6 m2Hz-1rad-1 at buoy 41049 and 38.3
m2Hz-1rad-1 at buoy 44008. The model simulations also appear
to provide results with wider distributions of new wind-wave
energy than is being generated in the new developing wind
direction, compared to more restricted directional spreading
FIGURE 8 | Hurricane Teddy at about the peak of the storm, showing 1D spectrum observed at buoys 41049, 44008, 44137, 44139 compared to simulated
results from WW3 with ST4 source terms, DIA, WRT, and mTSA, where mTSA4 assumes the ST4 tuning used in Perrie et al. (2018).
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suggested by the observed spectra. Often it is the other way
around, with rather wide directional distributions reported for
buoy wave data compared to narrow distributions estimated by
wave models. An example of the latter can be found in the
comparisons of 2-D modelled and measured spectra by Perrie
et al. (2018), which may be attributed to the Longuet-Higgins
approximation for the Fourier expansion method.

Overall, the directional distributions resulting for the three Snl
formulations do not differ significantly, except in terms of the
magnitude of the simulated 2D spectral peaks compared to the
observed data. At buoy 41049, magnitudes of peak 2D spectral
values are approximately the same as observed, and mTSA4 is
too high. See Table 3. At buoy 44008, magnitudes of peak 2D
Frontiers in Marine Science | www.frontiersin.org 14191
spectral values are approximately the same as observed for results
from DIA and WRT, whereas mTSA is too low and mTSA4 is
too high. Therefore, as mentioned before, although the ST4
tuning of the two parameters, BETAMAX, the wind-wave
growth parameter, and ZALP, the wave age shift of the long
waves to account for gustiness, may improve simulations of Hs in
Tables 1 and 2, and the 1D spectra in Figure 7, that is not always
the case for the 2D spectra.

Another possible constraint on the models is numerics, in terms
of the shifting of direction of the spectral peak, and spectral direction
distributions. WW3 uses third-order upwind propagation. This is
the mechanism that can contribute to the model’s ability to shift the
dominant wave directions in response to changing wind directions.
FIGURE 9 | As in Figure 7 for 2D spectrum for Hurricane Teddy at about the peak of the storm, 20 Sept 2020 at 5:40 UTC at buoy 41049, and 22 Sept 2020 at
23:49 UTS at buoy 44008, showing the observed spectrum compared to simulated results from WW3 with ST4 source terms, and DIA, WRT, mTSA4 for nonlinear
wave-wave interactions Snl(f, q). Here, mTSA4 assumes the ST4 tuning from Perrie et al. (2018).
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(h) Computational Efficiency
The presentation of results is not complete without mention of
computational efficiency. However, the focus of this study has
been computational accuracy, rather that computational
efficiency. The new mTSA code has not been optimized with
MPI (Message Passing Interface) or other methodologies,
whereas WRT has had such optimizations. Therefore, in its
present formulation, mTSA does not run efficiently. For
example, whereas mTSA allows a very large reduction in the
number of computations needed to approximate the full
integration for the Boltzmann integral for the wave-wave
interactions, the separation within the spectrum is presently
quite demanding and has not been optimized.

A summary of computational efficiency of mTSA relative to
DIA and other formulations for Snl is given in Table 4. In this
comparison, FBI is the full Boltzmann integration representation
of these quadruplet interactions, which is similar to WRT, and has
been used extensively in earlier comparison studies of TSA, such as
in Resio and Perrie (2008), with similar run times, ~110 × DIA. By
comparison, the present mTSAmethodology is about ~100 × DIA,
whereas previous older parameterizations of these formulations,
FBI-4 and TSA-4, which incorporate alternating frequency and
angle computational loops to accelerate the efficiency, and
additional parameterizations to attempt improved accuracy,
have a computational efficiency in the range of about ~ 26 to 30
× DIA. Future work will focus on optimizing mTSA and the need
to enhance computational efficiency.
5 DISCUSSION AND CONCLUSIONS

We have considered formulations for the nonlinear wave-wave
interactions Snl for application in operational wave forecast models
like WAVEWATCHIII™ , also denoted WW3. These
formulations are DIA formulation from Hasselmann and
Hasselmann (1985) and the WAMDI Group (1988), the WRT
full integration for the Boltzmann integral based on Webb (1978);
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Tracy and Resio (1982); Resio and Perrie (1991), and Van Vledder
(2006), and the original two-scale approximation, denoted TSA by
Resio and Perrie (2008) and Perrie et al. (2013). All of these have
been implemented into WW3 in previous studies. Here, in this
study, we have proposed a slight generalization of the original
TSA, denoted ‘multiple TSA’ or mTSA, to allow better simulation
of complicated wave spectra, as may occur in critical situations
such as rapidly changing storm situations, shearing spectra, and
interactions of swell with wind-waves etc.

To test mTSA, we conduct a variety of test cases, involving
hypothetical and real wave spectra. The hypothetical cases are
based on a single-point model integration, for complicated wave
spectra in interactions between sheared spectra, swell and
opposing wind-sea, swell and wind-sea and orthogonal
generating wind-waves, etc. which might occur in rapidly
changing storm conditions. With respect to the best
simulations by WRT, these suggest that the new proposed
mTSA is accurate and reliable compared to both DIA, and the
previously proposed original version of TSA by Resio and Perrie
(2008), which is denoted sTSA in this study. The other source
terms used in these tests cases are provided from the ST4 source
term formulation of Ardhuin et al. (2010), for example, for wind
input Sin and wave dissipation Sds.

We also conducted real test cases, comparing observations from
field data with results from simulations with WW3 using these Snl
formulations. These test cases are the observations from NDBC
and Canadian buoys as collected during Hurricane Teddy in 2020.
This storm had its genesis as a strong tropical wave off the west
coast of Africa; from there it moved further westward, intensified
and then began heading northward from around Bermuda,
eventually making landfall in Nova Scotia. Comparisons show
that simulations with mTSA, and also mTSA4 with tuned ST4
source terms, are competitive with simulations using DIA orWRT.
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Units are m2 Hz-1 rad-1.
TABLE 4 | Computational efficiency for the simulation of nonlinear interactions
Snl. In this comparison, FBI is the full Boltzman integration representation of
nonlinear interactions as used in earlier studies like Resio and Perrie (2008).

Numerical model Ratio/DIA-time

DIA 1.0
TSA-4 26.5
FBI-4 30.2
FBI ~110
mTSA ~100
WRT 110.7
FBI-4 and TSA-4 represent previous older formulations that incorporate alternating
computational loops to improve efficiency.
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APPENDIX

Given a double-peaked spectrum obtained from observational
data such as a buoy, this section provides the procedure for
getting the JONSWAP parameters of the two broad-scale terms,
the final broad-scale term for the entire spectrum, and the
associated local-scale term.

i. The first step is to examine the entire spectrum and find the
spectral peak. This is the absolute largest peak. This is the
energy maximum. Secondly, this process is repeated and the
second spectral peak is determined. This is a local peak,
which means it is a local maximum and has at least one
frequency bin with lower energy on the left side in a lower
frequency bin, and at least one frequency bin with lower
energy on the right side, in a higher frequency bin.

ii. Subsequently, just for bookkeeping, the two peaks are
labelled so that the lower one on the frequency range is
called “fp1” and the other one is “fp2”. Therefore, fp1 is the
peak with lower frequency and fp2 is the peak with higher
frequency.

iii. The total frequency range is from the lowest frequency in the
spectrum, at frequency bin “= one”, or f1, to the highest
frequency in the spectrum, which for observed data
corresponds to the Nyquist frequency, fNyquist. We divide
the frequency range into 2 regions; one for fp1 and one for fp2.
The division point is defined by the separation frequency,
which is approximated as sitting halfway between the 2
peaks, fp1 and fp2. We do not use optimal fitting to try to
somehow refine the splitting of the frequency range between
fp1 and fp2, because that reduces the computational efficiency
and has not been found to be beneficial. Therefore, the
separation frequency is halfway between fp1 and fp2.
Frontiers in Marine Science | www.frontiersin.org 17194
iv. The “first region” is from the lowest frequency in the
spectrum, f1, to the separation frequency, and the “second
region” is from the separation frequency to the highest
frequency, fNyquist. For each region, we have one spectrum
with one peak. Therefore, we do JONSWAP fitting on each
separate region. This is performed by a subroutine
(previously developed in the original TSA formulation)
that does an optimal five-parameter JONSWAP fitting.
Therefore, in the first region for fp1, the five-parameter
JONSWAP fitting is done for the frequency sub-range
from f1 to the separation frequency. And in the second
region for fp2, the five-parameter JONSWAP fitting is also
done for the frequency sub-range extending from the
separation frequency to the highest frequency, fNyquist.
Therefore, we handle the fp1 region and the fp2 region
independently.

v. Until now, the JONSWAP fitting is always done in 1-D. To
go to 2-D, we apply a directional distribution like ~cosm(q -
qp) to the 1-D parameterizations, at each step, in order to get
the two 2-D broad-scale terms for the two regions, for the fp1
region and for the fp2 region, independently.

vi. To get the broad-scale term for the total frequency range, we
add together the broad-scale term for the fp1 region, to the
broad-scale term for the fp2 region. This completes the fitting
for the broad-scale term for the entire frequency range.
There is the possibility of a “discontinuity or jump” in the
two broad-scale terms at the separation frequency between
fp1 and fp2. This is resolved by smoothing, over three
frequency bins.

vii.
The local-scale spectrum, or residual spectrum is then
determined as the difference between the given input spectrum
minus the broad-scale term.
June 2022 | Volume 9 | Article 867423
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Long-Term Variability of the East 
Sea Intermediate Water Thickness: 
Regime Shift of Intermediate Layer in 
the Mid-1990s  
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School of Earth System Sciences/Kyungpook Institute of Oceanography, Kyungpook National University, Daegu, South Korea

The shipboard measurements over approximately 55 years in the southwestern part of the 
East Sea (Sea of Japan) demonstrate a remarkable basin-wide, interannual-interdecadal 
variability in the temperature-based thickness of the East Sea Intermediate Water (ESIW) 
whose temporal variability shows strong correlation with the density-based thickness  
(r = 0.97). Relevant to the long-term variability of the ESIW thickness, clear changes in 
horizonal and vertical features have been observed at the intermediate layer in the mid-
1990s, such as 1) increases in vertical temperature gradient in the thermocline by shoaling 
of 2°C–5°C isotherms, 2) relatively high correlations among isotherms in the interdecadal 
timescale, 3) appearance of zonal phase difference in the ESIW thickness variability after 
the mid-1990s, and 4) correlation phase change between the Arctic Oscillation Index 
and the ESIW thickness. The ESIW thickness could be smaller when its formation is 
weaker and when the formation of deep-water mass below it becomes stronger. Based 
on the features observed, we hypothesized on the regime shift concerning the East Sea 
meridional overturning circulation; before the mid-1990s, active deep-water formation 
mainly controlled the ESIW layer variability, but after the mid-1990s, the ESIW formation 
rate predominantly affected its own thickness variability.

Keywords: East Sea Intermediate Water, regime shift, thermocline water, thickness variability, Arctic Oscillation, 
long-term variation, ship-board measurements, Argo float

1 INTRODUCTION

The East Sea (Japan Sea, hereafter ES) is a marginal sea connected to the North Pacific through four 
straits shallower than 200 m, i.e., the Korea Strait, Tsugaru Strait, Soya Strait, and Tatar Strait, the 
water masses of which are independent of the intermediate and deep waters in the North Pacific. The 
water masses of the ES below the thermocline are formed inside the ES and classified as intermediate, 
central, and bottom water according to their formation processes and sites (Kim et al., 2004; Talley 
et al., 2006). The formation process of each water mass is very similar to that of the open ocean.

Above the thermocline, three different types of water masses are mostly found in the southern 
part of the ES (c.f. Park et  al., 2016): the low-salinity Tsushima Warm Water (TWW) and the 
high-salinity TWW flow in through the Korea Strait. The former one is near the sea surface in 
summertime, which is the diluted water of Changjiang River in China, and the latter is right below 
the former one, persistent throughout the year and originated from the Kuroshio water. Lastly, the 
Ten Degree Water with thermostad is located below the high-salinity TWW and formed in the 
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southern part of the ES in winter, which is also comparable to the 
subtropical mode waters in the open ocean.

There is also a subpolar front near 38°N in the ES created 
by the TWW flowing in through the Korea Strait. Therefore, 
the southern and northern parts of the ES have the thermal 
characteristics of the subtropical and subpolar regions of the 
open ocean, respectively. Due to these characteristics, the ES is 
also called the “miniature ocean.”

However, because the water masses of the ES are formed 
in relatively similar regions (northwestern part of the ES), the 
variation in their physical properties is still not as substantial 
as that in the open ocean. The small deviation in the properties 
makes it difficult to properly distinguish the differences between 
water masses before introducing conductivity-temperature-
depth instruments with high precision and high resolution. In 
the past, the deep layer below the permanent thermocline was 
recognized as a single water mass called the Japan Sea Proper 
Water (Uda, 1934). However, the properties and dissolved 
oxygen (DO) profiles, which were precisely measured by the 
Circulation Research Experiment in East Asian Marginal Seas 
program since the mid-1990s, have demonstrated that there 
were several different water masses below the thermocline. 
These water masses are formed in slightly different waters in the 
Western Japan Basin through different processes (Kim and Kim, 
1999; Talley et al., 2004).

Although the East Sea is a small sea, there are two types of 
intermediate water, i.e., the East Sea Intermediate Water (ESIW) 
with salinity minimum layer and the High Salinity Intermediate 
Water with salinity maximum layer. The ESIW predominates 
the ES, except in the eastern part of the Japan Basin. The High 
Salinity Intermediate Water is present within the near-barotropic 
cyclonic gyre in the central and eastern Japan Basin where the 
ESIW is not found and barely spreads to the southern part of 
the ES (Kim and Kim, 1999; Watanabe et al., 2003; Kang et al., 
2016). Alternatively, the ESIW is subducted to the south under 
the subpolar front, contributing to the East Sea meridional 
overturning circulation (EMOC), unlike the High-Salinity 
Intermediate Water (Park et al., 2016).

The ESIW exists just below the permanent thermocline, similar 
to that in the open ocean, and is characterized by the extreme 
(low salinity minimum) salinity values. The Intermediate Water 
has a high DO concentration, and it was observed to be formed 
by subducting surface water in contact with the atmosphere in 
the northern part of the ES. The DO of the ESIW is >250 μmol 
kg−1 and the salinity is <34.06 g kg−1, the water temperature range 
of this layer is 1°C−5°C, and its potential density ranges from 
26.9 to 27.3 σθ (Kim and Chung, 1984; Cho and Kim, 1994; Kim 
and Kim, 1999; Senjyu, 1999; Kim et al., 2004; Yun et al., 2004). 
As noted by Kim and Kim (1999), the characteristics of the ESIW 
may vary depending on the observed time and region because 
researchers have not conclusively defined the ESIW layer.

During winter in the ES, the northwesterly wind from the 
Siberian continent becomes jet-shaped due to the orographic 
effect near Vladivostok, which forms a wind stress curl of a 
dipole structure, and the curl in the west becomes negative, 
causing the Ekman downwelling. At the center where this 
dipole wind stress curl appears, the North Korean Front (NKF) 
is formed. This happens only in winter and is easily found 
in the satellite sea surface temperature data; a southward or 
southeastward ocean current is created along the front. The 
eastern side of the NKF has a low water temperature of 1°C or 
less, similar to the temperature of the central Japan Basin, but 
the western side has a relatively high temperature of 3°C–7°C, 
and anticyclonic eddies also are found (Park et al., 2005; Talley 
et al., 2006).

The ESIW has been known to form in the western side of 
the NKF or in the Western Japan Basin (Yoon and Kawamura, 
2002; Park and Lim, 2018). The winter surface salinity in the 
area is lower than that in other regions of the ES, except near the 
Russian coast, and aids the formation of the salinity minimum 
layer. Park and Lim (2018) showed the possibility that the 
fresher surface water in the ESIW formation area mostly 
originated from the low-salinity TWW, flowing in through 
the Korea Strait. This implies that the salinity properties of 
the ESIW can be greatly controlled by ocean advection, even 
though they are under the influence of seasonal atmospheric 
forces. Therefore, the salinity itself can hardly serve as a 
suitable proxy for the ESIW response to the long-term climate 
change. In addition, it is noted that the sea water density 
in the ES is mainly determined by the water temperature 
especially below the main thermocline, while the salinity 
does not significantly affect the density change. Indeed, the 
salinity variation at the surface of the ESIW formation site is 
from 33.95 to 34.00 g/kg, but the temperature ranges from 2 to  
6°C (Park and Lim, 2018). Thus, α δ T is about 10 times larger 
than β δ S in the formation area. It means that the salinity 
variability may not greatly affect the ESIW volume change 
defined by density range.

Studies on the long-term variability of the East Sea water 
masses have been conducted in response to climate change. 
Since 1969, a clear warming has been observed in the deep 
sea below 500  m (c.f. Kwon et  al., 2004). Together with the 
warming trend, reports until the late 1990s showed that the 
DO concentration has been continuously decreasing in the 
deep and bottom oceans but increased in the central layer 
between intermediate and deep layers (c.f. Gamo, 1999; Kim 
et al., 2004). These results are interpreted as a decrease in water 
masses delivered to the deep and bottom layer, as the East 
Sea continues to warm, combined with an increase in central 
water, resulting from the shallowing of the ventilation system 
(Kim et  al., 2004). Kang et  al. (2004) reported the possibility 
that the East Sea Bottom Water would disappear in 2050, when 
the volume of each water mass was linearly reduced using a 
simple box model. Alternatively, Yoon et  al. (2018) suggested 
that the rates of decrease in DO concentration observed in the 
deep layers (below 1,500 m) slowed down. They also showed 
the rapid decrease in DO even in the central layer from 1996 
to 2015. Because DO in the water mass reservoir is determined 

Abbreviations: ESIW, East Sea Intermediate Water; ES, East Sea or Japan 
Sea; TWW, Tsushima Warm Water; EMOC, East Sea meridional overturning 
circulation; NFK, North Korean Front; DO, dissolved oxygen; AO, Arctic 
Oscillation; NKCW, North Korean Cold Water; NIFS, National Institute of 
Fisheries Science; SSH, sea surface height; PC, principal component; JSPW, Japan 
Sea Proper Water.
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by a time integration of influx by water mass formation and 
outflux mainly due to biodegradation, this result cannot be 
simply interpreted as reinforcing of deep-water or bottom-
water formation, although occasional bottom-water formation 
was temporarily observed in the winter of 2000/2001 (Kim et al., 
2002; Tsunogai et  al., 2003). However, due to global warming, 
a continuous decrease in deep and bottom waters in the ES is 
expected in the long-term (Talley et al., 2006).

The long-term change in water mass in the East Sea includes 
interannual and decadal variability and trend-like changes 
related to global warming. Minami et al. (1999) and Watanabe 
et  al. (2003) pointed out that oxygen, phosphate, and water 
properties fluctuate over a cycle of approximately 18 years 
under a water depth of 2,000 m in the eastern Japan Basin and 
Yamato Basin. Cui and Senjyu (2010) also showed that DO in 
the Japan Sea Proper Water varies over a cycle of approximately 
20 years, showing a rough positive correlation with the Arctic 
Oscillation (AO). However, the positive AO phase is not a 
favorable condition for deep-water formation because the 
winter water temperature is relatively high, they suggested that 
atmospheric disturbances would occur more violently during 
the positive AO phase, resulting in more active occasional cold 
air outbreak and stronger deep-water formation (Isobe and 
Beardsley, 2007).

However, not many studies have been conducted on the long-
term variability of the ESIW corresponding to thermocline water. 
Nam et al. (2016) utilized the coastal observation data from 1994 
to 2011 to show a clear positive relationship between the ESIW 
and AO on the interannual timescale. However, the observation 
site, which was approximately 9  km away from the coast, 
might not sufficiently represent the interior ESIW variability, 
considering the first baroclinic Rossby deformation radius of 
approximately 11 km (Park, 2019). Yun et al. (2004) examined 
the fluctuations in the perspective of isopycnal fluctuations of the 
ESIW through careful data observation, but they only focused 
on the cold water of the Korean Strait. Yun et al. (2016) utilized 
observation data obtained during 1929–1941 and 1985–1996 to 
argue that the ESIW tends to be strongly formed during the strong 
El Nino period, which creates shoaling of the isopycnal surface 
of 27.0 σθ in the Ulleung Basin. However, any comprehensive 
understanding of long-term variability of the ESIW in the 
ES interior was not mainly viewed from the perspective of  
long-term continuous datasets.

Lastly, it should be noted that the previous studies on the 
ESIW variability were based on the unclear separation between 
the North Korean Cold Water (NKCW), mainly found near 
the eastern coast of Korean peninsula, and the ESIW in the ES. 
The NKCW has similar property ranges as the ESIW, yet their 
core properties at a shipboard measurement are often found 
to differ substatially (Kim et al., 1991; Min and Kim, 2006; 
Kim and Min, 2008). Such discrepancy of the NKCW and the 
ESIW properties was reported by Cho and Kim (1994), but 
it was well-known even in the early 1980s (Kim and Chung, 
1984). Two hypotheses have been proposed to explain this 
discrepancy. While Cho and Kim (1994) proposed that the 
NKCW and the ESIW are different water masses formed in 

different areas, other studies suggested that they are the same 
water masses but with different routes extending to the southern 
part of the ES (Kim et  al., 2006; Kim et  al., 2008). Because a 
study on the long-term variability of the ESIW should inevitably 
address the long overdue issue, spatial distributions of the ESIW 
variability in this study will demonstrate which hypothesis 
would be more reasonable to understand the discrepancy of the 
intermediate water property between the coastal and offshore 
areas.

Generally, when linking the property variability of water 
mass and climate variability, we assume that the properties of 
the corresponding water mass outcropped to the sea surface 
in winter during its formation should be mainly controlled by 
the atmospheric buoyancy forcing. Then, climatic conditions in 
winter can be imprinted onto the subducted water mass properties. 
However, because the salinity of the ESIW is significantly affected 
by the presence of low-salinity TWW, which are advected from 
the southern waters into the formation area (Park and Lim, 
2018), the ESIW salinity variability does likely not show a simple 
correlation with the variability of winter atmospheric conditions. 
Therefore, in this study, the ESIW variability was analyzed in 
terms of its thickness, not salinity, using the regular shipboard 
measurement data obtained from the southwestern part of the ES 
over approximately 55 years, from 1965 to 2020. The data used in 
this study are described in the next section, the definition of the 
ESIW and its thickness are shown in the Methods, the analysis of 
its long-term variability is presented in the Results, and pertinent 
conclusions have been drawn in the Conclusion.

2 DATA AND METHODS

2. 1 Data

2.1.1 National Institute of Fisheries Science  
Hydrographic Data
The National Institute of Fisheries Science (NIFS) has conducted 
hydrographic measurements every year on a bimonthly basis 
at eight zonal lines covering the Ulleung Basin of the ES 
(Figure 1A). Most data are provided at 14 standard depths (0, 
10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400, and 500 m) 
and were collected over approximately 55 years, from February 
1965 to December 2019. For all data, spike test was performed 
through Ocean Data View (https://odv.awi.de), and linear 
interpolation was performed at intervals of 1  m for thickness 
calculation. In general, water mass has a strong tendency to 
spread along isopycnal surfaces; therefore, usually, the vertical 
thickness of a water mass is determined based on potential 
density. However, as demonstrated quantitatively by Park (2021), 
the salinity values of the NIFS hydrographic data contain a 
serious time-dependent bias error. The one-standard errors were 
estimated to be 0.05−0.25 g kg−1 in the 1960s and 1970s and 
about 0.05 g kg−1 in the 1980s and early 1990s (Supplementary 
Figure S1A). With salinity bias errors of 0.1 and 0.15  g kg−1, 
the thickness errors can reach approximately 60 and 120  m, 
respectively, based on the mean temperature and salinity profile 
(Supplementary Figure S1B). Because of the uncertainty of 
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the salinity data, the ESIW thickness cannot be estimated 
with sufficient accuracy based on potential density ranges 
using NIFS data. Therefore, in this study, only temperature 
data were used in calculating the thickness of the ESIW, and 
the correlation between temperature-based thickness and 
density-based thickness must be evaluated first. Therefore, 
quality-controlled Argo float data were used as an evaluation 
standard. (Supplementary Figure S1B)

2.1.2 Argo Float Data
Temperature and salinity profile data obtained from the 
Argo floats between 1999 and 2015 were used to compare  
the temperature-based and density-based ESIW thickness. 
The hydrographic data obtained from Argo floats were 
neither uniform in space and time, nor was their observation 
period long enough to observe long-term variability; however, 
they can be a good countermeasure to support the analysis of 
shipboard data. The 36 profiling floats in the ES were deployed 
by the University of Washington, USA, in 1999 for the Office 
of Naval Research program. The remaining floats were 
deployed annually by the Korea Institute of Ocean Science and 
Technology and the Korea Meteorological Administration & 
Korean National Institute of Meteorological Sciences as part of 
the Korean Argo program. In total, about 22,000 temperature 
and salinity profile data were produced from January 1999 
to December 2015 from more than 150 floats (Figure  1B). 
Basically, all the float data were processed by following the 
delayed mode quality control procedure from the Argo 
data management team (Wong et  al., 2019), but because the 
natural property variability in the ES is 10 times smaller 
than that in the open ocean, the data quality was improved 
by the method optimized for the ES, and the estimated 
one-standard salinity error was reported to be 0.004  g kg−1  
(Park and Kim, 2007).

2.1.3 Satellite Altimetry Data
The satellite-derived sea surface height (SSH) data were also 
utilized to analyze whether spatial distribution and temporal 
variability of the ESIW thickness depend on the upper ocean 
circulation patterns. The spatial structures of the upper ocean 
circulation in the southern part of the ES are clearly shown in 
the SSH maps (Choi et al., 2004; Park and Nam, 2018). The SSH 
data are a merged product of multiple altimeter missions, daily 
gridded onto 0.25° × 0.25° over the time period January 1993 to 
December 2020 (https://resources.marine.copernicus.eu/). After 
removing the seasonal variability using the 1-year box-car filter 
method, the monthly mean SSH was obtained to compare SSH 
with the ESIW thickness and isotherm depths.

2.1.4 Arctic Oscillation Index
The daily AO Index was provided by the Climate Prediction 
Center, National Oceanic and Atmospheric Administration 
(NOAA), USA (https://www.cpc.ncep.noaa.gov/), which is 
constructed by projecting the daily 1,000 mb height anomalies 
poleward of 20°N onto the leading EOF mode. The time series 
are normalized by the standard deviation of the base period, 
1979−2000. The leading Empirical Orthogonal Function (EOF) 

pattern of AO is obtained using the monthly mean height 
anomaly dataset.

The AO is a representative phenomenon that greatly affects 
the atmospheric environment, especially during winter in the ES. 
There have been several studies to show the correlation between 
the AO and the water mass properties of the ES and the great 
influence on the surface water temperature and wind patterns of 
the ES (Isobe and Beardsley, 2007; Cui and Senjyu, 2010; Nam 
et al., 2016). In addition, a positive winter AO strongly correlates 
with warmer winters over East Asia by enhancing the Polar 
westerly jet (c.f. Park et al., 2011; Wu et al., 2015). The AO Index 
has been filtered with box-car windows of 3 years, whose raw 
data are shown in Supplementary Figure S2. 

2.2 Methods

2.2.1 Density-Based East Sea Intermediate  
Water Thickness
When a large amount of water mass volume is formed, the 
vertical layer of the corresponding water mass defined by the 
range of isopycnal surfaces must be thicker while looking at 
the area that is not far from the formation site, and the volume 
change of the water below and above it can be ignored. Even 
though the thickness of the water mass can be changed under 
the influence of mixing after being subducted, it is assumed that 
mixing-induced thickness change will not produce interannual-
decadal variability. However, the ESIW thickness can change by 
not only the amount of formation but also the expansion and 
contraction of water volume above and below it; therefore, the 
analysis must be cautiously performed.

Usually, since water masses easily expand along isopycnal 
surfaces, vertical range occupied by the water masses is often 
defined by density ranges. Kim et al. (1999) exhibit that the ESIW 
has a density range between 26.9 and 27.3 σθ. In this study, the 
density-based ESIW thickness is defined as the depth difference 
of those two isopycnal surfaces suggested by Kim et al. (1999). 
However, as described above, the thickness of the ESIW based 
on density could not be accurately calculated because of the 
low quality of NIFS salinity data. Thus, the density-based ESIW 
thickness is computed only using Argo float data to compare with 
the temperature-based thickness obtained from the NIFS data.

2.2.2 Evaluation of the Temperature-Based East Sea 
Intermediate Water Thickness
Before the ESIW thickness is calculated based on temperature 
only, the existence of a potential correlation between thickness 
and density must be examined. The red dot in Figure  2A is a 
comparison of potential density-based (26.9−27.3 σθ) and 
potential temperature-based (1°C−5°C) thickness using Argo 
float data within the NIFS observation area shown in Figure 1B. 
There is a clear linear relationship with each other (R2 ~ 0.78), but 
the temperature-based thickness is statistically underestimated.

This is because the temperatures and densities at the ESIW 
top and bottom suggested by the previous studies do not match. 
Figure  2B shows the histograms of the temperatures on the 
isopycnals of 26.9 and 27.3 σθ. The temperature-based range of 
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the ESIW (1°C−5°C) is found to be quite conservative compared 
to the density-based one. The temperature range corresponding 
to the density range may be 0.8°C−5.6°C in terms of median 
values. The width of the temperature histogram for 26.9 σθ is 
wider than 27.3 σθ. However, it is simply because of the difference 
in vertical gradient of temperature. In fact, the mismatch of the 
ESIW bottom boundary based on temperature and density is 
mainly responsible for the underestimation of the temperature-
based thickness. Unfortunately, the temperature at the ESIW 
bottom cannot be set to 0.8°C instead of 1.0°C because the ESIW 
bottom is often deeper than 500 m, which is the maximum NIFS 
observation depth.

Figure  3 shows the density- and temperature-based ESIW 
thicknesses calculated from Argo float data within the NIFS 

observation area in time series. The 5-month moving averaged 
lines demonstrate that the temperature-based thickness (green) 
is underestimated by about 30% compared to the density-based 
thickness (black). However, in terms of variabilities, they fluctuate 
almost identically with the high correlation of 0.97. The green 
dotted line, which represents 1.3 times the temperature-based 
thickness, is comparable to the density-based one, confirming 
that the temperature-based thickness can be used as a substitute 
variable indicative of the thickness variability of the ESIW.

The ESIW thickness was first calculated from the NIFS 
profile data, and stations that were not in the temperature range 
of 1°C−5°C  were excluded from the calculation. From 1978 to 
1981, the northernmost Line 107 (38.21°N) observation was 
not made at a depth of 500 m, so it was not counted. The NIFS 

BA

FIGURE 1 |    Map of the East Sea and stations for (A) National Institude of Fisheries Science (NIFS) hydrographic data and (B) Argo float (1999–2015). Red and 
blue arrows in panel (A) denote warm and cold surface currents. All NIFS station data are for thickness comparison with Argo data and the only blue stations are 
for studying long-term variability of the East Sea Intermediate Water (ESIW). The black solid-line rectangular box shows the area for which Argo data were taken for 
Figure 2. The area with dashed lines is for Figure 3.

BA

FIGURE 2 | (A) Scatter plot between the density-based (26.9−27.3 σθ) and temperature-based (1°C −5°C) thickness obtained from Argo data. Red dots represent 
the data within the area denoted using dashed line in Figure 1B, and blue dots represent data from the whole East Sea. (B) Histograms of temperatures on the 
isopycnal surfaces of 26.9 and 27.3 σθ shown in red and blue lines, respectively, which are computed from the Argo data obtained from the area of dashed line in 
Figure 1B.
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shipboard measurements are usually scheduled to be carried 
out in February, April, June, August, October, and December 
every year, but the observations were not conducted on the 
same day every year due to weather conditions. Therefore, due 
to missing data or temporal irregularities, a linear interpolation 
was performed at intervals of 2 months and 0.1° for spatial  
analysis, and seasonal variations were eliminated by applying  
a 14-month box-car filter.

2.2.3 Mean Temperature Reconstruction by Basin-
Wide Average of Isothermal Layer Depth
To analyze and understand temporal variability of the 
ESIW thickness and to examine how the vertical structure 
of basin-wide averaged temperature changes with time, a 
basin-wide average of temperature profiles was performed 
in terms of isothermal layer depth rather than a simple 
depth coordinate. The horizontal circulation structure of the 
observation area and the presence of mesoscale eddies play 
an important role in determining the thermocline depth. In 
such an environment, when basin-wide averaged temperature 
was calculated on pressure or depth coordinates, fictitious  
vertical diffusion occurred, creating a vertically smoothed 
temperature structure (Lozier et al., 1994; Nurser and Lee, 2004) 
and affecting the thickness in the thermocline water. Therefore, to  
prevent such an error, thicknesses of the isotherm layers by 
0.5°C bins were spatially averaged and then vertically integrated  
to calculate the depth value of each temperature as follows.

Z T
A

dD
dT

dAdTg
T

T

Abottom

top

( ) = ∫ ∫
1

where T denotes potential temperature; D, the isotherm depths; 
and A, the domain area. Ttop and Tbottom are 15°C and 1°C, 
respectively.

However, the basin-wide averaged temperature estimated in 
this manner has a limitation, especially near the surface and the 
bottom in that predetermined isotherm layers were not found. 
Therefore, it is suitable only for the middle or deep layers where 
the isotherm layers are mostly found. In this study, the problem is 
minimized because the observation area is far enough away from 
the formation area and mostly below the thermocline. In this 
calculation, Ttop was set to 15°C and the temperature of 9°C–15°C 
can outcrop in the limited area of the observation domain only 
in winter. In this case, the depth of the corresponding isotherm 
surface was taken as 0.

To estimate the basin-wide averaged temperature, the 
isotherm layers were obtained at 0.5°C intervals from all the 
NIFS temperature profile data, and seasonal variations were 
removed using 14-month moving averages. The filtered data 
were reconstructed in the form of an equal grid using three-
dimensional (3D) linear interpolation to obtain a spatial grid of 
0.1° × 0.1° and a time grid of 2 months. By averaging the gridded 
isothermal layer data over the observation area, the depth of each 
isothermal layer was calculated temporally and converted into 
temperature profiles.

3 RESULTS

3.1 Variability of the East Sea Intermediate 
Water Thickness and Property Based on 
Argo Float Data
Considering the Argo float data obtained between 131°E 
and 132°E as cross-sectional data in a meridional direction 
(35.5°N−40.0°N), Figure  4A shows the variation in the layer 
thickness of isopycnal surfaces between 26.9 and 27.3 σθ where 
the ESIW resides, and Figure 4B presents the salinity variation 
on the 3°C isotherm surface. Because the Argo data have a 
spatiotemporal irregular distribution, it is interpolated by the 

FIGURE 3 | Time series of temperature-based thickness and density-based thickness in the area denoted by the dashed line (Figure 1B). Black and open red dots 
denote temperature- and density-based thickness, respectively. Green and black lines show the 5-month moving averages of the temperature-based and density-
based thickness, respectively. The green dotted line represents 1.3 times the temperature-based thickness.
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Gaussian weighted average method with a temporal (1.5-year) 
and spatial (0.25°) decorrelation scale.

The thickness is higher in the north close to the formation 
site and becomes thinner further south (the potential vorticity 
is not conserved). In terms of temporal variability, the layer is 
thick in 2005−2008 and in 2011−2014, and it expands to the 
south over time. The rate of expansion could not be accurately 
determined because of the greatly smoothed sparse data, but 
it appears to take about 0.5 to 1.5 years at latitudes 40°N to 
38°N. Importantly, the spatiotemporal variation of thickness 
is quite similar to the pattern of the salinity on the 3°C 
isotherm surface that corresponds to the central part of the 
ESIW. Relatively low-salinity properties appear in the years of 
large thickness, and high-salinity properties appear when the 
thickness is thin. However, the temporal variability of salinity 
does not have a linear relationship with the thickness (not 
sensitive on isotherm surfaces). For example, at latitude 39°N, 
even though there is no significant difference in thickness 
between 2007 and 2013, there is a noticeable difference in 
salinity.

A similar trend was observed for spiciness on the isopycnal 
surface of 27.1 σθ. Spiciness shows whether a water mass is 
spicy (warmer and saltier) or minty (colder and fresher) in 
a specific density aspect, which is the orthogonal quantity to 
isopycnals on the θ-S diagram (McDougall and Krzysik, 2015). 
Because the ESIW density is predominantly controlled by water 
temperature, there is little difference in the spatiotemporal 
structure of spiciness on the isopycnal surface or salinity on 
the corresponding isothermal surface (refer to Supplementary 
Figure S3 for thickness of 1°C–5°C and salinity at 27.1 σθ). 
Although the salinity in 2011–2014 was 0.05–0.06 g kg−1 lower 
than that in 2005–2008, the effect of this salinity change on 

density is approximately 0.04 kg m−3, which is one-tenth smaller 
than the total density range of the ESIW (0.4 kg m−3).

Therefore, the thickness variability close to the formation site 
is strongly linked with that in the southern area. As Park and 
Lim (2018) pointed out, the ESIW salinity is influenced by the 
characteristics of the fresher surface water advected into the 
formation site. However, the amount of fresher surface water 
entering the formation site does alter the ESIW salinity yet does 
not significantly affect the amount of formation because its effect 
on density is small.

3.2 Long-Term Variability of the East Sea 
Intermediate Water Thickness
Figure  5 presents the temperature-based ESIW thickness 
variability (hereafter referred to as the ESIW thickness) for 
which the seasonal variability is removed at each station (Raw 
data can be found in Supplementary Figure S4). The color 
indicates the latitude of each NIFS measurement station, as 
shown in Figure 1. Interannual-interdecadal variability clearly 
exists, and the variabilities tend to appear similarly over entire 
stations. Compared with the ESIW thickness fluctuations 
obtained from the Argo float data in 2002−2013 (Figures 2, 
4), the patterns of thickness variability are comparable 
between Argo and NIFS data; for example, the larger thickness 
observed in the years 2005−2008 and 2010−2013.

Figure  6 shows the spatial distribution and principal 
component (PC) time series of the first and second EOF 
modes of the ESIW thickness, respectively. The first mode 
accounts for 75.7% of the total variance, and the second mode 
accounts for only 6.4%. Most of the ESIW thickness variations 
can be explained in the first mode. The spatial distribution 

B CA

FIGURE 4 | (A) Hovmoller diagram for the ESIW thickness (meter) from Argo float data within the solid-line rectangular box (35°N−40°N, 131°E−132°E) in Figure 1B. 
(B) The same as panel (A) but for salinity (g/kg) at 3°C and (C) for spiciness at 27.1 σθ. Black dots denote where the Argo data are.
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of the EOF first mode has positive values over the observation 
area, so it fluctuates stronger in the north and weaker in the south 
according to the pattern shown in the PC first spatial mode. The 
first mode PC time series sufficiently captures the temporal 
fluctuations shown in Figure  5. The periodic fluctuations of 
3–6 years and long-term fluctuations of 15–18 years were 
predominant, rather than the year-to-year variations suggested 
by Kim et al. (1999). It is noted that the fluctuation pattern before 
the 2000s tended to increase rapidly and then decrease slowly 
in interdecadal timescales, while the fluctuation pattern seems 
to have changed in the 2000s and 2010s, although there is the 
limitation of observation period.

From the spatial distribution of the ESIW thickness when the 
negative and positive peaks appear in the PC time series, it can 
be confirmed that the thickness varies over the entire domain 
(Figure  7). The northwestern part of the domain is thicker 
and the southeastern part is relatively thin in the years with 

positive peaks (1974, 1993, and 2011). The spatial structure of 
the EOF first mode sufficiently captures the characteristics of the 
observation data.

The temporal change of spatial pattern of the thickness 
is not likely affected by the upper ocean circulation patterns 
(Figures  8A). The East Korea Warm Current and the Ulleung 
Warm Eddy are dominant features that control the surface 
circulation in the southwestern part of the ES, manifested in the 
spatial map of SSH that mostly represents the first baroclinic 
structure (Choi et al., 2004; Park and Nam, 2018 ). The SSH map 
shows that the East Korea Warm Current moves northward along 
the east coast, and then separates from the coast at a latitude of 
37°N–38°N and flows southward at around 131°E. These features 
vary over the years. Additionally, the warm eddy structures with 
locations and strengths differently over the years. However, those 
upper circulation structures do not appear in the ESIW thickness 
shown in Figures 7D–F.

B

C D

A

FIGURE 6 | (A) EOF first mode loading vector for the ESIW thickness, (B) EOF first mode PC time series for the ESIW thickness, (C) EOF second mode loading 
vector, and (D) EOF second mode PC time series.

FIGURE 5 | Fourteen-month moving averaged time series of the ESIW temperature-based thickness obtained from the NIFS data (1965−2020). Each color denotes 
latitudes of the corresponding NIFS stations. Raw data are shown in Supplementary Figure S4.
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Alternatively, the isotherm depth spatial structures of 1°C 
and 5°C are clearly influenced by the upper circulation structure. 
We interpret that the upper ocean circulation pattern produces 
shoaling and deepening of the isotherm surface but does not 
significantly affect the isothermal layer thickness corresponding 
to the ESIW. It can be also confirmed with Argo data that the 
spatiotemporal distribution of the ESIW thickness is not directly 
related to the local upper circulation pattern (Supplementary 
Figure S5).

We demonstrated that the first mode temporal variability of 
the ESIW thickness mostly has basin-wide fluctuations rather 
than mesoscale structures. Therefore, to investigate the variability 
of the vertical structure of temperature associated with the ESIW 
thickness variability, the basin-averaged temperature will be 
examined in the next section.

3.3 Basin-Wide Averaged Temperature
Figures  9A, B show the basin-averaged temperature on 
z-coordinate and isotherm layer averaged temperature, 
respectively. Due to the fictitious diffusion, the thicknesses of 
the isotherm layers in the thermocline are thicker overall in 
Figure 9A than those in Figure 9B. In particular, the structure 
of the thermocline is greatly smoothed out, for example, 
resulting in the thickness of 1°C–5°C in Figure  9A being 
thicker by 25% or more. Also, the interannual variabilities of the 
isotherms of 1°C and 2°C have unrealistically large amplitudes 
in the z-coordinate averages. This is more likely a result of 
contamination by spatial variability of isotherms rather than 
the actual basin-wide temporal variability. Thus, in this study, 
Figure  9B was used to see the basin-averaged temperature 
structure to understand the ESIW thickness fluctuations.

The ESIW corresponds to the area between the red line and 
the black dotted line in Figure 9B. The decadal variability of 
the 1°C isotherm appears to correlate with isotherms of higher 
temperatures in the upper layer, especially before the mid-
1990s. Furthermore, the dominant decadal-scale variabilities 
with relatively large amplitudes below 5°C decreased after the 
mid-1990s and the interannual scale variabilities are more 
pronounced. However, because isotherms with temperatures 
higher than 10°C show no predominance on decadal-scale 
variability before or after the mid-1990s, the decadal scale 
variability possibly originates from the deeper ocean.

One striking feature is that the thickness between 5°C and 
10°C isotherms has remarkably decreased since the mid-1990s. 
Figure 9C is the vertical temperature gradient estimated from 
Figure 9B and demonstrates that the temperature gradient in 
the thermocline layer has significantly increased since 1995. 
This increase occurs because the isotherm depth at 10°C does 
not change significantly around 100 m, yet the isotherm depth at 
5°C becomes shallow. As shown in Figure 10A, the linear trends 
of the 2°C and 5°C isotherm depths are −5.9 ± 1.7 m/10 years  
and −2.3 ± 1.4 m/10 years, showing a strong shallowing 
trend within 95% confidence level. Alternatively, the 1°C 
isotherm depth did not show a significant trend at +1.0 
± 2.0 m/10 years, while the 15°C isotherm depth showed a 
clear deepening trend at +2.4 ± 0.5 m/10 years, implying the 
warming trend. The deepening trend of the upper isotherms 
weakens as it goes deeper, and the trend sign changes around 
the 8°C isotherm. The clear shallowing trends below 10°C are 
responsible for the decrease of the thickness between 5°C and 
10°C isotherms. It is noted that, in the z-coordinate averages, 
the trends of the isotherm depths are difficult to be identified 

B C

D E F

A

FIGURE 7 | Spatial distribution of the ESIW thickness at the peak years of the EOF first mode PC time series shown in Figure 6B such as (A) June 1972, (B) April 
1974, (C) February 1988, (D) October 1933, (E) December 2002, and (F) October 2011.
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and also the increase of vertical temperature gradient in the 
upper thermocline is not clearly seen (not shown).

To analyze the relationship between the ESIW thickness 
and isotherm depths, the thickness of the isotherms between 
1°C and 5°C in Figure  9B is shown as a red dotted line in 
Figure  10A. The variability of the thickness computed from 
the basin-averaged temperature (Figure 10A) is comparable to 
the first mode PC time series in Figure  6B. The correlations 
between the variation of the ESIW thickness and the 
corresponding isotherm are presented in Figure 10B. With the 
data before the year 1995, the ESIW thickness has a significant 
positive correlation only with the 1°C isotherm, but after 1995, 
it has negative correlations with the isotherms between 4°C and 
11°C, implying that when the ESIW thickness is thick, those 
isotherms appear shoaling.

The correlations between the 1°C isotherm and other 
isotherms have significant positive correlations before 1995, 
but after 1995, the correlation almost disappears, as shown in 
Figure 10C. It should be noted that any linear trend was removed 
for estimating each correlation. Before 1995, the 1°C isotherm 
variability dominates that of the other upper isotherms in the 

thermocline layer. However, after 1995, the 1°C isotherm does 
not vary with the upper isotherms anymore.

Based on the above results, one scenario can be considered 
within the framework of the 1D advection–diffusion model 
of Munk (1966) in terms of the thermocline formation and 
maintenance. If the thickness variation of the ESIW before 
the mid-1990s is predominantly determined by the change 
in upwelling of the deep water below the intermediate water 
in the ES, it should be primarily expressed as a variability 
at the 1°C isotherm depth, and this effect would also be 
projected onto the upper isotherms. Because there is vertical 
diffusion that is stronger in the upper thermocline layer with 
a higher vertical temperature gradient, and the upper ocean 
temperature is constrained by the atmospheric condition and 
oceanic inflow, the effect of deep-water upwelling should be 
weakened while going up. In that case, the correlation between 
the ESIW thickness of 1°C–5°C and the isotherm depth of 
1°C can be positive. Conversely, if the upwelling effect of the 
deep layer was significantly decreased since the mid-1990s, 
the ESIW variability itself must primarily control the upper 
isotherm variabilities, producing shoaling of 5°C isotherm as 

B C

D E F

G H I

A

FIGURE 8 | Spatial distribution of monthly mean sea surface height in (A) October 1993, (B) December 2002, and (C) October 2011 where the ESIW thickness 
peak and nadir are shown in Figures 7D–F. Spatial distribution of isotherm depth of (D–F) 5°C and (G–I) 1°C over the same months as panels (A–C).
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the ESIW layer thickens. Therefore, this process could explain 
the results showing a positive correlation between the ESIW 
thickness and 1°C isotherm and a negative correlation with 5°C 
isotherm.

3.4 Spatial Basin-Wide  
Averaged Temperature
If the temporal variabilities of isotherms in the thermocline 
were mainly due to upwelling of the deep layer before the mid-
1990s and the volume change of the ESIW itself after the mid-
1990s, there should be some difference manifested in the spatial 
distribution of the ESIW thickness for the two periods. Firstly, 
the spatial correlation maps of the ESIW thickness with time lags 
are presented in Figure 11. Figures 11A, B show the maximum 
correlations of the ESIW thickness at 37.5°N and 130.5°E (shown 
in blue diamonds) as a reference point and in the rest of the 
observation area. Figures 11C, D show the time lags where the 

maximum correlation coefficients appear. Except for south of 
36°N, the results are not sensitive to the point of reference. 

The maximum correlation has a high positive correlation 
of 0.6 or more in most regions, except for the southern edge 
before and after 1995. This is consistent with the basin-wide 
feature of the interannual-interdecadal variability of the ESIW 
thickness in Figure 6. Interestingly, most regions, except for the 
southern waters, have time lags of less than 3 months before 
1995 (Figure 11C), but a spatially distinct lag difference appears 
after 1995 (Figure 11D), although the ESIW thickness appears 
to be basin wide. From Figure  11D, these lags appear more 
clearly in the zonal direction than in the meridional direction, 
and the zonal difference of the lags is approximately 12–14 
months. A positive lag implies that the thickness variability in 
the corresponding area leads that at the reference location. The 
results indicate that the ESIW thickness change emerges quicker 
along the continental shelf slope, followed by the change in the 
offshore area or the Ullueng Basin approximately a year later.

Figure 12 presents the meridional and zonal sections of the 
ESIW thickness based on 37.5°N and 130.5°E. As for the temporal 
variability of the meridional distribution, the thickness tends to 
be higher in the north and lower toward the south. However, 
as shown in Figure  11, the time lag of the variability between 
38°N and 36°N is indistinguishably small in the bimonthly 
dataset. These characteristics, at least for the south of 38°N, are 
not significantly different from the Argo float data in Figure 2 
(direct comparisons in Supplementary Figure S6A and S6C). 
Notably, the thickness is larger in the north than the south where 
it is thicker, but the tendency is not always applicable when it is 
thinner. After 1995, such a meridional tendency still holds even 
with the thinner ESIW, but it was not clear before 1995. 

The temporal change of the zonal section (Figure  12B) 
remarkably demonstrates the phase difference of the thickness 
fluctuations in the western and eastern areas, especially after the 
mid-1990s, while hardly any zonal phase change appears before 
the mid-1990s. Such leading appearance of the thickness in the 
coastal area is also evident in the Argo float data (Supplementary 
Figure S6F, also see the comparable figure from the NIFS data 
shown in Supplementary Figure S6F). The solid line and dotted 
line in Figure  12B are the lines connecting crests and troughs 
in the ESIW thickness variability at 129.4°E and 131.2°E, 
respectively. The phase difference ranges from 10 to 14 months, 
which is comparable to the lag correlation, converting into the 
slopes of 14−20 km/month (0.4−0.6 cm s−1). In spite of the 
zonal lags, the thickness variabilities in the western and eastern 
sides are clearly correlated, at least after the mid-1990s. One 
might think that the ESIW signal in the offshore could be the 
one expanded from the coast (c.f. Shin et  al., 1998). However, 
the amplitude of the thickness variability increased in both the 
western and eastern edges of the observation domain, as was 
clearly observed in Figure 12B from 2005 to 2015. If the ESIW 
thickness signal solely comes from the coast, its variability would 
simply become smaller as it goes to the offshore along the solid 
and broken lines in Figure 12B. Yet, as it goes from 130.5°E to 
131.2°E, the peak thicknesses increase (decrease) along the solid 
lines (the broken lines). This behavior implies that the ESIW 

B

C

A

FIGURE 9 | (A) Temporal variability of mean temperature profile averaged over 
the NIFS observation domain on the depth (z) surfaces. (B) Same as panel 
(A), but on the isothermal surfaces. (C) Vertical temperature gradient of mean 
temperature profiles shown in panel (B) Unit of panel (C) is °C/m. Red lines, 
black lines, black dotted lines, and red dotted lines denote 1°C, 2°C, 5°C, and 
10°C isotherms, respectively.
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thickness in the eastern area does not depend solely on the 
thickness of the coastal area, despite the offshore signal being 
followed by the coastal one. Note that the thickness trough in 
the coastal region becomes thicker as it goes offshore and then 
becomes thinner as it reaches 131°E.

The physical reason of the two-mode structure of the 
ESIW often found in the zonal hydrographic section (Cho 
and Kim, 1994) can be explained by the temporal variability 
of zonal structure of the ESIW thickness. If the NKCW 
and the ESIW were completely different water masses and 
were formed under different conditions or processes, their 
thicknesses should have no or low correlation between the 
coastal and offshore areas. However, according to the results 
of this study, the ESIW thickness variabilities near the coast 
and offshore are linked to each other with a year lag, implying 
that they are the same water mass but have different arrival 
times. Only with a snapshot observation data obtained at a 
specific time would it appear to be different water masses 
due to this time lag. Furthermore, as shown in Figure 4, the 
spatiotemporal variability of the ESIW thickness is closely 
related to that of its salinity property (also see Supplementary 

Figure S6). Therefore, the results shown in this study indicate 
that the two-mode structure of the ESIW shown in zonal 
hydrographic sections should result from the difference of the 
ESIW propagation path between near the coast and offshore, 
as previous researchers have suggested (Cho and Kim, 1994; 
Kim et al., 2006; Shin et al., 2007). It is important to note that 
even though the two-mode feature in the ESIW property was 
observed in the early 1980s, the zonal phase difference in the 
ESIW thickness was clearly visible only after the mid-1990s.

3.5 Correlation With the Arctic  
Oscillation Index
The AO Index and the ESIW thickness time series (Figure 13A) 
were observed to fluctuate together with a phase shift of a few 
years, especially before the 1990s. Therefore, the AO Index 
delayed by 2 years is redrawn in Figure 13B. Before the mid-
1990s, the 2-year shifted AO Index and the ESIW thickness 
time series appear almost in phase; interestingly, they appear 
out of phase thereafter. The lag correlations between the AO 
Index and the ESIW thickness demonstrate a clear positive 

B C

A

FIGURE 10 | (A) Temporal variability of isotherm depths of 1°C, 2°C, 5°C, 10°C, 12°C, and 15°C and the ESIW thickness computed from the mean temperature profile 
data shown in Figure 8B. Dotted lines are linear fits of each isotherm depth. (B) Correlation between the ESIW thickness shown in panel (A) and other isotherms (in 
°C). (C) Correlation between the isotherm depth of 1°C and other isotherms. In panels (B, C), black line is by using the data for the whole time period. Blue line is from 
1965 to 1994 (30 years), and red line is from 1995 to 2020 (25 years). Open circles denote where the significances are above 95%.
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correlation of 0.8, with a lag of about 2.5 years before 1995 and 
a statistically significant negative correlation of 0.6 with a lag 
of about 1.5 years after 1995 (Figure  13C). This result shows 
that there has been a major change in the relationship with  
the AO Index since the mid-1990s.

The spatial correlation between the AO and the ESIW 
thickness also exhibits consistent features from the above 
results. Figure  14 shows the maximum absolute correlation 
and lag between the AO and the ESIW thickness before and 
after 1995 (Figures 14A, B) and the corresponding time lag 
(Figures 14C, D). Positive correlations with AO are dominant 
over the domain before 1995, while negative correlations 
prevail in a basin-wide manner after 1995.

The lag time where the maximum absolute correlation 
appears is important. The overall lags before 1995 are larger 
than those after 1995 in the corresponding area. Before 1995, 
the AO fluctuations lead the ESIW thickness with a lag of 
larger than 20 months near the coastal region and a lag of about 
28 months in the offshore area, the Ulleung Basin. However, 
after 1995, the ESIW thickness responded noticeably quicker 
to the AO in the vicinity of the ES coast with a lag of about 12 
months and slowly in the Ulleung Basin with a lag of about 

26 months. The zonal lag difference for the post-1995 period 
is much more pronounced than the pre-1995 period, reaching 
14 months. In addition, these results are also consistent with 
the spatial correlation map of the ESIW thickness shown in 
Figure 11.

4 DISCUSSION

To analyze the 55-year-long hydrographic data, the correlation 
was assumed to hold in the past as well. The main reason that 
the isotherm-based thickness has a strong correlation in time 
with the isopycnal-based one is that the effect of salinity on 
the ESIW density range in the southwestern ES is significantly 
smaller than that of temperature. In the hydrographic 
observation in 1969 (Senjyu, 1999), the salinity range of the 
ESIW salinity minimum layer in the southwestern ES was 
34.00–34.02 g kg−1. Additionally, Kim and Chung (1984) 
showed a range of 34.00–34.05 g kg−1 from the observations in 
1981, and Cho and Kim (1994) showed a range of 33.95–34.05 
g kg−1 in the 1991 observations. All the salinity ranges of the 
ESIW in the past years are commonly found in the ESIWs 

B

C D

A

FIGURE 11 | Spatial maximum correlation map of the ESIW thickness with the reference point at 37.5°N 130.5°E (A) from 1965 to 1994 and (B) from 1995 to 2020. 
Panels (C, D) show the monthly lag where the maximum correlations in (A, B) are, respectively. Blue diamonds denote the reference point. Contour intervals are 0.1 
in (A, B) and 2 months in (C, D).
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of the 2000s. Therefore, it can be assumed that there was no 
dramatic salinity change in the past that could have affected the 
ESIW density.

It was also assumed that the error of temperature data after 
the quality control should be small enough, and that even if an 
error existed, it would not have spatiotemporal correlations. The 
first mode PC time series extracted through the EOF analysis 
and isothermal surface averaged ESIW thickness fluctuations 
appear almost similar, which could supposedly minimize the 
non-correlated error. Also, the spatial patterns of the thickness 
are consistent with the EOF and the basin-averaged analysis 
results. Thus, the long-term variability of the ESIW thickness in 
this study was confirmed to be robust.

The spatiotemporal variability of the ESIW thickness was 
also found to have a relationship with the ESIW salinity from 
the Argo data (2001−2014) in Figure 2 (also see Supplementary 
Figure S6). Based on the non-correlated features of the thickness 
with the local SSH or local wind stress curl (Supplementary 
Figure 5), and the thicker ESIW in the northern region close to 
the formation area, the variability information of the thickness 
seems relevant to the amount of formation volume, at least, for 
the Argo observation period. However, the ESIW salinity itself 
is not a strong factor in determining the formation rate because 
the salinity has little effect on the density range in the ESIW. 
Therefore, the ESIW salinity variability alone is not sufficient 
to explain the ESIW variation directly responding to climate 

B

CA

FIGURE 13 | (A) Time series of 3-year moving-averaged AOI (blue) and the EOF first mode PC of the ESIW thickness scaled by 1/2,000 (red). (B) Same as panel 
(A) but AOI shifted by 2 years and (C) lagged-correlation diagram between AOI and first mode PC of the ESIW thickness. The black line is from the whole data. The 
blue line is from the data of 1965−1994 and the red one is of 1995−2020. The open circles denote where the correlations are above 95% significance levels.

B

A

FIGURE 12 | Spatiotemporal variability of the ESIW thickness on (A) latitude-time domain at 130.5°E and (B) longitude-time domain at 37.5°N. Black solid lines 
connect crests in the ESIW thickness at 129.4°E and 131.2°E. Black dotted lines are the same as the solid line but for troughs
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variability. Indeed, as pointed out by Park and Lim (2018), 
it is consistent with the fact that the ESIW salinity is mainly 
determined by the amount of inflow of surface low-salinity 
water into the ESIW formation site by ocean advection rather 
than air-sea freshwater exchange.

The AO and the ESIW thickness since 1995 have almost the 
same lag along the ES coast as shown in Figure 14, whereas 
such alongshore tendency is not clear prior to 1995. The 
nearly uniform lag along the vicinity of the coast from 36°N 
to 38°N indicates that the advection or propagation timescale 
is shorter than 2 months of the hydrographic data intervals. 
Alternatively, the thickness signal travels along the coast 
faster than about 2 cm s-1. Also, if the same signal propagation 
process works for the northern area as the observation area, it 
can be inferred that it would not take as long as 12 months for 
the signal to propagate from the 40°N−41°N region where the 
ESIW is formed (Park and Lim, 2018) to the observation site. 
However, the time lag between the AO and ESIW thickness in 
Figure 14D is about 12 months. Similarly, the time lag of 26 
months in the Ullueng Basin is too long to be considered as 
just the advection timescale of the offshore propagation path 
of the ESIW, suggested to be 6−12 months in previous studies 

(Yanagimoto and Taira, 2003; Yun et al., 2004; Park and Kim, 
2013). Therefore, additional studies are required to explain 
the time lag between the AO and the water mass variability 
downstream.

More importantly, even though it has been confirmed that 
there is a persistent southward flow at the intermediate level 
along the eastern coast of the Korean Peninsula since the 
1960s (Kim and Kim, 1983; Kim et al., 2006), the alongshore 
uniform lag is only prominent after 1995 and not before. This is 
a similar argument as the two-mode ESIW property addressed 
in the section Spatial Basin-Wide Averaged Temperature.

5 CONCLUSION

5.1 Long-Term Variability of the East Sea 
Intermediate Water Thickness
This study demonstrated that the long-term ESIW thickness 
variability has basin-wide features and clear interannual-
interdecadal timescales, such as 15−18 years and 3−5 years as 
shown in the NIFS hydrographic data. The thickness variability 
increased toward the northern part of the observation area and 

B

C D

A

FIGURE 14 | Spatial maximum correlation map of the ESIW thickness with AOI (A) from 1965 to 1994 and (B) from 1995 to 2020. (C, D) Are showing the monthly 
lag where the maximum correlations in (A, B) are, respectively. Contour intervals are 0.1 in (A, B) and 2 months in (C, D).
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decreased toward the south. This temporal thickness variation is 
not closely related to the SSH features, showing that the ESIW 
thickness variability is not dependent on the upper ocean 
circulation patterns.

The ESIW thickness variability is mostly determined by  
the 1°C isotherm fluctuation and is somewhat interacted with the 
upper layers above it. As for the horizonal structure, within the 
NIFS observation domain, the ESIW thickness fluctuates almost 
simultaneously in the meridional direction, while it has a clear 
zonal phase difference. However, the vertical and horizontal 
characteristics of the thickness variability are dramatically 
changed in the mid-1990s. The details are in the following 
section.

5.2 Regime Shift in the Mid-1990s
The following four distinct changes were observed concerning 
the long-term variability of the ESIW thickness beginning in the 
mid-1990s.

Changes in the vertical temperature structure of the upper 
ESIW layer: The vertical temperature gradient has been shown 
to increase, as the layer between 5°C and 10°C is significantly 
reduced since 1995. This appears to be because the 2°C−5°C 
isotherms are clearly shoaling, despite the deepening of the 
isotherms for 9°C and higher.

Changes in the correlation between the thermocline 
isotherms: There are nearly zero correlations between the ESIW 
thickness and the isotherms in the thermocline layer before 1995 
with the exception of the 1°C isotherms but negative correlations 
with the 4°C−11°C isotherms after 1995. This implies that after 
1995, as the ESIW becomes thicker, the upper layer is pushed 
up and shoaled. However, before 1995, all isotherms vibrated 
similarly with a slight phase difference, though with different 
amplitudes (smaller as it goes up). The ESIW thickness for this 
time period was mainly produced by the phase and amplitude 
difference between isotherms.

Changes in the spatial distribution of the ESIW thickness: 
Long-term variability of the ESIW thickness has time lags of 
several months depending on the locations. The fluctuations 
tend to occur first in the vicinity of the ES coast and appear later 
in the offshore, the Ulleung Basin. This zonal lag has become 
remarkable since 1995 and is related to the unique characteristics 
of the ESIW property suggested in a previous study where it 
appears as two modes in the zonal hydrographic section (Cho 
and Kim, 1994). Consistently, it has been reported that the ESIW 
flowing southward along the coast extends to the offshore to the 
Ullueng Basin in the zonal direction (Shin et al., 1998; Shin et al., 
2007). Due to these lags, the ESIWs found near the coast and 
in the basin could be misinterpreted as different water masses 
because their properties look different from the hydrographic 
data obtained in a specific year.

Changes in the relationship with the AO representing 
atmospheric conditions associated with water mass formation: 
The AO and the ESIW thickness clearly have a positive and 
negative correlation before and after the mid-1990s, respectively. 
The lag with the AO is also different, where the lag is longer before 
the mid-1990s than after. Cui and Senjyu (2010) showed that the 

AO and Sea Surface Temperature (SST) at the formation site of 
Japan Sea Proper Water (JSPW) had out-of-phase fluctuations 
and also pointed out that the DO concentration at 1,000 m had 
a higher correlation with cold air outbreak (Isobe and Beardsley, 
2007). Because the AO Index is closely related to the winter 
atmospheric condition in the ES, it is relevant to the water mass 
formation rate and is a type of volume flux. However, the DO 
concentration in the downstream area is a kind of reservoir 
property that is basically integrated by fluxes. Considering 
the advection timescale or ventilation timescale of the water 
mass, there should be still some lag between the formation rate 
(relevant to AO) and the reservoir characteristics (relevant to 
the thickness) depending on the variation timescale. Therefore, 
a further study will be conducted on why the AOI index and the 
ESIW thickness have such a high correlation with some time lags.

Based on the observational results, a working hypothesis 
is suggested to explain the changes of the ESIW thickness 
variabilities and the discrepancies from the previous studies 
discussed in the Discussion.

6 SUGGESTION OF WORKING 
HYPOTHESIS

6.1 Response of Intermediate Water 
on Changes of Meridional Overturning 
Circulation
Intermediate waters are generally found over the world’s oceans 
and located between the upper ocean water, which is strongly 
influenced by atmospheric conditions or upper circulation, and 
the deep water, which is formed in the limited cold region by 
atmospheric conditions in winter due to local convection or 
subduction in the MOC perspective. The MOC becomes closed 
as the deep water mixes with the upper ocean water, with the 
intermediate water acting as a conduit between the upper and 
deep water.

Assume that the deep ES consists of a single water mass 
like JSPW. From the perspective of the Stommel–Arons model 
(Stommel and Arons, 1960), JSPW will make nearly uniform 
upwellings as it fills the ES seabed, causing the isotherms to shoal, 
which will also shoal the ESIW layer. However, above the ESIW, 
because there is the TWW coming through the Korea Strait, 
the upper ocean in the southern part of the ES is continuously 
refreshed by the advected TWW. As a result, the ESIW will be 
eroded by the TWW in the upper ocean, and one can expect 
that the ESIW volume would decrease as the deep waters are 
expanded. Therefore, the ESIW thickness variation basically 
includes the amount of its own formation and the volume change 
of deep waters.

Because the ES is a marginal sea with a small area, atmospheric 
conditions in winter of a certain year will be simultaneously 
applied on various water masses with different formation 
processes. The deep-water formation area is known to be in the 
east of the NKF (Park et al., 2005) off the Peter the Great Bay, 
Russia, and the ESIW is formed in the west of the NKF (Park and 
Lim, 2018). The formation regions of the ESIW and deep water 
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are close enough compared to the atmospheric mesoscale, so they 
seem to be under similar atmospheric conditions in wintertime 
when formed. Alternatively, if the winters in the ES were colder 
than normal, it would favor the formation of all water masses: 
intermediate, deep, or bottom waters. That might be a reason 
why the ESIW thickness is positively correlated with AO before 
1995. This point will be discussed in the next section.

In the past, DO concentration in the deep sea of the ES 
has been reported to be rapidly decreasing (Gamo, 1999; Kim 
et  al., 2001; Yoon et  al., 2018). The DO concentrations at the 
water depth of 2,000–3,000 m decreased steadily from 1954 to 
2015, and at 500–1,500 m, it increased briefly in the mid-1990s, 
then decreased again in the 2000s. As of 2015, the vertical DO 
structure below the intermediate layer is almost constant. If the 
formation of water mass below the intermediate was limited and 
became insensitive to AO conditions, the ESIW thickness would 
be inferred to vary purely with the amount of its formation.

6.2 A Possible Scenario of the East Sea 
Intermediate Water Thickness Change 
Under Global Warming
The following scenario is proposed to explain the distinct 
difference in characteristics related to the ESIW thickness 
variability in the southwestern part of the ES in the mid-1990s 
(Figure 15). Typically, the water mass formation rate should be 
determined according to the AO, and there is a time lag of 1–2 
years until the effect appears in the observation domain.

As shown in Figure  15, before the mid-1990s, in the AO 
negative (positive) phase, cold (warm) winter conditions 
prevailed, and the formation of the ESIW and deep water (JSPW 

or CW+BW) was strengthened (weakened). Because the volume 
variability of deep water was much larger than that of the ESIW, 
it created shoaling (deepening) of overall isotherm surfaces 
under the thermocline in the southern seas of the ES. Therefore, 
the ESIW thickness variability can be primarily controlled by 
the change in the volume of deep water, and it shows in-phase 
behavior with AO.

However, since the mid-1990s, as the deep-water formation 
rapidly decreased under the influence of global warming and 
the AO-associated response was weakened, the overall isotherm 
surfaces were less affected by the volume change of the deep-water 
layer. As a result, the ESIW thickness was mainly determined by 
the ESIW formation itself, so it may be that the isotherm surfaces 
below and above the ESIW fluctuate in opposite directions.

The lag difference from the mid-1990s shown in the time 
series of the AO and the ESIW thickness in Figure 13 can also 
be interpreted consistently with the above scenario, such as the 
lag of 2.5 years before the mid-1990s and 1.5 years after. After  
the mid-1990s, the AO signal could be projected directly onto the 
much shallower and faster-circulating ESIW layer, resulting in 
the shorter lag, while before the mid-1990s, the ESIW thickness 
might respond more slowly to the AO because the signal came 
through the deep water.

Previously, several researchers have reported that the 
variability of deep-water properties (nitrate, DO, PO4, etc.) 
within the timescales of about 18 years exists in the ES (Watanabe 
et  al., 2003; Cui and Senjyu, 2010), similar to the 15–18-year 
timescales shown in the ESIW thickness. Even though the deep-
water properties and volumes may not have the variability with 
the same phase, the existence of such decadal variability in deep-
water properties indicates that there should be also a variability 

FIGURE 15 | Schematic of the working hypothesis for the ESIW thickness change in the framework of the East Sea Meridional Overturning Circulation system.
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in the volume of deep-water formation with a comparable 
timescale, producing the undulation of the upper isotherms.

The two-mode state of the ESIW salinity structure in the 
zonal conductivity-temperature-depth section is a distinct 
feature of ESIW that is not seen in other water masses. The 
zonal difference in the ESIW salinity has been reported in 
many previous studies since the 1980s (Kim et al., 1991; Cho 
and Kim, 1994). However, the zonal phase difference in the 
ESIW thickness has been shown only since the mid-1990s, 
which can also be explained by the above scenario. Because 
the ESIW thickness was mainly controlled by the deep-
water volume change before the mid-1990s, such zonal phase 
difference of the thickness that could emerge due to deep-
water layers is faded after the mid-1990s. In other words, 
the two-mode ESIW property existed before the regime shift 
appeared, but the fact that the two-mode thickness was seen 
since the mid-1990s proves that the thickness variation before 
the mid-1990s does not reflect the volume change of the ESIW 
itself.

7 REMAINING STUDIES  
AND IMPLICATIONS

To understand how the AO controls the water mass formation, 
accurate observational data at the formation site are required, 
but unfortunately, such data are not available. Satellite sea 
surface temperature data exist only since 1987, and reanalysis 
data are not suitable for such analysis because their resolution 
and accuracy are low in the ES. However, model-based studies 
can reveal a physical process to understand such a clear 
correlation between the ESIW thickness and AO in the future.

This study demonstrates that the sudden regime shift in 
the thermocline layer of the ES occurred in the mid-1990s. 
Clearly, a control process responsible for such rapid change 
must be understood. Additionally, the process should be 
reconciled with the ventilation timescale of the ESIW. The 
ventilation timescale, which is the time taken by the water 
mass to leave the formation site and arrive at the target 
area, might be about a few years or less based on the time-
lag correlation between the AO and the ESIW thickness. 
However, the ESIW ventilation ages, estimated using chemical 
tracers like apparent oxygen utilization and partial pressure 
of chlorofluorocarbons, have varied over 10–23 years (Min 
and Warner, 2005; Kim et  al., 2010). The large discrepancy 
in the ventilation timescale from the results in this study may 
be due to the strong vertical mixing of the ESIW with the 
TWW above it, which has low DO and chlorofluorocarbon 
concentration, because diapycnal mixing can greatly bias the 
chemical tracer-based age (Fine et al., 2017).

Modeling studies also estimated the ventilation time of 
the ESIW to be 6–10 years from the point of view of particle 
dispersion (Seung and Kim, 1997; Yoshikawa et al., 1999), and 
this may be related to the problem in which the low-resolution 
numerical models of the past underestimated the mean and 
eddy circulation at mid and deep layers (Park and Kim, 2013). 
The latest model results suggested that the ESIW arrived at the 

Ulleung Basin in a relatively short time of 1–2 years (Kim et al., 
2021), which is comparable to the results of this study, although 
there is still a significant difference from the observed results in 
terms of the ESIW formation area. Because the ESIW ventilation 
timescale is important information, a study reconciling the 
chemical tracer-based, numerical model-based, and physical 
observation-based timescales is required.

Additionally, Yoshikawa et al. (1999) estimated the turnover 
time of the ESIW to be approximately 26 years by utilizing the 
ESIW formation rate and reservoir volume estimated by the 
numerical model. In perspectives of the long-term variability 
in the ESIW thickness shown in the NIFS data and the salinity 
variability shown in the Argo float data, the ESIW signal in the 
western part of the ES seems quickly refreshed within the order 
of years rather than lasting more than 20 years. Although it can 
propagate away to other basins in the ES, such as the Yamato 
Basin, the actual turnover time of the ESIW might be much faster 
than the previously simulated one. Indeed, Kim et  al. (1999) 
showed that the ESIW property over the ES basins changed in a 
year-to-year manner, but additional research is required on this 
topic.

The scenarios discussed above explain the variation in the 
intermediate layer in terms of EMOC changes in response to AO 
under global warming. If the ES has been changing according 
to the scenario, the ESIW has the potential to serve as a good 
proxy for showing EMOC changes. Because the ES has a small 
domain size and ventilation timescales significantly shorter than 
that of the open ocean, the response to interannual-interdecadal 
atmospheric variability can appear quickly enough to be identified 
with the modern observations of less than 100 years. In addition, 
the ES is a unique marginal sea in that while the various water 
masses were formed under the influence of the same atmospheric 
conditions, they responded differently to global warming.

Although it is obvious that the water mass formation in winter 
is limited by global warming, it can be assumed easily that not 
all water mass formation rates are limited to the same extent. In 
the case of deep-water formation area in the ES, the mixed layer 
can be developed up to 1,000–2,000 m, which is favorable to 
the open ocean deep convection. However, because the vertical 
temperature gradient below the permanent thermocline in the ES 
is much smaller than the open ocean, even slight warming in the 
mixed layer can significantly reduce the mixing depth in winter, 
resulting in the slow formation rate. Alternatively, the ESIW is 
mainly formed above the thermocline by subduction due to the 
flow convergence in the mixed layer. Because the ESIW formation 
area is strongly stratified even in winter compared to the deep-
water formation area, the mixed layer (Lim et al., 2012). depth 
could be less sensitive to a slight increase in surface temperature 
due to global warming.
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Effects of Internal Climate Variability 
on Historical Ocean Wave Height 
Trend Assessment
Mercè Casas-Prat 1*, Xiaolan L. Wang 1, Nobuhito Mori 2, Yang Feng 1, Rodney Chan 1  
and Tomoya Shimura 2

1 Climate Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto,  
ON, Canada, 2 Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

This study assesses the effects of internal climate variability on wave height trend 
assessment using the d4PDF-WaveHs, the first single model initial-condition large 
ensemble (100-member) of significant wave height (Hs) simulations for the 1951–2010 
period, which was produced using sea level pressure taken from Japan’s d4PDF ensemble 
of historical climate simulations. Here, the focus is on assessing trends in annual mean 
and maximum Hs. The result is compared with other model simulations that account for 
other sources of uncertainty, and with modern wave reanalyses. It is shown that the trend 
variability arising from internal climate variability is comparable to the variability caused by 
other factors, such as climate model uncertainty. This study also assesses the likelihood to 
mis-estimate trends when using only one ensemble member and therefore one possible 
realization of the climate system. Using single member failed to detect the statistically 
significant notable positive trend shown in the ensemble in some areas of the Southern 
Ocean. The North Atlantic Ocean is found to have large internal climate variability, where 
different ensemble-members can show trends of the opposite signs for the same area. 
The minimum ensemble size necessary to effectively reduce the risk of mis-assessing 
Hs trends is estimated to be 10; but this largely depends on the specific wave statistic 
and the region of interest, with larger ensembles being required to assess extremes. The 
results also show that wave reanalyses are not suitable for analyzing Hs trends due to 
temporal inhomogeneities therein, in agreement with recent studies.

Keywords: global wave climate, internal climate variability, ocean wave height, trend assessment, wave reanalysis

1 INTRODUCTION

Waves are an important element of the climate system, modulating interactions between oceans and 
atmosphere (Cavaleri et al., 2012). They are also a key environmental variable for coastal and offshore 
engineering (International Organization for Standarization, 2007; Gudmestad, 2020), navigation 
planning (Grifoll et al., 2018), and are a potential source of renewable energy (Reguero et al., 2019). 
Furthermore, waves are important drivers of coastal dynamics processes, such as coastal erosion 
(Stive et al., 2002; Huppert et al., 2020), and contribute to sea-level extremes at multiple time scales 
(Melet et al., 2018; Melet et al., 2020). This is critical as over 300 million people live on low-lying 
coastal areas (Griggs and Reguero, 2021).
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Detailed knowledge of wave climate is essential to address the 
aforementioned environmental and societal impacts. However, 
our current understanding is affected by several sources 
of uncertainty, as highlighted by Morim et  al. (2019), who 
presented the latest comprehensive large ensemble of global wave 
projections. They found a large uncertainty in the historical annual 
mean significant wave height (Hs) climatology with discrepancies 
exceeding 20% in some areas. The climate model and the method 
to simulate ocean waves were found to be dominant uncertainty 
factors. However, the wave method uncertainty, as defined in 
Morim et al. (2019), included uncertainty factors beyond the mere 
relationship between atmospheric forcing and wave parameters, 
as some of the wave methods bias-corrected the forcing drivers 
(using different wave reanalysis as reference) while others 
used atmospheric forcing as directly output by climate models. 
Therefore, this wave method uncertainty implicitly included 
factors related to different atmospheric model parameterizations 
and data assimilation associated to the corresponding reference 
datasets used for calibration.

Despite the recent coordinating efforts to better characterize 
waves, the role of internal climate variability, and particularly 
its effects on trend assessment, is still poorly known. Morim 
et al. (2019) only accounted for one realization per model and 
scenario combination. Wang et al. (2015) considered multi-run 
Hs simulations but these had 10 runs per model/scenario at most, 
and the study focused on signal uncertainty rather than trend 
assessment. Recently, Song et  al. (2021) developed centuries 
of global ocean wave data, including 165-year (1850-2014) of 
historical data. Despite being a unique database for ocean wave 
climate research, it only simulates one realization given the same 
climatological forcing. In terms of the driving wind fields, Morim 
et al. (2020) found that the underlying physics of the atmospheric 
component of climate models is the dominant source of bias 
in simulated wind fields, and that inter-model uncertainty is 
typically 2-4 times larger than the uncertainty associated with 
internal variability. However, they used a relatively small sample 
(3-10 model realizations).

Historical simulations are one possible realization of the 
climate system within its boundaries of internal variability. 
Studies based on single model realizations might underestimate 
extreme events or confound trends with internal (climate) 
variability. For example, internal variability can mask or enhance 
human-induced sea-ice loss on timescales ranging from years to 
decades (Swart et  al., 2015). Also, differences between models 
or a model and observations can easily be misinterpreted as 
significant differences, while they could be simply caused by an 
insufficient sample size (Milinski et  al., 2020). For instance, at 
least thirty ensemble members are required for a robust estimate 
of El Niño-Southern Oscillation (ENSO) variability, which plays 
a primarily positive role in intensifying anomalous wave climate 
(Yang and Oh, 2020). In terms of annual hurricane frequency, 
Mei et al. (2019) concluded that twenty ensemble was sufficient 
to detect year-to-year variations. The number of ensemble 
members required for robust estimates depends on targets or on 
temporal and spatial averaging scale (Ishii and Mori, 2020).

Despite the increasing amount and type of observations 
(mostly thanks to satellite records since 1979) and the continuous 

development of climate models, there are still many challenges in 
the characterization of the historical wave climate and the trends 
therein. State-of-the-art wave reanalysis and hindcasts present 
notable discrepancies and even exhibit opposite trends at global 
and regional scales (Sharmar et al., 2020). For example, modern 
reanalyses simulate contrasting positive and negative statistically 
significant trends in the annual mean Hs of the South Atlantic (of 
up to 0.05 m/decade in absolute value). The inconsistencies of 
reanalysis data sets are due to the changing quantity and quality 
of the satellite data incorporated into the products (Stopa et al., 
2019). Discrepancies were also obtained by Dodet et al. (2020) 
when comparing the trends derived from satellite records after 
considering two different post-processing data approaches. To 
date, wave climate studies have focused on uncertainties related 
to model resolution and parameterizaton, downscaling methods, 
observations errors and data assimilation but there is little 
knowledge about the role of internal wave climate variability.

A Single Model Initial-condition Large Ensemble (SMILE) 
is a set of simulations conducted using a single model with 
identical external forcing and a large ensemble of different initial 
conditions (Maher et  al., 2021). SMILEs are valuable data to 
investigate the climate system as they can help separate internal 
climate variability of the forced system from the forced response 
to changes in external forcing, and to sample extreme events 
with large return periods (Maher et  al., 2021). For example, 
they are beneficial for robust attribution of climate changes to 
anthropogenic forcing (Kirchmeier-Young et  al., 2021), and 
to investigate the uncertainty associated to compound events 
(Santos et al., 2021).

Here we present and analyze the first SMILE-based ensemble 
of global ocean significant wave height (Hs) simulations, which 
was produced using the 100-member ensemble of mean sea 
level pressure (SLP) taken from Japan’s d4PDF ensemble of 
historical climate simulations (Mizuta et al., 2017). After a slight 
modification in two of the 11 modelling regions (the tropical 
Pacific regions were split into two, see Section 2.1), the statistical 
model developed by Wang et  al. (2012, 2014) was used to 
obtain the wave heights driven by d4PDF SLP fields. This study 
investigates for the first time the role of internal climate variability 
in trend assessment of ocean wave heights at global scale. This 
helps to gain insight in the understanding of historical wave 
conditions and changes therein, bringing additional perspective 
in the context of the aforementioned discrepancies in modern 
reanalysis/hindcast products.

2 MATERIALS AND METHODS

2.1 d4PDF-WaveHs
The d4PDF-WaveHs ensemble analyzed in this study is a SMILE-
based ensemble of global historical Hs. This ensemble consists of 
100 members of 6-hourly Hs for the period 1951–2010 on a 1°× 
1° lat.-long. grid over the global oceans. It was produced using 
an advanced statistical model with SLP-based predictors derived 
from the SLP historical simulations taken from the d4PDF large 
ensemble, which includes historical climate and future projections 
(Mizuta et al., 2017). The 60 km resolution atmospheric global 
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circulation model (AGCM) MRI-AGCM developed by the Japan 
Meteorological Research Institute was used to generate d4PDF 
(Mizuta et al., 2012). The 100 historical simulations constitute a 
SMILE-type ensemble as they were generated by perturbations of 
the historical sea surface temperature (SST), sea ice concentration 
(SIC) and sea ice thickness (SIT) in relation to the observed errors 
(while using the same forcing, and global mean concentration of 
greenhouse gases (GHG) based on observations). More than 70 
papers related to d4PDF have been published to date, including 
impact assessment and social implementation studies (Ishii and 
Mori, 2020). d4PDF satisfactorily simulates the past climate in 
terms of climatology, natural variations, and extreme events such 
as tropical cyclones (Ishii and Mori, 2020).

To be able to generate 6,000 years (100 × 60 years) of Hs 
data with a reasonable computational cost, the statistical model 
developed by Wang et  al. (2012, 2014) was used to produce 
the d4PDF-WaveHs. This method consists of a multivariate 
regression model with lagged-dependent variable to represent 
the relationship between Hs and SLP-derived predictors 
(anomalies of SLP and squared SLP gradients), including leading 
principal components of large areas to account for swell waves. 
In particular, the 6-hourly Hs at a target wave grid point (of the 
1°× 1° lat.-long grid) is simulated with a mutlivariate regression 
model of the form:

 
H a b X c H ut

k

K

k k t
p

P

p t p t= + + +
= =

−∑ ∑
1 1

,

 (1)

where Ht is the Box-Cox transformed Hs (Box and Cox, 1964), Xk,t 
are the K selected SLP-based predictors, P is the order of lags of 
the dependent variable (the predictand) and the residuals ut are 
modelled as an M-order autoregressive process. The Box-Cox 
transformation is applied to bring the residuals close to a normal 
distribution, as assumed in the regression analysis. The SLP-based 
predictors consist of a pool of 62 potential predictors: the anomalies 
(relative to the 1981–2000 mean) of, respectively, SLP and the 
squared SLP gradient (which represents the geostrophic wind 

energy) and their respective 30 leading principal components over 
a selected area to represent the large scale patterns of atmospheric 
circulation affecting the wave climate of a target grid point. A 
forward model-selection procedure with F test with equivalent 
sample size (vonStorch and Zwiers, 1999) was used to determine 
the K selected SLP-derived predictors [see Eq. (1)] for a target wave 
grid point. The P and M values were also determined using the 
F test with the equivalent sample size. To account for seasonality 
of atmospheric circulation regimes, Hs is modelled in each of the 
four seasons separately. More details of this statistical modelling 
approach can be found in Wang et al. (2012, 2014). Note that the 
two tropical Pacific regions, TNP and TSP (the two largest regions) 
in Wang et al. (2012, 2014) were each split into two regions (ETNP, 
WTNP, ETSP, WTSP); so that the model was calibrated for 13 
regions over the globe in this study (rather than 11 regions; see 
Figure 1). The smaller regions slightly improved the model skill 
for those regions.

As in Wang et al. (2014), Eq. (1) was calibrated and evaluated 
using the European Center for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis Interim (ERAint) (Dee et al., 2011). Before 
calculating the Xk,t predictors to produce the Hs simulations, 
the d4PDF-WaveHs SLP fields were adjusted to have the same 
climatological mean and standard deviation as the ERAint SLP 
data. As explained in Wang et al. (2014), this is needed in order 
to apply the Box-Cox transformations which were optimized for 
the ERAint data. Additionally, we excluded (set to missing) any 
simulated Hs values that exceed twice the largest Hs from ERAint 
for a given season. This cap is needed as, very rarely, the Box-Cox 
transformation of the SLP gradients leads to an overgrowth of 
the sharp SLP gradients of rapidly forming low pressure centers 
which, in turn, leads to unrealistic Hs values. This is arguably 
caused by the higher spatial resolution of the d4PDF SLP fields, 
as compared to ERAint, which might be able to simulate stronger 
SLP gradients than those generated by ERAint. However, note that 
this overgrowth is extremely rare and occurs with a frequency of 
less 0.05‰ in all simulated Hs data.

This statistical wave modelling approach to simulate Hs has been 
used and validated in many studies to derive regional and global 

FIGURE 1 |    Areas used to calibrate the wave model and compute the regional averaged trends and time series.
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historical/future Hs datasets and to assess trends, projected changes 
and variability (Wang et al., 2012; Wang et al., 2014; Wang et al., 
2015). For example, it was used to derive one of the contributing 
datasets of the latest coherent, community-driven, multi-method 
ensemble of global wave climate projections (Morim et al., 2019). 
In this study, we further assessed the reliability of the statistical 
modelling method by comparing the resulting trends of the 
annual mean and maximum Hs as obtained from one member 
of the d4PDF-WaveHs with those derived from the traditional 
dynamical modelling approach for the same d4PDF member. 
The single-member dynamical wave simulations were conducted 
using WAVEWATCH III (WW3) driven by the surface wind 
fields of the d4PDF member in question. We used the same 
WW3 version (5) and model configuration as in Shimura and 
Nobuhito (2019) which has a spatial resolution of ~ 0.5°. For 
both datasets, the annual mean Hs trend is remarkably positive in 
the Southern Ocean but the statistical approach simulates a less 
intensive tendency to increase over a smaller area (Figure S1). 
This can be arguably explained by the lower spatial resolution of 
the simulations obtained with the statistical modelling approach 
(1°) in comparison to the WW3 simulations (~ 0.5°). Indeed, 
there is a better agreement in terms of the trends relative to 
the 1951–2010 climatological mean, as they are less affected by 
spatial resolution (see Figure S2). For the annual maximum Hs, 
both approaches simulate a nosier spatial pattern of trends than 
for the annual mean Hs, as expected for this extreme statistic. 
For both datasets, positive increases in the annual maximum 
Hs are seen in the Southern Ocean and in the Northern Pacific, 
Northern Atlantic and Indian Oceans. Overall, the results show 
that the statistical and dynamical methods are in reasonably 
good agreement with each other, showing similar spatial patterns 
of trends for both the annual mean Hs and maximum Hs.

2.2 Trend Analysis
This study focuses on the assessment of the annual mean 
and maximum Hs trends for the period 1951–2010 and the 
uncertainty derived from the internal climate variability. First, 
individual trends were computed for each ensemble member 
of d4PDF-WaveHs using the (non-parametric) Mann-Kendall 
method with lag-1 autocorrelation being accounted for (Wang 
and Swail, 2001). Second, the individual-member trends were 
averaged over the 100 ensemble members to obtain the ensemble 
averaged trend. Then, the regional average trends are calculated 
as the average over all gridpoints in each of the modelling areas 
shown in Figure 1.

At a given grid point, the ensemble averaged trend is 
considered statistically significant if >50% of the individual-
member trends are significant at the 5% level, and >90% of 
these significant individual-member trends have the same 
trend sign. This method was used by Morim et  al. (2019) as 
it was identified as a suitable method to identify regions of 
robustness (IPCC, 2013). As discussed later in the manuscript, 
this method is more restrictive than performing a t-test on the 
individual trend estimates, as the latter does not account for the 
inter-annual  variability.

In addition, we investigate the impact of internal climate 
variability on the results of trend assessment, showing what we 
can gain from using a SMILE-based ensemble. In particular, we 
estimated the following three likelihoods:

1. the likelihood for an ensemble member to have the same 
trend conclusion as the ensemble averaged trend. Here trend 
conclusion is one of the following three outcomes: (a) statistically 
significant positive trend, (b) statistically significant negative 
trend, (c) statistically insignificant trend (regardless of the sign).

2. the likelihood for an ensemble member to have the same 
trend sign as the ensemble averaged trend, regardless of the 
significance level.

3. the likelihood for an ensemble member to give a trend 
conclusion that is opposite to that of the ensemble, showing a 
statistically significant trend of the opposite sign to the ensemble 
average trend (here both trend estimates are statistically 
significant).

We repeated the above analysis by considering x-size sub-
ensembles (randomly sampled 100 times from d4PDF-WaveHs), 
where x goes from 2 to 50. This allows us to investigate the gain 
from using gradually larger ensembles, and to find the optimal 
ensemble size for estimating trend in the two Hs statistics 
analyzed.

2.3 Wave Datasets Used for Comparison
For comparison purposes, the trend assessment described in 
Section 2.2 is also performed for state-of-the-art wave reanalysis 
both at global and regional scales, as well as on a grid point basis. 
The goal is put the role of the internal climate variability for trend 
assessment (based on d4PDF-WaveHs) into perspective of the 
estimates and discrepancies among modern reanalysis datasets. 
In particular, we used the second version of the National Centers 
for Environmental Prediction (NCEP) Climate Forecast System 
Reanalysis (CFSR) (Saha et al., 2014), ERAint (Dee et al., 2011) 
and the more recent ECMWF 5th generation reanalysis (ERA5) 
(Herbach et  al., 2020). Although ERA5 is available since 1950, 
we consider a common period of analysis from 1979 to 2009 for 
these three reanalysis datasets.

Additionally, we compared our trend estimates and 
uncertainty results with those obtained from historical wave 
simulations without data assimilation. First, we use the 
historical CMIP5-driven dataset developed by Wang et  al. 
(2014), hereafter called CMIP5-HsWang, which used the same 
statistical modelling approach as this study. CMIP5-HsWang 
provides 6-hourly Hs produced using SLP simulations by 20 
climate models (only one realization per model) for the period 
1950–2005. With this comparison we investigate how internal 
climate variability compares to model variability in terms of 
trend estimates. Despite the forcing SLP data being adjusted to 
have the same climatological mean and variance as the ERAint 
SLP data, model variability was identified by Wang et al. (2014) 
as one major factor of uncertainty that is significantly different 
from zero globally.
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Finally, we also performed the same trend analysis with 
the 1979–2004 COWCLIP historical ensemble (Morim et  al., 
2019), referred to as CMIP5-COWCLIP hereafter, which 
mainly accounts for climate model variability and wave method 
variability. Morim et  al. (2019) identified both of these factors 
as key sources of uncertainty, with different contributions to 
total uncertainty depending on the region. Here we consider 
the 48  members that provide both annual mean and annual 
maximum Hs.

3 RESULTS

The ensemble average of trends in the annual mean Hs for the 
period 1951–2010, as simulated by d4PDF-WaveHs is positive 
and statistically significant (at 5% level) in the Southern Ocean 
with rates exceeding 0.5 cm/yr (Figure 2A), which represent an 
increase of up to 0.25%/yr relative to the 1951–2010 climatological 
mean (see Figure S3A). This rate of increase outstands from the 
rest of the oceans, which have positive/negative rates of up to 
0.3 cm/yr in absolute value. This is reasonable given the more 
energetic wave climate of this unique continuous body of water 
encircling the Earth affected by continuous low pressure systems. 
Trends are also positive and statistically significant in areas of 
the tropical west Pacific, the southern East Pacific, the Southern 
Atlantic and the Indian Ocean. The only area with statistically 
significant negative trend is located south of Africa. A similar 
pattern is observed for the ensemble average of trends in the 
annual maximum Hs (Figures 2B and S3B) but in this case the 

trends are statistically insignificant, and the latitudinal gradient 
between the Southern Ocean trends and the rest of the oceans 
is lower. Simulations of the annual maximum Hs trend show a 
nosier spatial pattern than for the annual mean Hs counterpart 
(see Figures S4−S7) due to the inherent additional uncertainty 
associated to extremes. This noise is implicitly reflected in the 
ensemble averaged trend with a lower statistical significance 
associated to the annual maximum Hs trends, as compared to 
those of the annual mean Hs (Figure 2A vs. Figure 2B).

Figures 2C, D illustrate the inter-member standard deviation 
(SD) of the annual mean and maximum Hs trends for the period 
1951–2010. For the annual mean Hs, SD is larger in the extra-
tropics of both the Northern and Southern Hemisphere, with 
the largest values being located in the North Atlantic Ocean. For 
the annual maximum Hs, we see a longitudinal gradient over the 
extra-tropics, with the larger SD being located in the Western 
parts of the North Pacific, North Atlantic, and South Atlantic 
basins. This is arguably related to these areas being more sheltered 
from swells and therefore more affected by local (more variable) 
extreme storms than the eastern side of the basin counterpart. 
Swells likely contribute to lower internal climate variability 
as they integrate different wave energy systems generated by 
different atmospheric systems across multiple locations.

It is important to note that the areas identified as statistically 
significant can differ notably depending on the statistical method 
used to assess uncertainty. As explained in Section 2.2, here we 
use a 2-step method that accounts for both inter-run and inter-
annual variability, as recommended by the IPCC for assessing 
robustness. If we use a less conservative approach such as a t-test 

B

C D

A

FIGURE 2 | Ensemble average (A, B) and standard deviation (C, D) of the annual mean Hs (A, C) and maximum Hs (B, D) trend (cm/yr) for 1951–2010. Stippling 
indicates the ensemble mean trend is statistically significant.
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to determine if the ensemble average trend is statistically different 
from zero, we obtain significantly larger areas of statistically 
significant trends that cover most of the domain (see Figure 2 vs 
Figure S8). For example, in the North Atlantic Ocean, we obtain 
statistically significant positive trends in its north-east part 
while the central-west part exhibits a trend that is statistically 
significant and negative. Note that this t-test only accounts 
for the trend estimates associated to the individual ensemble 
members, without considering the inter-annual variability and 
the statistical significance associated to each individual member.

At regional scale, Figure  3 shows the global and regional 
ensemble averages of the trends over the period 1951–2100 in 
the form of a boxplot, along with the 5%, 25%, 50%, 75%, and 
95% percentiles of the trend estimates. The corresponding 
values relative to the 1951–2100 climatological mean are shown 
in Figure S9. One significant result is that at least 95% of the 
members exhibit a global positive trend for the annual mean Hs. 
At regional scale, the 5% percentile of the annual mean Hs trends 
also exceeds zero in some tropical areas, and in the Southern 
Hemisphere (WTNP, ETSP, TSIO and SP, see Figure 1). NA is 
the region with more members exhibiting a negative trend for 
the annual mean and maximum Hs. For the annual maximum 
Hs, the inter-member variability increases and a smaller number 

of areas (TSIO and SP) have at least 95% members exhibiting 
positive trends. Overall, the areas where the trend estimate 
is more affected by internal climate variability are the extra-
tropical areas, and particularly the Northern Hemisphere extra-
tropics (NA and NP), which exhibit larger spread in both trend 
magnitude (cm/yr, see Figure  3) and percent relative to the 
1951–2010 climatology (%/yr, Figure S9).

Figure 3 also illustrates how the regional trends for the period 
1979–2009 compare to the corresponding values of state-of-
the-art reanalysis. As expected, the inter-member variability is 
larger due to considering a shorter period of time. We observe 
striking discrepancies between the analyzed NCEP and ECMWF 
products (CFSR vs. ERA5 and ERAint), which exceed the 
internal climate variability (as derived from d4PDF-WaveHs). 
While ERA5 and ERAint simulate positive trends for annual 
mean Hs over the majority of the regions, CFSR mostly depicts 
negative trends, which are particularly strong in the Southern 
Ocean. The corresponding regional average derived from 
d4PDF-WaveHs typically lies in between the values associated 
to these reanalyzes products. These discrepancies are also seen 
in the spatial patterns of the ensemble average trends for both 
the trend magnitude (cm/yr) and the trend relative to 1979–2009 
(%/yr) of the annual  mean Hs (Figures S10, S11). ERA5 and 
ERAint trends are mostly positive (and exceeding 0.5 cm/yr), 
while the corresponding values of CFSR are mostly negative with 
a similar amount.

For the regional annual maximum Hs trends, ERA5 and 
ERAint also simulate larger values than CFSR, often with 
opposite signs. However, such discrepancies are lower than what 
is in the annual mean Hs (relative to the d4PDF-WaveHs spread) 
and, for a few regions (NA, SIO and SA, see Figure 1), they even 
fall within the internal climate variability simulated by 4PDF-
WaveHs. As for the annual mean Hs trend, the corresponding 
trend maps for the annual maximum Hs (Figures S12, S13) also 
illustrate disparities among the analyzed products but we find a 
larger agreement between 4PDF-WaveHs and CFSR, as better 
captured by the individual runs (Figures S6, S7 vs Figure S12B).

As mentioned in the Introduction, recent studies also found 
significant discrepancies among modern wave reanalysis 
datasets. While differences in resolution and wave modelling 
method configurations can contribute to the differences in trends 
simulated by different wave climate products analyzed in this 
study, we argue that the major discrepancies are largely affected 
by temporal inhomogeneities introduced in assimilated data, in 
agreement with previous studies (e.g. Aarnes et al., 2015; Stopa 
et  al., 2019; Wohlkand et  al., 2019; Sharmar et  al., 2020). The 
comparison among reanalysis products alone seems to indicate 
that resolution is not a key factor explaining the discrepancies 
in the trends therein. ERAint (which has the same spatial 
resolution as 4dPDF-WaveHs) exhibits a trend pattern similar to 
ERA5 while the latter has significantly higher spatial resolution. 
Differently, ERA5 and CFSR have contrasting trends while 
having more similar spatial resolutions. Also, the discrepancies 
between ERAint/ERA5 and CFSR remain in terms of the relative 
trend (Figures S12, S13), which is a trend quantity less affected 

B

A

FIGURE 3 | Ensemble average of the regional trend (cm/yr) of the annual 
mean (A) and maximum (B) Hs averaged over the indicated area (see 
Figure1), corresponding to the 1951–2010 (black) and 1979–2010 (gray) 
periods. Dots indicate: ERA5 (blue), ERAint (green) and CFSR (purple) 
corresponding values for 1979–2010. Box plot illustrates the 2.5%, 25%, 
50%, 75% and 97.5% percentiles.
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by resolution. The difference between the statistical and the 
dynamical wave modelling approaches does not seem a key factor 
in explaining the discrepancies between the trends obtained from 
4dPDF-WaveHs and the modern reanalysis either, as we showed 
how the annual mean and maximum Hs trends of the first run of 
4dPDF-WaveHs exhibited similar patterns in comparison to the 
counterpart simulated by WW3 (Figures S1, S2).

The temporal inhomogeneities present in modern reanalysis 
can be illustrated with the abrupt changes in tendency and 
spread seen in the annual mean Hs time series of Figures 4 and 
5 (see also Figures S14−S16 for other regions). For example, 
CFSR, ERAint and ERA5 simulate a global average of the annual 
mean Hs (Figure 4A) that goes from 2.23 m to 2.53 m in the 
first half of the reanalysis period, while the range is reduced to 
2.28 m to 2.45 m for the second half. This is caused by an abrupt 
change in tendency starting in the 1990s, which coincides with 
the start of assimilated wave integrated parameters in the early 
1990s, followed by an increase of overall satellite data in the 
2000s (Herbach et al., 2020). The global annual maximum Hs 
(Figure 4B) does not exhibit such an abrupt breakpoint but the 
model spread also tends to decrease after the 1990s. Overall, 
we find a better agreement among the annual mean Hs trends 
simulated by d4PDF-WaveHs and modern reanalysis datasets 
at global scale. For the global annual maximum Hs, the values 
simulated by d4PDF-WaveHs (and also CMIP5-HsWang) are 
lower than those simulated by the reanalysis products. This is 
mostly caused by an underestimation of the annual maximum 
Hs in the tropics (see for example the WTNP, ETNP, TNA, 
WTSP, ETSP, TSA, TSIO regions in Figures S14−16) while 

there is a good agreement for the annual maximum Hs over 
the mid to high latitudes (e.g. NP, NA, SP and SA regions, see 
Figure 5 and Figures S14−S16).

Since modern reanalysis datasets do not seem to be suitable 
observation proxies for trend analysis, we compare the 
trends derived from d4PDF-WaveHs with the corresponding 
values obtained from other model simulations without 
data assimilation: CMIP5-HsWang and CMIP5-COWCLIP 
(see Section 2.3). This also allows us to assess the role of the 
internal climate variability, as estimated from d4PDF-WaveHs, 
in the context of other sources of uncertainty. In terms of the 
global annual mean and maximum Hs time series, CMIP5-
COWCLIP notably exhibits the largest variability, as expected 
since this ensemble considers a large variety of wave modelling 
approaches and configurations (see Figure S17). However, 
we find that the uncertainty of the global averaged trends (of 
both annual mean and maximum Hs trends) is fairly similar for 
the three data products, with significantly overlapping ranges 
of variability (see Figure 6 and Figure S18). d4PDF-WaveHs 
tends to have a lower spread, followed by CMIP5-HsWang and 
CMIP5-COWCLIP, respectively, which might indicate that the 
global variability induced by climate models is larger than the 
internal climate variability, and that adding another factor of 
uncertainty (wave method) further increases the variability, 
as expected. However, this is not the case for all regions. For 
example, the North Atlantic annual mean Hs trend variability 
derived from d4PDF-WaveHs equals the CMIP5-COWCLIP 
counterpart (while exceeding the CMIP5-HsWang value). In 

B

A

FIGURE 4 | Global time series of the annual mean Hs (A) and annual 
maximum Hs (B), in m, as derived from d4PDF-WaveHs (black), CMIP5-
HsWang (brown), CFSR (purple), ERA5 (blue), ERAint (green). For the d4PDF-
WaveHs and CMIP5-HsWang ensembles we show the ensemble mean (thick 
lines) and the range between the 2.5% and 97.5% percentiles (shaded area).

B

A

FIGURE 5 | NP (A) and NA (B) time series of the annual maximum Hs, in 
m, as derived from d4PDF-WaveHs (black), CMIP5-HsWang (brown), CFSR 
(purple), ERA5 (blue), ERAint (green). For the d4PDF-WaveHs and CMIP5-
HsWang ensembles we show the ensemble mean (thick lines) and the range 
between the 2.5% and 97.5% percentiles (shaded area).
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any case, the differences in spread are mild and could be caused 
by the difference in sampling space (different ensemble sizes). 
For example, Figure S19 shows the spread of global trends 
that would be obtained from 20- and 48-size sub-ensembles 
randomly sampled from d4PDF-WaveHs, in comparison to 
the original 100-size ensemble.

Finally, we addressed the risk of using a single member to 
assess trends. In some areas of the Southern Ocean, there is 
a likelihood of up to 50% to miss the statistically significant 
strong positive trend that is clearly shown by the ensemble 
average for the annual mean Hs (Figure 7A). The chances to 
get the same trend sign (regardless of the significance) are 
however larger in those areas. In contrast, the likelihood to 
obtain the same trend sign decreases to about 50% in the 
North Atlantic (Figure 7B) as the wave climate in this region 
has larger internal climate variability, for which individual 
members can predict either positive or negative trends locally 
(Figures S4, S5). However, the results also show that, for the 
annual mean Hs, it is very unlikely for an individual member 
to have a statistically significant trend of the opposite sign to 
the ensemble average trend (Figure 7C). This only occurred 
in at most 5 out of the 100 members over a few scattered areas 
at the mid to high latitudes.

For the annual maximum Hs, the chances to get the same 
trend conclusion are very high, especially for the areas with 
positive trends (Figure  7A). This can be explained by the low 
statistical significance found in most of the members (using the 
more restrictive method to assess robustness, see Section 2.2), 
but there is a larger disagreement (>50% runs) in simulating 
the same trend sign (Figure  7B). Also, the areas where up to 
5 individual ensemble members might simulate a statistically 
significant trend of the opposite sign to that of the ensemble 
average are more abundant and cover most of the mid and high 
latitudes (Figure  7C). The corresponding ensemble average of 
the annual mean and maximum Hs trends are shown in Figures 
S20 and S21.

The same analysis performed for sub-ensembles with varying 
ensemble size reveals that, as expected, the required ensemble 
size to replicate the results obtained from the whole 100-member 
ensemble depends on the Hs statistic and the region in question 
(see Figures S22−25). For example, for the annual mean Hs, 
the areas of trend conclusion disagreement (which considers 
both trend sign and significance) over the Southern Ocean, 
notably shrink when we consider sub-ensembles with size close 
to 20 members (Figure S22). Differently, if we want to simulate 
the same annual mean Hs trend sign over the North Atlantic, a 
10-size ensemble seems to be sufficient (Figure S23). For the 
annual maximum Hs we would generally require larger ensembles 
to obtain the same trend sign (for example close to 40 for the 
North Atlantic Ocean, see Figure S25), as expected due to the 
larger uncertainty associated with simulating extremes. Overall, 
at global scale we argue that a trend assessment using a SMILE-
based ensemble with size from 10 to 20 would reduce significantly 
the likelihood for an erroneous trend assessment result.

4 DISCUSSION

We have used the d4PDF-WaveHs, the first SMILE-based large 
wave height ensemble to assess the effects of internal climate 
variability on trend assessment results. d4PDF-WaveHs consists 
of 100 ensembles of 60-year historical Hs simulations (1951–
2010). In this study, we focused on the analysis of the annual 
mean and maximum Hs trends and the role that the internal 
variability plays in their assessment; but this dataset can be 
further exploited in future studies to investigate the role of 
internal climate variability on other target quantities, such as 
low-frequency Hs extremes.

The trends obtained from d4PDF-WaveHs are also compared 
to those derived from modern reanalysis datasets and from 
climate model simulations. This is of particular relevance given 
the notable discrepancies among reanalysis datasets in recent 
studies (Stopa et al., 2019; Sharmar et al., 2020). Moreover, this 
study also contributes to improve the current understanding of 
the internal wave climate variability, which is a key factor among 
other relevant sources of uncertainty affecting wave simulations 
(Morim et al., 2019).

We found a clear and statistically significant positive trend 
for the annual mean Hs over the Southern Ocean exceeding 0.5 

B

A

FIGURE 6 | Ensemble average of the regional trend (cm/yr) of the annual 
mean (A) and maximum (B) Hs averaged over the indicated areas (see 
Figure 1) as derived from d4PDF-WaveHs (black), CMIP5-HsWang (brown) 
and CMIP5-COWCLIP (dark blue) for the 1979–2005 (see Section 2). Box 
plot illustrates the 2.5%, 25%, 50%, 75% and 97.5% percentiles.
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cm/yr in some areas. Statistically positive trends with a lower 
intensity (up to 0.3 cm/yr) were also seen for tropical areas. 
Over the North Pacific and Atlantic Oceans, the averaged 
trends are not statistically significant, which is caused by the 
large inter-annual variability in these areas, where individual 
ensemble-members might simulate opposite trends although 
most of the simulations show a negative regional trend. The 
annual maximum Hs trends show a similar spatial pattern 
but results are not statistically significant. Significance here is 
assessed with a two-step method that accounts for both the 
inter-annual variability in each individual member as well as 
the variability among members, as recommended by the IPCC 
to assess robustness.

The results here provide more evidence that modern reanalysis 
datasets are not suitable observation proxies to study historical 
wave height trends due to their temporal inhomogeneities. 
The main reason is arguably the increasing amount and type 
of available observations used in data asimilation, which 

coincides with breakpoints that can be visually identified in the 
annual mean H time series. In most regions, ERA5 and ERAint 
simulate positive trends while CFSR simulate negative trends, 
and the results simulated by d4PDF-WaveHs fall in between 
these two family products. The discrepancies are more notable 
for the annual mean Hs than for the annual maximum Hs, which 
seems to be less affected by temporal inhomogeneities. While 
differences in resolution and wave modelling methodologies 
might contribute to add variability in the assessment of the 
wave climatology (particularly the extremes), the temporal 
inhomogenity induced by data assimilation is arguably the 
main factor leading to the major discrepancies observed for the 
annual mean and maximum Hs trends.

Our results show that there is a non-negligible probability to 
miss-assess trends when using a single realization (member). 
Although we would likely detect the strong positive trend in the 
annual mean Hs over Southern Ocean with just one member, 
we could mis-estimate their spatial extension and therefore 

B

C

A

FIGURE 7 | Fraction of ensemble members (%) with the same trend conclusion (A), the same trend sign (B) and different trend sign that is statistically significant 
(C), as compared to the ensemble average for the annual mean Hs (left) and the annual maximum Hs (right) (see Section 2.2 for more details). Warm(cold) shades 
indicate the ensemble mean trend is positive(negative). Stippling indicates the ensemble mean trend is statistically significant.
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mis-assess the trend locally (in up to 50% of the ensemble 
members). For the annual maximum Hs, there is a larger 
uncertainty; opposite trends are simulated by the individual 
members, particularly in the North Pacific and North Atlantic 
oceans. However, it is unlikely to obtain an individual trend 
that is fundamentally opposite of the corresponding ensemble 
average. To reduce the risk to miss-assess trends at global scale, 
it would be necessary to use at least 10 members. However, 
an optimal size depends on the statistic quantity and region 
analyzed.

This study also shows that, despite climate model variability 
leading to a large uncertainty for the assessment of the annual 
mean and maximum Hs time series, the role of the internal 
climate variability in the resulting trends is comparable to the 
uncertainty derived from climate models and wave methods. 
However, this comparison is challenging given the uneven 
sampling of the uncertainty factors in the available datasets. 
Typically, ensembles that consider different climate models 
have a limited amount of realizations and SMILEs are based 
on a single climate model by definition. Future studies with 
climate datasets that better represent the whole spectrum 
of uncertainty would likely help understand better the 
contribution of these uncertainty factors.

The dataset and analysis presented in this study bring 
significant insight into the role of internal variability in the 
context of the wave height trend assessment. However, results 
are based on a single-model ensemble and therefore rely on the 
ability of this particular climate model to replicate the internal 
climate variability. It would be ideal to perform a similar 
analysis with other SMILE-based large wave ensembles that 
consider other climate models in order to derive more robust 
conclusions that are not specific to a particular climate model. 
Additionally, results rely on the performance of the statistical 
wave modelling approach to obtain Hs. In this regard, we 
plan to re-calibrate the statistical wave modelling approach 
with a higher resolution product (e.g. ERA5) which might 
improve the underestimation seen in the tropics, and better 
capture the storms with sharp SLP gradients. Moreover, to 
fully address the main wave-driven impacts, we need to also 
consider and analyze other wave variables such as wave period  
and wave direction.
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Trend detection by innovative
polygon trend analysis for winds
and waves

Fatma Akçay1, Bilal Bingölbali2, Adem Akpınar1*

and Murat Kankal1

1Civil Engineering Department, Bursa Uludağ University, Bursa, Turkey, 2İnegöl Vocation Schools
Bursa Uludağ University, Bursa, Turkey
It is known that densely populated coastal areas may be adversely affected as a

result of the climate change effects. In this respect, for coastal protection,

utilization, and management it is critical to understand the changes in wind

speed (WS) and significant wave height (SWH) in coastal areas. Innovative

approaches, which are one of the trend analysis methods used as an

effective way to examine these changes, have started to be used very

frequently in many fields in recent years, although not in coastal and marine

engineering. The Innovative Polygon Trend Analysis (IPTA) method provides to

observe the one-year behavior of the time series by representing the changes

between consecutive months as well as determining the trends in each

individual month. It is not also affected by constraints such as data length,

distribution type or serial correlation. Therefore, themain objective of this study

is to investigate whether using innovative trend methods compared to the

traditional methods makes a difference in trends of the climatological variables.

For this goal, trends of mean andmaximumWS and SWH series for eachmonth

at 33 coastal locations in Black Sea coasts were evaluated. Wind and wave

parameters WS and SWH were obtained from 42-year long-term wave

simulations using Simulating Waves Nearshore (SWAN) model forced by the

Climate Forecast System Reanalysis (CFSR). Monthly mean and maximum WS

and SWH were calculated at all locations and then trend analyses using both

traditional and innovative methods were performed. Low occurrence of trends

were detected for mean SWH, maximum SWH, mean WS, and maximum WS

according to the Mann-Kendall test in the studied months. The IPTA method

detected more trends, such as the decreasing trend of the mean SWH at most

locations in May, July and November December. The lowest (highest) values

were seen in summer (winter), according to a one-year cycle on the IPTA

template for all variables. According to both methods, most of the months

showed a decreasing trend for the mean WS at some locations in the inner

continental shelf of the southwestern and southeastern Black Sea. The IPTA

method can capture most of the trends detected by the Mann-Kendall method,

and more missed by the latter method.

KEYWORDS

monthly trend analysis, innovative polygon trend analysis, Mann-Kendall test,
significant wave height, wind speed, Black Sea
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1. Introduction

The coastal areas are generally densely populated. The

attractiveness of the coasts leads to an increased number of

buildings and assets close to the coastline. For example, in 2000,

half of the major cities, counting more than 500,000 inhabitants,

were located within 50 km of the coastline (UNEP, 2006).

Variations in sea level caused by climate change, wave

conditions, and storm surges are only a few significant

environmental forces that have physical effects along the coast

(Camus et al., 2017). Human activities thus stress coastal areas,

and the impacts of climate change are expected to worsen the

problems that coastal areas are already facing (IPCC, 2013).

The wind speed, the duration of the wind, wind direction,

and fetch are the main factors influencing the wave climate in

the open ocean. Therefore, the change in the wind pattern

directly influences the wave height and period (Bhavithra and

Sannasiraj, 2022). Waves combine local wind-sea and swell

coming from distant storms (Young, 1999a). Despite being

entirely forced by the wind field, the long-term trends of wave

height may be affected by low-frequency variability, e.g., an

increasing number of cyclones, in the form of a swell

contribution (Young, 1999b; Gulev and Grigorieva, 2006). The

need for long-term and reliable time series of marine near-

surface winds and significant wave height (SWH) is increasing as

climate projections require a baseline climatology against which

to be compared, and even more so if dynamical models of the sea

state are to be included in future coupled climate scenarios

(Cavaleri et al., 2012; Dobrynin et al., 2012). There are also more

immediate needs for reliable time series of historical wind and

wave climates, such as estimates of return values in areas without

observational records (Caires and Sterl, 2005; Aarnes et al., 2012;

Breivik et al., 2013; Breivik et al., 2014) or decadal trends in wind

and wave parameters.

Trend analysis examines whether the direction of increase or

decrease in a time series changes over time. There are two types

of trend analysis methods: parametric and nonparametric. The

parametric approaches are dependent on the assumption that

data fit the normal distribution. They are often preferable in

trend analysis research since nonparametric methods do not

make this assumption (Onyutha, 2016; Akc ay et al., 2022).

Mann-Kendall, Spearman’s rho, and Sen’s trend slope tests are

some examples of nonparametric methods. The Mann-Kendall

test is often preferred in trend analysis of hydro-meteorological

data (Saplıoğlu et al., 2014; Caloeiro et al., 2018; Ali et al., 2019;

Ay, 2020; S an et al., 2021). It is also frequently used in trend

analysis of wave and wind data (Shanas and Kumar, 2015;

Akpınar and Bingölbali, 2016; Aydoğan and Ayat, 2018;

Meucci et al., 2020; Amarouche et al., 2021). Innovative

methods in trend analysis have attracted attention in recent

years (S en, 2012; S en, 2014; S en, 2017; Güc lü, 2018; S en, 2018;
S en et al., 2019; Güc lü et al., 2020; S en, 2021). The Innovative
Frontiers in Marine Science 02
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Trend Analysis (ITA) proposed by S en (2012) forms the basis of

these innovative approaches. In this method, the data is divided

into two equal parts. Both half series are sorted in ascending

order, and the 45° line is added to the chart. If the scattering

points fall above (below) the 45° line, it indicates an increasing

(decreasing) trend. If the scattering points are lined up just above

the 45° line, there is no change between the first and second half

data. Besides, the data can be divided into low, medium, and

high groups in this method. The Innovative Polygon Trend

Analysis (IPTA) is one of the novel trend methods proposed by

S en et al. (2019). In this method, polygon patterns are obtained

using the mean, minimum, maximum, standard deviation and

skewness parameters of the data at different time scales (daily,

monthly, etc.). In this way, the one-year behavior of the time

series is symbolized. This method can obtain information when

determining the trend and the magnitude and slope of trend

transitions between successive segments (e.g., months).

Innovative approaches are frequently used in investigating the

trends of hydro-meteorological parameters (Haktanir and

C ıtakoğlu, 2014; Ay and Kisi, 2015; Dabanlı et al., 2016;

Caloeiro et al., 2018; Sanikhani et al., 2018; Kuriqi et al., 2020;

Harkat and Kisi, 2021; Ahmed et al., 2022). However, the use of

these methods in investigating the trend of wave parameters is

quite limited (Caloeiero et al., 2019; De Leo et al., 2020; De Leo

et al., 2021). The ITA procedure recommended by S en (2012)

was applied in these studies. The IPTA method is applied to

wave and wind parameters for the first time in this study.

There are various trend analysis studies conducted on the

Black Sea (Valchev et al., 2012; Akpınar and Bingölbali, 2016;

Divinsky and Kosyan, 2017; Aydoğan and Ayat, 2018; Onea and

Rusu, 2019; C arpar et al., 2020; Divinsky and Kosyan, 2020; Islek
et al., 2020; Islek et al., 2021). Valchev et al. (2012) investigated

the linear trends of storminess, mean wind speed (WS), mean

and total wave energy in the western Black Sea between 1948 and

2010. Akpınar and Bingölbali (2016) determined the long-term

changes of SWH and WS in 33 selected locations on the Black

Sea based on 31-year (1979-2009) long-term wave simulations

using Simulating Waves Nearshore (SWAN) model forced by

the Climate Forecast System Re-analysis. Trends for annual

mean and maximum WSs and significant wave heights (SWH)

were investigated based on the Mann-Kendall test. Divinsky and

Kosyan (2017) studied the spatiotemporal variability of the

Black Sea wave climate using 37–year (1979–2015) ERA-

Interim wind fields. Aydoğan and Ayat (2018) investigated the

long-term trends of SWH in the Black Sea, both on a basin

average and spatial basis, on an annual and monthly basis using

Sen’s slope method and least square linear regression. Divinsky

and Kosyan (2020) investigated trends in the average and

maximum power of wind seas, swell, and mixed waves using

Mann-Kendall test based on the MIKE 21 SWmodel results for a

40–year (1979–2018) ERA-Interim dataset. C arpar et al. (2020)
spatially investigated the long-term trends of mean and 95%
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percentile wind speeds in the Black Sea between 1979 and 2016

on a monthly basis with the help of the Mann-Kendall test. Islek

et al. (2020) studied the long-term change of wind characteristics

(the wind speed, direction, number and duration of storms, and

wind power density) using linear regression on the Black Sea

with two widely used data sources ERA-Interim and CFSR,

spanning 40- year (1979-2018). Islek et al. (2021) determined the

long-term trends of mean and maximum SWH, mean wave

period, mean wave direction, storm duration, and wave

steepness using linear regression for two separate data sets

(SWAN simulations forced with the ERA-Interim and NCEP/

NCAR) covering the years 1979–2018 on the Black Sea.

As seen from the literature review in the area of interest and

the world, trends for winds and waves were not examined using

the IPTA method. With the help of polygon graphics in the

IPTA method, a new methodology, the annual behavior of the

time series can be followed from January to December. This

method questions the existence of a trend each month and

allows the direction and size of the transitions between months

to be determined. It provides the opportunity to make visual

comments as well as numerical data. The following are the

primary goals of this research:

* To investigate monthly long-term trends of mean and

maximum SWH and WS at 33 locations along the Black

Sea coast.

* To examine the one-year behavior of the mean and

maximum SWH and WS at locations by examining the

transitions between months with the IPTA method, which will

assess the month-to-month trends and slopes. In this way, to

observe seasonal variations through monitoring changes in

successive months.

* To compare traditional (Mann-Kendall) with innovative

(IPTA) methods.

For the purposes mentioned above, the locations and data in

the study carried out by Akpınar and Bingölbali (2016) were

preferred and used. The dataset produced by Akpınar and

Bingölbali (2016) was extended with SWAN simulations until

2020. After expanding the data, monthly mean and maximum

SWH and WS were obtained for 33 locations. Traditional

(Mann-Kendall) and the state of the art (IPTA) trend methods

were applied for 42-year mean and max WS and SWH for each

month, and trends were determined.
2. Materials and methods

2.1. Study area and data used

The deep-water basin, which covers most of the sea, and the

coastal shelf are two morphological aspects of the Black Sea. The

shelf band in the northwestern section of the sea stretches up to

200 kilometers broad. A 20-kilometer-long continental slope

and shelf differentiate the southern and eastern shores. With a
Frontiers in Marine Science 03
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maximum depth of 2212 meters, the center part of the Black Sea

basin is a relatively flat plain. The depths off the coasts of Crimea

and the Caucasus are steadily rising, reaching 500 meters just a

few kilometers from the shore (Divinsky and Kosyan, 2020).

Thirty-three locations along these coastal regions of the Black

Sea were determined within the scope of the study by taking a

degree difference between longitudes. Of these 33 locations, nine

are in the southeast (1-9), seven in the northeast (10-16), eight in

the northwest (17-24), and nine in the southwest (25-33) of the

Black Sea. The positions of these locations are shown in Figure 1.

Detailed information about the study area and locations can be

found in Akpınar and Bingölbali (2016).
2.2. Wave model setup

Forced with CFSR wind fields, SWAN cycle III version 41.01,

a third-generation wave model (Booij et al., 1999; Ris et al.,

1999), was used to generate and propagate wind waves between

1979 and 2009 by Akpınar and Bingölbali (2016) and extend the

dataset until 2020 in the scope of the present study in the Black

Sea. Thus, a 42-year long-term wind and wave dataset were

formed. The SWAN model was in the third generation and

operated in non stationary mode, with a time step of 15 min and

one iteration per time step. Akpınar et al. (2012) found this

setting to be adequately precise. As for the domain of the model,

the entire Black Sea (27°E to 42°E and 40°N to 48°N) was taken
FIGURE 1

Study area and locations.
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Akçay et al. 10.3389/fmars.2022.930911
into consideration (shown Figure 1). In spherical coordinates,

the Black Sea was within a 225×120 regular grid, including the

Azov Sea. It has a consistent resolution of 0.067 degrees (1/15°)

in both directions, translating into about 7.7 km of latitude and

5.43 km of longitude. Thus, there is 15 cells per latitude and

longitude. Thirty-six directional bins and 35 frequency bins were

used to discretize the spectrum function of the directional wave

variance, which were geometrically positioned from 0.04 Hz to

1.0 Hz. The slightly dispersive BSBT (first-order upwind;

backward space, backward time) scheme was used for the

numerical scheme. Numerical settings of the SWAN model in

the Black Sea were discussed in Akpınar et al. (2012), where the

physical settings for the wave model calculations were done with

a calibrated SWAN model by Akpınar et al. (2016). The

formulation of Komen et al. (1994) was applied for wave

growth by wind. 1991b; Janssen’s (1991a) model’s adaptations,

where d=1 according to Rogers et al. (2003), were used for wave

energy dissipation by whitecapping. 2016; Akpınar et al. (2015)

found that the Cds=1.5 coefficient for whitecapping dissipation

was optimal for the SWAN model forced with the CFSR, so this

study used the same. Nonlinear quadruplet interactions were

calculated using the Discrete Interaction Approximation (DIA)

by Hasselmann et al. (1985), in which l is 0.25 and Cnl4 is 3×10
7.

A constant for the bottom-friction coefficient (Cfjon=0.038 m2

s−3) based on JONSWAP was used to evaluate energy dissipation

due to bottom friction as advised in Zijlema et al. (2012). The

bore model of Battjes and Janssen (1978), in which a is set to 1

and g is 0.73, was used to model energy dissipation by depth-

limited wave breaking. Triad Approximation (LTA) of

Eldeberky (1996) was employed to calculate triad wave-wave

interactions. The wave model was driven by NOAA, which

includes two versions for CFSR winds. Version 1 of the CFS

Re-analysis data set (Saha et al., 2010) is available from January

1, 1979, to March 31, 2011. Version 2 (Saha et al., 2014) of the

data sets started in March 2011. CFSR wind data sets have a

temporal resolution of 1 hour, and they possess a spatial

resolution of 0.3125◦ × 0.3125◦ from 1979 to 2010 and 0.2045◦

× 0.2045◦ from 2011 to the present. With a resolution is 30

arcseconds in both latitude and longitude, the bathymetry

shown in Figure 1 was collected from the GEBCO (2014)

database. Since currents and water level changes are

insignificant to affect the model’s results, they were simply not

considered. Parameters like SWH and WS have been saved at a

half-hour interval over the entire grid for 42 years. 2016; Akpınar

et al. (2015) provide details on the calibration and validation of

the SWAN model used.
2.3. Trend analysis

2.3.1. Mann-Kendall test
The Mann-Kendall test is a nonparametric trend analysis

tool extensively used. The test statistic S of the method is
Frontiers in Marine Science 04
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calculated as (Mann, 1945; Kendall, 1975):

S = o
n−1

i=1
o
n

j=i+1
sgn xj − xi

� �
(1)

where n is the data length, xi and xj indicates data values at

times i and j, respectively.

sgn xj − xi
� �

=

          1          ;           xj > xi

      0          ;         xj = xi

     −1    ;           xj < xi

8>><
>>:

(2)

When n>10, the variance of S is calculated as:

Var Sð Þ = n n − 1ð Þ 2n + 5ð Þ −o
p

i=1
ti ti − 1ð Þ 2ti + 5ð Þ

" #
=18 (3)

In Equation (3), p is the number of tied groups. It means

there is equal data in the time series. ti indicates how many times

a data is repeated. Finally, the Z value is obtained from Equation

(4):

Z =

S−1ffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p            ,                 S > 0  

        0                          ,                         0            

S+1ffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p          ,                     S < 0  

8>>><
>>>:

(4)

The significance of this test is compared with the standard z

value according to the confidence level (90%, 95%, 99%)

determined in the standard normal distribution table. If the

absolute calculated Z value is greater (less) than the standard z

value, there is a significant trend (no trend). In the case of trend,

i f S is posi t ive (negat ive) , there is an increas ing

(decreasing) trend.
2.3.2. Innovative polygon trend analysis
Nonparametric tests have some limitations: Mann Kendall

and Spearman’s Rho tests are affected by the data length as a

result of the simulation studies. As the data length increases,

these tests become more powerful (Yue and Wang, 2002; S en,
2012). In addition, another disadvantage of the Mann-Kendall

test is that it accepts serial independence. The presence of serial

correlation in a time series showed that the Mann-Kendall test

detects trends that do not actually exist (Von Storch, 1995; S en,
2012). However, Douglas et al. (2000) stated that the

prewhitening method, which is used to reduce the serial

correlation, will lose some of the existing trend. Contrary to

these restrictions, Innovative Trend Analysis (ITA) method

proposed by S en (2012) does not contain any restrictions such

as data length, normal distribution fit, and serial correlation

removal. The validity of the method was tested by Monte Carlo

simulations (S en, 2012). The IPTA is one of the novel trend

methods proposed by S en et al. (2019). The method has no

limitations as it is based on the ITA method. In this method,
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polygon templates are obtained using the mean, minimum,

maximum, standard deviation, and skewness parameters of the

data at different time scales (daily, monthly, etc.). If the monthly

time scale is preferred, the method is applied as: The monthly

values (mean or maximum) of the relevant parameters were

divided into two equal groups. In this way, the first half of 42

years of monthly data (21 * 12 = 252 months of data) represent

the first group, while 252 months of data for the recent period

represent the second group. After that, for each month, the

averages (or optionally minimum, maximum, standard

deviation, skewness, etc.) of the first half data group (monthly

means of the past 21 years) and the second half data group

(monthly means of the recent 21 years) were taken and the

averages of the first group data were marked on the x-axis and

the averages of the second group data were marked on the y-axis,

and the 12 points obtained were connected and a polygon was

obtained. Finally, the slope and length between two points are

obtained by standard formulas. The difference between two

months is measured by the line length (transition). The line

slope concerning the horizontal axis is known as the trend slope.

In the Cartesian coordinate system 1:1 (45°), a straight line

divides the diagram into two parts. If scatter points are above

(below) the 1:1 line, there is an increasing (decreasing) trend

(S en, 2012). In this method, the measure of significance can be

obtained by the relative error percentage (a) between the two

half-series (S en, 2020):

a = 100
�x1 − �x2j j
�x2

(5)

When a< ± 5%, it is considered that there is no significant

trend in the given time series (S en, 2020).
This approach is a nonparametric method with no

assumption. The polygon symbolizes the one-year behavior of

the time series. The straight lines connecting the months give

information about the changes between months. If the slopes of

the straight lines between the months are close, the contribution

of the changes between months to the average change in the time

series is not significant. The more dynamic and complex a

hydro-meteorological event is, the more complex polygons

tend to arise.
3. Results

3.1. Mann-Kendall test results

The Mann-Kendall Test results at 95% confidence level for

mean and maximum SWH and WS are shown in Figures 2–5,

respectively. A significant trend was not observed in

approximately 89% of all time series (33 locations x 12

months) of mean SWH (Figure 2). No trends were detected in

April, June, July, and October. Increasing trends in March (six

locations), August (sixteen locations) and September (ten
Frontiers in Marine Science 05
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locations) and decreasing trends in May (five locations) are

noteworthy. Trends detected in other months are limited to a

few locations. Increasing trends were concentrated in the

southeast for March and in the northwest for August and

September. Decreasing trends were generally observed at

locations in the southwestern part. For the maximum SWH

(Figure 3), no trend was observed in any location in February,

June, July, and October. There is no trend in approximately 94%

of the all time series, but an increasing trend is detected in 5%.

Increasing trends were observed in January, August, and

September and mostly in locations in the western region.

Figure 4 presents the monthly Mann-Kendall test results of

mean WS. Similar to the mean SWH, increasing trends in the

western and northern regions were observed in August and

September. A decreasing trend was observed in all months at

location 30, located in the southwest. An increasing (decreasing)

trend was detected in the winter months (other months) in the

some locations belonging to the southeast part where the trend

was determined. No significant trends were found in 340 of the

396 (33 locations x 12 months) months (33 locations x 12

months) for maximum WS (Figure 5). In the southeast (west)

region, the decreasing (increasing) trends in July and December

(January) are noteworthy.
3.2. Innovative polygon trend analysis
results

The graphs of the IPTA were obtained for 33 selected

locations. A single plot for locations with similar characteristics

was presented to provide a summary presentation and ease of

review. Results were given for eight locations, two in each of the

four identified regions (Figures 6–9). Eight different locations

were preferred to evaluate different wind and wave parameters.

Trends for the months are seen in the IPTA charts visually.

However, when querying the trend assets of the months the

relative error percentage (a) between two half series is required to
be greater than 5%, as mentioned in the method section 2.3.2.

Tables 1–4 are considered a significant trend only in the months

that meet this condition. The IPTA graphs for the monthly mean

SWH are shown in Figure 6. Significant trends detected in mean

SWH are shown in Table 1. While a narrowing polygon structure

was observed in the summer months at the locations in the

southeast (locations 1-9) region, a wider polygon was

encountered in the spring and winter months (Figure 6). The

lowest (highest) SWH values are observed in the summer

(winter) months when the one-year behavior is examined.

Especially the increasing (decreasing) trends in March

(November) are stronger in terms of distance to the 45° line.

The transitions between February-March-April and October-

November-December are large compared to the others. In

October, November, and December, the transitions were

increasing. They still remained in the decreasing trend region
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FIGURE 3

Mann-Kendall results for monthly maximum SWHs during 42 years between 1979 and 2020.
FIGURE 2

Mann-Kendall results for monthly mean SWHs during 42 years between 1979 and 2020.
FIGURE 4

Mann-Kendall results for monthly mean WSs during 42 years between 1979 and 2020.
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FIGURE 5

Mann-Kendall results for monthly maximum WSs during 42 years between 1979 and 2020.
FIGURE 6

IPTA results for monthly mean SWHs during 42 years between 1979 and 2020.
FIGURE 7

IPTA results for monthly maximum SWHs during 42 years between 1979 and 2020.
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because mean SWH values in the second half were lower than in

the first half. Transitions between February–May period show a

decrease. At locations 11 and 15 in the northeast region (locations

10-16), a significant increase (decrease) was observed for the

mean SWH values in the January-March period (December). In

the northwest (locations 17-24) locations, two separate loops

were formed for low and high values. Transitions from July to

August were from decreasing area to increasing area. A

significant decreasing trend was observed for May and July and

the October-December period (locations 25-33). The significant

decreases in value in the second half of May, July, November, and

December caused a complex structure in the transition between

the months, with five different polygons. The IPTA graphs

between successive months for the monthly maximum SWH

were presented in Figure 7. Table 2 shows significant detected
Frontiers in Marine Science 08
233
trends in maximum SWH. Similar to the mean SWH, the highest

(lowest) values were observed in the winter (summer) months for

all locations. A wide loop starting from October and ending in

March-April was formed at the upper values. Strong increasing

(decreasing) trends were observed in March (May) in most

locations. For maximum SWH, a complex structure was

observed in which more than two loops were formed.

IPTA graphs for monthly mean WS were presented in

Figure 8. It was observed that the data of the waves in the two

locat ions represent ing the regions were genera l ly

compatible with

each other; this was not the case for the wind data. For

example, increases (insignificant) occurred for almost all months

in location 2 in the southeast, but a decreasing trend occurred in

location 7 in the same region for almost all months. This
FIGURE 8

IPTA results for monthly mean WSs during 42 years between 1979 and 2020.
FIGURE 9

IPTA results for monthly maximum WSs during 42 years between 1979 and 2020.
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situation can be seen in Table 3. However, the largest (smallest)

mean WS occurred in winter (summer) months, similar to wave

data. For high values in the northern locations, loops were seen

starting in October and ending at the transition of March-April,

but a more complex structure emerged in this range in the south.

The transitions between months in the mean WS increase

(decrease) from August (January) to December (May). The

trend increases at location 15 in the northeast, and decreases

in trend at location 30 in the southwest were very severe.

IPTA graphs for monthly maximum WS are presented in

Figure 9. There were severe increases (decreases) in maximum
Frontiers in Marine Science 09
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WS in location 2 (location 7) in the southeastern part. Table 4

shows that the first three locations 1-3 and the others 4-9 in

this region showed opposite trends. As in other wind and wave

parameters, high values in maximum WS occurred in winter

and low values in summer. The formation of narrower

polygons compared to other parameters reveals that the

months show similar trend behavior. Transitions between

months were in increasing (decreasing) direction between

August and December (February and May). In the graphs of

the eight stations examined, there are generally increasing

trends except for location 7. However it can be seen from
TABLE 1 Comparison of trend test results from different methods for mean SWH.

Parameter Region Location Mann-Kendall IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
SWH (mean) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 1 0 0 -1 -1

2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 -1 1 -1 1 0 -1 -1 -1

3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 -1 -1 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 -1 -1 0

5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 -1 0 0 0 -1 0

6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 -1 -1 0

7 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 1 0 -1 0 -1 0 -1 0 -1 0

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 -1 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 -1 0 -1 0 -1 -1 -1 -1

NORTEASTERN 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 0 0 -1 0 -1 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 -1 0 -1 -1

12 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 -1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 -1 0 0 0 -1 -1

14 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 -1 0 0 1 1 0 -1 -1

15 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 -1 1 0 1 1 1 0 -1

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -1 0 0 1 1 1 -1 -1

NORTHWESTERN 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 0 -1 -1

18 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 -1 0 -1 1 1 1 -1 0

19 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 -1 0 -1 1 1 0 -1 0

20 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 -1 1 1 0 -1 0

21 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 -1 0 0 1 1 0 -1 0

22 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 0 1 1 0 -1 0

23 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 -1 0 -1 1 1 0 -1 0

24 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 0 1 1 0 -1 0

SOUTHWESTERN 25 0 0 0 0 0 0 0 1 1 0 -1 0 0 0 -1 0 -1 0 -1 1 1 0 -1 -1

26 0 0 0 0 0 0 0 1 1 0 0 0 0 0 -1 1 -1 0 -1 1 1 -1 -1 -1

27 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 -1 1 -1 1 0 1 1 -1 -1 -1

28 0 -1 0 0 -1 0 0 0 0 0 0 0 0 -1 -1 1 -1 0 -1 0 1 -1 -1 -1

29 0 0 0 0 -1 0 0 1 0 0 0 0 0 -1 -1 1 -1 1 -1 0 1 -1 -1 -1

30 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 -1 -1 0 -1 1 -1 0 0 -1 -1 -1

31 -1 0 0 0 -1 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 0 -1 0 0 -1 -1 -1

32 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 1 -1 0 -1 0 0 0 -1 -1

33 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 -1 1 -1 1 0 0 -1 -1
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Akçay et al. 10.3389/fmars.2022.930911
Table 4 that the relative error percentage of most of them is less

than 5%.
4. Discussion

The monthly analysis findings for mean SWH using the

Mann-Kendall test and IPTA were presented in Table 1. The
Frontiers in Marine Science 10
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Mann-Kendall test revealed significant trends in 45 of the 396

months (33 locations x 12 months) studied and these results

mostly were consistent with the IPTA. In 220 of the 396

months examined, the IPTA approach revealed trends. The

IPTA identified a decreasing trend in most locations in May,

July, November, and December; the Mann-Kendall test only

detected a trend in a small number of locations. The

northwestern, where increasing trends were detected in

August and September, is where the two approaches
TABLE 2 Comparison of trend test results from different methods for maximum SWH.

Parameter Region Location MK IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
SWH (max) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 0 1 -1 0 0 -1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 -1 0 0 -1

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 1 -1 0 0 0

5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 1 -1 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1 -1 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 -1 1 -1 0 0 -1

8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0

9 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 1 0 1 -1 1 0 0

NORTEASTERN 10 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 -1 1 -1 0 -1 1 -1 -1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 -1

12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -1 0 0 1 0 0 0 -1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -1 1 0 1 0 0 0 0

15 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 -1 1 0 1 0 1 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -1 0 0 1 0 1 0 -1

NORTHWESTERN 17 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 -1 0 0 1 -1 0 -1 0

18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 -1 -1 1 1 -1 1 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 0 1 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 1 0 1 0 0

21 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 -1 0 1 1 1 1 0 0

22 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 -1 0 0 1 1 0 -1 0

23 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 -1 0 0 1 1 0 0 0

24 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 -1 -1 0 1 1 1 -1 0

SOUTHWESTERN 25 1 0 0 0 0 0 0 1 1 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 -1 0

26 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 -1 0

27 1 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 -1 1

28 1 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 0 0

29 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 -1 0 0 1 1 0 -1 0

30 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 1 -1 -1 -1 0 0 0 -1 1

31 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 1 -1 0 -1 0 -1 1 -1 0

32 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 0

33 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 -1 0 0 1 0 1 -1 0
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produced identical results to a considerable extent. In

addition, the decreasing trends measured in May at

locations 28-32 in the southwest by the IPTA were also

determined by the Mann-Kendall test. The maximum

SWHs according to the two methods are presented in

Table 2. According to the Mann-Kendall test, increasing

(decreasing) trends were seen at 19 (5) months. These

trends overlapped very highly with the results obtained in

the IPTA.
Frontiers in Marine Science 11
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For mean WS, the percentages of increasing, decreasing,

and non-trending months analyzed in the Mann-Kendall test

are 9%, 18%, and 73%, respectively (Table 3). The trends

observed in this test were also detected by the IPTA. Most of

the months showed a decreasing trend according to two

methods at locations 4, 7, 28 and 30-31. Decreasing trends

in many months at locations 28-31 in the southwest were

remarkable according to both methods. In the Mann-Kendall

test, no trend was found in most of the months analyzed for
TABLE 3 Comparison of trend test results from different methods for mean WS.

Parameter Region Location MK IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
WS (mean) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

4 0 0 0 -1 0 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0

5 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1

6 1 1 1 0 0 -1 -1 -1 0 -1 0 1 1 1 1 0 0 -1 -1 -1 -1 -1 0 1

7 -1 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 0 0

8 0 0 1 0 0 0 -1 -1 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0

9 -1 0 0 -1 0 0 -1 0 0 0 -1 -1 -1 -1 0 -1 -1 0 0 0 -1 -1 -1 -1

NORTEASTERN 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1

11 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 -1 0 0 -1 -1 -1 -1 -1

12 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 -1 0 -1 0 0 0 0 -1

13 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 -1 0 -1 0 1 0 -1 -1

14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 1 0 -1 0

15 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0

16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 -1

NORTHWESTERN 17 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 1 0 -1 0 -1 0 0 0 -1 -1

18 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0

19 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0

20 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 -1 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0

22 0 0 0 0 0 -1 -1 0 1 0 0 0 0 0 0 0 0 -1 0 0 1 0 -1 0

23 0 0 0 0 0 0 -1 1 1 0 -1 0 0 0 0 0 0 0 -1 0 1 0 -1 0

24 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0

SOUTHWESTERN 25 0 0 0 0 0 0 0 1 1 0 -1 0 0 0 0 0 0 0 -1 0 1 0 -1 0

26 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 -1

27 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 -1

28 0 -1 -1 0 -1 -1 0 0 0 -1 -1 -1 0 -1 0 0 -1 0 -1 0 0 -1 -1 -1

29 0 0 0 0 -1 0 0 0 0 -1 -1 -1 0 0 0 0 -1 0 0 0 0 -1 -1 -1

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

31 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1

32 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

33 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 -1 0 0 0 0 0 0 1
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maximum WS, whereas an increasing (decreasing) trend was

observed in 4% (10%) of the months (Table 4). These trends

were also detected by the IPTA.

Considering the findings of the mean and maximum values,

there was no 100% agreement for the wave data, and in certain

months, contrary patterns were seen (Tables 1, 2). Most locations

exhibited an increasing trend for mean and maximum SWH in

March and August, but in May, they showed a decreasing trend. The

mean andmaximumdata analysis results weremore compatible than

the wave data in examining wind data (Tables 3, 4). There was,

however, no exact resemblance. Mean and maximum WS showed
Frontiers in Marine Science 12
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decreasing trends inmostmonths at locations 4, 7, 9, 30-31. Although

there was no 100% agreement between the results of mean winds and

waves, the months of March, May, November, and December were

typically similar. November showed decreasing trends in most of the

locations. Tables 1, 3 also show themonths when the mean wind and

wave characteristics produced opposite results. The opposite and

identical directional results were obtained for the maximumWS and

SWH (Tables 2, 4). However, practically all locations, particularly in

May, exhibited a decreasing trend in maximum WS and SWH.

A few studies in which parametric and nonparametric

methods were applied to waves and winds in the Black Sea,
TABLE 4 Comparison of trend test results from different methods for maximum WS.

Parameter Region Location MK IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
WS (max) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

2 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0

4 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 -1 -1 -1 -1 0 -1 -1 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 -1 0 0 0

6 0 0 0 0 0 -1 -1 -1 -1 0 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

7 -1 -1 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0

9 -1 0 0 0 0 0 -1 0 0 0 0 -1 -1 -1 -1 0 -1 0 -1 0 0 0 -1 -1

NORTEASTERN 10 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 -1 -1 0 0 0 0 0 -1 -1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 -1 -1 0 0 -1

12 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 -1

13 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0 0 -1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0

15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 -1 0 0 0 -1 0

NORTHWESTERN 17 -1 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 -1 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 1 0 1 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 1 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0

21 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

22 1 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 1 1 0 0 0

23 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 1 1 0 0 0

24 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 -1 0 0 1 1 0 0 0

SOUTHWESTERN 25 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

26 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 -1 0 1 1 0 0 0

27 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 1 1 0 0 0

28 0 0 0 0 -1 -1 0 0 0 0 0 0 1 -1 0 0 -1 -1 0 0 0 0 0 0

29 0 0 1 0 0 0 0 0 0 0 0 0 1 -1 1 1 0 0 0 0 0 0 0 0

30 0 -1 0 0 -1 -1 -1 -1 -1 0 0 0 0 -1 0 0 -1 -1 -1 -1 -1 0 0 -1

31 0 0 0 0 -1 0 -1 -1 -1 0 0 0 0 -1 0 1 -1 0 -1 -1 -1 0 -1 -1

32 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 0 1 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0
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although there is no study in which the IPTA was applied to

wave and wind data. Aydoğan and Ayat (2018) investigated the

long-term trends of SWH in the Black Sea, both on a basin

average and spatial basis, on an annual and monthly basis.

Aydoğan and Ayat (2018) detected decreasing trends in the

southeast (western) of the Black Sea in July (November) similar

to the results of the IPTA method in this study. In May and

December, Aydoğan and Ayat (2018) detected significant trends

at less than the 90% confidence level in the Black Sea region. In

this study, while the Mann-Kendall test detected a trend in very

few locations for May and December (95%), the IPTA detected a

decreasing trend in most locations. Aydoğan and Ayat (2018)

analyzed the MIKE 21 SW model simulations between 1979 and

2016 using the ERA-Interim winds. The present study used

SWAN wave model simulations between 1979 and 2020 using

CFSR winds. It is therefore estimated that the reason for the

inconsistency between the present study and the study

performed by Aydoğan and Ayat (2018) for Mann Kendall

trend test results may be due to the use of different reanalysis

datasets, different physical parameterizations, and numerical

settings usage in third-generation models and the difference in

data lengths of the wave model used. C arpar et al. (2020)

spatially investigated the long-term trends of monthly mean

and 95% percentile WSs in the Black Sea between 1979 and 2016.

Results of ERA-Interim and CFSR winds were compared.

According to the CFSR, increasing trends were seen in the

southeast in March, June, and September. According to Mann-

Kendall and IPTA in this study, trends were detected in very few

locations for the southeast of the Black Sea in January, February,

and March. In September (C arpar et al., 2020), an increasing

trend was determined, especially in the northern and eastern

regions, according to the CSFR. This study detected increasing

trends, especially in locations 18-27 in September, according to

both methods. The reason why this study does not fully agree

with C arpar et al. (2020) may be the different data intervals.

The IPTA approach, according to the findings of this study,

can broadly match the trends observed by the Mann-Kendall

test. On top of it, the IPTA detected trends in more locations and

months; this shows that this new approach to trend analysis is

more sensitive. The past studies showed that the IPTA can

successfully detect the trends detected by the Mann-Kendall test

and give more sensitive results (S an et al., 2021; Akc ay et al.,

2022). Innovative graphical ways can provide both visual

numerical and verbal comments in addition to trendsetting

success. IPTA is a new method in the literature that provides

information about trend transitions between successive parts of

a time series and determining the trend. No other study applies

the IPTA to wave and wind data. By applying this method to

mean and maximum wave and wind data, the one-year behavior

of these data was observed with the help of polygons. Monthly

transitions (January-February, February-March, etc.) were

examined, and trends between consecutive months were also

discovered. In this way, besides questioning the existence of the
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trend in the examined months, its relationship with other

months was obtained with the help of polygon. In the graphs

of the mean SWHs, a polygon structure can be noticed, which

narrows in the summer and widens in the spring and winter. The

polygon graphs of the maximum SWHs had a more complex

structure. The maximum WSs polygon graphs were narrower

than the other variables, indicating that the behavior of the

months was similar.
5. Conclusions

The results of this study have distinguished IPTA from the

Mann-Kendall test, as IPTA detected more trends. The monthly

mean and maximum SWH and WS did not show mostly a trend

according to the Mann Kendall Test. Besides, the trends detected

by the Mann-Kendall test were also caught by the IPTA at a very

high rate. Considering the IPTA, in the analysis of mean SWH, the

decreasing trends in the May, July, and November-December

periods draw attention in most locations. In the analysis of

maximum SWHs, most of the stations in the east showed an

increasing trend in March, June and August, while all locations in

the west showed a decreasing trend in May. Most of the months

showed decreasing trends in the mean andmaximumWS series at

a few eastern locations. Based on a yearly cycle, the lowest

(highest) mean SWH was seen in summer (winter); this is also

valid for other variables: maximum SWH, average WS, and

maximum WS. The transitions between months with the IPTA

method showed that there are no temporal shifts, one of the effects

of climate change in the meteorological and thus wave events.

Wind or wave trends could be different for the same location and

month due to distant storms. Significant wind trends in the same

locations do not always coincide with SWH trends. This situation

may be caused by the main wind direction and the waves that

develop in reaction to the wind direction. It is thought that it will

be useful to increase the number of locations and also analyze

trends of the daily, annual and seasonal mean and maximum

wave parameters.
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Climate change impacts have driven a transformation of the global energy

system. The utilization of renewable energies is required to meet energy

demands while protecting the environment. Wind-generated waves, carrying

energy from the atmosphere, are a possible energy supply. However, global

and long-term variability in wave resources due to the effects of climate

change remain uncertain. This study quantified the spatiotemporal patterns

and availability of global wave power (GWP) based on the ERA5 hourly and

monthly reanalysis products, spanning from 1979 to 2020. The most promising

wave resources appeared centralized in the westerlies of both hemispheres,

and the wave power exhibited a “rich-get-richer” trend in the Southern Ocean,

dominating the overall distribution and variability of GWP. Significant seasonal

and interannual oscillation trends in GWP were observed, but with little

variations on daily and hourly time scales. We found the average GWP in

ERA5 products increased by 12.89% suddenly in 1991, mainly caused by the

beginning of altimeter assimilation. This also implies the potential

underestimation of wave fields in the modeling results before the advent of

altimeter. In the altimeter era, annual GWP exhibits (quasi-) decadal oscillation

(variation near ±4%), which differed from the monotonous increases previously

reported. An analysis and source tracing based on the climate teleconnections

indexes revealed that the primary climate driver of the variability was the

Southern Annual Mode (r = 0.84). This study provides scientific guidance for

wave power utilization and helps deepen our understanding of air-

sea interactions.

KEYWORDS

renewable energy, ocean wave power, spatiotemporal variability, decadal oscillation,
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1 Introduction

Global warming is one of the most significant manifestations

of climate change and poses the most immediately foreseeable

threat to human existence today. The emissions from fossil fuels

consumption are regarded as the soundest indicator for defining

climate policies (Rosa and Ribeiro, 2001). Most recently, China

has committed to peak carbon dioxide emissions by 2030 and

become carbon neutral before 2060 (Mallapaty, 2020). However,

reducing the energy-consumption presents the most significant

challenge in achieving this commitment because coal is the

principal fuel providing more than half (60%) of China’s

electricity generation in 2019 (Outlook, 2020). Given that

dependencies like this exist worldwide (Moriarty and

Honnery, 2012), transitioning away from the dominance of

fossil fuels becomes a desperate challenge that all countries

must solve. The development and utilization of green energies,

to a great extent, is an effective strategy to maintain development

while ensuring environmental sustainability.

Renewable energy sources are naturally replenishing, but are

generally flow-limited (i.e., an almost infinite duration but a

finite amount of energy available per unit of time). In the face of

lower cost and often more convenient alternatives, the

potentially large scale of renewables only contributes a very

small share of world primary energy, with major portions being

hydropower and traditional biomass fuels in developing

countries (Gross et al., 2003). According to the International

Energy Statistics (IEA, 2018), the global renewable generation

capacity (non-combustible) amounted to 6,254,184 GWh

(23.40% of the total electricity), of which hydropower

accounted for 69.15%, wind power for 20.36%, solar power for

9.05%, geothermal energy for 1.42%, and marine energy for just

less than 0.02% (e.g., tide, wave, and ocean current generation).

The strikingly tiny proportion from marine energy sources

reveals the severe lack of marine energy utilization. There are

many dynamic phenomena that occur at different spatial-

temporal scales within the ocean, each of which represent an

enormous energy resource. The aggregate potential of global

ocean energy sources is significantly greater than our global

electricity consumption (Gross et al., 2003; Melikoglu, 2018). As

the two most developed ocean energies, the potential global tidal

energy dissipation is estimated at nearly 3.5 TW (Egbert and

Ray, 2000), and that of wave energy dissipation is around 3.0

TW (Gregg, 1973), while the world electricity demand is less

than 3.0 TW (Sleiti, 2017). However, the progress in exploiting

these resources is much slower than conventional energy

because the technologies are still mostly under development.

Wind-generated surface gravity waves (hereafter called

waves) dominate the ocean wave spectrum in terms of energy

and are generally the focus of oceanography studies. Wave

energy converters can harvest energy from the potential and
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kinetic energy of ocean waves. Systems for harvesting utility-

scale electrical power from ocean waves were proposed more

than 40 years ago (e.g., Salter, 1974). The potential of wave

energy resource is promising, especially on the west-facing

coasts of westerly zones (latitudes between 35° and 65°) in

both hemispheres, but the potential costs of grid integration

have limited its application (Scruggs and Jacob, 2009). Limited

by the investment costs and technological development, only a

small amount of wave power is efficiently extracted near ocean

coastlines, islands, or in semi-enclosed basins (Rusu, 2014).

However, energy transition goals have increased the demand

for renewable energy and helped address the underdeveloped

status of these technologies. Indeed, the study and harvest of

ocean wave power have become hot topics in oceanography once

again. The worldwide wave power potential is estimated at

around 29,500 TWh/a (Rusu and Onea, 2018), roughly

equivalent to the current global electricity consumption.

Besides, previous estimations of global wave power (GWP)

have varied widely, ranging from 16,025 to 32,000 TWh/a

(e.g., Mo rk et al., 2010; Gunn and Stock-Williams, 2012;

Reguero et al., 2015). With improvements in ocean modeling

and assimilation technology, the spatial distribution and the

long-term variability of wave energy can be further clarified.

Moreover, these ubiquitous surface waves can be classified into

two main types: wind waves (or wind sea, which refers to young

waves with short wavelengths that are undergrowth or

inequilibrium with the forcing of local wind) and swell

(generally formed remotely by storms and propagated

thousands of kilometers across the ocean, without momentum

input from wind) (e.g., Chen et al., 2002; Hanley et al., 2010).

Their role in understanding the redistribution and

spatiotemporal variability of GWP need to be further explored.

Surface waves are the most intuitive response of the ocean to

the influence of the atmosphere, and they can be seen as a

potential climate change indicator (e.g., Young et al., 2011; Jiang

and Mu, 2019; Young and Ribal, 2019). The relationship

between waves and climate variability has been widely studied,

but most studies have focused on historical trends using mean

and extreme wave height values. This is evidenced by Patra et al.

(2020), who presented a detailed summary on the topic (see

details in their Table 1). However, wave heights are not the only

parameter influenced by atmospheric forcing, and the wave

period and direction should be considered (e.g., Dodet et al.,

2010; Hemer et al., 2010). Wave power increases nonlinearly

with significant wave height and linearly with peak wave period,

so considering both will provide a more comprehensive picture

of the response of ocean waves to climate change. Bromirski and

Cayan (2015) indicated that wave power exhibited a decreasing

trend across the North Atlantic from 2000 to 2008, and was

strongly influenced by the North Atlantic Oscillation. Recently,

Reguero et al. (2019) found that upper-ocean warming changed
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the global wave climate and made waves stronger, and observed

slow increases in GWP of 0.41% per year from 1948 to 2008. The

wave energy estimates for given regions have significant

variations in monthly, seasonal, and annual patterns and

therefore should not be ignored (e.g., Kamranzad et al., 2013;

Bingölbali et al., 2020; Vieira et al., 2020). Wave powers show

both regional diversity and long-term uncertainty. Therefore,

the spatio-temporal variability of global ocean wave power is

reinvestigated based on the new ERA5 data, with the goal of

providing scientific guidance for the upcoming renewable energy

harvesting boom. The remainder of this paper is organized as

follows: A brief description of the data and the methodology of

wave power evaluation is provided in section 2. The spatial

distribution, temporal variability, and the optimal harvesting

zones for ocean wave sources are analyzed and described in

section 3. Discussions on the variational mechanism of wave

power and conclusions are given in section 4 and 5.
2 Data and method

2.1 ERA5 dataset

The European Center for Medium-Range Weather Forecasts

(ECMWF) has a long history of reanalysis in climate monitoring

applications. The state-of-the-art product of ERA5 was released

in April 2019, replacing the widely used ERA-Interim reanalysis.

ERA5 is the fifth generation reanalysis product from the

ECMWF for global climate and weather over the past 4 to 7

decades. Besides, ERA5 is highly regarded in the Copernicus

Climate Change Service (C3S), which provides a precise and

consistent record for a large number of basic climate variations

for the C3S Climate Data Store (CDS). See the detail descriptions

in Hersbach et al. (2020).

In this study, the hourly and monthly ocean-wave products

are used from 1979 to 2020 from CDS, interpolated to a regular

grid with a 0.5° × 0.5° spatial resolution. The key parameters

include the significant wave height, mean wave period, and mean

wave direction, as derived from the wave spectrum. These

parameters were classified into three types: wind-sea wave

components, swell components, and ensemble waves of both.
2.2 Evaluation of wave power

Wave power Pw (W/m) is defined as the wave energy flux per

unit of wave-crest length (Dean and Dalrymple, 1991) and wave

energy transport at wave group velocity (cg). Thus, wave power

in the wave propagation direction can be written as Pw =

rg
Z ∞

0

Z 2p

0
S(f , q)cg(f , d)dfdq , where S(f,q) is the directional
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spectrum corresponding to the wave frequency (f) and direction

(q). It is simplified as Pw=Ew·cg , with Ew = 1
8 rgH

2
s (J/m2) being

the averaged wave energy density per unit horizontal area

(including the kinetic and potential energy), where Hs is the

significant wave height; g=9.80 (m/s2) is the acceleration of

gravity; and the r=1025 (kg/m3) is the averaged density of the

seawater. Furthermore, the wave power (Pw) can be determined

from Te and Hs in deep waters as follows:

Pw =
rg2

64p
H2

s · Te (1)

where Te is the wave energy period. The determination of this

parameter was controversial in previous studies. Reguero et al.

(2015); Reguero et al. (2019) assumed that Te=a·T01=0.538T01
(s) for the JONSWAP spectrum. While Fairley et al. (2017) and

Rusu and Rusu (2021) used the mean wave periods for wave

power assessment. As introduced in ECMWF documentation,

the mean period (Tm−1) is also known as the energy period

(ECMWF, 2020) and can be used in Eq.(1) directly.

Due to the “shoaling” effects, as waves move from the open

ocean into shallow water, their crests become steeper, increase in

height, and shorten in wavelength. The difference in averaged

wave power between deep and shallow water is caused by their

group velocities (Izadparast and Niedzwecki, 2011). According

to the dispersion relationship in shallow water (w2=gk2d , where

w is the angular frequency; k is wave number; and the d is the

water depth), the group and phase velocities are both determined

solely from water depth (cg =
ffiffiffiffiffi
gd

p
), and wave power in shallow

waters can be expressed as:

Pws =
rg3=2

8
H2

s · d
1=2 (2)

Thus, wave power varies with the square root of water depth and

is independent of wave period. Generally, average wavelengths

near shore are less than 100 m, and Eq. (2) should be applied

when water depths are less than 5 m based on the shallow-water

limit (d < 1
20 l) of linear wave theory. Since the grid resolution of

ERA5 data is 0.5° (about 55 km in ground distance) and a

minimum water depth is 5 m, the impacts of shallow water

conditions on wave power estimation are trivial and can be

neglected in this study. Additionally, a parametrization scheme

of subgrid bathymetry was implemented in ERA5 data to correct

the wave propagation and wave energy flux (ECMWF, 2020).

Ozkan and Mayo (2019) indicated that the simplified equation

potentially underestimates available wave power in coastal

Florida compared with the spectral wave power equation.

However, only three wave parameters mentioned above were

selected in the ERA5 hourly product, but bring a huge amount of

data. The computational burdens limit the application of
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spectral methods in wave power assessment. Altimeter

measurements can only provide Hs in the assimilation process

of wave modeling (Hersbach et al., 2020), potentially supporting

more reliable wave height products. Therefore, Eq. (1) was used

to estimate the wave power in this study.

Furthermore, the mean wave direction (oceanographical

convention) for wave power analysis is introduced. The mean

wave direction was decomposed into zonal and meridional

components based on significant wave height (qHs=[Hs·sinq0,
Hs·cosq0] ) and wave power (qWP=[Pw·sinq0,Pw·cosq0] ). Then
the climate direction of Hs and Pw could be estimated.
2.3 Related climate teleconnection
indexes

Various factors that affect wave power can be used, for

example, since surface waves are extensions of past wind forcing,

predicted changes in wind patterns can inform future

predictions of surface waves. Particularly, the interannual or

decadal variations in GWP reflect the long-term climate

variability (e.g., Vieira et al., 2020; Reguero et al., 2019), which

can be spontaneously connected with the cl imate

teleconnection patterns.

According to geostrophic relationships, pressure gradients

determine wind fields (Pedlosky, 1987). Therefore, the climate

indexes related to pressure (or wind) are good candidates for

analyzing potential relationships with wave power. Chen (2014)

has made systematic works on characterizing the spatiotemporal

patterns of significant atmospheric oscillations over global

oceans. Thus, the following indexes were selected for analysis:

The Pacific Decadal Oscillation (PDO; index for Pacific climate

variability based on SST anomalies with time scales usually

greater than 10 years), the North Atlantic Oscillation (NAO;

index based on surface sea-level pressure difference between the

subtropical (Azores) high and the subpolar low pressure), the

Southern Oscillation (SOI; a bimodal variation index based on

sea-level barometric pressure differences between observation

stations at Darwin, Australia and Tahiti), the Arctic Oscillation

(AO; a climate pattern index characterized by winds circulating

counterclockwise around the Arctic at a latitude around 55°N,

with a positive phase when colder air masses are confined in

polar regions, and a negative phase when southward penetration

occurs), and the Southern Annual Mode (SAM; i.e., the

Antarctic Oscillation; dependent on atmospheric pressures at

the Antarctic and at about 40°S-50°S). Each of these indexes is

related to the variability in atmospheric circulation and,

therefore, is linked to surface waves via wind forcing. The

SAM index was acquired from National Center for

Atmospheric Research (NCAR; Marshall, 2003), while all other

climate index data were downloaded from the National Oceanic

and Atmospheric Administration (NOAA).
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3 Spatial-temporal characteristics of
ocean wave power

3.1 Spatial distribution

In this section the wave power from total wave, swell, and

wind-sea are presented and computed at the global level based

on monthly ERA5 data. Figure 1 shows the averaged Hs, Te, and

Pw fields, calculated from the total wave fields over the 42-year

time interval (1979~2020). The Hs and Pw fields exhibited

similar patterns, with higher values concentrated in the

latitude bands from 40° to 60° (interior of the prevailing

westerlies zones) in both hemispheres, and smaller values

mainly appearing in tropical and nearshore areas. The

distributions and magnitudes were similar to those obtained

by Rusu and Rusu (2021). Te exhibited a pattern that was

different from Hs and Pw, with values in the Southern

Hemisphere being significantly larger than those in the

Northern Hemisphere, and the Pacific and Indian Oceans

having larger values than the Atlantic Ocean. The eastern

portions of ocean basins generally had larger values than their

respective western portions, and some jet-shaped patterns can be

seen in Figure 1B, with values exceeding 11 s. Secondly, the
A

B

C

FIGURE 1

Spatial distributions of averaged total wave fields per 0.5°×0.5° cell
from 1979 to 2020. (A–C) Yearly-averaged significant wave height
(m), wave energy period (s), and wave power (kW/m) fields. The
arrows represent the averaged direction and the magnitude
corresponding to the Hs and wave power, respectively.
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maximum value of Pw beyond 100 kW/m was located in the

Southern Ocean, and Pw transport occurred in three main

directions, as indicated by the arrows in Figure 1C. The

pattern in wave power showed deflection southward

(northward) upon approaching the Antarctic continent (the

lower latitude ocean), and along the path eastward there was a

sharp decrease to the east of the Drake Passage (See the

schematic arrows in the figure). The tracks leading to the

Atlantic Ocean exhibited a lower Pw field than the Indian and

Pacific Oceans in the southern hemisphere. As a result, the

strongest wave power field (approximately 60 kW/m) of the

Atlantic Ocean was in the westerly zone of the Northern

Hemisphere. Additionally, there were dominant trends

showing ocean waves traveling and transporting energy from

high latitude to equatorial regions and towards shores.

Meanwhile, Pw values were reduced sharply during the

propagating processes, and were only one-third of their

original magnitudes after leaving the westerlies (see Figure 1C).

Studies on global wave power (GWP) have rarely compared

swell and wind-sea waves. However, wave parameters integrated

from the entire wave spectrum might only provide a limited

description of the wavefield (Qian et al., 2019). The swell fields

(Figures 2A–C) exhibited the same patterns as the total wave

fields (Figures 1A–C), but had slightly larger wave periods and

lower significant wave heights (Hs) and wave power (Pw). Wind-

sea wave fields exhibit the weakest magnitude of wave

parameters (see Figures 2D–F). There was a region with

remarkably low Pw values along the equator in the wind-sea

field (the white belt zone in Figure 2F), which corresponded to a

calm belt near the equator. Furthermore, the transport directions

of Pw in the wind-sea field were different from those in the swell

field. In particular, all the Hs and Pw in the Southern Ocean
Frontiers in Marine Science 05
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moved poleward across the westerlies and approached

Antarctica. By comparing the averaged fields of the total

waves, swell, and wind-sea, it was found that significant wave

energy potential existed in the two zones with prevailing

westerlies, and the swell components contributed most of the

total wave power.
3.2 Temporal variability

The period of surface waves was generally less than twenty

seconds. However, they were forced by the seasonal or long-term

winds (or wind stress curl) and, as such, carry the atmosphere’s

imprint. Analyzing temporal variability is helpful for evaluating

Pw and accurately predicting its trends. Thus, the time-series of

averaged global wave power (GWP) were calculated at yearly

and monthly resolutions using the ERA5 monthly products and

at daily and hourly resolutions using the ERA5 hourly products.

Note that valid data are used for GWP statistics (e.g., some

locations at certain times of the year may experience ice

coverage, and only grid with ice-free periods longer than half a

year are valid). The results over the 42-year period are shown in

Figure 3, and the GWPs of the total wave, swell, and wind-sea are

marked by the black, red, and blue lines, respectively.

These results also support that swell components dominate

the total GWP, including the trends in magnitudes and

variation. One unanticipated finding was that annual GWP

(Figure 3A) did not exhibit a steady increase, instead there was

a sharp increase after 1991 accompanied by a (quasi) decadal

fluctuation. As suggested by Hersbach et al. (2020), the

altimeter assimilation of wave information began in 1991,

and validation of matched buoy results has also shown much
A

B

D

E

FC

FIGURE 2

Swell and wind-sea wave components, as in Figure 1. Panels show Hs, Te, and Pw for the (A–C) swell and (D–F) wind-sea wave fields,
respectively. Averaged wave powers of less than 1 kW/m are shown as approaching white.
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smaller errors (scatter index less than 16%) in the ERA5

products since then. Similar “jump” phenomenon can be

found in the results of Reguero et al. (2019); and Muhammed

Naseef and Sanil Kumar (2019); which may indicate the

intrinsic dependence of contemporary wave models on

altimeter assimilation, and potential underestimate wave

power or wave fields prior to the appearance of altimeter

observations. Validation results with in-situ observations

(e.g., Muhammed Naseef and Sanil Kumar, 2019; Wang and

Wang, 2021) give us more confidence in the wave model

products in the altimeter era. The grey error bars represent

the standard deviations, and the longer-term averaged GWPs

tended to have lower standard deviations. Interestingly, the

variabilities in the total GWP at the inter-annual (Figure 3A)

and seasonal (Figure 3B) scales were remarkable, while there

was barely any variability at daily and hourly scales

(Figures 3C, D). Moreover, the values of the averaged GWP

from the monthly product were slightly smaller than from the

hourly product. The former fluctuated over the range from 4 to

5 GW/m, while the latter was steady at 5 GW/m. This may have

been because the short-term variability in winds resulted in

short-term high Pw values in the hourly product, while the

process of merging monthly products smoothed out these

short-term anomalies.

By focusing on the fluctuating trends in total GWP

(Figure 3A), the decadal oscillation phases in the series appear

to be separated by years 1991, 2003, and 2014 (marked by the

green dotted lines in Figure 3A). Because long-term variability

was our primary concern, the distribution of averaged Pw was

further compared within the four phases to understand the cause
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of GWP variation, and their time-averaged fields were shown in

Figures 4A–D. There were significant differences in the

intensities of Pw among the Southern Ocean (SO), Northern

Pacific, and Atlantic oceans (NP and NA), but the mean

directions of wave powers were generally similar. Furthermore,

Figure 4E shows the positive discrepancy between the averages

of years 1992-2003 (Figure 4B) and 1979-1991 (Figure 4A), with

a maximum difference that was more than 10 (5) kW/m in the

SO (NP and NA). In contrast, a negative discrepancy field

(Figure 4F) was obtained when Figure 4C was subtracted from

Figure 4B. The wave power reduction in Figure 4F was

significantly lower than the increases in wave power in

Figure 4E. In short, there was a net increment of GWP during

1979 ~ 2013. Notably, the reduction in wave power in the SO

was smaller than those in the Northern Hemisphere basins,

which may imply that SO had a larger role in the overall

enhancement of total GWP (in Figure 3A) after 1991.

Meanwhile, another major positive difference field was

produced (not shown) by comparing Figures 4D, C.

Furthermore, when looking differences between the four

phases, the averaged rates of change in GWP were 12.89%,

-3.97%, and 4.05%, respectively. Therefore, the sudden increases,

general fluctuations, and decadal oscillations in GWP were

quantified in our results. Particularly, accurate simulation of

wave fields in the Southern Ocean is the core to improving wave

models in the future.

Additionally, Figure 3B shows evidence of seasonal

variation. The maximum GWP values were near 4.7 GW/m in

March and July (which likely corresponded to times of high

intensity wave action in both hemispheres), while the minimum
A B

DC

FIGURE 3

Temporal changes in the averaged wave power calculated globally from 1979 to 2020. (A) Yearly and (B) monthly global wave power based on
the monthly product, and (C) daily and (D) hourly global wave power based on the hourly product. The error bars represent the standard
deviations.
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value was slightly less than 4.1 GW/m in November. Moreover, a

slight GWP peak in the wind-sea appeared from June to

October. Therefore, the seasonal wave power fields (seasons

here correspond to seasons in the Northern Hemisphere) are

calculated, as shown in Figure 5. The strongest wave power field

occurred in winter (DJF), with extreme values of more than 100

kW/m in the NP and NA (Figure 5A), while this season (i.e.,

summer in the Southern Hemisphere) had the weakest wave

power field in the SO with extreme values remaining below 60

kW/m. In contrast, the weakest wave power field in the Northern

Hemisphere (almost below 10 kW/m) occurred in summer

(Figure 5C). Notably, the Northern Indian Ocean had the
Frontiers in Marine Science 07
247
highest Pw field (exceeding 50 kW/m) in the year due to the

incoming wave power from the Southern Ocean Swell. The Pw
distributions exhibited similar patterns in spring and autumn

(i.e., two transition seasons between winter and summer), and

there were only slight differences in Pw between the

two westerlies.

The stability of wave resources is an essential factor for

reliable energy harvesting. Thus, the coefficient of variation

(standard deviation divided by the mean, CV = sx
�x � 100) is

calculated within the four seasonal fields. The lowest variabilities

in Pw were observed in winter (Figure 6A) and summer

(Figure 6C), with CVs lower than 25%, while the highest CV
A B

DC

FIGURE 5

Seasonal distribution of the averaged wave power (seasons correspond to the Northern Hemisphere). (A) Winter (DJF: December, January,
February), (B) spring (MAM: March, April, May), (C) summer (JJA: June, July, August), and (D) autumn (SON: September, October, November).
A C

D

E F

B

FIGURE 4

Year-averaged global wave power fields and decadal variability. (A) Averaged wave power from 1979 to 1991, (B) from 1992 to 2003, (C) from
2004 to 2013, and (D) from 2014 to 2020. (E) The averaged differences in wave power between (A) and (B); and (F) the averaged differences in
wave power between (C, B).
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values were mainly concentrated in nearshore areas. However,

there was significant variability in Pw in spring (Figure 6B) and

autumn (Figure 6D). Specifically, their CVs were higher than

35% in the Northern Hemisphere, while a small variability

(lower than 10%) was exhibited in the tropical oceans but the

magnitudes of Pw in these oceans were also lower than 10 kW/m

(see Figures 5B, D). These results show that the Southern

Hemisphere contains more stable wave resources which make

it an ideal energy harvesting field.

The hourly variation in GWP was rarely trivial, as suggested

by Figure 3D. However, it is well understood that the air-

temperature differences between day and night can significantly

change the wind field which will influence ocean waves. Therefore,

to examine the difference between day and night periods, the

distributions of wave power during the day (i.e., the local time

between 6 am to 6 pm) and night were calculated separately.

Figures 7A, B show the day and night wave power distributions.

As expected, their patterns were very similar (i.e., the energetic

wave power was mainly concentrated in the westerly zones).

However, the difference between the day and night distribution

produced a novel result, revealing some large-scale “bubble” or

wave-like patterns, as shown in Figure 7C, and significant

differences were mainly concentrated in higher latitudes. Since

this result was obtained by averaging hourly climate data, these

spatial scales were too large to be attributed to local noise. Their

morphological features were intuitively reminiscent of the

widespread eddies or Rossby waves which form in the ocean

and atmosphere. These striped patterns also revealed a significant

trend of westward intensification or propagation from latitudes ~

± 40° equatorward, with more divergence patterns in higher

latitudes. These patterns may be related to wind stress, and

exhibited similar patterns in previous studies (e.g., Chelton

et al., 2004). Due to the lack of further evidence and because its

dynamic mechanisms were outside of our scope of this study, we
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supposed this may be a mirror effect imposed on the ocean by

atmospheric forcing in the sea-air coupled model of

ERA5 products.
3.3 Optimal wave power resources

The ultimate goal of studying the spatiotemporal

distribution and variability of GWP is to scientifically identify
A

B

C

FIGURE 7

Wave power distribution in the day and night. (A) Day, (B) night,
and (C) the differences in wave power between the two.
A B

DC

FIGURE 6

Coefficient of variation of seasonal wave power (seasons correspond to the Northern Hemisphere). (A) Winter (DJF: December, January,
February), (B) spring (MAM: March, April, May), (C) summer (JJA: June, July, August), and (D) autumn (SON: September, October, November).
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the best strategy for the development and harvesting of ocean

wave resources. Therefore, the probability distribution of Pw per

0.5° cell over the 42-year data series with a high temporal

resolution is calculated in Figure 8. The probability is also

considered as the evaluation of the potential working time of

the wave energy converters during which a specific Pw threshold

would be met. The low-efficiency region where the probability

was less than 0.3 (i.e., the effective working time would be less

than 2600 hours in a year) is defined. In contrast, the high-

efficiency regions had probabilities greater than 0.8 (i.e., the

effective working time is higher than 7,000 hours in a year).

Moreover, to identify optimal locations for power generation,

water depth must be considered. In nearshore areas, wave energy

is dissipated as waves interact with the seabed. However,

deploying wave power plants and connecting it to a shore-

based power station is often impractical and uneconomical in

deeper water conditions. Generally, optimal depths are between

40 and 1000 m, which had large wave periods and amplitudes

(Scruggs and Jacob, 2009). Therefore, the 1000 m water depth is

marked on the maps with red contours.

As is shown in Figure 8A, the high-efficiency regions covered

almost the entire the ocean basins when the criterion of Pw ≥ 5

kW/m was used, except in nearshore areas and oceanic western

boundary zones. In particular, China’s most promising wave

resources were apparent in the South China Sea where the

probability was near 0.55, indicating that the working time

would be approximately 4800 hours/year. Furthermore, the

highly-effective regions were significantly reduced in the

Northern Hemisphere when a threshold of 10 kW/m was used

(Figure 8B), while there were only a few differences in the

Southern Hemisphere. Notably, only the westerlies of the

Southern Hemisphere were identified as high-efficiency regions
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when the criterion was increased to 20 kW/m (Figure 8C). The

nearshore areas close to the Southern Ocean are geographically

predisposed to obtaining more wave energy. According to the

optimized criteria for water depth, effective working times, and

wave power, regions with high potential for wave energy

harvesting are identified (white rectangles in Figure 8C). These

included the southern coast of Africa, the western and southern

coasts of Australia, the nearshore area of New Zealand, and the

southern coast of South America. These regions were all close to

the westerlies of the Southern Ocean, benefitting from their

proximity to the significant wind fields therein (Figure 8D).

Therefore, these regions are optimal for the efficient harvest of

wave and wind energies simultaneously.
4 Variational mechanism of global
wave power

When identifying regions to invest in for wave energy

harvesting, anticipating how climate variability will affect the

prospects or predictability of GWP is critical. In addition to

altimeter assimilation, the widely mentioned climate change is

also highly expected to explain part of variation trends of GWP,

and should be the dominate factor in the altimeter era. Figure 3A

provides insight into the potentially interannual or decadal

variability factors affecting the wave power.

The correlation coefficients between the climate pattern

indexes and the global wave power anomaly (GWPA; yearly

GWP minus climate average GWP) were calculated over the

entire 42-year time series. A 5-year running mean was adopted for

removing small-scale variability (Figure 9), and the decadal-

oscillation trends were apparent in the GWPA time series.
A B

DC

FIGURE 8

Distributions of the daily wave power and wind speed per 0.5° × 0.5° cell. Probabilities for wave power values great than (A) 5, (B) 10, and (C) 20
kW/m. (D) Averaged wind speeds. The red lines denote water depths contours of 1000 m, while the white rectangles mark regions with high
wave power harvesting potential.
frontiersin.org

https://doi.org/10.3389/fmars.2022.900950
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cao et al. 10.3389/fmars.2022.900950
According to the statistical analyses, the SAM (PDO) Index and

GWPA had the largest positive (negative) correlation coefficient at

0.84 (-0.57), as shown in Figure 9A. Furthermore, to evaluate the

different roles of the climate patterns in modulating local ocean

basins, the coefficients were independently estimated from the

wave power anomalies (WPA) of the Southern Ocean (40°S ~80°

S), North Pacific Ocean (130°E~250°E), and Northern Atlantic

Ocean (310°E~360°E), and the results are shown in Figure 9B. The

correlation coefficients (r) between the SAM index andWPAwere

the largest in all three basins, with values of 0.86, 0.72, and 0.61,

respectively. The PDO index had the strongest negative

correlation (r = -0.51) with WPA in the SO, which was

consistent with the strong negative correlation between PDO

and GWPA (Figure 9A). However, r is only equal to -0.25 in

the northern Pacific Ocean, which indicated that the role of PDO

was weaker in the wave climates of the northern Pacific Ocean.

The AO index and WPA had the strongest correlation (r = 0.56)

in the Northern Atlantic Ocean, but it was irrelevant to the WPA

in the Northern Pacific Ocean (r = 0.06). Therefore, the SAM

index was most closely related to the variability in wave power in

all three oceans, while the AO index was vital for Pw in the
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Northern Atlantic Ocean. The PDO index was negatively

correlated with wave power and better correlated with WPA in

the Southern Ocean (r = -0.51). Therefore, wave power seemed to

bridge SAM and other climate indexes. Clearly, local climate

variability can drive the wave power variability throughout the

oceans, which means that the GWP can also be seen as an effective

indicator of climate change.

Since the station-based SAM index is derived by the analyzing

the zonal pressure differences between twelve stations at around 65°

S and 40°S (Marshall, 2003), it is an actual indicator independent

from model products and altimeter observations. These data

supported that the transformation of the SAM index from

negative to positive was another reason for the sharp increase in

GWP after 1991. In the subsequent time series, the SAM index

maintained a positive (quasi-) decadal oscillating trend, forming the

variation patterns of GWP.Meanwhile, the weak influences of other

climate indexes may also modulate the oscillating trends (see in

Figure 8A). Furthermore, the GWPA is predicted to maintain its

downward trend after 2020, and the SAM index appears close to the

trough of an oscillation, as suggested by Figure 9, which means that

the GWP may soon reach the lowest level of almost two decades.
A

B

FIGURE 9

Time series of the wave power anomaly and the climate variability indexes (PDO, Pacific Decadal Oscillation; NAO, North Atlantic Oscillation;
AO, Arctic Oscillation; SOI, Southern Oscillation Index; SAM, Southern Annular Mode). (A) For annual global wave power anomaly, (B) for wave
power anomaly in the North Pacific (NP, 130°E~250°E), North Atlantic (NA, 310°E~360°E), and Southern Oceans (SO, 40°S~80°S). Their
correlation coefficients are shown in the panels.
frontiersin.org

https://doi.org/10.3389/fmars.2022.900950
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cao et al. 10.3389/fmars.2022.900950
5 Conclusions

The urgent need to reduce carbon emissions has recently

promoted an upsurge of research into renewable energies. Oceanic

resources are abundant and diversified in composition, but the

investment and utilization rates are remarkably low. As the most

ubiquitous dynamic ocean phenomenon, wave energy has been

identified as a good energy harvesting resource. The GWP

distribution and variability are systematically analyzed based on

recent ERA5 reanalysis data with hourly and monthly temporal

resolutions. The main conclusions were as follows:

1) Global wave power is mainly centralized in two westerly

zones (latitude bands of 40°~60° in both hemispheres), and swell

dominates the magnitude (approximately to 70%) and

distribution characteristics of total wave energy. With global

warming, potential wave power in the Southern Ocean is

growing (like the economic term “rich-get-richer”), and the

composited information on the direction of wave power

confirms its importance to the GWP distribution.

2) Wave power exhibits seasonal characteristics. The

strongest wave power (greater than 100 kW/m) occur during

the local winter, while the weakest (less than 10 kW/m in the

Northern Hemisphere and less than 60 kW/m in the Southern

Hemisphere) occur in the local summer. These two seasons also

correspond to the lowest variabilities in wave power, generally

less than 25%. Besides, the differences in wave power between

day and night revealed novel wave-like patterns, implicating a

mirroring effect in the oceanic response to atmospheric forcing.

3) A decadal oscillation was apparent in the GWP, rather than

a monotonously increasing trend as observed in previous studies.

The start of altimeter assimilation is an intrinsic cause of the

abrupt increase of GWP values in ERA5 products by 12.89% in

1991. Then, a quasi-decadal period variation of wave power

(variation near ±4%) can be revealed by more reliable model

products in the altimeter era. Furthermore, the potentially relevant

climate teleconnection indexes (PDO, NAO, AO, SOI, and SAM)

are introduced to explain the variability rule of GWP. It is found

that SAM had the strongest positive correlation (0.84) with GWP,

and the transformation in the SAM index from negative to

positive value was the main climate driver behind the sharp

increase of GWP after 1991. Also, SAM was highly correlated

with wave power in other local basins, implicating ocean waves as

a potential mediator between the climate teleconnection patterns.

Accurate simulation of the wave field in the Southern Ocean is

central to the improvement of the wave model.

A better understanding of the spatiotemporal variability in

GWP can help inform wave energy system design and large-scale

deployment. Presently, the potential of global wave energy

resources remains high but underdeveloped. In addition to

paying more attention to the untapped energy reserve of ocean

waves, improving funding for wave energy extraction technology

is fundamental to its advancement. Besides, achieving high-
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accuracy simulations, independent of concurrent observational

data, is still highly expected in the future ocean wave modelling.
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Regional wave model climate
projections for coastal impact
assessments under a
high greenhouse gas
emission scenario

Jian Su*, Jens Murawski , Jacob W. Nielsen
and Kristine S. Madsen

Danish Meteorological Institute, Copenhagen, Denmark
In the future, shifts in wind storms across the North and Baltic Seas are highly

unpredictable, challenging the projection of wave conditions for managing

coastal hazards. Moreover, regional sea level rise (SLR), with very large

uncertainty, complicates the situation for stakeholders seeking

recommendations for climate adaptation plans. The purpose of this study is

to examine the change of the storm surge and wind wave components of the

water level due to climate change in a low tidal range Køge Bay near the

entrance of the Baltic Sea. Under a high greenhouse gas emission scenario

RCP8.5, we employed a regional climate model (HIRHAM) forced wave model

(WAM) and focused on the wave model results during the “storm surge

conditions” (exceeding 20 years storm surge events) and “stormy conditions”

(exceeding 90th percentile of wave heights). We find that the change in both

wave height and period in the future is negligible under “stormy conditions”.

Nevertheless, under “storm surge conditions” when considering SLR, the

simulated wave height is projected to double in the near future (mid-

century) under RCP 8.5, and the wave period may also increase by about 1.5

seconds. This is because some high significant wave height events in the future

are associated with the storm surge events when considering SLR. The findings

suggest that the combined effects of mean sea level rise, storm surge and

waves are likely to increase the risk to a bay with geography and exposure

comparable to Køge Bay. As a result, the future plan for climate engineering

protection should place a premium on the additional wave energy protection

associated with storm surges.

KEYWORDS

climate change, Wave projection, Significant wave height, wave period, Sea state
modelling, Risk management
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Introduction

As the mean sea level rises, high water level events along the

coasts will become more frequent and intense, causing more

damage. Water levels contain components that operate on a

variety of temporal and spatial scales, such as the effects of sea

level rise (SLR), tides, oceanic currents, storm surge, and locally

generated wind waves (Woodworth et al., 2019). However, these

components of sea level are highly variable on a regional and

interannual basis. Thus, the earlier global evaluations of the

dominant components are inapplicable to regional and local

issues, as they are often based on global climate models (GCMs)

with a relatively coarse spatial resolution (Muis et al., 2016;

Morim et al., 2019; Lobeto et al., 2021). Multiple components

frequently have a dominating role in a region, although this role

changes depending on the coastline morphology and sea state

features. As a result, projections of future coastal water levels and

flooding should identify which processes are of leading order,

and, where appropriate, local impact modeling is required to aid

in the development of local climate adaption strategies (see

review of those processes in Idier et al. (2019) and references

therein). Our study area, the southern regions of the

Copenhagen metropolitan area in Denmark, is vulnerable to

future climate change, particularly sea level rise, because

relatively small changes in the mean sea level would result in

large changes in the return time of storm surge flooding at a
Frontiers in Marine Science 02
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given level (Ditlevsen et al., 2019; Su et al., 2021). According to a

specialized research in the region (Hallegatte et al., 2011a;

Hallegatte et al., 2011b; Jebens et al., 2016), sea level rise will

dramatically increase flood risks in Copenhagen in the absence

of adaptation (Figure 1), and the city has been designated as

flood prone under the EU flood regulation (European

Commission [EC], 2019). Furthermore, a number of studies

provide evidence for positive projected trends in extreme wave

events along the western European coast (Debernard and Røed,

2008; Grabemann and Weisse, 2008).

With respect to the future changes in wave climate and

extreme ocean wave events, it is often derived from wave climate

projections (Meucci et al., 2020; Lobeto et al., 2021; Morim et al.,

2021). Regional wave projections can be downscaled using

physical and atmospheric variable outputs from GCMs

dynamically (Dobrynin et al., 2012; Hemer et al., 2013; Casas-

Prat et al., 2018) or statistically (Perez et al., 2015; Cannaby et al.,

2016; Camus et al., 2017; Leach et al., 2021). The Coordinated

Ocean Wave Climate Project (COWCLIP) contributes to

integrating and assessing the robustness of wave climate

studies (Morim et al., 2018; Morim et al., 2019). Our research

location, Køge Bay, is situated in an area that is characterized as a

low wave energy environment due to the coastline’s orientation

with regard to dominant westerly winds and limited fetches. Due

to the bay’s shape, the shoreline is largely shielded from large

waves. The predominant direction of wave energy is southeast
FIGURE 1

Background shaded color: bathymetry (m) of the Inner Danish Waters. The study area is Køge Bay, located at the south of Copenhagen. The
closest PSMSL tide gauge station (Permanent Service for Mean Sea Level (PSMSL), 2020) is København (Copenhagen) station. Top symbols:
relative sea level rise trends (by change rate, mm y-1) of the PSMSL data set (Permanent Service for Mean Sea Level (PSMSL), 2020). For the
methods to calculate the relative sea level rise trends, please refer to https://www.psmsl.org/products/trends/methods.php; black dot is the
position of the wave buoy station DARSS.
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(Sistermans and Nieuwenhuis, 2004). Over the last century, a

barrier island system has formed (Figure 2, low-right panel). The

first barriers appeared in 1909, and they have gradually grown

since then. The beach park at Køge Bay (Køge Beach) was built

in 1977 as an extension of the natural barrier islands, and has an

8 km beach today. It is an environmentally friendly land

reclamation project (Figure 2), demonstrating how it is feasible

to cooperate with natural processes (sand deposition) to

construct a sturdy structure with minimum maintenance

requirements. Not only is the beach park a recreational zone,

but it also acts as a buffer zone against floods in the hinterland.

Based on prior well-designed interviews conducted as part of the

Copernicus Climatic Change Service (C3S) project, it is obvious

that climate projections for sea level rise, storm surge, and waves

are needed for local municipalities to design climate adaptation

plans (Madsen et al., 2019). Sea level rise and storm surge

climate projections were developed as part of the Danish

Climate Atlas project (Su et al., 2021). The purpose of this

work is to demonstrate the feasibility of using a reasonably

efficient and low-cost approach for regional wave model climate

projections. Therefore, we employ a dynamical projection

approach of regional wave climate using a regional wave

model-WAM in this study. This study also serves as the first
Frontiers in Marine Science 03
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step towards insight into a more pressing problem that must be

investigated, namely whether wind-driven wave disasters are a

concern in the study area. In the context of climate change

impact, the concept of risk is a key aspect of concern

(IPCC, 2012).

Extreme wave events have severe consequences, such as

endangering the safety of coastal residents, causing damage to

coastal infrastructure, reshaping a coastline, and elevating coastal

sea levels through wave run-up. Nevertheless, the intensity of the

impact of extreme weather events is highly dependent on the degree

of vulnerability and exposure to these events (IPCC, 2012). Climate-

related hazards, exposure, and vulnerability combine interactively to

produce the risks associated with climate change consequences (Ara

Begum et al., 2022). In the climate community, “vulnerability” is

defined as the propensity of an individual or group to be harmed by

various risks, hazards, or stressors, whereas “exposure” is the

“external side of vulnerability” and refers to the negative impacts

of a hazard that have the potential to change the social conditions of

a system (Cardona et al., 2012). A study based on social

vulnerability models for Denmark showed that the municipalities

around Køge Bay expose moderate levels of vulnerability (Pappa,

2019), but extreme wave events are not taken into account.

Traditionally, in order to quantify the risk assessment, an
FIGURE 2

Map of the Køge Bay with a red rectangle box indicating the location of the Køge Bay Beach Park. The Beach Park in the bottom right panel
shows the barrier islands and the location of Køge harbor. The blue dot represents the grid point from which we extracted the wave model
results, and the red dot represents the grid point from which we retrieved the surge level data, since it is the closest grid point to the Køge
Harbor tidal gauge station. Base map and data from OpenStreetMap and OpenStreetMap Foundation under the Open Database License.
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analytical framework linking climate information to impact models

would be established, followed by the application of damage models

and decision-making tools (Hallegatte et al., 2011a; Halsnæs and

Kaspersen, 2018). Our study serves as a first step toward risk

assessment, i.e. developing a paradigm for wave climate information

using impact models. We focus on the extreme conditions in Køge

Bay, i.e. storm surge and wind wave components of the water level,

as well as their interactions with mean sea level rise. The bay is

located in the transition zone between theNorth and Baltic Seas and

has a small tidal range. The Baltic Sea is a semi-closed basin with a

tidal range of less than twenty centimeters (Medvedev et al., 2016).

Thus, sea level research is simplified compared to that in a

hypertidal estuary (Lyddon et al., 2018). Local wind waves often

play a significant part in rising sea levels and inundating the shore

during a catastrophic high sea level event. During a storm surge

event, the coupling impact of surge and wave would increase the

threat to coastal zones (Staneva et al., 2016; Marcos et al., 2019).

Additionally, the storm surge and wave contributions to a disaster

depend on the geography and coastline morphology (Wolf, 2009).
Methods

Atmospheric forcing from regional
climate model and weather forecast

The meteorological forcing was derived from a single regional

climate model, DMI-HIRHAM, developed at the Danish

Meteorological Institute (DMI, Christensen et al., 1998), which is

a part of CORDEX (Coordinated Regional Climate Downscaling

Experiment) ensemble in Europe (EURO-CORDEX, Jacob et al.,

2014). The regional model was downscaled from an EC-EARTH

r3i1p1 global climate model simulation. The spatial resolution of

this EURO-CORDEX ensemble member is 0.11 degree (EUR-11,

12.5 km). The ensemble approach aims at presenting a data set from

a multi-model multi-scenario ensemble of regional climate

simulations for impact research (Kotlarski et al., 2014). However,

a clear definition of the ensemble statistical method for extreme

wind speed has not reached a consensus. We show an example of

the ensemble annual maximum wind speed time series (16

members) at the Køge Bay (Figure 3). The ensemble annual

maximum wind speed (thick black line) is the median of the

multi-model results, which shows a very small variability

(standard deviation < 2 m/s). Such a small variable time-series is

not suitable for this study, which focuses on extreme winds. As a

result, we are employing a single member as a driving forcing in our

investigation. The variables of DMI-HIRHAM used to force the

WAM model are hourly 10 m wind (m/s) and mean sea level

pressure (hPa).

In Køge Bay, annual maximum wind speed in DMI-HIRHAM

was larger than in other RCMs (Figure 3). The coastal wind is rather

dynamic, since it is a result of a variety of factors such as differential

heating between land and sea, topography and morphology of the
Frontiers in Marine Science 04
256
coastline, and so on. Generally, the shoreline displays a sharp

discontinuity in surface roughness. Therefore, we preprocess the

forcing data to exclude wind over land.

Apart from the regional climate model, we use the

operational forecast suite DMI-HIRLAM (Sass et al., 2002) to

get an accurate portrayal of a severe weather event in 2017

(Table 1). HIRLAM (High Resolution Limited Area Model)

forecasting is a numerical weather prediction model created by

the worldwide HIRLAM consortium (Unde n et al., 2002).

Throughout the research period, the DMI-HIRLAM model

system generated the atmospheric forcing employed in

practical storm surge and wave modeling at DMI.
Regional ocean circulation model

The climate ocean circulation simulations were conducted

using the operational model HBM (the HIROMB-BOOS

Model) at DMI. The use of operational models in climate

research enables the same degree of detail in climate

predictions as is possible with the operational setup used for

ocean forecasts, ensuring a well-tested and verified approach.

DMI runs the regional three-dimensional ocean model HBM

for the North and Baltic Seas in order to forecast the physical

state of the Danish and adjacent seas in the near future (Berg

and Poulsen, 2012; Fu et al., 2012). The model code version was

HBM-2.8, and the set-up used in the present study is the

DKSS2013 operational version launched at DMI in October

2013 (details on http://ocean.dmi.dk/models/hbm.uk.php).

The spatial resolution in Køge Bay is 0.5 nautical miles, and

the model grid point for validation is close to Køge Harbor

(Figure 2, red dot). The validation of HBM to the storm surge

events can be found in Andre e et al. (2021). The validation for

the storm surge forecast includes online validation and case

studies, and details can be found on http://ocean.dmi.dk/

validations/surges/index.uk.php.

Apart from meteorological forcing, hydrodynamic model

simulations need initial conditions, boundary conditions, and

runoff data. We used the operational forecasted state vector

valid on 1st July 2014 00z as the initial condition, and applied

a two-and-a-half-year spin-up period for each time slice. We

used boundary conditions derived from the EC-EARTH

global climate model findings. We utilized E-HYPE3 run-off

for the historical period and added trends from the literature

for the scenario simulations.
Regional ocean wave simulations and
wave buoy data

The DMI operational wave forecasting service DMI-WAM

makes use of the third generation spectral wave model WAM

Cycle version 4.5.4 (Günther et al., 1992; Komen et al., 1996)
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which is forced by DMI’s numerical weather prediction model

referred to in the above section. The details of the setup are

listed in Table 1, and also on http://ocean.dmi.dk/models/wam.

uk.php. Køge Bay is in the Inner Danish Waters nested model

domain (Table 1), and the spatial resolution is 1 km. We
Frontiers in Marine Science 05
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extracted the wave model results at a model grid point close to

Køge Beach (Figure 2, blue dot). The closest wave buoy data

used for validating the wave model hindcast simulation is from

a permanent buoy station DARSS sill station, located outside

the Køge Bay at 54.7 ˚N, 12.7 ˚E (Figure 1, black dot). There is
TABLE 1 Regional wave model DMI-WAM setup and meteorological forcing used in this study.

Model domain North Atlantic North & Baltic Seas Inner Danish Water

Spatial resolution ~25 km ~5 km ~1 km

Number of directions 36 36 36

Number of frequencies 35 35 35

Longitude range 69W-30E 13W-30E 7E-16E

Latitude range 30N-78N 47N-66N 53N-60N

Met-forcing in hindcast simulation
(spatial resolution)

ECMWF
(9 km)

HIRLAM
(2.5 km)

HIRLAM
(2.5 km)

Met-forcing in projection simulations
(spatial resolution)

HIRHAM
(12.5 km)

HIRHAM
(12.5 km)

HIRHAM
(12.5 km)

Open boundary JONSWAP nested nested
The wave energy is discretized into 36 directions (10˚ resolution), and 35 frequencies ranging from 0.04177 Hz to 1.06417 Hz. That corresponds to wave periods of 0.94-23.94 seconds, and
wave lengths of 1.37-895 meters. The North Atlantic model uses the JONSWAP wind-sea spectrum as open boundary data. DMI-WAM is cold started at the beginning of the model
simulation periods, and the spin-up time is 10 days. The variables used to force the WAM model are hourly 10 m wind (m/s) and mean sea level pressure (hPa).
FIGURE 3

Time series of annual maximum wind speed at the Køge station for 130 years of simulations from multi-RCMs (16 members, including 5 RCMs,
REMO2009: 2; HIRHAM5: 2; RACMO22E: 3; RCA4: 5; CCLM4: 4 members) under RCP 8.5 scenario. The line colours indicate different RCMs,
while different line patterns refer to GCMs (downscale to RCMs). DMI-HIRHAM5 downscaled from EC-EARTH (used in this project) is the single
dashed thick yellow line. The two panels depict the same time series during two time slices of the projection simulations, i.e. 1976 - 2005 and
2041 - 2070.
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also online validation for the forecast periods between the

simulated wave height results and buoy measurements. Besides

the validation, a monthly report for a global comparative wave

model verification and a simple comparison between the model

and satellite wave data are shown on http://ocean.dmi.dk/

validations/waves/index.uk.php.

Regarding the time frame and IPCC scenarios of the wave-

related climate issues, we conducted interviews of the

municipalities, outlined in Madsen et al. (2019). We found

that time scales are determined by how the data is used for

climate preparation, i.e., risk assessments (ten to fifty years), or

long-term strategic planning (50-to-200 years). Clients are

interested in near-future data for wind wave disasters for risk

management. Therefore, the study of the near-future weather

extremes under the high greenhouse gas emission scenario

(RCP8.5 scenario) is more relevant than the examination of

low emission scenarios. For these reasons, we decided to

perform both HBM and WAM simulations for the historical

period and near-future periods under RCP8.5, respectively,

from 1976 to 2005 and 2041 to 2070.
Frontiers in Marine Science 06
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Wave projections under “stormy
conditions” and “storm surge conditions”

“Stormy conditions” are defined as the significant wave

height (SWH) exceeding the 90th percentile of the distribution

(Figure 4). This “stormy condition” may be used to reflect the

winter wind conditions in Køge Bay. Wave heights below the

90th percentile are referred to as “normal conditions”.

“Storm surge conditions” are defined in this research as a

water surge level that exceeds the 20-year-return storm surge

level. The classification of high sea level events as a 20-year

return value is in accordance with the Danish Storm Council’s

standard. The storm surge statistics were calculated using the

peak over threshold (POT) and generalized Pareto distribution

(GPD) methods, following the suggestion of Arns et al. (2013).

The POT threshold for storm surge statistics is based on the

statistics from the Danish Coastal Authority (111 cm for Køge

Bay, Ditlevsen et al., 2019). We calculated the 20-year return

values for two simulated time periods. The median value of the

mean sea level increase for the period 2041-2070 under RCP8.5
FIGURE 4

Significant wave height (SWH) histograms for historical (blue) and mid-century (orange) periods under RCP8.5. The model output has a temporal
resolution of ten minutes. The lines denote the 90th percentile of the distribution. “Stormy conditions” are defined as those in which SWH
exceeds the 90th percentile.
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is 22 cm, which was simply added to the return values [see the

sea level rise calculation in Su et al. (2021)]. The wave climate

indicators show the changes in SWH and wave period in 2041 -

2070 compared to the reference period (1976 – 2005), taking

into consideration future sea level rise and wind pattern changes.
Results

The surge and wave model results and
validation of WAM

In practice, model outputs are commonly extracted or

interpolated to a particular location in order to validate them

against observed data. Consequently, model results should be

evaluated cautiously for various purposes. We chose the closest

model grid point to Køge Harbor, where the tidal gauge station is

located, for the surge model results (Figure 2). This is also

common practice for forecasting and warnings of storm surges.

The time series of the results from the storm surge forecast

model in Køge Bay revealed that storm surge events exceeding

1 m had occurred around 10 times in the last decade (Figure 5,

blue line). The highest recorded level was 1.57 m during the

January 2017 storm surge event, which we will discuss in depth

in the next section.

It is common to calculate an area mean of wave parameters

for a bay area when analyzing wave model results. However, we

extracted the results at one model grid point offshore Køge

Beach (see Figure 2 for the location). As noted in the

introduction, the region offshore Køge Beach is the most

exposed to waves in Køge Bay, and it is here that we should

make recommendations for a climate adaptation plan. The time

series of wave heights depicted in Figure 5 (yellow line)

demonstrates that high wave events (>2 m) are not always

associated with a large storm surge event. For example, the
Frontiers in Marine Science 07
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highest SWH from a wave forecast in recent decades was close to

3 m, which is during the Bodil windstorm in 2013 (Clemmensen

et al., 2016). Luckily, the Bodil windstorm did not result in a

storm surge event in Køge Bay.

The validation of SWH in DMI-WAM hindcast simulation

is shown in Table 2. We extracted the WAM results at the

DARSS wave buoy station (54.7 ˚N 12.7 ˚E, Figure 1), which is

the closed observation station to our study area. We provided

annual based error statistics for recent 10 years (2008-2017) in

the hindcast simulation period. The mean error statistics for 10

years are: mean error/bias (observation - model) is 0.03 m, root

mean square error (RMSE) is 0.26 m, scatter index (RMSE

divided by mean of the values) is 0.32, correlation coefficient is

0.9, annual peak event error (observation - model) is 0.47 m,

mean error of annual 10 maximum wave events is 0.19 m

(Table 2). In cases of peak values, the WAM underestimates

SWH, although it is acceptable in long simulations (Cherneva

et al., 2008). In general, model outputs and buoy-measured data

are in good agreement, which ensures the quality of simulations

by giving a good scatter index and correlation coefficients.
The sea state under normal and storm
surge conditions

On January 4-5, 2017, a storm surge hit the southern Baltic

Sea and Køge Bay. A period of persistent westerlies increased the

mean sea level of the semi-enclosed Baltic Sea by approximately

half a meter. This was followed by the passage of an extratropical

storm from west to east. A strong easterly wind has developed

across the central Baltic Sea, moving the Baltic water mass into

the west Baltic Sea, where Køge Bay is located. A number of

harbors experienced a storm surge that was classified as a 100-

year storm surge event, despite the fact that local wind

conditions were not extreme (She and Nielsen, 2019). At the
FIGURE 5

The time series of water level (blue) and significant wave height (yellow) from HBM and WAM model results forced by the weather forecast
model from 2006 to 2017. The model grid points to extract the water level are shown in Figure 2. The validation of the WAM model with the
wave buoy data refers to Table 2.
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Køge tide gauge station, the maximum water level was registered

at 1.57 m (Figure 6, red line), which is the highest level recorded

since the tidal gauge station was established in 1955. It was

estimated to be a 100-year event Ditlevsen et al., 2019) that

occurred during relatively calm circumstances, and has therefore

been named “the silent storm surge” (She and Nielsen, 2019).

The surge was well predicted in advance, and the coastal defense

was implemented to avert casualties and significant material

damage. Nonetheless, the event served as a wake-up call, as large

sections of the Køge Bay were on the verge of flooding, and it

could have been much worse if the wind had been stronger,

resulting in a larger local wind wave, or the average sea level had

been higher due to climate change. This has accelerated

Denmark’s climate adaption efforts.

Køge Bay is very well sheltered from large waves due to

limited fetches. Even though the wind was not as strong as it is

during the stormy days, the SWH remained over 0.6 m, with a
Frontiers in Marine Science 08
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maximum of 0.8 m, for nearly a day (Figure 6, blue line). The

decreasing of the surge level, in particular, is relatively gradual,

which is characteristic of a storm surge in general. Throughout

the decreasing surge phase, the SWH is somewhat larger than

the average wind wave level during the flooding period. The

surge-wave coupling characteristics exacerbated the situation at

Køge Bay, and the authorities reported that they were

approaching their protection capacity.

The spatial distributions of the maximum and low surge

levels during the “silent storm surge” are shown on inside panels

of Figure 6. This depicts the “storm surge situation” and “normal

condition” described in Wave projections under “stormy

conditions” and “storm surge conditions”. First, wave heights in

Køge Bay and nearby bays remain much lower than in waters

outside the bays. Second, the offshore wave height in the western

Baltic Seas approaches more than 2 m at the peak of the surge

level (Figure 6, inside panel). As a consequence, the coastline
FIGURE 6

The line plot illustrates simulated water level (m, red solid line), observed water level (m, red dashed line) and simulated significant wave height
(SWH, m, blue line) near Køge Beach (black square in the shaded plot) during a storm surge event in 2017. Inside, two color-shaded panels
depict the spatial distribution of SWH at the storm surge’s peak period (dashed line) and at the calm condition (dotted line).
TABLE 2 The validation of significant wave height (SWH) in DMI-WAM hindcast simulation against the wave buoy observation at DARSS position
(54.7 ˚N 12.7 ˚E).

Standard error

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total mean

Mean error (m) -0.01 -0.02 -0.01 0.09 -0.03 -0.12 0.11 0.12 0.08 0.08 0.03

R.M.S error (m) 0.24 0.22 0.3 0.26 0.24 0.34 0.25 0.28 0.25 0.26 0.26

Scatter index 0.31 0.29 0.28 0.35 0.29 0.36 0.35 0.36 0.35 0.3 0.32

Corr. coefficient 0.92 0.9 0.92 0.92 0.89 0.84 0.9 0.91 0.9 0.92 0.9

Peak error

Date (DD/MM) 22/03 09/11 10/01 09/12 09/10 28/10 27/05 14/11 26/12 13/09

SWH (m) 3.68 2.9 4.03 2.83 2.67 3.52 3.2 2.66 3.25 3.3

Error (m) -0.14 -0.44 0.14 1.25 -0.24 1.47 0.05 0.46 0.75 1.36 0.47

10 peaks mean error (m) 0.05 0.09 0.24 0.62 -0.04 -0.5 0.3 0.58 0.29 0.27 0.19
fron
We provided annual based error statistics for recent 10 years (2008-2017) in the hindcast simulation period. The error statistics include mean error/bias (observation - model), root mean
square error, scatter index, correlation coefficient, annual peak event error, and mean error of 10 maximum events.
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morphology of a bay is more vulnerable to surge flooding than to

waves. Third, the wave height in the bay is very modest under

normal conditions, suggesting that it will not be an extreme

event even with future mean sea level rise.
The projected future change of the
sea state

The time series of the wave model results at Køge Bay

(location in Figure 2) over the 2041-2070 period (near-future)

under RCP8.5 scenario is depicted in Figure 7. During both

historical and near-future 30-year time slices, the number of

storm surge events (exceeding 20-year event) is two. When SLR

(22 cm) under RCP8.5 is taken into account, the number of

storm surge events increases to seven. Intuitively, some high

SWH events are associated with storm surge events when

considering SLR. This indicates that some of the high wave

events in the present climate may reach a critical level and

become a problem in the future, when more of these events

might be associated with storm surges. In other words, storm

events with high SWH, and a similar magnitude of wind speed as

during the Bodil Storm, might become a concern in the future.

As a result, the wave height during “storm surge conditions”

increases from 0.75 m during the historical period to 1.63 m

during the near-future period (Figure 8).

The wave climate indicators measure the change in mean

SWH and in wave periods during stormy and storm surge

conditions and are shown in Figure 8. It was computed as

changes in wave height and wave periods from one single

ensemble forced model result (see Wave projections under

“stormy conditions” and “storm surge conditions”). During

stormy conditions, the change in wave height in the future is

negligible (Figure 8, second column). Nevertheless, during storm

surge conditions (exceeding 20 years return value), the simulated
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wave height is projected to double in the near future (Figure 8,

third column), and the wave period may also increase by about

1.5 second (Figure 8). The results indicate a possible increased

coastal risk from the combined effects of storm surge and waves.

For municipalities, it is quite relevant to coastal planning.
Discussion

Uncertainty and spatial resolution

Uncertainty of the wave projection has numerous ways to

assess, including multi-models, multi-scenarios, and uncertainty

of SLR, etc. A multi-model ensemble is frequently necessary in

order to conduct a comprehensive risk assessment for a wave

model climate projection study. However, prior to the

estimation of the level of uncertainty, our study presents first

insight into a more pressing problem that must be investigated,

namely, whether or not increasing disastrous wind waves may be

a concern in our study region. From our model results, it is

evident that mean SLR and the associated uncertainty are the

most important threats to the coasts under RCP8.5 scenario

(Figure 8). Therefore, we contend that uncertainty of wind wave

height and period, based on a multi-model ensemble, is of

secondary importance in this region. The arguments listed

below also support our conclusions.

Firstly, the existing multi-model ensemble based on GCMs is

insufficient to systematically sample the uncertainty associated

with wave-climate projections (Hemer et al., 2013). While the

comparison of high wind events among EURO-CORDEX

members is essential in this work, the effects of extreme wind

on climate scenario simulations have not been thoroughly

addressed in prior ensemble studies (Kunz et al., 2010). Other

relevant parameters, such as the time averaged wind field and

mean sea level pressure, have been carefully investigated in a
FIGURE 7

During the future period under RCP8.5 scenario (2041 - 2070), the time series of the surge (blue) and wave height (yellow) are shown. The red
line represents the 20-year-event without consideration for sea level rise (SLR, 1.82 m), whereas the red dashed line represents the 20-year-
event with regard to SLR (1.6 m). Note that to keep the same line as present day, we need to lower the threshold under SLR conditions. Two
events are considered “storm surge conditions” in the absence of SLR, whereas seven events are included with SLR.
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number of papers (Kotlarski et al., 2014; Jacob et al., 2014; Tobin

et al., 2016; Moemken et al., 2018). We illustrate, using a time

series of annual maximum wind speed from Køge Bay, why

ensemble averages of the highest wind fields are inappropriate

for our investigation (Figure 3). It is worth noting that among all

RCMs, in Køge Bay HIRHAM annual maximum coastal winds

are the strongest, but this result cannot be generalized. We

analyzed several locations (not shown) and found HIRHAM

results lower than other RCMs. Following the analysis from

Kotlarski et al. (2014), we conclude that the wind results of DMI-

HIRHAM are within the ensemble spread. However, extreme

winds across Europe should be investigated further, particularly
Frontiers in Marine Science 10
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in comparison to observed winds during catastrophic events.

Without a systematic assessment of the uncertainty of extreme

winds, the quantification of the uncertainty of the wave

projections remains unreliable.

Secondly, the uncertainty associated with multi-scenarios is

impractical for coastal risk management. The main use of

various climate scenarios is for mitigation measures, which is

not very relevant for wave climate projections. In particular, sea

state conditions in scenarios with low greenhouse gas emissions

are similar to present day values. In this paper, we focus on the

high greenhouse gas emission scenario, which offers a

foundation for risk management to be well-prepared for the
FIGURE 8

Wave height (left panel) and wave period (right panel) during RCP8.5 mid-century and historical period (1976 - 2005) under ”normal conditions”
(first column), ”stormy conditions” (second column) and ”storm surge conditions” (third column).
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intensifying future weather extremes. Furthermore, the regional

wave model climate simulation is costly. It is reasonable to

question whether the benefits of uncertainty quantification

based on model ensembles outweigh the costs.

Another relevant concern of the wave disaster is the wave

run-up. Wave run-up is an important component of coastal

flooding and erosion processes, particularly under extreme

conditions when it is paired with high tides and storm surges

(Senechal et al., 2011). For the climate projection study, an

empirical formula for wave run-up may be utilized based on

probabilistic models for surge, wave and morphological

conditions. However, the complexity of wave run-up on

realistic cross-shore profiles precludes analytical solutions;

hence, simplified wave run-up formulae should rely on field

observations and laboratory experimentation (Didier et al., 2015;

Park and Cox, 2016). The complexity of the Køge Bay shoreline

is also the reason the municipalities near the Køge Bay stressed

that they require spatially high-resolution wave data sets that

cover the local coasts of their urban and sub-urban

municipalities at a spatial resolution of 100 meters to resolve

wave run-ups (Madsen et al., 2019). We argue that the risk

management for the disaster of the wave run-up is associated

with storm surge conditions, which is in line with our

suggestions in this paper, i.e. storm surges under SLR are the

most important threat to concern. Moreover, a very high

resolution wave model is beyond the capability of our

operational wave model in its present configuration. In other

words, warnings related to wave run-up and storm surges are

merged in the present day. Consequently, we believe that the

wave run-up study is more pertinent to understanding wave-

surge coupling processes using a high resolution coupled wave-

circulation model, such as the study in Staneva et al. (2016);

Ding et al. (2020). Then, the spatial resolution of the

meteorological forcing of RCMs, (12.5,km) is not suitable for

this study; hence, it falls beyond the scope of the wave

projection work.
Implications to climate risk management

Model results of extreme sea level and wave events aid

decision-making in the domain of coastal zone management,

planning, and defense. In Denmark, these choices are

determined at the municipal level, with cooperation from the

Danish Coastal Authority. Our research region, Køge Bay, serves

as a recreational area and port sector for the Copenhagen

metropolitan area, and has experienced tremendous expansion

in services, trade, transport, and logistics, among other

industries. Consequently, the vulnerability to extreme flooding

event has increased with the urbanization in recent years

(Sørensen, 2016). To quantify the risk assessment, a damage

model and decision-making tools would be required (Halsnæs

and Kaspersen, 2018), which is outside the scope of this study.
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Consequently, we only present the qualitative implications of

our model results for climate risk management.

Due to the fact that coastal climate change significantly

increases the danger of flooding from storm surges, adaptation

offers obvious advantages for municipalities, particularly when

long-term planning is considered (Zougmore et al., 2012). The

targeted coastal climate information derived from our data and

methods will assist municipalities in making future business

decisions by establishing a credible foundation for decision

making and prioritizing resources for coastal climate

adaptation. Our model experiment revealed that mean SLR is

the most important threat to the coasts under a high emission

scenario. In the future, the coastal hazards under SLR scenarios

should be considered for future spatial planning and urban

recreational development. We propose that the risk caused by

wind-generated waves is of secondary significance for long-term

coastal zone planning. The combined effects of mean SLR, storm

surge, and waves are anticipated to enhance the threat to Køge

Bay, and should thus be considered first.

The connection between climate data and decision-making

should be strengthened so that society can manage the risks and

possibilities associated with climate change. Effective

engagement between users and providers of climate services is

a crucial component of any climate service, according to Hewitt

et al. (2012); the added value of the Danish Climate Atlas

initiatives (Su et al., 2021) is precisely this. The research from

the Danish Climate Atlas reveals that a rise in mean sea level will

significantly increase the risk of flooding from storm surges in

the study region, with significant economic consequences. Our

wave model results were communicated during the subsequent

workshop on designing climate indicators for the wave

catastrophe. The municipalities recognized that this study is a

first step in the development of a paradigm for wave projections.
Conclusion

The aim of this research is to analyze the change in storm

surge and wind wave (surge-wave) components of the water level

caused by climate change in the low tidal range Køge Bay,

located near the Baltic Sea entrance. We utilized a regional

climate model driven wave model to study the wave climate

projections in the near future under RCP8.5 scenario. Under

“stormy” conditions, we find that wave height and period will

not change significantly in the future. It is possible that under

“storm surge conditions” when taking into account SLR, the

wave height may double and the wave period increase by around

1.5 seconds under RCP8.5. This is due to future storm surge

events being linked to high-significance wave height events when

sea level is rising. The results indicate that the flooding and

erosive threats to a bay with a similar coastline and exposure as

Køge Bay are expected to grow due to the combined effects of

mean SLR, storm surge, and wind waves. Storm surges are the
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major threats, but additional wave run-up protection should be

prioritized in the near future.

Additionally, our studies advocate that long-term urban

planning should include adaptation as a component of

initiatives to mitigate the consequences of climate change. For

example, one of Denmark’s greatest climate adaptation projects

is located south of Copenhagen, and involves the elevation and

expansion of dikes, as well as the development of additional

flood gates (Danish Nature Agency [DNA], 2013). This work

gives a first step toward developing a paradigm for climate wave

projections in the study region, i.e. wave information should be

considered only when combining storm surge and SLR.
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Model simulated freshwater
transport along the Labrador
current east of the Grand
Banks of Newfoundland
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Scott A. Socolofsky4 and Michel Boufadel5

1Ocean and Ecosystem Sciences Division, Bedford Institute of Oceanography, Fisheries and
Oceans Canada, Dartmouth, NS, Canada, 2Department of Oceanography, Dalhousie University,
Halifax, NS, Canada, 3Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli,
QC, Canada, 4Zachry Department of Civil and Environmental Engineering, Texas A&M University,
College Station, TX, United States, 5Center for Natural Resources, The New Jersey Institute of
Technology, Newark, NJ, United States
The freshwater transport (FWT) by the Labrador Current (LC) around the Grand

Banks of Newfoundland (GBN) is diagnosed with the 26-year Global Ocean

Physical Reanalysis 1/12° data (GLORYS12v1) during 1993 - 2018. The time-

mean FWT of the LC above the 1027.25 kg/m3 isopycnal surface is 83.6 mSv (1

mSv = 103 m3/s) southward through the Flemish Pass. Among this 83.6 mSv,

42% (35.2 mSv) is exported into the interior of the North Atlantic along the

whole pathway of the LC from the Flemish Pass to the Tail of the GBN, with 25.5

mSv by the mean advection and 7.2 mSv by the mesoscale eddy transport. The

seasonal and inter-annual variations of the FWT in the east of the GBN are

mainly caused by the variation of the horizontal velocity of the LC, and the

variation of salinity makes a nontrivial contribution to the variation of the FWT

to the north of 45°N. Around the Tail of the GBN, the mesoscale eddies make

significant contributions to the time-mean FWT and the seasonal and inter-

annual variations of the FWT.

KEYWORDS

Grand Banks of Newfoundland, Labrador Current, freshwater transport, retroflection,
multi-scale variations
1 Introduction

The Labrador Current (LC) flows southward offshore of Labrador and

Newfoundland, carrying cold and fresh water to meet the warm and salty water of the

North Atlantic Current (NAC) in the east and south of the Grand Banks of

Newfoundland (GBN), as shown schematically in Figure 1. The freshwater within the
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LC enters the interior of the North Atlantic through different

processes, such as the wind-driven Ekman transport, eddy

exchange (Howatt et al., 2018) and advection by the time-

mean flow (Fratantoni and McCartney (2010), hereinafter

referred to as F&M2010). This freshwater, entering the interior

of the North Atlantic, modifies the upper layer stratification.

Eventually, the strength of upper layer stratification in the

subpolar North Atlantic affects the amount of deep water

formation through vertical convection in winter and hence

tunes the Atlantic Meridional Overturning Circulation

(AMOC) that has a strong impact on climate (e.g., Zhang,

2015). Studies have suggested a linkage between freshwater

discharge into the North Atlantic and the climate variability

(Renssen et al., 2002).

As a confluence of the West Greenland Current, the Baffin

Island Current and the outflow from the Hudson Strait, the LC

has multiple freshwater sources: the Arctic seawater, river

discharge and ice sheet melting from continents. The Arctic

Ocean exports its freshwater into the LC through two main

pathways: one through the Fram Strait and continuing along the

east and then west coasts of Greenland (Aagaard and Carmack,

1989); the other through the Canadian Arctic Archipelago

(CAA) to the Baffin Bay and the Davis Strait (Cuny et al.,

2005). Additionally, a small portion of the Arctic water flows

through the Fury and Hecla Straits into the Hudson Bay and

outflows through the Hudson Strait (Straneo and Saucier, 2008).

The discharge of continental rivers into the Hudson Bay and

CAA is another freshwater source for the LC (De ry et al., 2009).
Moreover, the ice sheets over Greenland are an additional

freshwater source for the LC in the form of melting water and

sea ice (Mernild et al., 2009).

Receiving freshwater from those sources with significant

seasonal variations, the salinity of the LC has an evident

seasonal cycle. Using historical hydrographic observation data,

F&M2010 studied the seasonal variation of the salinity of the LC

within the shelf water layer between the isopycnal surface of

1026.8 kg/m3 and the ocean surface. Overall, they found that the

LC south of 51°N is fresher in summer and saltier in winter

because of more river discharge and ice melting in summer

(Petrie et al., 1991; Schmidt and Send, 2007; Straneo and Saucier,

2008). At the downstream of the LC on the eastern shelf break of

the GBN, the salinity anomaly signal can be mainly attributed to

advection from upstream rather than being caused locally by the

freshwater flux across the air-sea interface (F&M2010).

The LC transports the low salinity water from the upstream,

and along its pathway, this freshwater is gradually lost into the

interior of the North Atlantic. Previous observations and

numerical model simulations (Lazier and Wright, 1993; Han

et al., 2008; Ma et al., 2016) have shown that the LC has an

inshore branch flowing along the coast of Newfoundland and an

offshore branch near the shelf break. A part of the inshore

branch of the LC passes through the Avalon Channel, and the

other part joins the offshore branch of the LC around 49°N. The
Frontiers in Marine Science 02
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offshore branch bifurcates around 48°N ~ 49°N north of the

Flemish Pass, with a small portion of freshwater exported

eastward but the major part exported southward through the

Flemish Pass. The offshore branch of the LC can exchange the

freshwater with the interior of the North Atlantic along its

pathway. Based on the observations with the gliders, Howatt

et al. (2018) revealed that the freshwater can be exported from

the Labrador Shelf into the interior of the Labrador Sea by the

Ekman transport and mesoscale eddies. They concluded that

only a small proportion (approximately 3%) of freshwater

originating from the Hudson and Davis Straits is exported

across the shelf break into the interior of the Labrador Sea.

Observations by Loder et al. (1998) suggested that a large portion

of freshwater, carried by the branch of the LC on the shelf break,

is lost in the region between Flemish Pass and the Tail of the

GBN. F&M2010 suggested that, in the east of the GBN, the

retroflection of the LC above the main pycnocline is the primary

process of the freshwater transport (FWT) into the interior of

the North Atlantic. They described the retroflection of the LC as

the “Southwest Corner” of the subpolar gyre overshooting,

analogous to the “Northwest Corner” that is the overshooting

of the subtropical gyre.

Depending on where the freshwater enters the interior of the

North Atlantic, the impacts of freshwater on the upper layer

stratification can be different. As the major process of transporting

freshwater from the LC to the interior of the North Atlantic, the

LC retroflection was previously believed to only occur at the Tail

of the GBN. F&M2010 constructed a map to show the depth of the

1027.25 kg/m3 isopycnal surface with the time-mean

hydrographic data. They interpreted the contours of the

isopycnal surface depth as the streamlines of the geostrophic

flows, and suggested that the LC retroflected along the entire

pathway of the LC from the Flemish Cap to the Tail of the GBN.

While F&M2010 depicted the picture of the FWT with the time-

mean retroflection of the LC, they were unable to describe the

temporal variations of the FWT or quantify the contribution of

the mesoscale eddies due to the temporal-spatial sparseness of the

hydrographic surveys and the lack of velocity observations.

In this contribution, a high-resolution, data assimilative

global ocean reanalysis product is analyzed to diagnose the

spatial and temporal variations of the FWT of the LC near the

GBN. This product, referred to as GLORYS12v1, is obtained

from the Copernicus Marine Service (CMS, https://marine.

copernicus.eu; https://doi.org/10.48670/moi-00021). It has a

horizontal resolution of 1/12° in longitude/latitude and 50

levels in the vertical direction and spans from January 1993 to

December 2018. The ocean model is based on the Nucleus for

European Modelling of the Ocean (NEMO). The assimilated

observational data include the sea surface heights (SSH), sea

surface temperature and sea ice concentration retrieved from

satellite remote sensing, and vertical profiles of salinity and

temperature from multiple versions of CORA (Coriolis Ocean

database for Re-Analysis) database containing ship-board
frontiersin.org
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surveys and Argo floats, etc. Comprehensive evaluations of

GLORYS12v1 are described in details in a “Quality

Information Document” at the CMS website, and also in

Lellouche et al. (2018) and Lellouche et al. (2021). These

evaluations suggest that GLORYS12v1 possesses good skills in

reproducing the observed mean state and mesoscale variations of

ocean circulation and salinity, as well as other ocean and sea-ice

parameters. We use the monthly-mean GLORYS12v1 output of

the salinity and the horizontal velocities to compute the volume

flux and FWT.

In section 2, we introduce the method of decomposing the

variations of the FWT into different components based on time

scales. The results of the time-mean FWT are presented in

section 3. Section 4 presents the analysis of the temporal

variations of the FWT. Finally, section 5 presents the

conclusions and discussion of the results.
2 FWT calculation

2.1 Regional ocean climatology

With the monthly salinity and temperature from

GLORYS12v1, the monthly potential density is calculated
Frontiers in Marine Science 03
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during 1993 - 2018 for all the 50 levels in the region around the

GBN. Following F&M2010, the FWT is calculated for the upper

layer with a potential density less than 1027.25 kg/m3. Figure 1

presents the depth of the 1027.25 kg/m3 isopycnal surface,

interpolated from the potential density averaged over 1993 -

2018. Along two sections at 45°N and 50°W, Figure 2 shows

that this isopycnal surface only varies slightly in different seasons.

In Figure 1, the GBN shelf is shaded grey because the maximum

density on the seafloor is smaller than 1027.25 kg/m3. The 1027.25

kg/m3 isopycnal surface is shallower than 150 m in the region of

the LC and deeper in the NAC region, exceeding 400 m to the

south of 42°N. To the east of the shelf break of the GBN, the

1027.25 kg/m3 isopycnal surface shows a ridge shape whose

minimum depth is about 150 m at 45°N, and this ridge

disappears close to the Tail of the GBN. As described by

F&M2010, the contours of this isopycnal depth represent the

streamlines of the time-mean geostrophic flow. Thus the map of

Figure 1 reveals a retroflection of the LC: the LC flowing

southward along the eastern shelf break of the GBN, turning

offshore near the Tail of the GBN and continuing flowing

northeastward. The map of the depth of the 1027.25 kg/m3

isopycnal surface also indicates a flow meander around (47°W,

44°N), corresponding to a similar meander of the 4000 m isobath.

Figure 2 shows the time-mean (a) meridional and (b) zonal
FIGURE 1

The western North Atlantic with the red and blue vectors denoting the direction of the North Atlantic Current (NAC) and Labrador Current (LC).
The box outlines the Grand Banks of Newfoundland (GBN) and adjacent oceans. The color shading shows the depth of the isopycnal surface of
1027.25 kg/m3 determined from the potential density averaged over 1993 - 2018. In grey shaded area, the maximum potential density is less
than 1027.25 kg/m3. Black contours are isobaths of 200 m, 500 m, 2000 m and 4000 m. The two red dots at (50°W, 47°N) and (47°W, 47°N) are
the positions for calculating the sea surface height differences shown in Figure 9.
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velocities across the sections at 45°N and 50°W. On the 45°N

section, a steep ridge of the 1027.25 kg/m3 contour appears in the

core of the LC around 48.6°W, where the maximum southward

velocity reaches 0.5 m/s. On the 50°W section, the same isopycnal

does not show a ridge, but the 1027 kg/m3 contour at shallower

depth contains a gradual ridge associated with a much weaker

time-mean zonal flow. On both sections at 45°N and 50°W, the

34.8 isohaline mainly lies below the 1027.25 kg/m3 isopycnal

surface within and adjacent to the LC and shoals rapidly in the

region where the NAC is present.
2.2 Freshwater flux

The freshwater flux vector (FWV), U
!

FW(x, y, z, t), is defined

as

U
!

FW(x, y, z, t) = SR(x, y, z, t)U
!
(x, y, z, t) : (1)

Here x,y,z are the coordinates in the zonal, meridional and

vertical directions with the positive directions as eastward,

northward and upward; t is time; U
!
(x, y, z, t) is the horizontal

velocity. The non-dimensional variable SR(x,y,z,t) is the relative

salinity, defined as
Frontiers in Marine Science 04
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SR(x, y, z, t) =
Sref − S(x, y, z, t)

Sref
, (2)

where S(x,y,z,t) is the salinity of the seawater, and Sref is a

reference salinity. The value of Sref is set to be 34.8, consistent

with the previous studies of the FWT of the LC (Mertz et al.,

1993; Petrie and Buckley, 1996).

The salinity and horizontal velocity vary on different time

scales, i.e., seasonal, inter-annual and intra-seasonal. In order to

investigate the contributions of the variations on different time

scales to the variations of the FWT, SR(x,y,z,t) and U
!
(x, y, z, t)

are decomposed according to

SR(x, y, z, t) = �SR(x, y, z) + ~SR(x, y, z, t) + S�R(x, y, z, t) + S
0
R(x, y, z, t),

 U
!
(x, y, z, t) =

�
U
!
(x, y, z) +

e
U
!
(x, y, z, t) + U

!�
(x, y, z, t) + U

!0 (x, y, z, t):
(3)

The symbol “ – ” denotes the time-mean quantity, obtained by

averaging the monthly data over 1993 - 2018. The symbol “ ~ ”

stands for the seasonal cycle, obtained by taking the average of the

data of the same calendar month over the 26 years and with the

above time-mean value subtracted. The symbol “ * ” denotes

the inter-annual anomaly, calculated as averaging the data of each

year, again with the time-mean value subtracted. Finally, the

symbol “′” denotes the residual that mainly represents the intra-

seasonal anomaly mostly due to the mesoscale eddies.
A

B

FIGURE 2

Velocity, salinity and potential density averaged over 1993-2018 on sections at (A) 45°N, and (B) 50°W. Colors present the meridional velocity
(northward as positive) in (A) and zonal velocity(eastward as positive) in (B). The magenta and black contours are the isohalines and isopycnals
averaged for all the seasons. The seasonal variations of the 1027.25 kg/m3 isopycnals are presented using the solid blue (Winter: January to
March), dashed blue (Spring: April to June), solid green (Summer: July to September), and dashed green (Fall: October to December) curves.
The two vertical black lines show the locations of sections B and D.
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Substituting (3) into (1), the various components of U
!

FW are

defined as

U
!

FW = �SR + ~SR + S�R + S0R
� � �

U
!

+
~
U
!

+ U
!�

+ U
!0

� �

=
�
U
!

FW +
~
U
!

FW + U
!�

FW + U
!0

FW : (4)

The first term on the right-hand-side (r.h.s) of (4) is the

time-mean FWV, expressed as

�
U
!

FW = �SR
�

U
!

+ ~SRU
!∼

+ S�RU
!�

+ S0RU
!0 : (5)

It is obtained by taking the time average of all products of

different components of SR and U
!

, but only keeping those terms

that have a non-zero mean. For example, SR and U
!

at different

time scales are not correlated hence their products have zero

mean values, while SR and U
!

at the same time scales can have

non-zero mean values.

The second term on the r.h.s of (4) is the seasonal variation,

practically obtained by averaging the monthly anomalies of

U
!

FW in the same calendar month over different years.

Mathematically it can be expressed as

e
U
!

FW = �SR
e
U
!
+ ~SR

�
U
!

+
g
~SR

e
U
!
+

g
S0RU
!0 : (6)

That is, this term represents the sum of the seasonal

components that may be contained in the products of various

components of SR and U
!
. For example, the third term at r.h.s. of

(6) comes from the product of the seasonal variations of SR and

U
!
, which can include a non-zero mean component [second

term at r.h.s. of (5)] and a semi-annual variation accounted here

as the seasonal component. In practice, all terms at r.h.s. of (6)
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can be obtained by averaging the monthly anomalies of each

product term in the same calendar month over different years.

The seasonal components in the products of ~SR with U
!�

and U
!0

should be very small because the anomalies at different time

scales are not correlated, and similarly for products of S�R
e

U
!
, S�R

U
!0, S0R eU and S0RU

!�
.

The third term on the r.h.s. of (4) is the inter-annual variations,

practically obtained by taking the annual average of the monthly

anomalies of U
!

FW. Following the similar argument as deriving

equation (6) this term can be approximately expressed as

U
!�

FW = �SRU
!�

+ S�R
�
U
!

+ S�RU
!�� ��

+ S0RU
!0

� ��
: (7)

And finally, the fourth term is the intra-seasonal variation of

the FWV, defined as

U
!0

FW = U
!

FW −
�
U
!

FW −
e
U
!

FW − U
!�

FW : (8)

Figure 3 shows the meridional component of U
!

FW on the

section at 45°N. The southward FWV within the LC mostly

occurs above the depth of the 1027.25 kg/m3 isopycnal surface.

Thus, the layer between the ocean surface and the 1027.25 kg/m3

isopycnal surface is selected for studying the FWT of the LC. In

the following, the FWT per unit length (hereinafter referred to as

unit FWT), ~F(x, y, t), is obtained by vertically integrating U
!

FW

for this layer as

~F(x, y, t) =
Z 0

−H(x,y)
U
!

FW(x, y, z, t)dz: (9)

Here, H(x,y) is the depth of the 1027.25 kg/m3

isopycnal surface determined from the time-mean density field (see

Figure 1). Replacing U
!

FW(x, y, z, t) in (9) with its components of
FIGURE 3

Same as in Figure 2A except that the colors show the meridional component of
�
U
!

FW .
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�
U
!

FW,
e

U
!

FW, U
!�

FW and U
!0

FW as given in (5), (6), (7) and (8), we can

obtain the time-mean value, and the seasonal, inter-annual and

intra-seasonal variations of the FWT per unit length, denoted as �~F ,e~F, F!�
and ~F 0, respectively. Additionally, the vertically integrated

volume flux per unit length, ~V(x, y, t), is defined as

~V(x, y, t) =
Z 0

−H(x,y)
U
!
(x, y, z, t)dz: (10)
3 Time-mean FWT

3.1 Horizontal view of the FWT

Figures 4A, B show the horizontal view of �~V (x, y) and �~F (x, y)

during 1993 - 2018. Because we focus on the transport of seawater

with low salinity, the region with the depth-mean salinity greater

than Sref is shaded grey. High amplitudes of both �~V and �~F appear

on the shelf break of the GBN, indicating the main pathway of the

LC. In In Figure 4A, the center-line of the LC (magenta curve) is

identified as the locations where the amplitude of �~V are the

largest across the LC. Figure 4B shows that the main source of

freshwater of the LC on the eastern shelf break of the GBN is the

inshore branch of the LC that directs eastward at 49°N. A small

portion of �~F splits from the main branch and directs eastward to

the north of the Flemish Cap. To the south of 47°N, �~F directs

southward, and its amplitude decreases dramatically before

reaching the Tail of the GBN. Further offshore, �~V and �~F have

opposite directions from those on the shelf break.
Frontiers in Marine Science 06
271
A control volume is closed by four horizontal sections

(marked with A, B, C and D in Figure 4), the mean 1027.25

kg/m3 isopycnal surface (see Figure 1) and the ocean surface.

Section D is set at the location where the meridional component

of �~V vanishes between 43°N and 47°N. Similarly, at 50°W, the

endpoint of section D is located at the position where the zonal

component of �~V is equal to zero. Moreover, the point at 43°N

and the endpoint at 50°W, obtained from the above steps, are

smoothly connected with a cubic polynomial curve. In this way,

section D separates the flows with opposite directions, the south-

or westward LC and the north- or eastward retroflection of the

LC and the NAC. Section B is set to have a fixed distance of

60 km from the center-line of the LC, but its locations do not

extend westward of 50°W. Sections A and C are set at the fixed

latitude of 47°N and longitude of 50°W, respectively, with the

same endpoints as sections B and D. Moreover, a short section E

is set to characterize the retroflection of the LC after its westward

passing across section C. Section E is along the meridian of 50°W

starting from the southern endpoint of section C till the location

where the salinity, averaged over time and depth within the layer

above the 1027.25 kg/m3 isopycnal surface, equals 34.8. At each

boundary of the control volume, a flux/transport is defined as

positive (negative) if it is out of (into) the control volume. As for

section E, the eastward flux/transport is defined as positive.

The time-mean volume flux and FWT (± standard deviation)

across the five sections, defined above in unit of milli-Sverdrup (mSv,

1 mSv = 103 m3/s), are shown in Figure 4. The freshwater is

transported into the control volume through sections A and B

with the time-mean FWT of 83.6 mSv and 1.5 mSv. The main part

of their sum, about 42%, directs out of the control volume across the
A B

FIGURE 4

Vectors and color shading: (A) �~V and (B) �~F and their amplitudes. The grey-shaded area represents the region where the salinity, averaged
temporally over 1993 - 2018 and vertically above the 1027.25 kg/m3 isopycnal surface, is greater than Sref = 34.8. The magenta curve in (A)

marks the centre line of the LC, which is obtained as the locations where the amplitudes of
�~V reach the maximum values across the LC.

Numbers beside sections A, B, C, D (boundaries of the control volume) and E are the integrals of
�~V and

�~F along these sections with the units of
mSv. Negative (positive) values denote that the fluxes/transports are into (out of) the control volume, or westward (eastward) across section E
The values following the ± sign are the standard deviations of the monthly time series.
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offshore section D. The outflow of low salinity water across section D

mixes with the northeastward NAC, then passes the east of the

Flemish Cap to the Northwest Corner. About 29% of the FWT of the

LC directs westward across section C. Across section E, the FWT is

only 1.5mSv and directs westward, while the volume flux is eastward

with a value of 160.4 mSv that is about 31% of the westward volume

flux through section C. The opposite directions between the volume

flux and FWT through section E are related to the contributions to

FWT by the mesoscale eddies. The FWT and volume flux through

these sections have significant amplitude of standard deviations

related to seasonal, inter-annual and intra-seasonal variations. The

time variations of FWT will be discussed in section 4.

In order to examine the locations where the LC water is

exported out of the control volume through section D, the

cumulative volume flux and FWT across section D are

computed by integrating �~V and �~F starting from the northern

endpoint of section D at 47°N till the southern endpoint at 50°W,

as shown in Figure 5. The outward volume flux and FWT occur at

almost all locations along section D, consistent with the findings

of F&M2010 that the retroflection occurs along the whole

pathway of the LC in the east of the GBN. Moreover, the

outward transports are more intense south of 43.5°N, indicating

that a larger proportion of the retroflection takes place there.
3.2 Decomposition of time-mean FWT

Figure 6 shows the spatial distributions of the vector norms of

the four components of �~F , which represent contributions of the

mean advection and the seasonal, inter-annual and intra-seasonal
Frontiers in Marine Science 07
272
variations of the horizontal velocity and salinity, respectively,

calculated by vertically integrating the r.h.s. of (5). Across section

A, the dominant component of 84.4 mSv of the southward FWT is

due to the mean advection, which is slightly greater than the total

time-mean FWT of 83.6 mSv southward through this section. The

seasonal variations of the velocity and salinity induce a northward

FWT of 0.6 mSv, and the components of the FWT caused by the

inter-annual and intra-seasonal variations are both 0.1 mSv

northward. The mean advection contributes 1.2 mSv FWT

through section B into the control volume, which accounts for

80% of the total FWT across this section. The remaining

contributions to the FWT are from the inter-annual variation

(13%) and intra-seasonal variation (7%).

Through section C, the time-mean velocity causes 15.4 mSv

FWT out of the control volume, which accounts for 63% of the total

FWT across this section. Seasonal and inter-annual variations also

contribute to the westward FWT with the values of 1.3 mSv and 2.6

mSv, respectively. The intra-seasonal variation makes a 5 mSv

contribution to the westward FWT, which is 21% of the total FWT

through section C. Across section D, the mean advection

contributes 25.5 mSv to the FWT, which accounts for 72% of the

total eastward FWT through this section. The seasonal, inter-

annual, and intra-seasonal variations contribute the remaining

28% with the values of 0.4 mSv, 2.2 mSv and 7.2 mSv, respectively.

Across section E, the mean advection contributes an eastward

2.0 mSv to the total FWT. However, the contributions to the time-

mean FWT by the seasonal, inter-annual and intra-seasonal

variations are 0.1 mSv, 1.1 mSv and 2.3 mSv, respectively, and

direct westward. Thus the net FWT through section E is 1.5

mSv westward.
A B

FIGURE 5

The cumulative time-mean (A) volume flux and (B) FWT, along section D starting from its northern endpoint at 47°N. The vertical axis is the
distance from a location on section D to the northern endpoint, with the corresponding latitudes marked with the horizontal dashed lines.
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4 Time variations OF FWT

Figure 7 shows the monthly time series of the FWT through the

A, B, C and D boundaries of the control volume and section E,

superimposed with the low-pass filtered time series with a cut off

frequency of 0.67 cpy (18-month period). A wavelet analysis is

performed for each time series of above, and the results are shown

in Figure 8. For this analysis, we adopt the method proposed by Liu

et al. (2007), which rectifies the bias towards the low frequencies in

traditional wavelet analysis method. Statistical significance testing is

performed for a red-noise process with a lag-1 coefficient of 0.72

(Torrence and Compo, 1998), and the 90% confidence level is

shown as the black contour lines in the left column of Figure 8.

According to the time-averaged wavelet power spectra (right

column of Figure 8), the variations of the FWT through sections

A, C and D exhibit an evident seasonal cycle. At sections A and C,

the seasonal cycle dominates the FWT variations over other (inter-

annual and intra-seasonal) time scales (right panels of Figures 8A,

C). This feature of seasonal cycle dominance at these two sections
Frontiers in Marine Science 08
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presents in most the years during 1993 - 2018 (left panels of

Figures 8A, C).

Section B shows no seasonal cycle but an evident semi-annual

cycle. Moderate inter-annual variations of the FWT are present at

sections B, C and D. Intra-seasonal variations make significant

contributions to the variances of the FWT across sections B, C, D

and E. At section E, the variation of the FWT covers the broad time

scales from intra-seasonal to inter-annual without an evident

seasonal cycle, while the time evolution of the wavelet spectrum

(left panel of Figure 8E) and the time series of the FWT (Figure 7E)

suggest extremely strong eddy variations during 2009 and 2015.

These strong meso-scale eddy events near the Tail of GBN are

evident in an animation of the SSH anomalies (not shown).
4.1 Seasonal variation

The seasonal variation of the FWT of the LC can be

attributed to the variation of the major sources of freshwater,
A B

DC

FIGURE 6

Same as Figure 4B, except for the contributions to
�~F by the (A) mean advection, (B) seasonal variation, (C) inter-annual variation, and (D) intra-

seasonal variation, calculated by vertically integrating (5).
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e.g., outflows through the Hudson Strait and the Davis Strait.

The southward FWT through the Davis Strait, calculated using

the one-year-long observational data, has a mean value of 116

mSv and peaks in December-January (Curry et al., 2011). The

FWT through the Hudson Strait into the LC was estimated to be

42 mSv (Dickson et al., 2007) with a peak in October-December

(Straneo and Saucier, 2008). At the downstream of the LC on the

Labrador Shelf, the minimum salinity at 200 m appears in

December (Lazier, 1982), consistent with the peaks of FWT

from both upstream straits. However, Lazier (1982) showed that

the minimum salinity occurred in July-August at the surface and

progressively later with increasing depth. F&M2010 found that

the minimum values of the salinity appeared in July-September

for both the inshore and offshore branches of the LC above the

isopycnal surface of 1026.8 kg/m3 (less than 100 m on the

Labrador Shelf). F&M2010 suggested that the seasonal pulses

of the low salinity along the shelf break and close to the coast

were more dominated by the advection process rather than the

local atmosphere forcing.
Frontiers in Marine Science 09
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With the observational data, the above studies (Lazier, 1982;

F&M2010) were able to characterize the seasonal variation of the

salinity. However, the seasonal variation of the FWT consists of

different components as in (6). Figure 9 shows the seasonal

variations of the volume flux and FWT across the four

boundaries of the control volume and section E, obtained by

averaging the monthly anomalies in the same calendar month

during 1993 - 2018. Through section A, the seasonal variation of

the volume flux reaches the positive (northward) maximum

value of 0.34 Sv in June and negative (southward) maximum

value of -0.25 Sv in January, and the seasonal variation of the

FWT reaches the positive (northward) maximum value of 9.8

mSv in February and the negative (southward) maximum value

of -14.1 mSv in September. Note that a positive (northward)

maximum value of the variation of the volume flux or FWT

across section A means that the southward LC is seasonally the

weakest across this section and vice versa for the minimum

value. The difference in seasonal phases between the volume flux

and FWT across section A is caused by the phase difference
A

B

D

E

C

FIGURE 7

Monthly time series (black curve) of FWT through the boundaries (A-D) of the control volume and section (E), superimposed with the low pass
filtered time series (red curve) with a cut-off period of 1.5 years. The dashed lines indicate the time-mean values of the corresponding monthly
time series.
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between the salinity and velocity. Across this section, the first

two terms at r.h.s. of (6) make similar contribution to the

seasonal FWT (Figure 10), with their phases determined by

the seasonal velocity and salinity, respectively.

The seasonal phases of the horizontal velocity and salinity in

the vicinity of section A are discussed below. As reviewed in the

introduction, in summer the salinity within this part of LC is low

as a result of the southward advection of low salinity water from

upstream. The low salinity in combination with high water

temperature leads to higher SSH within the LC. Further to the

west on the GBN the increase of SSH is smaller, thus the SSH

gradient from west to east is reduced. This is confirmed by the

magenta curve in Figure 9, which is the mean seasonal cycle of
Frontiers in Marine Science 10
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the SSH at (50°W, 47°N) minus that at (47°W, 47°N) (the two

locations marked in Figure 1). Again the mean seasonal cycle is

calculated by taking the average of the SSH difference in the

same calendar month during 1993 - 2018. This mean seasonal

SSH difference has a minimum value in June. It corresponds to

the minimum southward LC velocity (or the maximum

northward anomaly), because the LC velocity has a weak

vertical shear (Figure 2A) hence closely follows the variation

of the SSH difference. While the southward FWT across section

A increases due to the lower salinity, the southward volume flux

decreases because of the reduced velocity.

Across section B, the volume flux and FWT show weak semi-

annual variation with two troughs in January and July and two
A

B

D

E

C

FIGURE 8

Left: normalized rectified wavelet power spectra for the time series through sections (A–E) shown in Figure 7. Values within the black contours
are above the 90% confidence level. Values overlaid with crossed lines are affected by the edge effects. Right: the time-averaged wavelet power
spectra multiplied by the variance of the FWT time series.
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peaks in May and December in Figure 9. Across section D, the

volume flux and FWT out of the control volume both reach

maximum (minimum) in June/July (December). At section C,

the seasonal variations of the volume flux and FWT have the
Frontiers in Marine Science 11
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opposite phases from those at section D. Hence, the stronger

outflow through section D corresponds to the weaker outflow

through section C. With a weaker inflow from section A in

summer, there is more LC water passing through section D, and
A B

FIGURE 9

Seasonal variations of the (A) volume flux and (B) FWT through the 5 sections, and the result by subtracting the SSH value at (47°W, 47°N) from
that at (50°W, 47°N), then taking the average for the same calendar month over 1993- 2018. The positive directions of the seasonal variations of
the volume flux and FWT for each section are (A): northward; (B): westward; (C): westward; (D): eastward, and (E): eastward. The two locations
for calculating the SSH difference are shown in Figure 1.
A B

DC

FIGURE 10

The RMS of the vector norms of the four components of
e
F
!
: (A)

Z 0

−H(x,y)

�SR
e

U
!
dz, (B)

Z 0

−H(x,y)

~SR U
!
dz, (C)

Z 0

−H(x,y)

g
~SR

e
U
!
dz and (D)

Z 0

−H(x,y)

g
S

0
R U
!0dz, which

are the vertical integrals of the four terms on the right hand side of (6). Numbers having the unit of mSv are the RMS of the four components of
the seasonal variation of the FWT across different sections.
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vice versa in winter. In the study of the Agulhas Current

retroflection with an idealized model, Dijkstra and De Ruijter

(2001) stated that the inertia plays a more important role in

controlling the retroflection than the side-wall friction if the

Agulhas Current is strong. Apply this to the LC, the stronger

flow in winter could overshoot the Tail of the GBN, westward

pass across section C and retroflect eastward across section E,

resulting in a larger westward volume flux or FWT across section

C. On the other hand, with the weaker incoming flow in

summer, the LC may detach from the shelf break of the GBN,

analogous to the phenomenon of the western boundary currents

separating from their coasts as investigated by many others

(Dengo, 1993; Pichevin et al., 2009; Pierini et al., 2011; Ezer,

2016). Thus in summer, the LC may retroflect at higher latitudes

rather than after overshooting the Tail of the GBN, resulting in

more LC water exported across section D. Through section E,

the volume flux and FWT show weak seasonal variations with

different phases. The eastward FWT through section E roughly

corresponds to the westward FWT through section C.

Figure 10 shows the Root Mean Square (RMS) of the vector

norm of each component of e~F (seasonal unit FWT). Along the

LC pathway, e~F can be mainly attributed to the seasonal variation

of the horizontal velocity (Figure 10A). The contribution due to

the seasonal variation of the salinity is significant to the north of

44°N. By integrating the four components of e~F along each

section, the values of the RMS of each component at different

sections are indicated with numbers in Figure 10. The variation

of the horizontal velocity results in 11.2 mSv of the RMS of the

seasonal variation of the FWT across section A, while the

seasonal variation of the salinity causes 10.7 mSv. Through

section B, the seasonal variation of the FWT is mainly caused

by the variation of the horizontal velocity with an RMS value of

9.6 mSv, much greater than the other three components.

Through section C, the seasonal variation of the horizontal

velocity makes the most contribution to the FWT seasonal

variation, and the seasonal variation of the salinity is not

important, while the seasonal variation of mesoscale eddies

makes a sizable contribution of 3.6 mSv to the RMS. Section D

is similar to section C, where the seasonal variations of the

horizontal velocity and mesoscale eddies both make major

contributions. Finally, through section E, intra-seasonal

variations (mesoscale eddies) make the largest contribution to

the seasonal variation of FWT.
4.2 Inter-annual variation

Figure 11 shows the inter-annual variations of the volume

flux and FWT through boundaries A, B, C and D of the control

volume and section E. The inter-annual variation of the

southward volume flux through section A has a magnitude of

0.4 Sv. The variations of the volume fluxes through sections C

and D have larger magnitudes of 1.8 Sv and 2.2 Sv, respectively,
Frontiers in Marine Science 12
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and their correlation coefficient is -0.92. The increase of volume

flux westward through section C corresponds to the decrease of

the volume flux eastward through section D. The fact that the

magnitude of the variation of the volume flux across either

section C or D is much greater than that across section A can be

caused by multiple mechanisms, including the inter-annual

variation of the location of the LC retroflection position and

the impact of the NAC. Although the magnitude of the inter-

annual variation of the volume flux through section C or D is

greater than that through section A, the inter-annual variations

of the FWT through sections A, C and D have the similar

magnitudes of 40 mSv. Thus is related to the combined

contributions of the inter-annual variations of velocity and

salinity, to be discussed below.

Figure 12 shows the RMS of the vector norms of the four

components of F
!�

(inter-annual unit FWT). Similar to the

seasonal variation ( e~F), F!�
is mainly caused by the inter-annual

variation of horizontal velocity in most regions. The inter-

annual variation of the salinity makes a significant

contribution to the RMS of vector norm of F
!�

in the north of

44N. The variation of the salinity makes a significant

contribution to the RMS of the inter-annual variation of the

FWT across section A. The contribution due to the interaction

between the inter-annual anomalies of the velocity and salinity is

smaller than the first two components in most regions but is

nontrivial at section D. Finally, the fourth component, mainly

representing the inter-annual variation of mesoscale eddies,

makes significant contributions at sections C, D and E.
5 Conclusion and discussion

The global ocean reanalysis product, GLORYS12v1, is

analyzed for quantifying the spatial-temporal variations of the

FWT above the 1027.25 kg/m3 isopycnal surface in the region east

of the GBN. Firstly, the results for the time-mean FWT are

presented in Figures 4–6 and Table 1. The GLORYS12v1

product enables the quantification of the spatial variation of the

time-mean FWT and the magnitudes of the standard deviations,

as well as the contributions to the time-mean by the mean

advection and the interactions between the time variations of

velocity and salinity on seasonal, inter-annual and intra-seasonal

time scales [equation (5)]. Through section A at the Flemish Pass,

the southward LC is the dominant FWT into the defined control

volume due mainly to the mean advection. A major proportion of

the freshwater carried by the LC enters into the interior of the

North Atlantic along the offshore boundary of the LC between the

Flemish Pass and the Tail of the GBN. Across section D, the

eastward FWT amounts to 42% of the southward FWT across

section A. The FWT through section D can be further

decomposed to 72% due to the mean advection and 27% due to

the combined contributions of the inter-annul and intra-seasonal

variations of the circulation and salinity. At the Tail of the GBN,
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the westward FWT through section C accounts to 29% of the

southward FWT through section A, and 63% of this westward

FWT is due to mean advection while 37% is due to the other three

components. After the LC passes across section C, a part of this

cold and fresh water continues flowing westward to the Scotian

Slope (Loder et al., 1998; Brickman et al., 2018), and another part

mixes with the NAC and retroflects eastward to the interior of the

North Atlantic (F&M2010). The retroflection of the LC is

diagnosed through a short section E to the south of the Tail of

the GBN. Through section E, the time-mean FWT is westward,

amounting to 6% of the westward FWT through section C. We

note that the FWT due to the mean advection is eastward,

consistent with the direction of the LC retroflection. However,

the eastward mean advection is overtaken by the westward FWT

due to the inter-annual and intra-seasonal variations of the

circulation and salinity.

The monthly FWTs across the five sections, based on 26

years of data from GLORYS12v1, show significant magnitudes of

standard deviations. The time series and power density spectra

further show the FWT variations at the seasonal, inter-annual

and intra-seasonal time scales. The seasonal and inter-annual

variations are further decomposed into contributions due to the

variations of velocity and salinity, including their correlations

(equations (6) and (7), Figures 10, 12). For FWT variations at

both time scales, the variations of velocity (advecting the time-

mean salinity) cause the largest FWT RMS values across sections

A, B, C and D. Only across section A, the variations of salinity

(advected by the time-mean velocity) cause the RMS values

comparable to that caused by the variations of velocity. The

correlations between variations of velocity and salinity, at both

seasonal and inter-annual scales, cause relatively smaller RMS

values across each section. Finally, the correlation between the

intra-seasonal variations the velocity and salinity causes
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significant RMS values across sections C and E, and

specifically the largest across section E, for both seasonal and

inter-annual FWT variations.

The inter-annual variations of the volume fluxes across

sections C and E are negatively correlated, as shown in

Figure 11A, with the correlation coefficient of -0.69. On the

other hand, the inter-annual variations of the FWT across these

two sections are positively correlated, as shown in Figure 11B.

The above behavior can be explained by the variation of the

positions of the LC or NAC in the meridional direction, and the

contribution of the mesoscale eddies. Because the two sections

are separated at �~V = 0, a northward shift of NAC (LC) will

decrease the westward volume transport across section C while

increase the eastward transport across E. In the meanwhile, as

the high salinity water shifts northward, the westward FWT

across section C decreases. Across section E, the increases of

both eastward velocity and salinity favor the decrease of the

eastward FWT. The opposite occurs when the NAC (LC) shifts

southward. Note that the inter-annual variations of the FWT

across section E are mostly caused by the correlation between

intra-seasonal variations of the velocity and salinity,

representing the contributions due to the mesoscale eddies. A

cyclonic cold-core (low salinity) eddy, near the separation

position between sections C and E, will cause u' > 0 and S
0
R >

0 (smaller S) across E, hence the increase of the eastward FWT,

while u'< 0 (increased westward velocity) and S
0
R < 0 (larger S)

across C cause the increase of the westward FWT. The opposite

occurs when an anti-cyclonic warm-core (high salinity) eddy is

present. Thus, the mesoscale eddies cause evident inter-annual

variations of the westward FWT across section C, which is

positively correlated with the eastward FWT across section E.

Overall, themain results of the present study are consistent with

the conclusions of previous studies. However, the continuous time
A

B

FIGURE 11

As in Figure 9, except for the inter-annual variations of the (A) volume flux and (B) FWT.
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series of a multi-decade eddy-resolving ocean product

(GLORYS12v1) enables a more comprehensive quantification of

the multi-scale variations of the FWT carried by the Labrador

Current, and the different contribution components to the time-

mean, and seasonal and inter-annual variations of the FWT. Such

quantification is difficult to achieved using sparse observation data

and coarse resolution or short-term model simulation results. The

model results may help to assess the accuracy of the FWT estimates

derived from observations and guide the design of observations. For
Frontiers in Marine Science 14
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example, for the time-mean FTW, through sections A and B they

are mainly caused by the mean advection, hence the accuracy of

their estimations depends on that of the measured time-mean

velocity and salinity; for sections C, D and E, simultaneous

measurements of the time variations of and salinity are needed

because their correlations make significant contributions to the

time-mean FWT.

The present study focuses on the LC east of the GBN till

reaching its southern tail. In future work it would be interesting
A B

DC

FIGURE 12

As in Figure 10, except for the four components of F
!�

: (A)
Z 0

−H(x,y)

�SR U
!�

dz, (B)
Z 0

−H(x,y)
S�R

�
U
!
dz, (C)

Z 0

−H(x,y)
(S�R U

!�
)�dz and (D)

Z 0

−H(x,y)
(S0R U

!0 )�dz.
TABLE 1 A summary of time-mean FWT (± standard deviation) through the 5 sections as shown in Figure 4B and the four components that
contribute to the time-mean FWT as shown in Figure 6.

Section Time-mean (mSv) Mean advection (mSv) Seasonal (mSv) Inter-annual (mSv) Intra-seasonal (mSv)

A -83.6 ± 18.1 -84.4 0.6 0.1 0.1

B -1.5 ± 10.1 -1.2 0.0 -0.2 -0.1

C 24.3 ± 21.7 15.4 1.3 2.6 5.0

D 35.2 ± 25.9 25.5 0.4 2.2 7.2

E -1.5 ± 11.2 2.0 -0.1 -1.1 -2.3
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to analyze how the fresh (and cold) water carried by the LC

impacts the variations of hydrography from the west of the tail to

the Scotian Slope. Furthermore, because of the significant

influences of intra-seasonal (mesoscale) variations, exploring

the predictability of hydrography (and circulation) in this

region is challenging, and we hope that advancements in this

aspect can be achieved using more advanced analysis methods

(e.g., machine learning). Finally, GLORYS12v1 is one of the

eddy-resolving global analysis products created with intensive

assimilation of ocean observational data in recent years. Its 1/12°

horizontal resolution, and also the use of monthly data in this

study, may cause underestimation of the contribution of the

mesoscale eddies. It would be valuable to compare the present

analysis results with that based on daily output of GLORYS12v1

and the simulation/reanalysis results of other models with

similar and higher spatial resolutions.
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