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Abstract A belt conveyor system is one of the essential equipment in coal mining. The damages to

conveyor belts are hazardous because they would affect the stable operation of a belt conveyor sys-

tem whilst impairing the coal mining efficiency. To address these problems, a novel conveyor belt

damage detection method based on CenterNet is proposed in this paper. The fusion of feature-wise

and response-wise knowledge distillation is proposed, which balances the performance and size of

the proposed deep neural network. The Fused Channel-Spatial Attention is proposed to compress

the latent feature maps efficiently, and the Kullback-Leibler divergence is introduced to minimize

the distribution distance between student and teacher networks. Experimental results show that

the proposed lightweight object detection model reaches 92.53% mAP and 65.8 FPS. The proposed

belt damage detection system can detect conveyor belt damages efficiently and accurately, which

indicates its high potential to deploy on end devices.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

A belt conveyor system is one of the most widely used and ver-
satile equipment to transport bulk material, and they play an

important role in carrying coals in the mining industry [1,2].
As the carrying medium of a belt conveyor system, the con-
veyor belt is vulnerable to damages caused by the metal foreign

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2023.03.034&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:liuxinhua@cumt.edu.cn
mailto:zhixiong.li@yonsei.ac.kr
mailto:zhixiong.li@yonsei.ac.kr
https://doi.org/10.1016/j.aej.2023.03.034
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2023.03.034
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nomenclature

FCSA Fused Channel-Spatial Attention

KL divergence Kullback-Leibler divergence
FKD Fusion Knowledge Distillation
Cavg Weights of each channel
dspan Span of two adjacent spatial pieces

Idx Index list of all divided spatial pieces
si Sum of each piece i
WA Weight list of channel attention

Spai Spatial attention for each piece ibHgt Modified probabilitybHxyc Heatmap of class c in location of x; yð Þ
xi Balanced weight for each class i
Lfeat Feature-wise knowledge distillation loss

Lresp Response-wise knowledge distillation loss

Lhw Class balanced heatmap loss
Loff Object center offset loss
Ltotal Total loss of the improved CenterNet model
FPS Frames Per Second

mAP Mean Average Precision
LME Logarithmic Model Efficiency
IPC Industrial PC

CPU Central Processing Unit
GPU Graphics Processing Unit
PLC Programmable Logic Controller
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matters mixed in coals or the impact load of bulk material.
Such damages to the conveyor belt may lead to the whole belt
conveyor system working at a low efficiency or even be totally
dysfunctional [3]. Hence, a stable and reliable conveyor belt

damage detection system is urgently needed to detect and mon-
itor the state of the conveyor belt so as to ensure the stable
operation of the belt conveyor system [4].

The mainstream technologies of detecting conveyor belt
damage are vision-based machine learning methods. Machine
vision-based object detection methods have been studied and

developed for many years with a complete theoretical system
has formed, e.g., edge detection, feature extraction, semantic
segmentation, Fourier transform and so on. Traditional
machine vision-based methods depend on engineer experience

and environmental conditions, which limits its usability and
application. Traditional vision-based damage detection meth-
ods [5–9] consist of image acquisition, preprocessing, objection

detection and postprocessing. To address these problems, aux-
iliary equipment is deployed. Considering the strong penetra-
tion characteristic of infrared light, one or more

hyperspectral cameras were utilized in [10–13] to realize
multi-images fusion and improve the algorithm performance
of conveyor belt damage detection. Laser-assisted conveyor

belt damage detection methods [14–16] that can convert indis-
tinguishable damage features of the belt into distinct laser lines
were also utilized. Besides, audio-visual combined detection
methods based on sound signals and images of the conveyor

belt were investigated in [17,18]. The fused audio-visual detec-
tion can identify different states of the conveyor belt.

With the advance of chips and algorithms, artificial neural

network is widely used in basic science [19–22] and engineering
applications [23–25]. Compared with traditional vision-based
object detection methods, the deep learning-based object

detection methods provide the advantages of excellent general-
ization and fast detection speed. The first network architecture
that successfully applied the deep learning to object detection

is R-CNNs. Then, one-stage object detection models, e.g.,
YOLO, SSD and CenterNet, are proposed to improve the
detection accuracy. Besides the complicated detection proce-
dures, two-stage methods, e.g. R-CNNs [26], have the advan-

tage of excellent performance. However, their disadvantages
are also obvious, such as complicated detection processes, slow
detection speed and relatively big models. To overcome the
above disadvantages, one-stage models which regard object
detection as regression have been proposed and drawn much
attention. The well-known one-stage object detection models
are YOLO [27], SSD [28] and CenterNet [29] series. They have

the characteristics of shared parameters, simplified models,
fast detection speed and relatively poor performance than that
of two-stage methods. Considering the velocity of belt (1.5 m/s

or higher), the detection efficiency and compute capability of
end devices, the belt damage detection model must balance
the accuracy and reference speed. Either two-stage or one-

stage models have suitable application fields; however, the
one-stage models are more appropriate for conveyor belt dam-
age detection, which needs to meet the requirements of real-
time and stable detection.

As one of the representative one-stage anchor free object
detection algorithms, CenterNet mainly consists of three mod-
ules, i.e., backbone, decoder and head. The backbone includes

multiple convolutions and activation layers, and it is responsi-
ble for latent feature extractions. The latent feature map
extracted from backbone is decoded to the form of prediction

required, which is fed into the head part to output final predic-
tions. CenterNet can simultaneously predict object classes and
regresses object size and location, making the inference process

fast and efficient. Researchers have proposed many novel
object detection methods based on CenterNet. For instance,
Guo et al. [30] put forward a one-stage object detection
method based on CenterNet to classify and locate different

ships in SSR images. The feature refinement module and fea-
ture pyramid fusion module were introduced to address the
small object detection problem. A novel defect detection

method based on CenterNet was revealed in [31] to inspect
any generated defects during additive manufacturing. The den-
sity map branch of head output and loss count was introduced

to realize comprehensive and accurate prediction. Dai et al.
[32] proposed a CenterNet-based power line surveillance
method to inspect specific regions and avoid accidents. The

cascade guiding structure and improved loss function were
introduced to improve the detection performance.

In this paper, a novel feature-wise knowledge distillation
(KD) based on attention mechanism is introduced, and an

improved lightweight CenterNet object detection algorithm is
proposed. The main contributions of this paper are detailed
as follows:
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(1) Fusion Knowledge Distillation: a novel knowledge dis-

tillation algorithm combined with feature-wise and
response-wise knowledge distillation is proposed in this
paper. The feature-wise knowledge distillation is imple-

mented based on the adaptive fusion of channel atten-
tion and spatial attention for latent feature maps, and
the response-wise knowledge distillation aims at trans-
ferring knowledge of class heatmaps.

(2) Improved focal loss: to address the class-imbalance
problem, an improved focal loss function is carried
out. The improved focal loss function can weight hard

samples bigger value than easy samples adaptively and
adjust the proportion of different class samples in the
loss function.

(3) Lightweight deep learning model: based on the proposed
Fusion Knowledge Distillation and improved focal loss,
a lightweight belt damage detection algorithm based on
CenterNet is developed. The lightweight deep learning

model can balance the model size and performance by
adopting feature-fused knowledge distillation.

The rest paper is organized as follows. Section 2 introduces
the improved conveyor belt damage detection method based
on Fused Channel-Spatial Attention (FCSA) and Knowledge

Distillation (KD). Experiments and corresponding results are
presented in Section 3. Finally, Section 4 demonstrates the
application of the detection system, and Section 5 concludes

this paper and discusses future works.

2. The proposed conveyor belt damage detection method

2.1. The architecture of the conveyor belt damage detection
method

The proposed novel damage detection method for conveyor
belts is based on CenterNet and Fusion Knowledge Distilla-
tion (FKD). CenterNet is one of the anchor-free one-stage

object detection deep neural networks. The outputs of Cen-
terNet consist of class heatmaps, height and width regression
and offsets of centers. Knowledge Distillation is inspired by
Fig. 1 The architecture of the proposed conveyor belt detection netw

and Student models, respectively. Teacher model provides soft labels
the learning process of human beings. Fig. 1 shows the net-
work architecture of the proposed conveyor belt damage detec-
tion algorithm, which mainly consists of a teacher network and

a student network. The implementation of training for the
deep neural network is usually the interactive process between
the teacher network and the student network. The teacher net-

work is a heavyweight, pretrained deep learning network, and
it performs well in inferencing. Meanwhile, a lightweight deep
learning network plays as a student learns from the teacher

network in the training procedure. The teacher-student archi-
tecture plays an essential role in the knowledge distillation.
In this paper, the ResNet50 is introduced as the backbone of
the teacher network, and the ResNet18 is selected as the back-

bone of the student network. The feature-wise knowledge dis-
tillation is applied by optimizing the distance of latent feature
maps from the student network to the teacher network. Fur-

thermore, the response-wise knowledge distillation optimizes
the distance of heatmaps between student and teacher
networks.

CenterNet regards object detection as regression and has
excellent inference performance of precision and speed. Both
of teacher and student networks of the proposed network are

based on CenterNet. The teacher network adopts ResNet50
as the backbone and is well-trained in advance. The ResNet18
is introduced as the backbone of the student network, which is
trained with the strategy of FKD and FCSA. To efficiently

train the lightweight student network, knowledge distillation
is applied in latent feature maps and head-outputs. The back-
bone network contains a large number of high-level latent fea-

tures, which are extremely useful to object detection.
Therefore, the feature-wise Knowledge Distillation can com-
press essential information in latent feature maps of the tea-

cher network and transfer it to the student network. The
head of CenterNet consists of class heatmaps, height-width
regression and center offsets, which are the model prediction

and critical. Hence, the response-wise Knowledge Distillation
is introduced to adjust the student model by the teacher model.

The backbone of ResNet18 is more compact than of
ResNet50, but the compression of model is limited. Hence,

other classical feature pyramid networks are introduced as
ork. During the training process, input images are fed into Teacher

for Student model.
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the backbone of the student model and the performance is
quite satisfactory. The experimental results are discussed in
Section 3.

2.2. Fusion knowledge distillation

To achieve well-trained lightweight student model, the pro-

posed knowledge distillation consists of feature-wise and
response-wise Knowledge Distillation [33].

2.2.1. Feature-wise knowledge distillation

The proposed conveyor belt damage detection algorithm is
based on an anchor-free CenterNet, which consists of the
backbone network, decoder and head parts. The backbone

network is responsible for feature extraction from input images
and it contains high-dimensional features with large parame-
ters. If the knowledge distillation is applied without feature

compression, the student network training process would be
high-cost and formidable. Hence, a feature-wise knowledge
distillation based on the proposed Fused Channel-Spatial
Attention (FCSA) is introduced. The schematic of the pro-

posed FCSA is shown in Fig. 2.
Fig. 2 The schematic of the Fused Channel-Spatial Attention. Laten

Then two-path features are combined into Fused Channel-Spatial Att
(1) The channel attention is applied to obtain the segmenta-

tion coefficients for latent feature maps. Given the ten-

sor of the backbone network Tb 2 RC�H�W as the
input, the output of the 2D average pooling along

H � W dimensions, Cavg, can be described as:

Cavg ¼ AvgPool Tbð Þ ð1Þ

where AvgPool denotes the operation of 2D average pooling,
C, H and W are channel, height and width of latent feature
maps, respectively. The Cavg is used to divide the latent feature

maps of the backbone output into N pieces (N equals 10 in this
paper). The span of two adjacent pieces is obtained by

dspan ¼ C=N. The Cavg is treated as the channel index and

sorted in descending order. The top N weakest response points
in Cavg is treated as the indexes for spatial attention, and the

distance for each two divided indexes must be larger than
dspan. All N divided indexes which satisfy the above require-

ments can be represented as an index set
Idx ¼ 0; c1; c2; :::; cn; cmaxf g, and cmax is the number of
channels.
t feature maps are extracted along two paths: Channel and Spatial.

ention.
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(2) The weights for spatial attention represent the distribu-

tion of features along channel-wise. The channel atten-
tion Cavg has been divided into N pieces by the index

set Idx sorted in descending order. The sum of each
piece, si, can be obtained as follow:

si ¼
XIdxiþ1

j¼Idxi
Cavg jð Þ ð2Þ

where Idxi denotes the i-th member in Idx, and the set
sumA ¼ s0; s1; :::; snf g. The N-weight of channel attention can

be described as:

WA ¼ softmax sumAð Þ ¼ x0;x1; :::;xnf g ð3Þ
(3) For certain pieces feature maps in N pieces, Fi, the spa-

tial attention is applied to compress the feature maps, which

can be described as:

Spai ¼ SpaAtt Fið Þ; i 2 0;N½ � ð4Þ
where SpaAtt denotes the operation of the spatial channel, and

the SpaAtt process is shown in Fig. 3. It is seen that the SpaAtt
consists of average-pooling and max-pooling along the chan-
nel dimension. The outputs of two pooling layers are fed into

a convolutional layer to integrate information. The fused
attention for spatial and channel, FCSA, can be described as:

FCSA ¼
X

i
xi � Spai; i 2 0;N½ � ð5Þ

where wi 2 WA, and the fused attention contains the distribu-
tion of spatial and channel information.

(4) The feature-wise knowledge distillation is applied by
minimizing the Kullback-Leibler divergence of the latent fea-
ture maps from student network to teacher network. The loss
function of feature-wise KD can be described as:

Lfeat ¼
KL FCSAstudentjjFCSAteacher

� �
h0 � w0 ð6Þ

where the h0 and w0 denote the height and width of the FCSA

output, respectively. The latent feature maps are compressed
by FCSA, which can guide the student network to focus on
the essential information in latent feature maps and greatly

reduce computation.
Fig. 3 The process of t
2.2.2. Response-wise knowledge distillation

CenterNet is one-stage anchor-free object detection model,

whose output contains the prediction of classes and the objects
locations. The response-wise knowledge distillation is applied
by minimizing the Kullback-Leibler divergence:

Lresp ¼
PH0�W0

i¼1 KL Hs
i jjHt

i

� �
H0 �W0 ð7Þ

Where KL denotes the Kullback-Leibler divergence, H0 and
W0 are the height and width of heatmaps, respectively. Hs

i and

Ht
i are the pixel i response of heatmaps in student and teacher

networks, respectively. Through the response-wise knowledge
distillation, the student network can directly learn the class

information from the teacher network.

2.3. The loss function of the proposed conveyor belt damage
detection network

The loss function of CenterNet consists of class heatmap loss,

height-width regression loss and center point offset loss. The
class heatmap loss is based on focal loss and focuses on the
hard samples which would contribute to back-propagation

more than easy samples. The class heatmap loss in the original
CenterNet can be described as:

Lhm ¼ � 1

N

X
at 1� bHgt

� �c
log bHgt ð8Þ

where at and c are hyperparameters useful to data-balance,

and N is the number of keypoints in an image. And bHgt is

the modified probability:

bHgt ¼
bHxyc; ify ¼ 1

1� bHxyc; others

(
ð9Þ

where bHxyc is the heatmap of class c in location of x; yð Þ, which
is represented in 2D Gaussian kernel:

Hxyc ¼ exp � x� pxð Þ2 þ y� py
� �2

2r2
p

 !
ð10Þ

where rp is an object size-adaptive standard deviation.
he spatial attention.



Table 1 The pseudocode of the training process for the

proposed conveyor belt damage model.

Algorithm 1 The training process for the proposed conveyor belt

damage model

1: Input: hyperparameters (batch size b, epochs et and es, kfeat and
kresp), location of dataset A

2: Establish and initialize models: Mt and Ms, setup optimizer:

Adam, Load training dataset A, samples a 2 A

3: Train Teacher Mt:

For epoch ¼ 1 to et do

Get hm; h&w; offsets ¼ Mt að Þ, computeLdet based on eq. (16),

then update parameters of model Mt

end for

4: Train Student Ms:

For epoch ¼ 1 to es do

Get hmt; ht&wt; offsetst ¼ Mt að Þ, get
hms; hs&ws; offsetss ¼ Ms að Þ, then compute Lfeat based on eq.

(6) andLresp based on eq. (7), then computeLtotal based on eq.

(15), then update parameters of model Ms

end for
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However, each type of conveyor belt damage has different
probabilities of occurrence, and a certain type of belt damage
is critical but scarce. Hence the experimental dataset for the con-

veyor belt contains three classes and has the typical characteris-
tic of data-imbalance: the samples of scratch are much more
than that of tear and crack. The imbalance dataset has the char-

acteristic of long-tailed data distribution (few classes represent
most data and most classes are not represented). The strategy
of class-balance is introduced to address the class-imbalance

problem. The class-balance weight is described as:

xi ¼ 1

Eny

¼ 1� b
1� bny

ð11Þ

where b is hyperparameter andEny denotes the effective number.

ny is the number of samples in ground-truth class y. The original

focal loss contains a parameter of at, which serves as the class-

balance weight. The weight wi is introduced to replace at and
solve the data-imbalance problem. So, the improved class heat-
map loss with class-balance weight wi can be described as:

Lhm ¼ � 1

N

X
xyc

xi 1� bHxyc

� �c
log bHxyc; ify ¼ 1

1� bHxyc

� �b bHxyc

� �c
log 1� bHxyc

� �
; others

8><>: ð12Þ

where b and c are hyperparameters. The introduced weight, xi,
can balance the loss of different classes for positive samples.

The term of 1� bHxyc

� �b
weights the negative samples small

value, which makes the model focus on the positive samples.
CenterNet does not contain the prior knowledge of anchor

boxes and the size of objects are acquired by minimizing the
height-width regression loss:

Lhw ¼ 1

N

XN

i¼1
bSpk � sk

��� ��� ð13Þ

where bSpk and sk are predictions and ground-truth of each

object k, respectively. Since the predicted object centers are off-

set to ground-truth. The offset loss is described as:

Loff ¼ 1

N

X
p

bOep � p

R
� ep� ���� ��� ð14Þ

The FKD is proposed to compress and transfer features
from teacher to student. The total loss of the proposed con-
veyor belt damage detection network consists of object detec-
tion loss and FKD loss and it has:

Ltotal ¼ Ldet þ kfeatLfeat þ krespLresp ð15Þ

Ldet ¼ Lhm þLhw þLoff ð16Þ
where kfeat and kresp are hyperparameters to control the propor-

tion of Lfeat and kresp in the total loss.

In order to present the proposed conveyor belt algorithm

thoroughly, the pseudocode of the training process is described
in Table 1.

3. Experiments and results

3.1. The implementation of the conveyor belt damage detection
system

A conveyor belt damage detection system has been built to
detect the damage on the surface of conveyor belt in real-
time, and its schematic is shown in Fig. 4. The hardwire of
the damage detection system comprises an image acquisition

module, a transmission module, a data processing and an exe-
cution module. The image acquisition module consists of lin-
ear array industrial cameras, light sources and the

corresponding controller. During the operation of this system,
the acquired belt images are firstly transmitted to the data pro-
cessing module through the transmission module, which con-

sists of a gigabyte industrial switch and gigabyte ethernet
cables. Then, an industrial PC (IPC) with high-performance
graphics processing unit (GPU) processes the belt images
and predicts the results of damage types, size and location.

Finally, after receiving signals from a center server, the PLC
in the execution module can raise the alarm or shut down
the conveyor if specific conveyor belt damages are detected.

Connecting one or more sets of acquisition, transmission,
and data processing modules to the execution module, the pro-
posed conveyor belt damage detection system can inspect mul-

tiple nodes of the conveyor belt simultaneously.
The training procedure for the improved conveyor belt

damage detection model is achieved by using a data processing
server, which is equipped with an intel i9-10900kf CPU, a 32G

RAM and two RTX2080s graphics cards. The detailed
description of data processing server is listed in Table 2. To
speed up the training process, the proposed FKD-CenterNet

model was trained on the high-performance server with two
NVIDIA GPUs. The proposed model is established by a pop-
ular deep learning framework, PyTorch, which is based on the

Python programming language. Its primary data type is single-
precision floating point. It can be seen from Table 2, for single-
precision floating point arithmetic, the performance of GPU is

66 times higher than of CPU. Hence, the data server with two
GPUs used in this paper can provide powerful computing sup-
port. Three types of damage images, i.e., scratch, crack and
tear, of the conveyor belt in the train and evaluation dataset

were obtained from a laboratory simulation environment as
shown in Fig. 5.

Considering memory size of two GPUs and model perfor-

mance, the resolution of belt damage images, 416 � 416, is



Fig. 4 The hardware framework of the conveyor belt damage detection system. It contains four modules: image acquisition module,

transmission module, data processing module and execution module.

Table 2 The detailed description of data processing server.

No. Device

name

Type Specification

1 CPU Intel

I9-10900kf

Frequency: 3.7 GHz

Turbo Clock: 5.3 GHz

TDP: 125 W

FP32 (float): 0.169

TFLOPS

2 RAM Kingston

16G DDR4 * 4

Dual channel, 4 slots

2666 MHz

3 Hard driver TOSHIBA

512G SSD

Interface: NVMe

Speed: 3100 M/s

4 GPU NVIDIA

RTX 2080 s * 2

Memory Size: 8 GB

Bandwidth: 495.9 GB/s

FP32 (float): 11.15

TFLOPS
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appropriate for training the proposed FKD-CenterNet model

based on RTX2080s. During the training process, the custom
conveyor belt damage dataset has been augmented by horizon-

tal and vertical flipping, 90% random cutting and �3
�
rota-

tion. The detailed description of the conveyor belt damage
dataset is listed in Table 3. The samples of damaged belt
Fig. 5 The belt conveyor in the lab
images were acquired in the laboratory simulation environ-
ment and labeled carefully. Even though the data augmenta-

tion and cleaning were conducted, the data-imbalance of
different classes of the conveyor belt damage dataset is still
inevitable. To train the conveyor belt damage detection model
well, the ratio of train, validation and test is set to 7:2:1. Each

image may contain one or more detection objects. In order to
balance the samples in the dataset, each number of classes ny is

set to 767, 548 and 193, respectively.
The proposed algorithm consists of two stages: teacher

training and student training, and Adam optimizer with
momentum of b1 ¼ 0:93, b2 ¼ 0:999 is applied in both training
stages. The batch size is set as 6 and initial learning rate is

1� 10�4 with decay rate 2:5� 10�5 per 8 k iterations.

The optimizer plays an essential role to perform parameters
update for a deep learning model. Hence, several different
optimizers, such as SGD, Momentum, AdaGrad, RMSprop
and Adam, have been tested. SGD (Stochastic Gradient Des-

cent) is a basic optimizer, which tries to find the minimum in
a random way. Momentum is a method that tries to accelerate
optimization process and suppress oscillations in related direc-

tions. AdaGrad adapts the learning rate to the parameters and
performs smaller updates for parameters. RMSprop optimizer
is similar to Momentum and tries to dampen oscillations.

Adam is a method that introduces adaptive policy for learning
rate. The training results (Student model) of above optimizers
are listed in Table 4. It can be seen that Adam optimizer per-
oratory simulation environment.



Table 3 The detailed description of the conveyor belt damage dataset.

Capacity Resolution Scratch Crack Tear Augmented capacity

Train 874 – 511 364 143 –

Validation 250 – 155 121 36 –

Test 125 – 101 63 14 –

Total 1249 416 � 416 767 548 193 3498
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forms excellent even though it takes more training time.
Hence, Adam is selected as training optimizer.3.2 The experi-

mental results and comparisons.
The well-trained teacher model is necessary for training the

lightweight student network. The teacher model consists of the

ResNet50 backbone, decoder and head module. The decoder
parses the latent feature maps from the backbone to three
branches, i.e., heatmaps, object sizes and center offsets, which

are used to predict objects in head module comprehensively.
The proposed FKD served as soft labels and guided the stu-
dent model in the training process. After the training process
for the improved CenterNet model, 345 (10%) testing images

in the augmented dataset are verified. The average precisions
of teacher model with backbone ResNet50 and student model
with backbone ResNet18 are 94.55% and 92.53%, respec-

tively. In the meanwhile, the recalls are 96.34% and 93.85%,
respectively. The above results are obtained with 45.4 mini-
mum fps, and Intersection over Union (IoU) has reached

86.4%. The prediction results of the teacher model are exhib-
ited in Fig. 6. The score threshold is set as 0.5, and the most of
belt damages can be detected. Although samples with scratch
containing multiple small features are the typical hard ones

in this dataset, it can be labeled out accurately.
The comparison of teacher (ResNet50) and student

(ResNet18) models is shown in Fig. 7. During the training of

the teacher model, the backbone of ResNet50 is frozen in
the first 45 epochs to make the best use of the pretrained back-
bone of ResNet50 and focus on training the decoder and head

module. Therefore, as shown in Fig. 7(b), a turning point
appears around 45 epochs in the loss curve of the teacher
model when the backbone of ResNet50 is unfrozen. At the

end of the training process, both teacher and student models
are stable. It is seen from Fig. 7(a) that the average precisions
of the teacher model in terms of crack, tear and scratch are
generally larger than that of the student model, denoting that

the teacher model outperforms the student model. However,
considering these three kinds of damages, the mean average
precision (mAP) of the student model achieves as high as

92.53%, which is only a little smaller than that of the teacher
Table 4 The training results based on different optimizers.

Optimizers SGD Momentum

mAP (%) 87.15 88.97

Final loss 1.648 0.939

Time consumption (h) 8.1 9.1
model (94.55%), indicating the compact student model learned
the excellent feature extraction ability based on the proposed

Fusion Knowledge Distillation and has achieved almost com-
parable performance of the teacher model.

To further verify the proposed Fused Channel-Spatial

Attention and Fusion Knowledge Distillation, the backbones
of MobileNet and Xception were introduced. And ResNet101
as another teacher model was introduced to verify the influ-

ence of different teacher models. Since the output sizes of dif-
ferent backbones are not compatible with the decoder of
CenterNet, several convolutional and ReLU layers were
appended to adjust the output size of the latent feature maps.

To show the comparison more clearly, Logarithmic Model
Efficiency (LME) is introduced as follows:

LME ¼ �log mAP � FPS=Parasð Þ ð17Þ
where mAP denotes mean Average Precision, and FPS and

Paras represents Frames Per Second and Parameters, respec-
tively. The LME considers the influences of model size and
performance, and takes the negative logarithmic results to

make it more readable. The experimental results of models
with different backbones and other object detection algorithms
are listed in Table 5.

The smaller LME represents more balanced performance

among precision, speed and compute cost. It can be seen from
Table 5 that the proposed conveyor belt damage detection
algorithm with Fusion Knowledge Distillation and Fused

Channel-Spatial Attention can achieve excellent performance
and make a favorable balance between precision and speed.
Although the Xception model barely show model compression

because of its complicated structure, the mAP of the Xception
model with FKD strategy has been largely improved than that
of same model without FKD, which can be inferred from the

decreased LME. The comparison between teacher models, stu-
dent models with and without FKD strategy are listed in
Table 5. It can be concluded that teacher models obtained bet-
ter mAP scores but larger storage occupations, which are suit-

able for scenarios with high-performance requirements. The
FKD strategy can improve compact model performance obvi-
AdaGrad RMSprop Adam

91.24 90.61 92.53

0.793 0.811 0.746

9.8 8.7 9.5



Fig. 6 The experimental results of the teacher model. The score threshold is set to 0.5 and different damages are displayed in blue, green

and red colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7 The comparison of teacher (ResNet50) and student (ResNet18) models. (a) The AP of teacher and student models. (b) The loss

curves of the teacher model. (c) The loss curve of the student model. Student model has a slight performance degradation compared with

Teacher model, and it is within the acceptable range.
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ously, which make it balanced in performance and resource
consumptions. But different teacher models with small perfor-
mance gaps hardly have influences on training effect of student

models applied the FKD strategy. Therefore, the proposed
FKD strategy can enhance compact model performance and
is relatively easy to implement. In addition, YOLOX [34],
DetectoRS [35] and Swin Transformer [36] are studied and
compared with the proposed FKD-CenterNet model based
on the custom conveyor belt dataset. These models reached

excellent benchmark performance on public datasets, such as
COCO and ImageNet, but required dedicated fine-tuning to
custom dataset. The test results of above networks on custom



Table 5 The experimental results of the proposed CenterNet algorithm with different backbones and other models (ResNet � in
bracket represents teacher model used for the proposed FKD strategy).

Model Backbone Storage (MB) mAP (%) FPS LME

Teacher ResNet50 127.8 94.55 45.4 1.0910

ResNet101 184.3 95.21 38.4 1.6176

Student ResNet18 (ResNet50) 89.7 92.53 65.8 0.3875

MobileNet v3 (ResNet50) 71.3 89.82 46.1 0.5434

Xception (ResNet50) 125.1 91.47 42.6 1.1664

ResNet18 (ResNet101) 89.7 92.85 65.5 0.3886

MobileNet v3 (ResNet101) 71.3 88.37 44.9 0.5861

Xception (ResNet101) 125.1 91.63 42.7 1.1623

Same model without FKD strategy ResNet18 89.7 63.8 66.2 0.7532

MobileNet v3 71.3 67.4 45.9 0.8350

Xception 125.1 72.9 42.3 1.4004

YOLOv3 DarkNet53 235.9 85.47 43.7 1.8431

YOLOX CSPDarkNet 193.0 87.91 73.6 1.0929

SSD300 VGG16 101.6 81.73 59.1 0.7436

Fast R-CNN ResNet50 108.3 87.27 8.4 2.6928

DetectoRS ResNet50 515.0 89.4 9.2 4.1370

Swin Transformer Swin-S 170.2 83.2 14.3 2.6606
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conveyor belt damage dataset are very competitive in a certain
aspect, e.g., mAP or FPS, but these models, even compact ver-
sion, contains a large number of parameters. Hence, the LME

results of above three popular networks are not attractive and
these models are not appropriate for end devices. In general,
the proposed lightweight models with the backbone of

ResNet18 or MobileNet are suitable for end devices. Mean-
while, the proposed Fusion Knowledge Distillation can also
be performed in other networks to compress CNN models.

4. Application of the proposed FKD-CenterNet

After the verification via experiments, the FKD-CenterNet

based conveyor belt damage detection system was deployed
in a practical mining seam to inspect and detect the state of
the belt conveyor surface in real-time, as demonstrated in

Fig. 8. The inference is processed on industrial PCs, and the
specification is listed in Table 6. The model deployed in the
production environment is based on ResNet50 and trained
by FKD strategy. The belt images are captured by CMOS

industrial camera at fixed 25 fps in the actual environment.
It has been verified that the proposed FKD-CenterNet model
with the deployed industrial PC can reach the maximum 43 fps

while detecting belt damage. The theoretical computing power
of NVIDIA GTX 1660 s is 5.027 TFLOPs. The GPU resource
occupancy rate is around 45%, when the proposed model is

inferencing and deployed on the 1660 s card. Therefore, any
supported GPU computing card with more than 5 TFLOPs
computing power can meet the requirements. In the mean-

while, the speed of data access in memory is fast enough and
would not restrict GPU inference speed. The performances
of CPU, RAM and SSD are not very important in this case.
It is capable of handling 130% normal computation load with

the configuration in Table 6. Of course, a high-performance
IPC would be fantastic. However, a higher FPS (greater than
43) does not improve the detection accuracy of the proposed

model, and it is necessary to achieve a balance between cost
and speed. Therefore, the configuration in Table 6 is ideal
for this case. Each captured image is preprocessed (denoise
and smooth) and fed into the well-trained CenterNet model.

Due to the model inference does not require a high-
performance GPU, the industrial PC is much more compact
than data server used for training. Since conveyor belt dam-

ages tend to be found near driving roller or joint section,
two detecting nodes are set near front and end conveyor
machine, and one is set in the middle of 800-meter conveyor

belt.
The lightweight model trained with FKD is found to suit

the end device very well as it reduced data transmission delays

and improved the stability of the damage detection system.
During the industrial test, the proposed FKD-CenterNet
model detect various conveyor belt damages with 97.9%
mAP, in particular, 100% tear, 98.7% crack and 94.9%

scratch. Considering the severity of different damage types
and undesirable false detection of tear damage, the trial results
are quite acceptable. The application of the belt damage detec-

tion system has greatly improved the level of coal mining
automation and reduced the labor cost of the enterprise.

5. Conclusions and future works

In this paper, an improved conveyor belt damage detection
method based on the FKD-CenterNet algorithm is proposed

to address the damage detection problem for conveyor belt
images. Firstly, The Fused Channel-Spatial Attention is pro-
posed and the Fusion Knowledge Distillation is introduced.

It makes model focus on essential features and strengthens
the extraction capability of latent feature maps. Then, the
improved loss function combined with Fusion Knowledge Dis-
tillation is introduced, which balances different classes and

transfer compressed knowledge from the teacher network.
Hence, the proposed loss function makes the training process
effective. Finally, plenty of comparative experiments show that

the proposed lightweight model reaches 92.53% mAP and 65.8



Fig. 8 The application of the belt damage detection system. (a) and (b) show the deployed industrial PC and explosion-proof camera,

respectively.

Table 6 The description of the industrial PC for the model

inference.

No. Device

name

Type Specification

1 CPU Intel

I5-8500

Frequency: 3.0 GHz

Turbo Clock: 4.1 GHz

TDP: 65 W

2 RAM 8G DDR4 * 2 Dual channel, 2 slots

2133 MHz

3 Hard

driver

256G SSD + 1 T

HDD

Interface:

NVMe + SATA

Speed: 510 M/s

4 GPU NVIDIA

GTX 1660 s

Memory Size: 6 GB

Bandwidth: 336.0 GB/s

FP32 (float): 5.027

TFLOPS
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FPS. Based on the proposed evaluation indicator balanced
accuracy and inference speed, the proposed lightweight model

obtains best performance, 0.3875. Therefore, the comparisons
between the proposed FKD-CenterNet and other popular
models and industrial test proved that the proposed model

can detect various belt damages and be deployed on end
devices effectively. The application in the coal mining industry
shows the effectiveness of the proposed conveyor belt damage

detection method.
Harsh underground environment for coal mining leads to

poor image quality, which affects the performance of conveyor
belt damage detection based on machine vision. In the future,

we will focus on algorithm development for image enhance-
ment and make efforts to obtain high-resolution and clear belt
images. And we will try to establish a cascade model of denois-

ing and detection, which makes the training and detection pro-
cesses more efficient and accurate.
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