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Abstract: Cross-modality person re-identification (ReID) aims at searching a pedestrian image of
RGB modality from infrared (IR) pedestrian images and vice versa. Recently, some approaches have
constructed a graph to learn the relevance of pedestrian images of distinct modalities to narrow
the gap between IR modality and RGB modality, but they omit the correlation between IR image
and RGB image pairs. In this paper, we propose a novel graph model called Local Paired Graph
Attention Network (LPGAT). It uses the paired local features of pedestrian images from different
modalities to build the nodes of the graph. For accurate propagation of information among the nodes
of the graph, we propose a contextual attention coefficient that leverages distance information to
regulate the process of updating the nodes of the graph. Furthermore, we put forward Cross-Center
Contrastive Learning (C3L) to constrain how far local features are from their heterogeneous centers,
which is beneficial for learning the completed distance metric. We conduct experiments on the RegDB
and SYSU-MM01 datasets to validate the feasibility of the proposed approach.

Keywords: person ReID; graph attention network; cross-modality

1. Introduction

The purpose of person re-identification (ReID) [1–4] is to match pedestrians across mul-
tiple non-overlapping cameras, which could be considered to be a specific person-retrieval
task. It is extensively applied in smart cities, autonomous driving, security surveillance,
and so on. However, most person ReID methods focus on matching pedestrians captured
by RGB cameras, and therefore they do not allow 24-h intelligent surveillance. To overcome
this limitation, some researchers are dedicated to cross-modality person ReID.

Cross-modality person ReID [5–9] retrieves RGB pedestrian images from infrared (IR)
pedestrian images and vice versa. It not only inherits the challenges of unimodality person
ReID, such as the variations in postures, illumination, and camera view, but also possesses
a large discrepancy between IR modality and RGB modality. The modality discrepancy
results in an unreliable match due to different color and appearance information of IR
images and RGB images.

Recently, some cross-modality person ReID methods have been proposed to learn
feature representations and metric functions for both IR and RGB images. Regarding
feature representations, many methods [10–12] extract modality-specific features and
modality-shared features by designing dual-stream deep networks. Meanwhile, the lo-
cal features [13–15] are also demonstrated to be effective for cross-modality person ReID.
Furthermore, some approaches [16–19] apply graph convolution layers, which aggregate
features from other pedestrian images to enhance the discriminative power of features.
They treat each pedestrian image as a node of a graph and update the nodes based on their
correlations, as shown in Figure 1a. However, they ignore the relationship between the
pairs of IR images and RGB images when constructing the graph, therefore hindering the
learning of discriminative features for pedestrian images of different modalities.
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Figure 1. (a) Most methods for cross-modality person ReID treat each pedestrian image as a node
of a graph. (b) The proposed method treats paired local features from different modalities as a
node of a graph. We distinguish the pedestrian identities using different colors, with the same
color indicating the same pedestrian. Circles and triangles are used to represent the IR and RGB
modalities, respectively.

In metric learning, some works [20–22] propose various losses to minimize the distance
between pedestrian images from different modalities for cross-modal person ReID. These
losses target the learning of an embedding space for different modalities in which images
of same-identity pedestrians are closer to each other and images of different-identity
pedestrians are further away. For this purpose, these methods constrain the distance
among the pedestrian images from different modalities [23,24] or the distance among the
centers from different modalities [25,26]. However, they overlook the distance between
the pedestrian image and its center of different modalities, which results in incomplete
distance learning between different modalities.

In this paper, we propose a novel graph network entitled Local Paired Graph Attention
Network (LPGAT) for cross-modality person ReID. This approach considers the correlation
of paired pedestrian images from different modalities and local information in a uniform
framework. Specifically, we design the proposed method as a two-stream network where
each branch corresponds to each modality. To learn local features, we uniformly divide the
feature maps for each stream in the horizontal direction. Later, we construct a graph using
local features where each node is composed of the corresponding local features of paired
pedestrian images with varying modalities, which is illustrated in Figure 1b. The inclusion
criterion of the selected paired local features is that each paired local features come from
two different modalities. For better propagation of information in the graph, we further
propose the contextual attention coefficient which not only considers the node features but
also the relationship between the nodes. Hence, the proposed LPGAT could directly learn
the relationship between the paired local features from different modalities and accurately
propagate the information between them.

Recently, the distance constraint among the distinct modality centers has verified the
effectiveness of cross-modality person ReID. However, they do not constrain the features
which are far from the centers. To overcome this, we propose Cross-Center Contrastive
Learning (C3L) to reduce the distance between local features and their heterogeneous
centers to narrow the gap between heterogeneous modalities. Combined with the constraint
between heterogeneous centers, the proposed C3L helps learn the completed distance metric
for IR images and RGB images, and therefore the discriminative features are obtained. The
primary contributions are outlined below:
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• We propose LPGAT for cross-modality ReID. In contrast to previous approaches that
only use pedestrian images from different modalities as the nodes of a graph, LPGAT
uses the paired local features from different modalities as the nodes of a graph, thus
alleviating the gap between the two modalities.

• We propose C3L to constrain local features and their heterogeneous centers. In contrast
to previous methods that only constrain the distance between the centers of different
modalities, C3L constrains the features that are far from the center, thus narrowing the
gap between heterogeneous modalities.

• We compare the proposed method against state-of-the-art methods using two publicly
accessible datasets, RegDB and SYSU-MM01, and our results demonstrate that the
proposed method outperforms them.

2. Related Work
2.1. Cross-Modality Person ReID

To address the challenge of the modality gap for cross-modality person ReID, many
methods are proposed to derive global or local features from heterogeneous pedestrian
images. For the global features, Wu et al. [27] put forward the deep zero-padding model
to learn complementary information from IR images and RGB images. Then, Ye et al. [20]
introduced a dual-stream network to capture the globally shared information of IR images
and RGB images. Chen et al. [6] raised the Neural Feature Search (NFS) to implement the
feature-selection automation, which allows the network to filter the background noise and
focus on the important portions of pedestrian images.

Since pedestrians’ partial information is crucial for cross-modality person ReID, several
researchers have proposed learning local features from IR images and RGB images. Zhu
et al. [21] and Sun et al. [22] developed a deep two-stream framework to capture local
features to mitigate modality differences. Zhang et al. [28] proposed Dual-Alignment
Part-aware Representation (DAPR) to simultaneously reduce the modality gap and learn
discriminant features from the local and global aspects. In this paper, we adopt a two-steam
deep network to learn local features, and aggregate paired local features of pedestrian
images from different modalities.

2.2. Graph Attention Networks

Graph Convolutional Network (GCN) [29,30] has been proposed to handle the non-
Euclidean data. It learns node features by propagating the information among nodes as
well as their neighborhoods. Several vision-related tasks, including semantic segmenta-
tion [31] and face analysis [32], have widely applied GCN. Later, Graph Attention Network
(GAT) [33,34] is further proposed to aggregate node features using attention weights.

Recently, more and more researchers have combined GCN or GAT with Convolutional
Neural Network (CNN) for person ReID [16,19,35]. Ye et al. [16] put forward Dynamic
Dual Attention Aggregation (DDAG), in which each pedestrian image is regarded as a
node of the graph, and the relationship between the node and its neighborhoods is mined.
Zhang et al. [19] treated each body part as a node of a graph and construct a graph using
one pedestrian image to alleviate the intra-modality variations. In this paper, a graph is
constructed using paired local features derived from distinct modalities, and the contextual
attention coefficients are introduced for better propagation.

2.3. Contrastive Learning

The purpose of contrastive learning [36,37] is to learn discriminative features using
image pairs, so that similar images are close to each other, while dissimilar ones are far
away. It can be applied in both unsupervised and supervised learning, such as image
classification [37] and object detection [38]. Recently, contrastive learning has been used
in person ReID to improve the discrimination of features [39,40]. For example, Chen et
al. [39] proposed Inter-instance Contrastive Encoding (ICE) to fully explore the relationship
between different pedestrian images. Isobe et al. [41] presented the Cluster-wise Contrastive
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Learning (CCL) algorithm to learn noise-robust features for cross-domain person ReID.
We propose C3L to reduce the distance between local features and their heterogeneous
centers to reduce the modality gap for cross-modality person ReID, which is inspired by
the applications of contrastive learning in cross-domain ReID.

3. Approach

In this section, an outline of the proposed method is first represented, which is depicted
in Figure 2. The proposed method contains three key components, namely Local Feature
Extractor, LPGAT Module, and C3L. Then, we introduce each of them in detail. Finally, we
optimize the proposed approach.

Figure 2. The framework of our approach. We first apply the Local Feature Extractor to obtain the
local features from different modalities. Then, we propose the LPGAT module to learn the correlation
between the paired local features from different modalities. The same color indicates the same
pedestrian, and the circle and the triangle represent IR and RGB modalities, respectively. We also use
the proposed C3L to optimize the network, which constrains the distance between the local features
and their heterogeneous centers.

3.1. Overview

Local Feature Extractor. The Local Feature Extractor is designed as a two-stream
network where two individual ResNet-50 [42] are adopted as the backbone. Then, we
divide the feature maps output by ResNet-50 horizontally and apply the global average
pooling (GAP) to obtain the local features. Afterward, we apply the fully connected (FC)
layers to reduce the dimension of local features, where the weights of FC layers are shared.

LPGAT Module. We regard the difference between paired local features of pedestrian
images from different modalities as the node of a graph to learn the paired correlation
of local features. Then, we update the nodes using the contextual attention coefficient
which injects the distance information between the nodes into the process of information
propagation.

Cross-Center Contrastive Learning. We introduce C3L to optimize the similarity
between the local features and their heterogeneous centers. We then combine C3L with
other metric functions to obtain the completed distance metric.

3.2. Local Feature Extractor

The Local Feature Extractor possesses two streams, and two individual pre-trained
ResNet-50 are used as the backbone, where the stride of the convolution operation in the
last layer is modified from 2 to 1. We feed the pedestrian images of IR modality and RGB
modality into the two streams, respectively. Later, we obtain the feature maps of pedestrian
images with the size of W × H × C, where W and H denote the width and the height of
feature maps, and C is the number of channels. Afterward, we uniformly split the feature
maps into P part-level stripes. We conduct GAP on each part-level stripe to obtain the
local feature. The p-th local feature of the i-th RGB image is denoted as f R

i,p ∈ RC×1, where
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p = 1, . . . , P. Similarly, the local feature of the IR image is denoted as f I
j,p ∈ RC×1. Finally,

we apply the FC layers with shared weights to reduce the dimension of the local features
from C to D.

3.3. LPGAT Module

The local features have proved the robustness to the variances in viewpoints, poses,
and so on [1,13]. Meanwhile, the paired features derived from distinct modalities facilitate
the reduction of the modality gap. Hence, we propose to use the paired local features from
the IR modality and RGB modality to construct the fully connected graph. The node of the
fully connected graph is defined as:

gp
i,j = f R

i,p − f I
j,p (1)

Hence, we obtain a fully connected graph Gp
i = {gp

i,1, gp
i,2, . . . , gp

i,U} for the p-th local
feature of the i-th RGB image, where U is the number of nodes in the graph. Please note
that the node of a graph can also be performed by subtracting the local feature of RGB
modality from the local feature of IR modality.

After obtaining the graph, we need to calculate the attention coefficient to describe the
correlation between different nodes. Many cross-modality person ReID approaches [16,17]
calculate the attention coefficient between the nodes as:

α
p
n,m =

exp(`(q>dgp
i,n, gp

i,mc))
∑U

u=1 exp(`(q>dgp
i,n, gp

i,uc))
(2)

where ` is a nonlinear operation performed by LeakyReLU, d, c is the concatenation opera-
tion, and q ∈ R2D×1 is a learnable vector.

From Equation (2) we can see that it directly concatenates the nodes, but ignores the
relationship between the nodes, which leads to inaccurate information propagation. Thus,
we propose the contextual attention coefficient:

α
p
n,m =

exp(`(q>dgp
i,n, gp

i,mc))
∑U

u=1 exp(`(q>dgp
i,n, gp

i,uc))
× kp

n,m (3)

kp
n,m = exp(−‖gp

i,n − gp
i,m‖2) + β (4)

where ‖ · ‖2 indicates the Euclidean distance, and β is the hyperparameter. From
Equation (4), we can see that the smaller distance between the nodes possesses a larger kp

n,m,
and therefore it produces a strong correlation between the nodes. Hence, the contextual
attention coefficient is helpful for accurate information propagation. Please note that when
we set kp

n,m to 1, the contextual attention coefficient degenerates to the traditional attention
coefficient. With the contextual attention coefficient, the node is represented as:

ĝp
i,n =

U

∑
m=1

α
p
n,mgp

i,m (5)

Finally, to further improve the representation ability, the node is updated as:

ep
i,n = φ(w>dĝp

i,n, gp
i,nc) (6)

where φ is the ELU activation function to learn a stable graph structure, and w ∈ R2D×2 is
a learnable matrix. We treat the optimization of LPGAT as a binary classification problem,
and use the verification loss:

Lp
g = −

U

∑
j=1

zp
i,j log z̄p

i,j − (1− zp
i,j) log(1− z̄p

i,j) (7)
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where z̄p
i,j is the predicted probability of the j-th node of Gp

i , and zp
i,j is the ground-truth

of the j-th node of Gp
i . zp

i,j = 1 indicates the paired local features derived from distinct

modalities in the node are with the same identity, otherwise zp
i,j = 0.

In a word, we design the node of the graph in LPGAT as the paired local features
derived from distinct modalities to effectively mitigate the discrepancy between IR modality
and RGB modality. Furthermore, we inject the distance information using the contextual
attention coefficient to propagate the information between the nodes accurately.

3.4. Cross-Center Contrastive Learning

As for cross-modality person ReID, learning the distance metric is an effective way to
narrow the modality gap. Recently, the constraint on the centers of RGB modality and IR
modality have achieved promising performance [21,25,26]. However, they overlook the
distance between features and their heterogeneous centers resulting in some outliers in the
learning process as shown in Figure 3a.

In this paper, we put forward C3L to force the local features to be close to the cor-
responding heterogeneous centers in the embedding space, and therefore the pedestrian
images which have the same identity from distinct modalities are gathered as shown
in Figure 3b.

Figure 3. (a) The constraint on the centers of RGB modality and IR modality. However, there
are some outliers in the learning process. (b) The proposed C3L constrains the local features and
their heterogeneous centers, which alleviates the influence of outliers. The red arrows denote the
constraints between features, whereas the dotted circles signify outliers. The stars indicate the centers,
and the circle and the triangle represent the RGB modality and IR modality, respectively.

The constraint between the p-th local feature of the i-th RGB image and its heteroge-
neous center is defined as:

Lp
R = − log

exp{( f R
i,p)
>cI

b,p/τ}

∑S
s=1 exp{( f R

i,p)
>cI

s,p/τ}
s.t. ID(i, V) = b (8)

where τ > 0 is a scalar temperature parameter, S is the number of identities, and ID(i, V)
indicates the identity of the i-th RGB image. Here, cI

b,p is the center of the p-th local feature
of the b-th identity for IR images, and it is defined as:

cI
b,p =

1
Ob

Ob

∑
i=1

f I
i,p s.t. ID(i, I) = b (9)

where Ob is the number of pedestrian images with the b-th identity, and ID(i, I) is the
identity of the i-th IR image.
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Similarly, the constraint between the p-th local feature of the i-th IR image and its
heterogeneous center is defined as:

Lp
I = − log

exp{( f I
i,p)
>cV

b,p/τ}

∑S
s=1 exp{( f I

i,p)
>cV

s,p/τ}
s.t. ID(i, I) = b (10)

where cV
b,p is the heterogeneous center of f I

i,p. In a word, the proposed C3L is formulated as:

Lp
C = Lp

R + Lp
I (11)

The proposed C3L decreases the distance between the local features of IR images and
their centers of RGB images, and so do the local features of IR images and their centers
of RGB images. Hence, it clusters the local features of pedestrian images from different
modalities with the same identity.

3.5. Optimization

For learning the completed distance metric, we exploit the proposed C3L as well as the
heterogeneous center (HC) loss [21]. The HC loss aims to diminish the distance between
the centers of IR modality and RGB modality with the same identity. The HC loss for the
p-th local feature is denoted as Lp

HC. Additionally, we employ the cross-entropy loss to
optimize the local features, and the cross-entropy loss for the p-th local feature is denoted
as Lp

CE. Moreover, we use the validation loss Lp
g to optimize LPGAT and treat it as a binary

classification task. Therefore, the overall loss of the proposed method is expressed as:

L =
1
P

P

∑
p=1

(Lp
CE + λ1Lp

HC + λ2Lp
g + λ3Lp

C) (12)

where λ1, λ2 and λ3 are the trade-off parameters to balance the importance between
different losses.

4. Experiments

In this section, the evaluation protocol and datasets are first presented, followed by
showing the implementation details of our experiments. After that, the experimental results
are compared with the state-of-the-art methods, and ablation experiments are performed to
evaluate the effectiveness of the key components of the presented approaches. Finally, the
influence of several important parameters in the proposed method is analyzed.

4.1. Datasets

We perform trials on the SYSU-MM0 [27] and RegDB [43], which are two public
cross-modal datasets.

SYSU-MM01, a massive dataset, is captured by four visible-light cameras as well as
two NIR cameras in both outdoor and indoor settings. There are 491 pedestrian identities
recorded in this dataset, and each pedestrian is photographed by two different cameras.
Furthermore, 11,909 IR images and 22,258 RGB images of 395 identities are contained in
the training set. During the testing phase, we perform our experiments on two settings,
i.e., indoor search and all search. Each mode has 3803 query IR pedestrian images of
96 identities. Additionally, the gallery set for all-search settings contains 301 randomly
selected pedestrian images taken by RGB cameras which are placed in outdoor and indoor
environments, while the gallery set for the indoor search settings contains 112 randomly
selected pedestrian images taken by RGB cameras which are placed in indoor environments.

RegDB consists of 8240 images from 412 identities, with each identity containing
10 IR images and 10 RGB images. The whole dataset is divided into two halves and used
for training and testing, respectively, which the training set includes 2060 IR images and
2060 RGB images of 206 identities. As for the test set, there are 2060 query images of 206
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identities and 2060 gallery images of 206 identities. Moreover, two evaluation settings are
available, including Thermal-to-Visible (T-V) and Visible-to-Thermal (V-T).

4.2. Evaluation Metrics

The Cumulative Matching Characteristic (CMC) curve is a commonly used perfor-
mance evaluation metric in the person re-identification task. It plots the probability of
correctly matching the query image at different ranks. Specifically, the x-axis represents
the rank of the retrieved image (i.e., 1st, 2nd, 3rd, etc.), and the y-axis represents the
probability of correctly identifying the query image among the top k retrieved images.
A larger area under the CMC curve indicates better performance. The mean Average
Precision (mAP) is another commonly used performance evaluation metric in the person re-
identification task. It measures the average precision of a set of queries. Specifically, it con-
siders both the precision and recall of the retrieval results. A higher mAP value indicates the
better performance.

In this paper, standard CMC and mAP are adopted as evaluation metrics to test the
performance of the proposed method.

4.3. Implementation Details

We first resize the pedestrian image into 288 × 144, then apply random cropping
and shuffle a horizontal flip to augment the data. Meanwhile, we set the batch size to
64, where each batch is composed of 4 identities, and each identity consists of 8 RGB
pedestrian images and 8 IR pedestrian images. The scalar temperature parameter τ in
Equations (8) and (10) is set to 0.2. The hyperparameter β in Equation (4) is set to 2. To
balance the importance between different losses, we set the trade-off parameters λ1, λ2,
and λ3 to 0.5, 0.4, and 0.5, respectively. We use stochastic gradient descent (SGD) optimizer
to optimize the proposed method and fix the number of epochs to 60. The preliminary
learning rate is set to 0.01 and decayed to 0.001 after 30 epochs. After that, We adopt the FC
layers to reduce the local feature dimension to D = 512, and the number of part-level stripes
P is set to 6. In the testing phase, all local features are concatenated as the representation of
a pedestrian image.

4.4. Comparisons with State-of-the-Art Methods

Tables 1 and 2 show the results of the proposed methods on RegDB and SYSU-MM01
compared with the state-of-the-art methods, respectively. The compared methods mainly
include the two-stream models (MSR [44], TONE [45], AGW [46]), GAN-based approaches
(cmGAN [47], AlignGAN [48], JSIA-ReID [49]), modality aligning approaches (CMA-
lign [7]), and the metric learning (HCML [45], HSME [50]). In addition, some approaches
learn the local features and meanwhile use the constraints between the heterogeneous
centers (TSLFN+HC [21], WIT [22]).

Comparisons on SYSU-MM01. From Table 1, we can see that the proposed method
achieves 61.89% of Rank-1 accuracy and 60.12% of mAP accuracy among the all-search
setting, which exceeds NFS [6] and CMAlign [7] in terms of mAP accuracy by 4.67% and
5.98%, respectively. It is worth noting that the performance of our method exceeds that of
DDAG [16] with respect to Rank-1 and mAP accuracy by 13.0% and 13.4%, respectively.
This is because DDAG only uses pedestrian images of different modalities as the nodes
of a graph, while our method uses the paired local features as the nodes of a graph.
Compared with KSD [51], our method outperforms its Rank-1 and mAP accuracy by 1.3%
and 2.3%, respectively. In addition, under the indoor search settings, the performance
of our method surpasses that of WIT [22] by 5.8% and 5.9% regarding Rank-1 and mAP
accuracy, respectively. This is because WIT uses the center constraint to pull images with
the same identity to their cross-modality centers, but ignores constraining the features that
are far from the centers. The proposed C3L overcomes this shortcoming by constraining
the distance between local features and their heterogeneous centers.
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Table 1. Comparisons with the state-of-the-art methods on SYSU-MM01 with two different settings.
R-i indicates Rank-i. The bold indicates the best result.

Setting All Search Indoor Search

Method R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP

Zero-pad [27] 14.80 54.12 71.33 15.95 20.58 68.38 85.79 26.92
TONE [45] 12.52 50.72 68.60 14.42 20.82 68.86 84.46 26.38
HCML [45] 14.32 53.16 69.17 16.16 24.52 73.25 86.73 30.08

cmGAN [47] 26.97 67.51 80.56 27.80 31.63 77.23 89.18 42.19
HSME [50] 20.68 62.74 77.95 23.12 - - - -
BDTR [52] 27.32 66.96 81.07 27.32 31.92 77.18 89.28 41.86
eBDTR [52] 27.82 67.34 81.34 28.42 32.46 77.42 89.62 42.46
D2RL [53] 28.90 70.60 82.40 29.20 - - - -
MSR [44] 37.35 83.40 93.34 38.11 39.64 89.29 97.66 50.88

AlignGAN [48] 42.40 85.00 93.70 40.70 45.90 87.60 94.40 54.30
JSIA-ReID [49] 38.10 80.70 89.90 36.90 43.80 86.20 94.20 52.90

Xmodal [54] 49.92 89.79 95.96 50.73
MACE [10] 51.64 87.25 94.44 50.11 57.35 93.02 97.47 64.79
DDAG [16] 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98
HAT [24] 55.29 92.14 97.36 53.89 62.10 95.75 99.20 69.37

TSLFN + HC [21] 56.96 91.50 96.82 54.95 59.74 92.07 96.22 64.91
DAPR [28] 46.00 87.90 96.00 43.90 46.20 89.2.00 96.70 55.80
WIT [22] 59.20 91.70 96.50 57.30 60.70 94.10 98.40 67.10

AGW [46] 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97
FBP-AL [55] 54.14 86.04 93.03 50.20 - - - -
CMAlign [7] 55.41 - - 54.14 58.46 - - 66.33

NFS [6] 56.91 91.34 96.52 55.45 62.79 96.53 99.07 69.79
CPN [56] 42.48 87.12 95.62 44.90 - - - -
KSD [51] 61.07 93.15 97.86 58.76 64.09 95.78 98.89 70.57

Ours 61.89 93.56 97.86 60.12 64.24 96.58 99.08 71.04

The proposed method models the node of a graph with paired local features from
different modalities, which outperforms other GAT models, such as DDAG. Furthermore,
our approach yields superior performance to the other center-constrained approaches, i.e.,
TSLFN+HC [21] and WIT [22] on the indoor and all-search settings.

Comparisons on RegDB. We compare our LPGAT model with 13 different methods
on the RegDB dataset. From the experimental results in Table 2, LPGAT shows the best
performance compared with the other methods. Specifically, The proposed method obtains
89.37% in Rank-1 accuracy and 78.74% in mAP accuracy under the V-T mode, which
surpasses the second-best method, i.e., WIT [22] with 4.37% and 2.84% in Rank-1 accuracy
and mAP accuracy, respectively. In addition, under the T-V model, our method outperforms
DDAG [16] and NFS [6] by 24% and 8.4% in Rank-1 accuracy, respectively, and surpasses
them by 19.3% and 5.7% in mAP accuracy. Hence, it proves that our model has a strong
generalization ability with different scenarios.

In conclusion, the proposed method yields superior performance on the two large-scale
datasets, which demonstrates the good generalization capability of our approach.

4.5. Ablation Studies

We conduct ablation experiments on SYSU-MM01 with the all-search set-up to assess
the effectiveness of each key component of our method. The detailed results are presented
in Table 3. B represents the baseline which is implemented by the Local Feature Extractor
and optimized by the HC loss and the cross-entropy loss. GAT indicates that the node of
the graph is built by the single local feature of the pedestrian image, and LPGAT-k is the
LPGAT module without using the contextual attention coefficient.
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Table 2. Comparisons with the state-of-the-art methods on RegDB for visible-infrared and infrared-
visible settings. R-i indicates Rank-i. The bold indicates the best result.

Setting V-T T-V

Methods R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP

Zero-pad [27] 17.74 34.21 44.35 18.90 16.63 34.68 44.25 17.82
HCML [45] 24.44 47.53 56.78 20.08 21.70 45.02 55.58 22.24
BDTR [52] 33.56 58.61 67.43 32.76 32.92 58.46 68.43 31.96
eBDTR [52] 34.62 58.96 68.72 33.46 34.21 58.74 68.64 32.49
D2RL [53] 43.40 66.10 76.30 44.10 - - - -
MSR [44] 48.43 70.32 79.95 48.67 - - - -

HSME [50] 50.85 73.36 81.66 47.00 50.15 72.40 81.07 46.16
AlignGAN [48] 57.90 - - 53.60 - - - -
JSIA-ReID [49] 48.50 - - 49.30 48.10 - - 48.90

Xmodal [54] 62.21 83.13 91.72 60.18 - - - -
DDAG [16] 69.34 86.14 91.49 63.46 68.06 85.15 90.31 61.80
HAT [24] 71.83 87.16 92.16 67.56 70.02 86.45 91.61 66.30

MACE [10] 72.37 88.40 93.59 69.09 72.12 88.07 93.07 68.57
DAPR [28] 61.50 81.60 88.70 59.40 - - - -
AGW [46] 70.10 - - 66.40 - - - -

FBP-AL [55] 73.98 89.71 93.69 58.24 70.05 89.22 93.88 66.61
WIT [22] 85.00 96.90 98.80 75.90 - - - -

CMAlign [7] 74.17 - - 67.64 72.43 - - 65.46
NFS [6] 80.54 91.96 95.07 72.10 77.95 90.45 93.62 69.79

CPN [56] 51.29 71.15 79.79 49.37 - - - -
KSD [51] 76.66 90.19 93.84 69.63 73.64 89.22 93.10 67.41

Ours 89.37 97.62 99.08 78.74 84.51 95.83 98.01 73.75

Table 3. Ablation studies on SYSU-MM01 on the all-search setting. The bold indicates the best result.

Methods R-1 R-10 R-20 mAP

B 56.26 91.41 96.54 55.16
B + GAT 56.96 91.89 96.75 56.24

B + LPGAT-k 58.01 92.83 97.67 56.63
B + LPGAT 59.07 93.25 97.68 57.42

B + C3L 60.72 93.53 97.83 58.83
Ours (B + LPGAT + C3L) 61.89 93.56 97.86 60.12

From Table 3, several conclusions can be drawn as follows. First, we observe that
B + GAT exceeds B with 0.7% in Rank-1 accuracy and 1.08% in mAP accuracy, respectively.
It indicates that aggregating the local features of different modalities can improve the
discrimination of features. Second, B + LPGAT-k improves the performance compared
with B + GAT, which demonstrates the effectiveness of using the paired local features
from different modalities to build a graph. Third, the comparison between B + LPGAT
and B + LPGAT-k proves the effectiveness of the contextual attention coefficient which
is beneficial to obtain accurate information propagation. Fourth, B + C3L outperforms B
by 4.46% in Rank-1 accuracy and 3.67% in mAP accuracy, respectively. The proposed C3L
could facilitate the deep model to learn the completed distance metric by constraining
the distance between local features and their heterogeneous centers to narrow the gap of
different modalities. Finally, the performance is further improved when combining LPGAT
and C3L, which demonstrates they could mutually reinforce.

4.6. Parameters Analysis

There are several key parameters in the proposed method. We evaluated the effect
of different parameter values on all-search mode in SYSU-MM01, and the experimental
results can be generalized to other cross-modality person ReID settings.
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The impact of the hyperparameter β. We perform the experiments with different
values of β in Equation (4) to evaluate the performance of the proposed method which is
shown in Figure 4. From the figure, it can be seen that the performance peaks at β = 2, and
it drops as β increases. Therefore, we set β to 2.

Figure 4. The influence of the hyperparameter β in mAP accuracy and Rank-1 accuracy.

The impact of the scalar temperature parameter τ. The scalar temperature parameter
τ is an important parameter that controls the range of similarity between the local features
and their heterogeneous centers in Equations (8) and (10). The experimental results with
different values of τ are shown in Figure 5 where the performance becomes better as τ
increases and the performance drops when τ > 0.2. Hence, the optimal value of τ is 0.2.

The impact of the trade-off parameters λ1, λ2 and λ3. The trade-off parameters λ1,
λ2 and λ3 in Equation (12) control the importance of different losses. To search the optimal
values of λ1, λ2 and λ3, we experimentally test different value combinations of them, and
to conveniently display, we fix two parameters with the optimal values and show the
influence of the other parameter. The results are shown in Figure 6 where we can see that
when λ1 = 0.5, λ2 = 0.4 and λ3 = 0.5 the performance is best.

Figure 5. The influence of the scalar temperature parameter τ in Rank-1 accuracy and mAP accuracy.
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Figure 6. The influence of the trade-off parameters λ1, λ2 and λ3 in mAP accuracy and Rank-1
accuracy.

5. Visualization

To intuitively verify the effectiveness of our method, we visualize the cosine similarity
distribution of cross-modality positive and negative pairs (R-I positive and R-I negative)
of B, B + LPGAT and B + C3L as shown in Figure 7. From the figure, we can see that the
distribution of B + LPGAT and B + C3L are more separate than that of B. It demonstrates
that LPGAT and C3L could improve the discrimination of features for cross-modality
person ReID.

Figure 7. The distributions of the cosine similarity scores of positive and negative pairs of (a) B,
(b) B + LPGAT and (c) B + C3L. The x axis shows the cosine similarity scores between RGB images
and IR images, and the y axis shows the frequency statistics of the cosine similarity score.

6. Conclusions

In this paper, we presented LPGAT for cross-modality person ReID to model the
correlation between paired local features derived from distinct modalities. Meanwhile, we
propose the contextual attention coefficient to ensure accurate information propagation on
the graph. In addition, we propose C3L to decrease the modality gap for cross-modality
person ReID by constraining the distance between local features and their heterogeneous
centers. The results of experiments on two commonly used datasets demonstrate that
the proposed approach surpasses the state-of-the-art approaches. In future work, we will
extend our approach to video sequences for the cross-modal ReID domain. Considering
that in practical ReID application scenarios, multiple tasks such as pedestrian attribute
recognition and pose estimation often need to be performed simultaneously, the joint
learning of multiple tasks will be considered in the future to make full use of multimodal
information and improve the performance of pedestrian re-identification.
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