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ABSTRACT 

In this paper, a non-singular terminal sliding mode control (NTSMC) scheme based 

on adaptive neural network(NN) and nonlinear extended state observer (ESO) is 

proposed for trajectory tracking control of the underactuated unmanned surface vehicle 

(USV) in the presence of model uncertainties and external disturbances. Firstly, a three-

degree-of-freedom USV nonlinear mathematical model is established,then a nonlinear 

ESO is constructed to estimate the unmeasurable velocities and lumped 

disturbances.Besides, a neural shunt model is introduced to eliminate the repetitive 

derivative of the virtual control law and reduce the difficulty of the control law design. 

On the basis of these and considering the USV position and speed errors, a non-singular 

terminal sliding surface is constructed to achieve fast convergence.Meanwhile, the 

minimum learning parameter (MLP) neural network algorithm is designed to estimate 

the model uncertainties.Subsequently, an adaptive law is designed to compensate for the 

NNapproximation errors and disturbances, which reduces the computational burden and 

enhances the robustness of the system. Finally, by using Lyapunov theory, it is proved 

that the designed control law can guarantee the uniform boundedness of all error signals 

in the closed-loop system.Comparative simulation results further confirm the 

effectiveness and superiority of the proposed method. 

Keywords: Underactuated unmanned surface vehicle; Trajectory tracking control; 

Extended state observer; Neural shunt model; Nonsingular terminal sliding mode; 

Minimum learning parameter 

1. Introduction 

Unmanned surface vehicle (USV) is a typeof unmanned surface platform with 

autonomous navigation capability, which can perform some specified tasks in complex 
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marine environments by carrying different modern intelligent equipment(Mu et al., 

2017). Due to the advantages of small volume, fast speed, low cost, strong 

maneuverability, and no casualties(Chen et al., 2018; Liu et al., 2016), USV 

possessesextensive application prospects in the military and civilian fields,such as 

surveillance, reconnaissance and anti-submarine(Lin et al., 2022), searchand disaster 

rescue(Zhou et al., 2020),environmental monitoring and water sampling(Jiang et al., 

2019),etc.However, in the real marine environment, USV is inevitably vulnerable to 

complex disturbances caused by external winds, waves and ocean currents, soits 

nonlinear, time delay and model uncertainties make the design of USV control system 

more complex and challenging(Yao, 2022). This topic has therefore become a hot 

research topic recently attracting extensive interest from researchers worldwide. 

Trajectory tracking control of underactuated ships is an important topic in the field 

of ship control. Many researchers have made significant outstanding contributions and 

proposed many nonlinear control methods, such as backstepping control(Piao et al., 

2020), sliding mode control(Chen et al., 2022), event-triggered control(Deng et al., 

2020), robust fault–tolerant control(Qin et al., 2019), model predictive control 

(Martinsen et al., 2022), and the combination of various control methods.(Zhao et al., 

2021)designed a tracking controller by combining backstepping and adaptive sliding 

mode control technology, and guaranteed the control system error is ultimately 

uniformly bounded through Lyapunovstability theoretical analysis. However, the 

backstepping method requires the calculationof the duplicate derivatives of virtual 

control variables in the design process,which is not conducive to controller 

design(Zhang et al., 2022).(Zhang et al., 2020) proposed a robust controller by 

employing a second-order filter to acquire the derivation of virtualvariables, it 

effectively reduces the computational complexities of the traditional backstepping 

method.However, the above-mentioned controllers are not well considered the influence 

of model uncertainties and external disturbances, which do not conform to practical ship 

control engineering. Therefore, achieving an accurate trajectory tracking control is still 

a challenge for ship control. 

In the practical ocean environment, ships are vulnerable to some unknown 

disturbances and uncertainties, and their model parameters will also change (Mu et al., 

2018), which will significantly reduce the tracking performance and even lead to 

mission failure. To overcomethese challenges, the sliding mode controller has strong 

robustness and has significant advantages in resisting external disturbances and model 

parameter changes(Wan et al., 2018).In (Chen et al., 2022), a novel fixed-time 

fractional-order sliding mode control strategy was proposed forthe trajectory tracking of 

the USV, which realized the optimization of the sliding mode control. In (Sun et al., 

2022), a compensation control algorithm based on a disturbance observer was proposed 

to eliminate external environmental disturbances. To address the influence of modeling 

uncertainties and external disturbances on ship systems, (Chen et al., 2020) used the 

universal approximation property of RBF neural network to approximate and 

compensate forthe modeling uncertainties.Meanwhile, the disturbance observer was 

employed to estimate external unknown disturbances,finally, the global stability of the 

global closed-loop system was verified by theoretical analysis.However, the RBF neural 

network algorithm requires online adjust all weight vectors of the network, which 
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increases the computational burden(Shen et al., 2020a).In light of that, it can be 

effectively solved by using the minimum learning parameter (MLP) method.In (Jiang et 

al., 2021), an adaptive algorithm was designed by combining the dynamic surface 

control (DSC) and the MLP-based NN technique,with only two online parameters being 

tuned to tackle the uncertainties, which reduces the computational load. 

Although the control method mentioned above has a good control effect, the 

convergence speed is slow, and the chattering effect exists in the traditional sliding 

mode control(Rangel et al., 2020). The terminal sliding mode(TSM) is designed to solve 

this problem due to its excellent convergence speed, high precision, and strong 

robustness(Shen et al., 2020b).To avoid singularity in terminal sliding mode control law 

design, a robust controller based on an adaptive integral terminal sliding mode(AITSM) 

was designed by(Gonzalez-Garcia and Castaeda, 2021), which guaranteed finitetime 

state convergence and enhanced robustness.In the presence of complex unknowns 

including unmodeled dynamics and external environment disturbances, (Wang et al., 

2021)designed a non-singular fast terminal sliding mode (NFTSM) control scheme and 

combined the finite time extended observer to estimate the lumped uncertainties.Finally, 

fast convergence and accurate trajectory tracking performance were achieved within a 

finite time. 

Despite the existence of extensive research on ship track tracking, the main problem 

of the aforementioned  studies is that very few consider actuator saturation. In practical 

application, input saturation inevitably exists due to the physical constraints of the 

propulsion system, which may lead to system instability if input saturation is 

ignored(Zhu and Du, 2020).In light of that, (Shen et al., 2022)adopted dynamic surface 

technology and introduced an auxiliary dynamic system (ADS) to avoid input saturation 

caused by the intermediate control law.Considering the velocity of practical marine 

vessels during navigation is unmeasurable, (Zhang et al., 2019)developed a fixed-time 

extended state observer (FXESO) to estimate the unmeasured velocities and lumped 

disturbances, and their estimation errors converge to the origin in fixed time. 

In this paper, inspired by the above research,an NTSMC schemehas been 

proposedfor trajectory tracking of the underactuated USVbased on the nonlinear 

mathematical model with input saturation,model uncertainties, and external 

disturbances.This scheme combines a nonlinear ESO, neural shunt model, and MLP 

neural network with adaptive technology.The overall stability of the closed-loop control 

system is proved by Lyapunov theory and the tracking error variables can achieve fast 

convergence, the simulation results demonstrate the effectiveness and superiority of the 

proposed scheme. The main contributions of this paper aresummarized as follows: 

(1) A non-singular terminal sliding mode surface is designed to achieve fast 

convergence, in which the hyperbolic tangent function is adopted instead of the 

original symbolic function to eliminate the actuator consumption caused by the 

"chattering" effect. 

(2) A neural shunt model is introduced to solve the problem of "differential 

explosion" when designing the virtual control law, which reduces the difficulty 

of the control law design. Meanwhile, the MLP-based RBFNN and the adaptive 

technology are employed to deal with the model uncertainties and unknown 

disturbance bounds. 
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(3) A nonlinear ESO is developed to observe the unavailable USV velocitiesand 

estimates the lumped disturbances consisting of internal model uncertainties 

and external environmental disturbances. 

 The remaining of this paper is organized as follows.Section 2 introduces problem 

formulation and preliminaries. The design and stability analysis of the proposed 

NTSMC scheme and the ESO arepresented in Section 3.The numerical simulations and 

the comparison of the results arediscussed in Section 4.Finally,Section 5 summarizes 

this paper and describes future research. 

2. Problem formulation and preliminary considerations 

Throughout this paper, we adopt the followingnotations. 0  denotes the set of all 

nonnegative real numbers,and n  denotes the Euclidean space with dimension 

n. represents the absolute value of a scalar. denotes the Euclidean norm of a vector 

or the 2-norm of a matrix.  
T

denotes thetranspose of a matrix   ,and 
3 3

1 2 3diag( , , )x x x  be the diagonal matrix in which the diagonal elements are 1x , 2x , 

3x . min ( ) is defined as the minimum eigenvalue of a matrix ( ) .Besides,we define 

( ) ( )sig x sign x x
 = , x , (0,1) ,where ( )sign  is a signum function. 

2.1 Preliminary considerations 

Before proceeding,we introduce some useful definitionsandlemmas. 

Definition 1.For any x , the hyperbolic tangent functionis defined as: 

tanh( )
x x

x x

e e
x

e e

−

−

−
=

+
 (1) 

Lemma 1(Qiu et al., 2019).For any 0  and   , the following inequality holds: 

( )0 tanh /     −   (2) 

where 0.2785 = satisfies ( 1)e  − += . 

Lemma 2(Lu et al., 2018).Consider a nonlinearsystem ( )( ) ,  f t= x x x , if there 

exists a continuous and positive definite Lyapunov function 

( )V x satisfying ( ) ( )1 2( )k V k x x x such that V lV Q − + , where 1 2,  k k  are 

class  functions and l , Q  are positive constants, then thesolution ( )tx  is ultimately 

uniformly bounded(UUB). 

Lemma 3(Zheng and Zou, 2016). For a given unknown continuous function ( )f x : 
m → , it can be approximated over a compact set m


x

Ω with the following 

RBFNN: 

(( )) T

nf = +hx W x  (3) 

where  1 2, , ,
T m

mx x x= x  is the input vector,  1 2, , ,
T l

lW W W = W represents 

the ideal weight vector, and l is the node number 
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ofRBFNN.  1 2( ) ( ), ( ), , ( )
T l

lh x h x h x= h x  is a vector of RBF basis functions 

withthe form of Gaussian functions(4). n is theapproximation error that is bounded 

over the compact set x
Ω , namely,

n n  , where   is an unknown constant. 

( )2 2( ) exp 2 , 1,2, ,i i ib i l= − − =h x x c  (4) 

where  1 2, , ,
T m

i i i imc c c= c  is the center of the receptive field and ib  is the width 

of the Gaussian function. 

2.2USV mathematical model 

In this section, we describe in detail the three-degree-of-freedom kinematics and 

dynamics of the underactuated USV in the presence of model uncertainties and external 

disturbances. 

 

(a)The definition of two coordinate frames. (b) The schematic diagram ofthe outboard propeller. 

Fig. 1.The schematic diagram of the USV planar motionand the outboard propeller for the USV. 

 As shown in Fig. 1(a),two coordinate framesare introduced to describe the USV 

motion in planar space, where e e eO X Y is the earth-fixed frame and b b bo x y  the body-

fixed frame.Referring to (Yu et al., 2019),the kinematics and dynamics mathematical 

model of the underactuated USV in horizontal motion can be established as: 

( )

( )

d




+ + = + −

=

M

η R υ

υ υC D τυ τυ f

 (5) 

where [ , , ]Tx y =η denotes the position ( , )x y and the yaw angle of the USV.The 

vector [ , , ]Tu v r=υ describes the surge velocityu,the sway velocity v, and the yaw rate 

rof the USV. ( )R denotes the rotation matrix between body-fixed and inertia 

frame,which is definedas: 
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cos sin 0

( ) sin cos 0

0 0 1

 

  

− 
 

=
 
  

R  (6) 

withsatisfies 
1( ) ( )T − =R R and ( ) 1 =R . 3 3M represents the positive definite 

inertia matrix including the USV mass and the hydrodynamic inertia;
3 3( ) υC is the 

Coriolis and centripetal matrix; 3 3D is the damping matrix. [ , , ]T

u v r  =τ is the 

control input vector of the USV; [ , , ]T

d du dv dr  =τ represents the unknown 

boundedexternal disturbances caused by winds, waves, and ocean currents.The vector 

 u vΔ Δ Δ, ,Δ
T

rf f f=f  represents the unmodeled dynamics.The 

matricesM , ( )C υ andD can be described as follows: 

11

22 23

32 33

0 0

0

0

m

m m

m m

 
 

=
 
  

M ,

13

23

31 32

0 0

( ) 0 0

0

a

a

a a

 
 

=
 
  

υC ,

11

22 23

32 33

0 0

0

0

d

d d

d d

 
 

=
 
  

D  (7) 

where 11m , 22m , 33m , 23m and 32m denote the USV inertiamass and added mass;the 

terms 11d , 22d , 33d , 23d  and 32d denote the hydrodynamic damping coefficients. In 

addition, 13 31 22 23a a m v m r= − = − − and 23 32 11a a m u= − = denote the Coriolis–centripetal 

terms.Referring to(Sun et al., 2019),the driving force and torque generated 

bytheoutboard propeller can be expressed as: 

cos( )

sin( )

sin( )

u

v

Gr

T

T

d T

 

 



   
   

= = −
   
     

τ  (8) 

where T represents the driving force produced by the propulsion system,  represents 

the angle of the propulsion, and Gd  represents the installed position of theoutboard 

propeller(see Fig. 1(b), it has a propulsionangle range given by [ 30 , 30 ]  − + ). 

Remark 1. The USV is underactuated, which only generates surge force and yaw 

moment through theoutboard propeller, and no lateral propeller is directly used for 

control. In addition, if the steering angle of the outboard propeller is small, then itcan 

be assumed that 0v  , and then [ ,0, ]T

u r =τ .  

Assumption 1.The USV is symmetrical and evenly distributed in mass, the barycenter 

of the USV coincides with the center of the body-fixed frame.Therefore, ignoring 

rolling, pitching, and heaving movements, and only considering the USV's three 

degrees-of-freedom motion insurging,swaying, and yawing.Sothe matricesM andD can 

be simplifiedas: 11 22 33( , , )diag m m m=M , 11 22 33( , , )diag d d d=D , ( )C υ  can be written as: 

22

11

22 11

0 0

( ) 0 0

0

m v

m u

m v m u

− 
 

=
 
 − 

υC  (9) 
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Therefore, the Equation (5)can be rewritten as the following state-space equations. 

( )

( )

( )

u du
22 11 u

11 11

dv
11 22 v

22 22

r dr
11 22 33 r

33 33

cos sin

sin cos

1
Δ

1
Δ

1
Δ

x u v

y u v

r

u m vr d u f
m m

v m ur d v f
m m

r m m uv d r f
m m

 

 



 



 

= −


= +

 =


+ = − + +


 = − − + +



+
 = − − + +  


 (10) 

Moreover, due to the physical limit of the USV’s propulsion system,the command 

control input signal calculated by the control law is inevitably subject to input 

saturation,which can be expressed as follows: 

max max

max

( ) ,
, ,

,

ci i ci i

i

ci ci i

sign
i u r

   


  


= =


 (11) 

where ( , )i i u r = are the actual control inputs; max ( , )i i u r = denote the maximum control 

force or moment. 

Assumption 2.In most working conditions,external disturbances ( , , )di i u v r =  acting 

on the underactuated USV are generally considered to be superimposed by the unknown 

time-varying low-frequency periodic signals(Chen et al., 2019), which satisfy max

di di  , 

where 
max ( , , )di i u v r = are unknown positive constants. 

Assumption 3. The desired trajectory ( , )d dx y is sufficiently smooth and 

hasboundedfirst and second derivatives. In addition, the velocity vector [ , , ]Tu v r=ν is 

unavailable. 

3. Controller design and stability analysis 

In this section, anadaptivenon-singular terminal sliding mode controller based on 

MLP and ESOis designed for tracking the trajectory of the underactuated USVwith 

unmodeled dynamics and external unknown time-varying ocean disturbances.For better 

illustration, the structural block diagram of the proposed trajectory tracking control 

scheme is shown in Fig. 2. 
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Fig. 2.The structural block diagram of the proposed trajectory tracking control scheme of the 

underactuated USV. 

 Thevirtual control law is designed to convert the desired position into the virtual 

state quantities, and the neural shunt model is introduced to handle the ‘‘explosion of 

complexity’’ problem caused by the differentiation of virtual control 

quantities.Moreover, the ESO is designed to obtain the exact estimations for the 

velocities and the lumped disturbances.Meanwhile,to enhance the robustness of the 

system,the MLP algorithm is adopted for approximating and compensating for the 

model uncertainties, which will reduce the computational complexity to some extent, 

and the adaptive technology is employed to estimate the neural network approximation 

error and the boundary value ofunknownexternaldisturbances. 

 The control objective of this paper is to design an NTSM trajectory tracking 

controller for the underactuated USV in the presence of model uncertainties, 

unmeasurable velocities, and unknown external ocean disturbances.Finally, the designed 

controllercould force the USVto navigatealong the desired trajectory ( , )d dx y and ensure 

that all the tracking error signals of the closed-loop system converge on a small residual 

region and are uniformly bounded. 

3.1 Design of  nonlinear extended state observer 

In this subsection,the ESO is designed to obtain the exact estimations for the 

velocities and the lumped disturbances. From USV mathematical model(5), the 

composite dynamics model of the systemcan be rewritten as: 

 -1 -1

-1

( ) + ( )

= ( ) ( ) () )

( )

( d

 

  



=

+ +− − − +

= +

M C D τ f M τ

χ M τ

η R υ R υ

R υ υ R υ R

R

 (12) 

we let 1 =x η , 2 =x η , then the dynamics model of the underactuated USV can be 

described as: 
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1 2

-1

2 ( )

=

= +




x

R

x

x χ M τ
 (13) 

where  -1 (( ) ( )) d = − − − ++χ υDR υ υ RM C τ f represents the lumped uncertainty 

consisting of unmodeled dynamics and external disturbances. 

Assumption 4(Van, 2019; Zhang et al., 2019).The lumped uncertainty χ  satisfies 

Hχ , where 0H   isan unknown bounded constant. 

 From (13), the nonlinear ESO can be constructed as follows 

1
1 2 1 1

-12
2 1 12

3
1 13

(

ˆ ˆ ˆ( )

ˆ ˆ ˆ( )

ˆ ˆ )

)

(

a

a

a










= + −




= + − +



= −


x x x x

x χ x x M τ

χ

R

x x

 (14) 

where 1x̂ , 2x̂  and χ̂ are the estimates of 1x , 2x , and χ , respectively.   and 

( 1,2,3)ia i =  are positive design constants. 

We define the observation error  1 2 3, ,
T

=E e e e , where 
2

1 1 1
ˆ( ) /= −e x x , 2 2 2

ˆ( ) /= −e x x  and 3
ˆ= −e χ χ . By combining (14)we can obtain 

the following error equations. 

( )

( )

1 1 1 2 2
1 1 1 1 1 22

2
2 2 2 1 1 2 1 32

3
3 1 1 3 12

ˆ ˆ
ˆ

ˆ ˆ ˆ( )

ˆ ˆ( )

a
a

a
a

a
a


  




   


 − −
= = − − + = − +




= − = − − + − = − +



= − = − − + = − +


x x x x
e x x e e

e x x x x χ χ e e

e χ χ x x χ e χ

 (15) 

then the observer error equations (15) can beexpressed by 

 = +E AE Bχ  (16) 

where  

1 3 3 3

2 3 3 3

3 3 3 3

0

0

0 0

a

a

a

− 
 

= −
 
 − 

I I

A I I

I

, 

3

3

3

0

0

 
 

=
 
  

B

I

 

 To analyze the stability of(16), for any given positive definite matrix Q,there exists 

a symmetric positive definite matrix Psatisfying the following Lyapunov equation. 

T + = −A P PA Q  (17) 
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Theorem 1.Suppose that Assumption 4and the equation(17)are satisfied, then the 

observer error dynamics (16) isinput-to-state stable and the observation errorvectorEcan 

converge to the origin. 

Proof.The Lyapunov function candidateof the observer is defined as follows 

T

oV = E PE  (18) 

The time derivative of oV can be written as: 

( ) ( )

( )

( )

( )
2

min

2

2

2

2

T T

o

T T

TT T T T

T T T

T

V

H

 

 

 





 



= +

= + + +

= + + +

= + +

 − +  

 − + 

 −

E PE E PE

AE Bχ PE E P AE Bχ

E A PE Bχ PE E PAE E PBχ

E A P PA E E PBχ

E QE PB E χ

Q E PB E

E

 (19) 

where  

( )min

2 H
 = −

PB
Q

E
 (20) 

and ( )min Q is the minimum eigenvalue ofQ . 

 To ensure 0  , and 0oV  ,the convergence condition of the observer can be 

obtained as: 

( )min

2 H




PB
E

Q
 (21) 

By solving inequality(19),we obtain 

0 (0) t

oV V e −   (22) 

 Therefore, it can be seen that oV is ultimately bounded, and the observer error 

dynamics(16) is input-to-state stable. 

Remark 2.It can be seen from (21), the convergence rate of observation error E is 

related to the parameter  .The smaller , the faster E  will converge.As   decreases, 

the observation error E will gradually approach zero. 

Based on the above analysis and refer to (Wang et al., 2018), the following 

nonlinear ESO is designed in this paper. 
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( )

( )

2 1 1

1

2 2

1 1

1 2

-1

2

3

ˆ

ˆ ˆ

ˆ ˆ

,ˆ

, , ( )

,

  

 

−


= +


= + +


=

= x x

x x Λ

x χ Λ fal M τ

χ Λ fa

η

ηl

η

η R
 (23) 

where 3 3, 1,2,3i i =Λ is the positive real diagonal matrix, which is the gain matrix of 

observererror. ( ), , ηfal is the nonlinear function of the stateestimate errorη , which 

is defined as follows 

( )
1

 ,  1,2,3
(

/
, ,

)

ii

i

ii

fal i
sig





 
  







−




= =



 (24) 

where ( ) ( )i i isig sign
   = , 0 , 1   . 

Remark 3.The characteristics of ( ), ,fal     determine that the ESO is continuous and 

non-smooth, and has strong adaptability to model uncertainties and external 

disturbances.At the same time, its characteristics are directly affected by and  , 

where   affects the slope of ( ), ,fal     and   affects the magnitude of 

( ), ,fal    .In this paper, we analyze the relationship between   and ( ), ,fal     

when  =0.01 by simulation.The simulation resultsare shown in Fig. 3. 

 

Fig. 3. The relationship between   and ( ), ,fal    . 

It can be seen from the analysis of Fig 3thatwhen 1    and 1   , then 

the larger  , the smaller ( ), ,fal    will be; when 1  , if  is smaller, then 

( ), ,fal     will be smaller.Therefore, by selecting appropriate design parameters, the 

fast convergence of the ESO can be achieved. 

 According to the nonlinear ESO(23) and the USV mathematical model(5), wecan 

obtain 

2

1

1
ˆ (ˆ ˆ  ˆ, )−= =η υ Rx x  (25) 

where  ˆ ˆˆ ˆ, ,
T

x y =η represents the position observation vector of the USV, and 
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 ˆ ˆ ˆ ˆ, ,
T

u v r=υ denotes the velocity observation vector of the USV.In addition, 

ˆ= −υ υ υ denotes the velocity observation vector error. 

3.2Design of the virtual control law 

In general, the purpose of the trajectory tracking control is to follow the reference 

trajectory by adjusting the controller according to the position error.To facilitate the 

design of the trajectory tracking control law, the position tracking error is defined as: 

= ,     e d e dx x x y y y− −=  (26) 

where ( , )d dx y is the desired trajectorycoordinate of theUSV. 

Differentiating (26) with respect to time yields 

ˆ ˆcos sin

ˆ ˆsin cos

e d

e d

x u v x

y u v y

 

 

= − −

= + −
 (27) 

Considering the Lyapunov function 0V as follows 

2 2

0

1
( )

2
e eV x y= +  (28) 

Taking the time derivative of(28) along(27) yields 

0

ˆ ˆ ˆ ˆ( cos sin ) ( sin cos )

e e e e

e d e d

V x x y y

x u v x y u v y   

= +

= − − + + −
 (29) 

where û and v̂  are regarded as the virtual control quantity. In order to make 
0V  negative 

and achieve the tracking error approaching zero,the virtual control law du  and 

dv aredefined as follows 

1( )
/

d d e

d d e

u x kx
J

v y ky
 −

−     
=   

−    
 (30) 

with  

cos sin
( )

sin cos
J

 


 

− 
=  
 

 and 2 2

e ex y C = + + . 

where k and C are positivedesigned constants.  

Remark 4.In (30),  is introduced to prevent
ex and 

ey from being too large,which 

may cause du and dv  exceed the reasonable speed range of the USV, resulting in system 

instability and even controller crash(Qiu et al., 2019). 

 Substituting (30) into(27), we obtain 

ˆ
( )

ˆ

e d e

e d e

x u u kx
J

y v v kx


− −       
= +     

− −       
 (31) 
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 It can be seen from (31) thatwhen ˆ
du u→ and ˆ

dv v→ , the position error will also 

converge to zero gradually. 

 The time derivative of (30) can be described as: 

1 2

1 2

cos sin

sin cos

d d

d d

u rv H H

v ru H H

 

 

= + +


= − − +
 (32) 

with 

1 3 2 3

1

1 3 2 3

2

( )

( )

d e e e e e

d e e e e e

H x kx x k x y y

H y ky y k x y x

− − −

− − −

 = −  − + 


= −  − + 
. 

 It can be seen from (32) that du and dv are quite complex. Therefore, to avoid the 

"differential explosion" caused by the direct derivation of the virtual control law in the 

next step, we let du and dv  pass through the following neural shunt model to obtain the 

new controlvariables u and v . 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )d

u u u u u d u u

v v v v v v v

d

d

A B f D g

A B f D

u u

vgv

   

   

= − + − − +

= − + − − +
 (33) 

where iA , iB and iD , ,i u v= , have the same meaning as defined by(Pan et al., 

2015). ( )f x  and ( )g x are linear threshold functions, which can be defined as: 

   ( ) max ,0 ,     ( ) max ,0f x x g x x= = −  (34) 

Define the new error variables uy  and vy as: 

d

u u

v v

dy

y

u

v





= −

= −
 (35) 

whose time derivative along (33) can be expressed by 

   

   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

u u d

u d d u u d u d u

v v d

v d d v v d v d v

y u

A f u g u B f u D g u Y

y v

A f v g v B f v D g v Y









= −

= − + + + − −

= −

= − + + + − −

 (36) 

with 

.

u d d d

d d

d

d

v
d

d d d

d d d

d d d d d d

d d d d

Y

y

u u u u u u

v

x x x y y
x x x y y

Y x x y y
x x

v v

y

v

y

v

y

v







     
= + + + + +
     

     
= + + + + +
     

 

From the definition of functions ( )df u  and ( )dg u , we have ( ) 0df u  and ( ) 0df v  . If 

0du  , then ( )d df u u= and ( ) 0dg u = ; if 0du  , then ( ) 0df u = and ( )d du ug = − . 

Hence, by choosing , ,i iB D i u v= = , then (36)can be simplified as: 
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d u d

d v d

u u u u u

v v v v v

u M u

v M v

y B Y

y B Y

 

 

= −

= −

−= − +

= − + −

 (37) 

where ( ) ( ) 0u du dM A f gu u+ +=   and ( ) ( ) 0v dv dM A f gv v+ +=  . 

Assumption 5 (Mu et al., 2017).Assume uY  and vY  are bounded and satisfy 
u uY Y  and 

v vY Y , where 
uY  and 

vY  are positive constants. 

3.3Design of adaptive NTSM controller 

In this subsection,an adaptive NTSM controllerfor the underactuated USVbased on 

MLP and ESO is introduced to design surgemotion control law u and yaw motion 

control law r . To put it simply,we design u and r to forcethe actual surge and yaw 

velocities to track the virtual control law(30), and itsstability is analyzed by Lyapunov 

stability theory. 

Step 1: Define the surgevelocity error ˆ
e du u u= − , andintroduce the NTSM surface 

for the surge velocity error eu as: 
1

1

1 1 1
0

( ) ( )

p
t

q

e e es u u t dt sig u = + +  (38) 

where 1 0  , 1 0  , 1 11 2p q  , 1p and 1q are both positive integers. 

Taking thetime derivative of (38) produces 

( )

1
1

1

1
1

1

1
1

1

1 1
1 1

1

1 1
1

1

1 1 1

22 11 cu du 11 1

1 11

1

1
ˆˆ ˆ

p

q

p

q

p

q

e e e e

e e e

e

u u e

p
s u u u u

q

p
u u u

q

p u q
m vr d u f m u

q m








   

−

−

−

= + +

 
= + + 
 

+  
= − +  + + 


− +



 (39) 

In Equation(39), uf is the uncertainty term of the USV model. In this paper,we 

choose the MLP method instead of the RBF neural networkto approximate the unknown 

function uf to simplify calculations(Shen et al., 2020a).Define 
2

 = W , where ̂  is the 

estimation of   and ˆ  = −  representsestimation error. In addition, to reduce the 

chattering problem and the influence of disturbances,the sliding modecontrol law is 

designed by using the hyperbolic tangent function, which can be expressed as: 

max

1 1 1 1 1
ˆ tanh( )dus s s  = − −  (40) 

where 1 and 1  are positive design parameters, 
maxˆ
du is the estimated upper bound value 

of uncertain external ocean disturbances, and the corresponding estimated error 

is
max max maxˆ
du du du  = − . 

 Then the surge motion NTSM control law can be designed as: 
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1
1

1

max

1
1

1

1 1
22 11

1 1 1

1
1 1 1 1

1

1 1

1
11

1

ˆˆˆ ˆ

ˆ tanh( )

p

q

p

q

e
cu u u

e

du

e

u q
m vr d u

u

m
f

p q

q
s

u

m

s
p q


 



  


−

−

= − + − + −
+

− +
+

 (41) 

where 
1 1

1ˆ ˆ
2

T

uf s hh =  is the estimate of uf . 

 The update law for
1̂  and the adaptive law for

maxˆ
du can be designedas: 

2

1 1 1 1 1

1ˆ ˆ
2

Ts hh 
 

=  − 
 

 (42) 

 max max 0

1 1 1 1 1
ˆ ˆtanh( / ) ( )du du dus s     = − −  (43) 

where 1 , 1 , 1  and 1 are positive design parameters, 
0

du is the initial value of the 

related variable. 

 Taking into account the input saturationproblem, the final surge control law can be 

described as: 

u max max

max

( ) ,

,

c u cu u

u

cu cu u

sign    


  


= 


 (44) 

Remark 5.It should be pointed out thatthe hyperbolic tangent function is introduced to 

replacethe sign function to design the sliding mode control law, which can not 

onlyeffectively eliminate the adverse effect caused by chattering, but also ensures that 

the tracking errors converge to zero. 

Step 2: Define theyaw velocity error ˆ
e dv v v= − , andintroduce the NTSM surface 

for the yaw velocity error ev as: 

2

2

2 2 ( )

p

q

e es v sig v= +  (45) 

where 2 0  , 2 21 2p q  , 2p  and 2q  are both positive integers. 

Taking the time derivative of (45)yields 



2

2

2

2

12 2
2

2

12 2
11 22 33

2 33

33
2

ˆ ˆ ˆ( )

ˆ ˆ( )

p

q

p

q

e e e

d
e r cr dr

v e

d

p
s v v v

q

up
v m m uv d r f

q m

m
v r F v

u




 



−

−

= +


= − − +  + +




+ + − +


 (46) 

where 2 1 2sin cosF H H = − + . 

 Such as the surge motion controller design,we introduce MLP instead of RBF 

neural network to approximate the unknown function rf . Meanwhile,the yaw motion 

sliding mode control law is designed by using the hyperbolic tangent function. Then the 

yaw motion NTSM control law can be designed as: 
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2 2

2 1 max
2 2

22 2

2 2 2 2

33
11 33

33 2 2

2 2 2 2

ˆ ˆ ˆ( )

ˆ tanh( /

)ˆ

)

ˆ ˆ(

p p

q q

cr v

e e r

d

d

r

d

r f v
u

q

r

q

u p p

m
m m uv d F

m
v v s s

 








− −

− − −

−

= − + + −

− +

 (47) 

where 
2 2

ˆ ˆ1/ 2 T

rf s hh =   is the estimate of rf .
maxˆ
dr is the estimated upper bound value 

of uncertain external ocean disturbances, and the corresponding estimated error 

is
max max maxˆ
dr dr dr  = − . 2 and 2  are positive design parameters. 

 The update law for
2̂  and the adaptive law for

maxˆ
dr can be designedas: 

2

2 2 2 2 2

1ˆ ˆ
2

Ts hh  
 

=  − 
 

 (48) 

 max max 0

2 2 2 2 2
ˆ ˆtanh( / ) ( )dr dr drs s     = − −  (49) 

where 2 , 2 , 2  and 2  are positive design parameters, 
0

dr is the initial value. 

Taking into account the input saturationproblem, the final yaw motion control law 

can be described as: 

max max

max

( ) ,

,

cr r cr r

r

cr cr r

sign    


  


= 


 (50) 

Remark 6.It is worth mentioning thatby introducing the MLP method, we can see that 

we only need to estimate the two constants 1  and 2 . Therefore, the calculation burden 

is effectively reduced and the real-time and robust performance of the control system is 

greatly improved.Moreover,by incorporating the neural shuntdynamicsmodel, which 

avoids directly deriving the virtual control signals ( du and dv ) and improves the 

computational efficiency of the tracking control algorithm, and also realizes the 

application from the biological field to other fields. 

 Based on the above controller design, the main result of this paper is summarized as 

Theorem 2. 

Theorem 2.Consider the closed-loop system consisting of the underactuated USV 

dynamics(5) or (10)obeying Assumptions 1–5,the NTSM controllaws(44),(50), the MLP 

neuralnetwork update laws(42),(48), the adaptive laws(43),(49), the neural shunt models 

(33), and simultaneously suffering fromthe model parametric uncertainties, 

unmeasurable velocitiesand unknown external ocean disturbances.By 

choosingappropriate design parameters, such that all tracking error signals inthe closed-

loop system fast converge to a small neighborhood of the origin that can be made 

arbitrarily small. 

Proof.Consider the candidate Lyapunov function V as follows: 

max max 2 2

1 2

1

2 2 2 2 2 2

11 1 33 2

1 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2
du dr u vV m s m s y y 





= + + + + + +


+


 (51) 
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Then, taking the time derivative V  along(39)，(46)，(43)，(49)，(42)，(48)，
(37)，andsubmitting the control laws(41) and(47), we have 

max max max max

max

max

1 1 1 1

11 1 1 33 2 2 1 2 1 2

1 1 1 1 1

2 2 2 2

1 1 2 2

1 1

2 2

ˆ ˆ

ˆ tanh( /

ˆˆ +

1 ˆ
2

1 ˆ
2

n

)

ˆ ta h( / )

T T

u

du du dr dr u u v v

du du

d r

u

T T

r dr r

V m s s

sW h s

m s s y y

hh

W h s hh

y y

s s

s s

     

   

  



  



 

− − −



−



= + + + − − +

 
− − 

 

+

= + − +

+ − + − −

   max max

ma

max 0 max 0

2

1 1 1 2 2 2

1 1

1 2

1 1

1 2 1 2 1 22

1 2

1 1 2 2

2 2

1 1 2 1 1 2 2

tanh( / ˆ ˆ( ) ( )

ˆ ˆ

1 1ˆ ˆ ˆ ˆ
2

)) tanh( /

2

du du dr dr

T T T T

u r

du dr

u u v v

d

r

u

u

s

h

s s s s

y y

h

y

W h W s s

y

s hs h hs s

        

  





      

− −

− −

 
 

+

 

+ − +

+

−

−

− −

 + + −

 − +

− −

+

− 

m

x

max max 0 ax ma

x

0

ma

x

1 2

22

1 1 1 1 2 2 2 2 1 1 2 2tanh( / ) tanh( /

ˆ ˆ( ) (

)

)

dr

u u v vdu du du dr dr dr

s s s s s s s s

y y y y

 

     





 



 −  +  −  − −

−

  

− −− ++

 (52) 

According to Lemma 1,we can get tanh( / ) ,  1,2i i i i is s s i −  = , and from 

Young's inequality, we havethe following inequalities: 

max max 0 max max 0

max max 0 max max 0

2 21 1
1

2 22 2
2

ˆ( ) ( )
2 2

ˆ( ) ( )
2 2

du du du du du du

dr dr dr dr dr dr

 
     

 
      

− −  − + −

− −  − + −

 (53) 

2

2

11 1

2

2 2

1 1

2 2

1 1

2 2

T T

u

T T

r

s

s

W h s hh

W h s hh









 +

 +

 (54) 

2 22 2

1 1

2 2 2 2

2 2

1

2

2 2 2 2

2 2 2 2

u U
u

r R
r

s

s

s s

s s

 


 


 +  +

 +  +

 (55) 

 Then, substituting(53), (54), (55)and (37)into (52)yields 

max max max 0

0

max

x

ma

m

x

a

2 2

1 1 1 2 2 2

2

2

2

2
2 2 21 2 1

1

1

22

2 1 11 2
2 1 2

1 1ˆ ˆ
2 2 2 2

( )
2 2 2 2 2

( )

2

1
2

1 2 1

( ) ( )

du dr

u u u v v v u

T T

U R
du dr du du

dr dr u d v d

s hh s hh

M u M v

V s s

y B y B y

   

    
     




 

 

 

− −− −
− − +  

−

   
 − + −   

   

+ + + +

− − −+ −

− − + −

+ − u v vY y Y−

 (56) 

We define uuM B= , vvM B= , then get uu uu duM B yu M − = , vv vv dvM B yv M − = . 

Thus, (56) can be written as: 
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0

ma

max max max ma

x max

x 0

1 1 1 2 2 2 1 2

2 2
2 2 2 21 2 1

2 21 2
1 2

2

2

2

ˆ ˆ
2 2

( ) ( ) 1
2 2 2 2

2

2

2 1 1

2

du dr

u v u u v

U R
du dr du du d

v

r dr

u v

V

M M

s s

y y y Y y Y

     

    
  



 





  + +

− − + + + − +

− −
− − + +

−

− +

− − −

 (57) 

Because ( ) ( )
2

2 2 ˆ2 0i i i i i i i      − = + − +  , then we can obtain 2 2ˆ2 i i i i   − , 

where 1,2i = . From Young’s inequality, i.e., 2 21

2 2
ab a b




 +  with 0   and 

2( , )a b  . It  

follows that  

2 2

2 2

2 2

2 2

u u u
u u

u

v v v
v v

v

y Y
y Y

y Y
y Y









−  +

−  +

 (58) 

where u  and v are positive constants. 

 Then (57)can be written as: 

a

ma

m x max

max 0 max

m

0

x ax

2 21 2 1 2
1 2

2 2

2 2

1

2 2 2 21 2
1 2

2 2

1 2

2 2 2 21 2
1 2

2

2 2 2 22

2 2

2 2

( ) ( ) +

2 1 2 1

2

+
2 2

2 2 2 2
1

2 2

du

u v
u v du dr

d

dr

u v U R

u d
v

u

v

dr
u

u

dr

V

M M

lV Q

s s

y y

Y Y

 
  





 
 

   

 
 





 

 
     

− −
− − − −

−

 − −

− −
+ + +

+ + + −

+

−

+ + + −

 −

 (59) 

where  

 11 21 2 2mi 22 1,2 1, , , ,n 2,, u vu vl M M      −= − − −  

0

max ma

max max 0

x

2 2
2

2
2

1 2 1 2

2 21

2

1 2

2

2 2

( ) ( ) +1
2

+
2 2 2

2

2

u v
du dr

u

d

U

v

R

u du dr dr

Q
Y Y



 


 
   

 











= + + +

−

+

+

++

+ −

 

1 22 1 0,  2 1 0 −  −  , 02 ,  20u u v vM M − − . 

 Solving inequality(59) gives  

0 ( ) (0) ltQ Q
V t V e

l l

− 
  + − 

 
 (60) 
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Since lim ( )
t

V t Q l
→

= , according to Lemma 2, we know ( )V t is uniformly 

ultimatelybounded.Inequality(60)confirms allthe error signals 1s , 2s , 
max

du , 
max

dr , 
1 , 

2 , 

uy , vy  are uniformly ultimately bounded.Further, it can be seen that eu  and ev  are 

bounded, andthen from (31) we can see that ex  and ey are also bounded.By selecting 

appropriate parameters, the quantity /Q l  can be made arbitrarily small. Therefore, the 

tracking errors may be made arbitrarily small, thenthe USV can track trajectory 

accurately. 

4. Numerical Simulations 

In this section,numerical simulations are performed to validatethe effectiveness and 

superiority of the proposedNTSMC trajectory tracking scheme. The comparative 

simulation of the adaptive sliding mode control by employing MLP scheme (ASMC-

MLP)proposed by(Qiu et al., 2019)is conducted on the underactuated USV. As shown 

inFig.4, the USV is a small intelligent marine vehicle with an overall length of6.4 m and 

breadth of 2.4 m.The vessel mainly consists of navigation, guidance andcontrol system, 

propulsion system, communication system, and sensing system including camera, 

RAR(radar angle reflector), and so on,which the propulsion system of the USV adopts 

an outboard propeller with the propulsionangle [ 30 , 30 ]  − + .The main parameters 

are listed in Table 1. 

 

Fig. 4. The underactuated USV. 

To testify the robustness and effectiveness of the proposed controller,the modeling 

uncertaintiesf  and external time-varying disturbances dτ are assumed to be as follows: 

2 3

3 2 3

2 3

0.2 0.83 0.1 0.83

10 0.2 2.55 0.1 2.55

0.2 1.25 0.1 1.25

u

v

r

u uf

f v v

f r r

 −  −  
  

 =  =  −  −   
   −  −    

f  (61) 
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85 sin(0.2 ) cos(0.5 / 4) sin(0.2 / 6)

50 sin(0.1 ) cos(0.4 / 4) sin(0.2 / 6)

65 sin(0.4 ) cos(0.3 / 4) sin(0.2 / 6)

du

d dv

dr

t t t

t t t

t t t

 

  

  

  + + + + 
  

= =  + + + +  
    + + + +   

τ  (62) 

 

Table 1 

The principle parameters of the underactuated USV. 

Parameter Value Unit 

m  1900 [kg] 

11m  2500 [kg] 

22m  3200 [kg] 

33m  980 [kg] 

11d  830 [kg] 

22d  2550 [kg] 

33d  1250 [kg] 

In addition, the mean integrated absolute error (MIAE) index(Zhu and Du, 2020) is 

introduced to quantitativelyevaluateand compare the tracking performanceof the 

proposedNTSMC scheme and ASMC-MLPproposed in(Qiu et al., 2019), which can 

bedescribed as: 

0
0

1
 

f

f

t

e
t

MIAE j dt
t t

=
−   (63) 

where ej ( , , ,j x y u v= ) represents the tracking errors, 0t and 
f

t represent the start and 

end simulation times,respectively. 

To make the trajectory tracking performance persuasive,the desired trajectory 

consists of a straight line and two circles, which can be described as: 

1

1 1 2

2 32

1

1 2

2 2 3

150 100sin(0.04 ) ( 0 )

150 4( ) ( )

( )150 48 100sin[0.04( )]

100sin(0.04 ) ( 0 )

0 ( )

100 100cos[0.04( )] ( )

d

d

t t T

x t T T t T

T t Tt T

t t T

y T t T

t T T t T



+  


= + −  
  + + −

 


=  
− + −  

 (64) 

where 1 50T = s, 2 62T = s, and 3 400T = s. 

 For better comparison of different experimental results of the trajectory tracking on 

different control methods, the initial states are set to be the same. The initial conditions 

are chosen as: (0) [150 ,20 ,0 ]Tm m rad=η  and (0) [0 ,0 ,0 ]Tm s m s rad s=ν .The 

parameters of ESO, control laws,adaptive laws, and neural network update laws are 

properly selected in Table 2.The parameters of the MLP neural network with 39hidden 
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node numbers are designed in this paper. The width ib  of the Gaussian function affects 

the network mappingrange,for the inputs, the closer the ic  are to each other, the 

moresensitive the Gaussian function is. Thus, through multiple trials, we properly 

choose the widths to be 1 4.5b = and 2 1.8b = , the center vector 1c evenlydistributed in 

[ 8,8]− and [ 0.3,0.3]− . In addition, the parameters of the neural shunt model are chosen 

as: 3u vA A= = , ( ) ( )3u u d dM fB u ug= = + +  and ( ) ( )3v v d dM fB v vg= = + + . The 

magnitudes of the actuated forces and moments are specified in the ranges given by 
3 4[ 3.3 10 ,1.3 10 ]u  −    and 2 2[ 4.4 10 ,4.5 10 ]r  −   . 

Table 2 

The designed parameters of the controller. 

Description Value 

Parameters of ESO 

1 0.3 = , 2 0.2 = , 1 2 0.01 = =  

1 (30,30,30)diag=Λ , 2 (30,30,30)diag=Λ  

3 (50,50,50)diag=Λ  

Parameters of control laws 

1.2k = , 5C = , 1 2 1 = = , 1 2 1 = =  

1 2 5p p= = , 1 2 3q q= = , 1 40 = , 2 50 =  

1 2 0.1 = =  

Parameters of adaptive laws 
1 35 = , 2 35 = , 

0 0 0.1du dr = =  
3

1 1.4 10 =  , 
3

2 3.0 10 =   

Parameters of update laws 1 5 = , 2 1 = , 
6

1 1.2 10 −=  , 
4

2 5 10 −=   

In the same conditions, we confirm the advantages of the proposedscheme by 

comparison against the ASMC-MLP method proposed by(Qiu et al., 2019), and the 

simulationresults are sketched in Figs.5–14.Itcan be observed that the proposed 

NTSMC scheme has better tracking performance and effectiveness than the ASMC-

MLP strategy subject to input saturationconstraints, model uncertainties,and external 

time-varying disturbances.  

Fig. 5 depicts the simulation results of trajectory tracking comparison between the 

proposed scheme and the ASMC-MLP strategy under model uncertainties and external 

disturbances. Itcan be observed that both controllers can track the desired trajectory 

accurately, and the proposed scheme has better performance in terms of convergence 

rate at the initial stage of control.Fig. 6depicts the results of position tracking.In the 

meantime, the corresponding tracking errors are shown inFig. 7,which demonstratesthat 

the USV could track the reference positionin around the 30s and achieve faster error 

stabilization as compared to the ASMC-MLP strategy.Figs. 8–9 compare the velocity 

tracking results between the proposed scheme and the ASMC-MLP strategy, from the 

parts enlarged view we cansee that the velocity errors under the proposed 

schemecouldquickly converge to a small neighborhood around the origin and keep 

stable at the balanced point.Furthermore,to better present theperformance superiority of 

ourproposed controller in detail,the value of the MIAE index of position error ex , ey and 

velocity error eu , ev are listed in Table 3. 
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Table 3 

The MIAE indexes of position error ex , ey and velocity error eu , ev under both controllers. 

MIAE ex  ey  eu  ev  

The proposed scheme 0.0347 0.5536 0.0102 0.0188 

ASMC-MLP scheme 0.0482 0.7790 0.0170 0.0230 

Comparing these indexes in Table 3, it can be seen that the MIAE index of ex of the 

proposed scheme is 72  of the ASMC-MLP scheme, the MIAE index of ey of the 

proposed scheme is 71.9  of the ASMC-MLP scheme, the MIAE index of eu of the 

proposed scheme is 60  of the ASMC-MLP scheme, the MIAE index of ev of the 

proposed scheme is 81.7  of the ASMC-MLP scheme. Therefore, the proposed 

NTSMC scheme has a lower MIAE index than the ASMC-MLP scheme, which reflects 

that the proposed scheme has better transientresponse performance and robustness. 

 

Fig. 5.The reference and actual trajectories in the x-y plane. 

 
Fig. 6.The curves of reference and actual positions in the x-axis and the y-axis directions. 



Adaptive neural network and extended state observer-based non-singular terminal sliding modetracking control… 

23 

 

 

Fig. 7.The curves of position tracking errors. 

 

Fig. 8.The comparison of actual and estimated velocities in the proposed scheme and ASMC-MLP. 

 

Fig. 9.The curves of velocity tracking errors. 



 

 

 

Fig. 10.The comparison curves of control inputs. 

The control inputs u and r are presented in Fig. 10.It can be observed that the 

control inputs of the proposed scheme have reached saturation at the beginning, while 

the control inputs of the comparative schemehave large peaks and exceed the maximum 

range that the actuator can provide. Therefore, the results in Figure 10prove that the 

proposed controller can still make the system run stably even under input saturation and 

have better control performance. Furthermore,the unmeasurable velocitiesof the USV 

are estimated by the ESO and the correspondingestimate error is shown inFig. 11,where 

the velocity estimation errors could converge eventually to a small neighborhoodnear 

the origin.Fig. 12shows the estimation of lumped disturbances by the ESO.Therefore, it 

is revealed that the designed ESO can observe and estimate unmeasurable velocitiesand 

lumped disturbances with tiny errors, and has an excellentestimationperformance. Fig. 

13shows that the adaptive law can estimate the upper bound of the external disturbance 

by choosing the appropriate parameters. As can be seen in Fig. 14, the model 

uncertainties of the USV can be estimated and approximated accurately by employing 

the MLP neural network. According to the above simulation results, we can conclude 

that the proposed controller has faster convergence and better robustnessperformance. 

 

Fig. 11.The velocity estimation errors of ESO. 



 

 

 

Fig. 12.The lumped disturbances and observer estimations. 

 

Fig. 13.The external disturbances and their boundary estimations. 

Fig. 14.The model uncertainties curves approximated by MLP. 

5. Conclusions 



 

 

This paper has proposed anNTSMC schemefor trajectory tracking control of the 

underactuated USV based on the nonlinear mathematical model subject to model 

uncertainties and external disturbances.The scheme is presented bycombing a nonlinear 

ESO,neural shunt model, andMLP neural network with adaptive technology. To address 

the problem that the velocity is difficult to measure in practice, a nonlinear ESO is 

designed in this paper, which can accurately estimate the unmeasurable velocitiesand 

lumped disturbances. To enhance the control system robustness, the MLP-based RBF 

neural network is adopted to approximateand compensate for the model uncertainties. 

Meanwhile, the adaptive law is designed to compensate for neural network 

approximation errors and disturbances. Moreover, the neural shunt model is employed 

to solve the differential explosion problem of virtual control quantity.Furthermore, the 

overallstability of the closed-loop control system is strictly guaranteed by Lyapunov 

theory,and the tracking errors are proved to converge to a small neighborhood of the 

origin. Finally, comparative numerical simulationsare carried out and the MIAE indexes 

are calculated simultaneously to analyze the tracking performance.The simulation 

resultsintensively demonstrate the effectiveness and superiority of the proposed scheme.  

In the future, we willconsider the dynamiccharacteristics of the propulsor and 

quantitatively analyze how much computational burden can be reduced,and the 

designed controllerwill be applied for practical experiments. 
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