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ABSTRACT
To become more competitive, less dependent on financial support and
more attractive for investors, wind energy needs to reduce its final cost
of energy. According to Levelized Cost of Energy, there are two ways to
achieve this goal, by reducing costs or increasing production. Overall
Equipment Effectiveness (OEE) is a widely used metric in manufacturing
systems, supporting operators to enhance productivity by reducing
operational losses. Therefore, this study aims to perform a qualitative
literature review of the main operational losses following the OEE
metric, namely availability, performance and quality, adjusting it to
wind energy systems. Introduction of this metric can be a valuable tool
towards an integrated indicator linking production and losses, allowing
comparison between assets deployed in different settings.
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1. Introduction

With several political and financial incentives during the last years, wind power has sustainably
increased its contribution to the national energy mix, covering 15% of European electricity demand
in 2019 (WindEurope 2020) and aiming to achieve around 30% in 2030 (Nghiem and Pineda 2017).
However, for wind energy to become more independent of incentives and attract more investors, it
still has some challenges to overcome, such as reducing the cost of electricity and increasing its per-
formance, towards maximising profitability throughout its service life.

A very common metric to calculate the cost of electricity is through Levelized Cost of Energy
(LCoE). LCoE should be thought as the ratio between the total production and total costs during
its lifespan, considering financial costs, time value of the money, and some profits to investors.
The total cost of implementation is known as Capital Expenditure (CAPEX), while during the oper-
ational lifetime, there are Operation and maintenance (O&M) and management costs, also known
as Operational Expenditure (OPEX) (Kolios et al. 2019). At the same time, it is during this period
that the benefits are achieved through the electricity produced and sold. Finally, after the nominal
service life period and a potential service life extension, Decommissioning Expenditure will take
place and relevant costs should be considered (Jadali et al. 2021). Figure 1 summarises all these
costs and benefits. It is important to mention that some returns might come from the disposal
of materials and equipment after decommissioning, and, for that reason, the disposal is represented
in blue and denoted by a question mark. Studies show that recycling can cover up to 20% of offshore
decommissioning costs (Topham et al. 2019).
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Even though one might consider that reducing the CAPEX value might be an adequate approach
to reduce the total life cycle cost of a wind power project, it can be a rather simplistic solution. As
shown in the first scenario of Figure 2, a poor implementation choice can affect the whole oper-
ational performance, increasing the total cost. Therefore, a balance between all costs must be con-
sidered during the project design, since over-reducing implementation costs can affect future
operational costs and even result in higher total costs than before, as presented in the second scen-
ario of Figure 2.

Towards reducing LCoE, there are mainly two approaches to be followed: increasing production
or reducing the total costs. Traditionally, after installation, connection to the grid and commission-
ing, operators assume that the project aims to produce as much electricity as possible at the lowest
possible costs. More modern wind farms operate following more sophisticated KPIs (Key Perform-
ance Indicators), such as the maximisation of profitability, because after a certain point production
of more electricity may come at an additional cost, which may not be justified by the additional
benefit. Usually, OPEX costs vary between 20% and 35% of the total costs depending on the age

Figure 1. Costs of wind turbine lifespan – adapted from Sathler (2013).

Figure 2. Comparison of two life cycle cost scenarios – Source: Adapted from Sakurai (1997).
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of the project, its location, and whether it is onshore or offshore (Rajgor 2012; Ioannou, Angus, and
Brennan 2018a; Ioannou, Angus, and Brennan 2020). The operational period is very important
because it is during this period that the project performance is more critical for the success of
the entire project and subsequently the potential of an extended service life can be anticipated or
postponed. This decision is made based on the decrease in profitability, reliability and performance
(Luengo and Kolios 2015). It has been reported that in some situations, O&M costs can increase
around 253% over a 20-year turbine lifespan (Rajgor 2012), making it impractical to sustain
operation.

Other industries and technologies have followed the same steps towards qualification, commer-
cialisation and cost optimisation. First, early adopters benefit from financial support in order to
become commercially viable and improve towards further development. Later, they involve in a
mature level, where competition forces a continuous improvement culture. In this scenario, man-
agers start focusing on improving all aspects of the process to improve their productivity, quality
and costs. For instance, Boyd et al. (2000) and Apostolos et al. (2013) discuss and relate productivity
with energy consumption efficiency. Stavropoulos et al. (2020) used machine learning to improve
quality diagnosis in laser welding and Papacharalampopoulos et al. (2020) used neural networks
and image recognition to improve defect detection in solar reflectors. To understand the real
benefit of these solutions, reliable metrics and tools are necessary to help managers to track their
overall productivity.

Among these multiple tools and approaches available, the concept of Overall Equipment Effec-
tiveness (OEE), which focus on improving equipment productivity by reducing the main operational
losses in the system, can become particularly useful towards technology optimisation. This tool is
sufficiently versatile and can be adapted to different scenarios due to its simplicity and efficiency
to support decisions and a continuous improvement culture. To this end, the aim of this paper is
to identify in the literature the multiple sources of losses in wind power assets and classify them fol-
lowing the three main elements of OEE, that is, availability, performance, and quality. The results
have the potential to become the basis of the adaptation of this metric in wind energy.

The rest of the paper is organised as follows. The OEE tool is explained in detail and the review
strategy is defined in Section 2. Findings from the review and the identification of the main oper-
ational losses are presented in Section 3, while Section 4 discusses the outcomes and analysis of the
literature review. Finally, Section 5 presents conclusions drawn based on the bibliographical review
and some recommendations for future research works.

2. Method

2.1. Overall equipment efficiency concept

In the early 1970s, the Japan Union of Scientists and Engineers has developed a maintenance strat-
egy called Total Productive Maintenance (TPM), where the goal was to achieve maximum perform-
ance in its production considering all phases related to the production. In order to check its
efficiency, a metric called Overall Equipment Effectiveness (OEE) was introduced, where all possible
causes of losses and the main six losses are identified and classified into three main elements,
namely availability (A), performance (B) and quality (C), as shown in Figure 3.

Any change in the process can influence one or more elements. For that reason, OEE became an
important productivity tool, since it considers the overall result and efficiency, helping to identify
where losses are more frequent, and hence targeting improvement interventions. The OEE index is
obtained through the multiplication of the three elements, and it represents the overall performance
of the equipment. This index is considered an important metric to help asset managers and oper-
ators to make decisions, increasing the productivity of the equipment or process.

OEE = Availability (A) × Performance (B) × Quality (C).
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2.1.1. Availability
Availability is calculated considering the planned operating time discounted by the period that the
equipment is not available to operate, known as downtime (Scheu et al. 2017). There are two main
types of losses in the availability category which can cause downtime, as shown in Figure 3. The first
accounts for breakdowns, which are generally related to maintenance or failures and the time spent
to fix the interruption cause. The second type accounts for adjustments and set-ups, where we refer
to pauses in production which are not related to breakdowns. Relevant examples include planned
maintenance interventions and adjusting the equipment for new products. Even though some losses
are expected, it is important to quantify them and understand their influence on key output indi-
cators, in order to identify areas of improvement in the process. The basic formula to calculate oper-
ational availability is:

A = Planned Operating Time-Downtime
Planned operating time

It should be noted that in practice different formulas are adopted for different types of availability,
such as inherent, time-based, revenue-based, etc., so it is important to ensure that the right metric is
adopted.

2.1.2. Performance
Losses related to performance can be the most challenging ones to identify since they are considered
through instances where the equipment is performing outside the specification limits set (Salameh
and Jaber 2000). This type of loss can be related to reduced speed, meaning that for any reason a
part of the equipment is running with lower performance, which can be caused by damage, a not-
well-lubricated bearing or lack of alignment, for instance. Another reason for performance losses is
minor stoppages, where faults cannot be measured, but production performance is affected. An
example is when in a cycle for any reason a motor is taking one second more to start due to a mech-
anical or electric fault, which is not easy to be recognised by operators. However, it can become a
significant loss when accumulated throughout every operational cycle. A performance rate control
can warn operators when something is wrong and needs to be investigated. Performance is

Figure 3. Six main losses.
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calculated over planned operating time minus downtime, so the availability loss is not considered
twice:

B = Standard production rate × Parts produced
Planned operating time-Downtime

2.1.3. Quality
Finally, quality is related to the final product as a result of a process or operation of equipment. Any
producing process should ensure that the final product meets the end user’s or the client’s require-
ments. The first type of loss in this factor accounts for defects, that is, when the product is out of
specification, and it should be discarded. The second element is rework, when minor defects are
identified and extra work is required in order to recover the product. According to the OEE con-
cept, this is also considered as a loss because the time and the resources spent to fix it could be used
to produce a new product or they can reduce the operational life of the process. The formula to
calculate quality only considers products that were produced during the period assessed:

C = Units produced− Defective units
Units produced

2.2. Review activity

To identify the operational losses, before categorising them, an extended literature review was per-
formed. The focus was on papers published from 2010 onwards that had key words or expressions
such as ‘operational losses’, ‘quality losses’, ‘production losses’, and ‘performance losses’, together
with ‘wind energy’ or ‘wind power’, in their titles and/or abstract. Then, a careful reading was per-
formed to check if important information could be retrieved and if the paper was really related to
wind power and operational losses. Section 2.3 presents the criteria used to classify and collate the
identified losses considering OEE elements stated in Section 2.1. Also, the papers were divided into
five groups as follows. ‘Investigation’ refers to papers that assess the operational losses and discusses
the topic, through reviews, numerical models, trends, or data analysis. ‘Decision Support’ refers to
when a framework or a new methodology is created or adapted, which resolves important infor-
mation that could help operators to minimise losses. ‘Controllers’ refer to the development of a con-
troller to reduce losses, find optimal point, or change the premises and settings of traditional
controllers. ‘Machine Learning’ refers to papers which use any machine learning technique to per-
form predictions or find correlations among inputs and outputs. And, finally, ‘Others’ refer to sol-
utions that are not listed before, including technical changes or the addition of components or
gadgets in the system.

2.3. Classification criteria

As demonstrated in Section 2.1, the OEE metric focuses on identifying, classifying, and quantifying
operational losses. To adapt it to wind farm projects, some considerations need to be taken into
account. The flowchart shown in Figure 4 illustrates the assumptions considered in this paper to
classify the losses found in literature and what the authors believe would be a suitable approach
to adapt the tool for wind energy assets. It is important to notice that the decision element in
the flowchart started with the preposition ‘from’ because each index is considered from the result
of the previous one, avoiding losses being accounted twice during the process analysis.

Another important observation in the flowchart is related to the final result. Although the
decision question was included in the flowchart, it is very unlikely that no losses are registered
in an industry or application. This could be achieved in a short-term period, but considering
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long-term periods, losses are expected and considered in all projects. For instance, an OEE of 85% is
considered world-class benchmark (Stamatis 2017), representing that, even in reliable projects,
there are losses. The following subsections detail the losses and how the scientific community
has been aiming to minimise them, especially in the operational perspective. Also, it is important
to mention that OEE results cannot be fully compared between deployments. Even turbines from
the same company may not have the same OEE, as the equipment productivity relies not only in
operational system, but also on the management commitment, involvement of the team, mainten-
ance efficiency, wind farm location, deployment environment and other particularities that any pro-
ject faces.

3. Literature review

3.1. Availability losses

The first aspect to be considered is the set time contemplated in the OEE calculations. In the wind
energy industry, turbines are designed to operate all year round, so considering the entire calendar
period as a set time base is realistic. The first source of downtime mentioned in OEE is breakdowns.

Figure 4. Flow chart losses in wind power according to OEE tool.
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This item is related to any time that the turbine is not available to produce due to unexpected down-
times, such as failures and corrective maintenance. Reliability Centred Maintenance (Fischer, Bes-
nard, and Bertling 2012), Fault Tree Analysis (Kang, Sun, and Guedes Soares 2019), Failure Mode
Effect Analysis (Luengo and Kolios 2015; Scheu et al. 2019; Li, Teixeira, and Guedes Soares 2020),
reliability-based methods (Leimeister and Kolios 2018) and studies about failure rates (Faulstich,
Hanh, and Tavner 2011; Tavner et al. 2013), such as RAM analysis, are examples of methodologies
aiming to reduce availability losses and increase reliability and lifespan of the wind turbine and its
components.

The second downtime factor mentioned in OEE refers to adjustment and set-ups. Differently
from the traditional manufacture industry, wind turbines do not need to change worn out tools
or adjust their process for new products. Therefore, the only ‘expected downtime’ for wind turbines
is preventive maintenance. Many papers that cover availability discuss both downtime cases, cor-
rective and preventive maintenance, which makes hard to separate them efficiently. However,
some papers focus on suggesting strategies to improve preventive maintenance schedule (Li et al.
2016; Yürüşen et al. 2020; Zheng, Zhou, and Zhang 2020), including the use of machine learning
to better predict wind conditions (Yin et al. 2020), which could be used to affect less the wind energy
output (Duchesne et al. 2020).

Offshore deployments have a particular approach. While onshore wind farms can achieve
around 98% of availability (Hahn and Jung 2006), offshore wind farms present a lower pattern
achieving around 92% (Ioannou, Angus, and Brennan 2018a, 2018b). Besides the distance to the
shore and the need of vessels, also considering safety constraints, accessing the turbine is only poss-
ible in appropriate climate conditions. Therefore, the cost may be increased affected by this depen-
dency, since some maintenance or changing of components needs to be done in advance, in the
appropriated time, instead of the best and more effective time, underutilising some of the com-
ponents’ remaining life (Yang 2016). A logistic maintenance review for offshore operations is pre-
sented in (Shafiee 2015) and a maintenance cost reduction review for offshore farms in Tusar and
Sarker (2021).

Table 1 presents the main causes of losses by the availability of wind turbine. The second column
gives some examples of the losses causes, and the third column includes studies in which losses were
assessed or quantified, suggested solutions, or compared different approaches. The category of the
papers, as mentioned in Section 2.2, is also included in Table 1.

3.2. Performance losses

Differently from the traditional manufacturing industry, wind turbines have different performance
rates to be assessed, since the production output depends directly on the wind features, especially
wind speed and density. Therefore, before discussing about the losses, the standard rate needs to be
commented. The most usual way to assess wind production is through the wind power curve, which
defines the production according to the wind speed, normally tested in a lab and later confirmed in
a Power Curve Test, according to IEC 61400-12 standard and some local regulations (Asgarpour
2016). Some researchers have proposed more accurate power curve considerations including
other factors such as wind direction (Pandit, Infield, and Kolios 2019; Yan, Pan, and Archer
2019; Pandit, Infield, and Kolios 2020), turbulence (Saint-Drenan et al. 2020) or air density (Pandit,
Infield, and Carroll 2019) and controllers (Pandit, Infield, and Kolios 2020).

Even though these approaches are good for a better production prediction, according to OEE,
this can hide some opportunities for improvement. To illustrate this, one common problem related
to wind direction is the wake effect. Although wake effect losses are expected, some researchers have
proposed solutions to minimise them during the operational phase, such as intentional misalign-
ment of yaw controller (van Dijk et al. 2017; Kanev 2020) or changing individual controllers to
farm controller (Park and Law 2016; Ciri, Rotea, and Leonardi 2017). In other words, although
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Table 1. Main cause of losses by availability of wind power.

Losses Example Related papers Investigation
Decision
support Controllers

Machine
learning Others

Breakdowns Failures
Corrective
maintenance

FMEA – Luengo and Kolios (2015), Li, Teixeira, and Guedes Soares (2020), Scheu et al.
(2019), Li, Huang, and Guedes Soares (2022), Lopez and Kolios (2022)

X X X

Reliability and failure rate analysis – Faulstich, Hanh, and Tavner (2011), Tavner et al.
(2013), Bhardwaj, Teixeira, and Guedes Soares (2019), Leimeister and Kolios (2018),
Santelo et al. (2021), Fischer, Besnard, and Bertling (2012)

X X

Fault tree analysis on floating offshore turbine – Kang, Sun, and Guedes Soares
(2019)

X

Fault predictions/detection – Helbing and Ritter (2018), Chen et al. (2019), Lin, Liu,
and Collu (2020), Zhang et al. (2018), Koltsidopoulos Papatzimos, Thies, and
Dawood (2019), Martin, Mailhes, and Laval (2021), Han et al. (2022), McMorland
et al. (2022)

X X

Uncertainties in O&M models – Ioannou, Angus, and Brennan (2019), Yang et al.
(2020)

X

Human impact on maintenance – Mentes and Turan (2019) X
Fatigue and failures related to weather – Gözcü and Stolpe (2020), Stewart and
Lackner (2014), Horn, Krokstad, and Leira (2019), Reder, Yürüşen, and Melero
(2018), Fæster et al. (2021), Gao, Sweetman, and Tang (2022), Zheng and Chen
(2022)

X X X X

Preventive
maintenance

Preventive
maintenance

Inspections

Maintenance cost review for offshore Tusar and Sarker (2021), Nguyen, Chou, and Yu
(2022)

X

Method for better maintenance scheduling – Nguyen and Chou (2018), Duchesne
et al. (2020), Zhong et al. (2019), Shafiee (2015), Nguyen and Chou (2019), Yürüşen
et al. (2020), Li et al. (2016), Zheng, Zhou, and Zhang (2020), Sa’ad, Nyoungue, and
Hajej (2022), O’Neil et al. (2023), Pandit, Kolios, and Infield (2020)

X X

CBM – Li, Teixeira, and Guedes Soares (2020), Baboli et al. (2020) X X X
Reliability monitoring – Martin, Mailhes, and Laval (2021), Lin, Liu, and Collu (2020),
Zhang et al. (2018), Izquierdo et al. (2020), Yin et al. (2020)

X X
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some wind features cannot be controlled, considering it in the best performance rate can skew the
results and do not incentivise operators to find ways to minimise them in case of a high impact.

Some additional observations need to be discussed about the standard rate. Although there is no
rigid rule and these concepts can be adapted by operators following their own necessity, the stan-
dard time needs to be as simple as possible to minimise human errors and misinterpretations. Also,
differently from other performance metrics, OEE focuses on being as close as possible to the best
performance. Therefore, instead of using average production, standard rate should be the best
rate and the goal of operators becomes minimising the gap between best performance and actual
production. As a rule of thumb, if the actual performance frequently exceeds 100%, the standard
time is underestimated, and if the actual performance is not even close to the standard rate or
never has been, even for a short time, the standard time is overestimated.

With respect to performance losses, two main causes were pointed out: reduced speed and minor
stoppages. As mentioned in Section 2.1.2, the performance index considers losses that cannot be
measured as easily as availability, so comparing production output at the same conditions could
be the best way to identify reduced speed and minor stoppages, including faults and failures in the
system that does not send alerts to operators. Since wind turbines are complex equipment and are
exposed to hard and uncontrolled environments, the performance losses can be caused by several fac-
tors. Some of these are related to the equipment itself, while others are related to the environment.

Even though climate features are not controlled by the operator, they need to be considered to
better understand the performance behaviour. Some papers relate differences in performance due to
seasonal conditions or periods of the day (Tian et al. 2020), humidity (Danook, Jassim, and Hussein
2019), turbulence (Bardal and Sætran 2017), and other papers are looking for a way to minimise
losses due to rain (Arastoopour and Cohan 2017) and icing (Yirtici, Ozgen, and Tuncer 2019;
Dong et al. 2020; Stoyanov and Nixon 2020), even using machine learning (Chen et al. 2019).
For offshore wind farms, some additional issues can be considered in this category, such as wave
impact due to misalignment of the turbine (Stewart and Lackner 2014; Horn, Krokstad, and
Leira 2019) and platform motion that can affect the performance of other controllers (Namik
and Stol 2010; Wen et al. 2018; Fang et al. 2020; Karimian Aliabadi and Rasekh 2020; Li et al. 2020).

The ones related to the system can be influenced by the condition of other components. Usually,
the increase in temperature, vibration, or abnormal effort can affect productivity. Thus, these can be
considered examples of reduced speed caused by damaged bearing (Chang et al. 2020), lack of lubri-
cation, wear outs in components or even ageing (Hamilton et al. 2020). For instance, Reder, Yür-
üşen, and Melero (2018) indicate a performance decrease before failures. Another important loss
that is usually neglected is the time spent to start the generation of energy. Every time the turbine
is shut down, due to safety reasons, maintenance, or lack of wind, the equipment spends time to
gain inertia, start rotation and generate electricity. Thus, a more efficient ‘starting up’ time can
directly affect the production rates throughout the year. In some situations, the time needed to
achieve the operational rotation can be affected by wind speed, as demonstrated in (Wright and
Wood 2004), which tested this in small-scale wind turbines. However, some innovative solutions
have been proposed to deal with this problem, such as engaging a motor to increase production
range and reduce loss due to starting up (Fan and Zhu 2019).

Finally, another cause of losses that were not mentioned before is controllers’ systems (which
include sensors and actuators). They could be related to reduced speed or minor stoppages due
to malfunctioning or faults. However, in this paper, controllers were considered separately because
some researchers focused on improving production by changing controller`s models, settings and/
or premises. Besides reducing wake effects, as mentioned in the second paragraph of this section,
yaw systems can be used to increase production (Kragh and Hansen 2015; Kress, Chokani, and
Abhari 2015; Yesilbudak, Sagiroglu, and Colak 2015; Dai et al. 2018; Dai et al. 2021). The same
stands true for other controllers, such as pitch control (Jiang, Karimirad, and Moan 2014; Zam-
zoum et al. 2020), stall (Mohammadi, Fadaeinedjad, and Naji 2018), and other PI controllers (Mir-
zaei, Tibaldi, and Hansen 2016). Artificial Neural Networks, Machine Learning and new algorithms
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to control or find optimum sensor placement are studied as well (Lee et al. 2013; Dahbi, Nait-Said,
and Nait-Said 2016; Dou et al. 2020; Kanev 2020).

To summarise, it is important to keep OEE calculation as simple as possible, so using maximum
performance in a certain range of wind speed can be appropriate as a start. Obviously, this does not
indicate to the operator the reason for the loss, but it shows that something is not functioning well
and, depending on the level of the loss, the operator can decide if some action needs to be priori-
tised. Table 2 gathers the main losses identified and papers related. Some losses can be classified by
different criteria, but the most important is to have a reliable and simple index that does not account
for the same loss twice.

3.3. Quality losses

Quality is the most challenging factor to assess associated with wind energy production. It is hard to
calculate and classify all losses that occur after the electricity is produced by the generator. However,
since the aim of this paper is to keep OEE implementation as simple as possible, all losses between
generator and the grid are considered as quality losses. Different from the traditional manufacturing
industry, the final result of the production process is not a physical product. Therefore, rework can
be eliminated as a loss from wind energy, since it is impossible to ‘resent’ electricity to any part of
the process to be ‘fixed’.

As mentioned in Section 2.1.3, defects refer to when the outcome does not achieve the client’s
requirements. In the wind industry, the client can be considered the grid, so quality in this
paper refers to grid requirements. Due to the intermittent and uncontrolled input, wind power
suffers from several variances and fluctuations. Some of the problems related are flickers, harmonic
variance, impedance, resonance and frequency fluctuation. It is out of scope of this paper to discuss
each of these problems, but it is important to mention that they can vary according to each grid’s
characteristics or country regulations. Further grid problems related to quality, including local
issues in different countries, are discussed in the relevant literature (Rona and Güler 2015; Archer
et al. 2017; Nobela, Bansal, and Justo 2019; Đaković et al. 2020).

Some of the quality problems are related to the efficiency of intermediate equipment or design
solutions (Margaris et al. 2011; Sáiz-Marín et al. 2015; Li, Yu, and Xu 2018; Sowa, Domínguez-Gar-
cía, and Gomis-Bellmunt 2019). However, some researchers are studying ways to minimise them
with operational approaches, such as control frequency (Prasad, Purwar, and Kishor 2019) or har-
monics (Zamzoum et al. 2020) through pitch angle, and flickers and voltage fluctuation through
yaw and stall control (Mohammadi, Fadaeinedjad, and Naji 2018).

Another problem related to the grid which could affect the quality index is the grid availability.
As mentioned before, the input in wind energy cannot be controlled, so if the grid cannot receive
the electricity, the generation is disconnected and this becomes an important loss. This can happen
due to safety reasons, which include ramps, unstable electricity, grid faults or by lack of demand.
Some operational measurements can reduce these losses as well. To minimise ramps, a paper
suggests new controller approaches (Martín-Martínez et al. 2013), while other works identify safety
problems and relate them to other variables (Jiang, Karimirad, andMoan 2014; Beza and Bongiorno
2019; Luo, Shi, and Wang 2020), which could be strategic for operators knowing when instability is
more likely to occur. Curtailment issues have become a widely discussed topic (Mc Garrigle, Deane,
and Leahy 2013; Jorgensen, Mai, and Brinkman 2017), with some proposed solutions related to bet-
ter production predictions (Wang et al. 2018; Probst 2020), expand grid capacity (Nycander et al.
2020) or strategically increase demand during high production (Davison-Kernan et al. 2019).

Finally, the last problem related to quality elements is due to transmission. This includes basi-
cally cabling and intermediary equipment. The transmission system is designed in the project
phase and some technical losses are assumed, but it can be difficult to modify it after implemen-
tation. However, monitoring transmission losses can indicate when abnormal behaviour or wear
outs occur in cables (Jin et al. 2019; Pérez-Rúa, Das, and Cutululis 2019; Rentschler, Adam, and
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Table 2. Main cause of losses by performance in wind power (*Not fully responsibility of operators **Only offshore deployments).

Losses Example Related papers Investigation
Decision
support Controllers

Machine
learning Others

Climate
conditions*

Wind features:
Turbulence
Direction
Air density
Rain
Humidity
Season
High temperature
Period of the day
Waves**

Power curve models (important to define standard rate) and output prediction –
Archer et al. (2017), Yu et al. (2020), Paiva, Veiga Rodrigues, and Palma (2014), Sathler
et al. (2020), Saint-Drenan et al. (2020), Shen and Ritter (2016), Yan, Pan, and Archer
(2019), Pandit, Infield, and Carroll (2019), Sathler and Kolios (2022)

X X X

Investigation of the impact of climate and wind conditions:
Turbulence – Bardal and Sætran (2017) X
Air density – Pandit, Infield, and Kolios (2020) X
Rain – Arastoopour and Cohan (2017) X
Humidity – Danook, Jassim, and Hussein (2019) X
Period of the day – Tian et al. (2020) X
Seasons – Simão et al. (2017) X X
Direction – Argyle and Watson (2017) X X X
Waves – Li et al. (2020), Horn, Krokstad, and Leira (2019), Fang et al. (2020) X

Reduced
Speed

Ageing
Blades Factures/Erosion
Icing
Dust
Wake effects
Low speed of
components

Start-up

Losses due to ageing – Dai et al. (2018), Hamilton et al. (2020), Staffell and Green
(2014), Liu and Zhang (2022)

X

Losses due to fractures/erosion – Chen (2018), Sareen, Sapre, and Selig (2014) X
Icing losses detection and estimation – Chen et al. (2019), Dong et al. (2020), Stoyanov
and Nixon (2020), Yirtici, Ozgen, and Tuncer (2019), Scher and Molinder (2019),
Swenson et al. (2022)

X X X

Investigation on wake effects – Ciri, Rotea, and Leonardi (2017), Kheirabadi and
Nagamune (2019), El-Asha, Zhan, and Iungo (2017), Argyle and Watson (2017), Pryor,
Barthelmie, and Shepherd (2021), Chang et al. (2022)

X X

Reduce wake effects – van Dijk et al. (2017), Park and Law (2016), Frederik et al. (2020),
Fleming et al. (2014), Kanev (2020), Howland, Lele, and Dabiri (2019), Lee et al.
(2013), Dou et al. (2020), Shu, Song, and Joo (2022)

X X

Losses due to impact of wave loads – Stewart and Lackner (2014), Li et al. (2020),
Karimian Aliabadi and Rasekh (2020)

X X X

Improving performance – Astolfi et al. (2015), Pieralli, Ritter, and Odening (2015),
Karakasis et al. (2018)

X X

Balance between load and output – Liao et al. (2020) X
Reduce cut in and minimise losses – Fan and Zhu (2019) X

Minor
stoppage

Small failures (don`t stop
production)

Defects

Identifying malfunctioning – Archer et al. (2017), Chang et al. (2020), Astolfi et al.
(2015), Liao et al. (2020), Al-Khayat et al. (2021)

X X X

Fault-tolerant identification – Shahbazi, Poure, and Saadate (2018) X
Controllers Misinterpretation of

signals
Faults
Controller`s setting

Yaw controller – Dou et al. (2020), Dai et al. (2021), Dai et al. (2018), Kragh and Hansen
(2015), Yesilbudak, Sagiroglu, and Colak (2015), Kress, Chokani, and Abhari (2015)

X X X

Stall controller Mohammadi, Fadaeinedjad, and Naji (2018) X
Pitch controller – Namik and Stol (2010), Jiang, Karimirad, and Moan (2014), Lee et al.
(2013), Zamzoum et al. (2020), Dahbi, Nait-Said, and Nait-Said (2016)

X X

PI controller – Mirzaei, Tibaldi, and Hansen (2016) X
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Chainho 2019), or when intermediary equipment lose their effectiveness throughout the time. Also,
the quality of the electricity produced can cause losses during transmission, as pointed in (Bantras
et al. 2012). This information can guide some decisions made by operators, since the increase in the
losses could justify some more extreme interventions. Table 3 outlines the main quality losses ident-
ified in a wind farm.

4. Discussion

Quantifying losses has proven to be an efficient method to identify clear gaps and lead to improve-
ment priority decisions in equipment and systems. Even though wind power has many aspects that
are not in the control of operators, researchers have presented interesting and promising
approaches towards minimising the losses and improve the production and performance during
operational periods. This shows that wind power has still many opportunities for improvement.

To keep OEE as a simple index, some assumptions were made. Firstly, differently from most
manufacturing applications, wind power has uncontrolled inputs, so climate features were con-
sidered an extra performance loss. In addition, controllers were assessed separately due to the num-
ber of factors that they can influence. Finally, about quality, all losses between generator and grid
were included, from grid requirements to distribution. For that reason, the six main losses of an
equipment can be extended to nine in wind energy assets, as shown in Figure 5. It is important
to mention that some losses could be classified into different items, but, for efficiency of the tool,
the focus did not consider the same loss twice, following a linear reasoning.

While several papers focus on investigating and assessing the losses, some of them propose sol-
utions focusing on minimising or identifying failures and losses. Typical possible solutions dis-
cussed in these references identified during the review activity could be summarised as follows:

. Understanding lifespan, failure rates and behaviour of the turbine and components,

. Machine Learning to identify causalities,

. Increasing performance and minimising losses through controllers’ settings (considering the
whole farm instead of individual turbines to reduce wake effects),

. More accurate wind regime prediction, especially short-term, for decision-making, including
maintenance scheduling and avoidance of curtailment,

. Controllers’ settings and the use of energy storage to minimise losses due to fluctuations that can
also affect transmission system and grid availability.

From the solutions proposed, most could be implemented during the operational phase, which
indicates that regardless of the project design or if the wind farm has already started its operation,
developers and operators could still improve their productivity. In addition, some other manufac-
turing tools could be used to reduce losses. As an example, according to Ioannou, Angus, and Bren-
nan (2019), when a failure occurs in an offshore turbine, on average 22% of time is spent for the
actual repair activity, while the rest is due to organisation, waiting for suitable weather and spare
parts management. The papers identified in the review investigated how to reduce logistic time
and scheduling; however, they are not suggesting solutions to reduce the repair time itself. So,
tools such as the Single-Minute Exchange to Die (SMED), in which changeover during maintenance
could be reduced drastically, could also be very beneficial to wind power installations. To identify
the need of further tools, OEE is pivotal to quantify and identify these gaps, according to a TPM
strategy.

As mentioned before, OEE can be used in many situations, such as for comparing before and
after changings in the process (Azizi 2015), simulating which scenario has the potential for achiev-
ing better results (Caterino et al. 2020) or encouraging the continuous improvement culture
(Andersson and Bellgran 2015). The main advantages of using OEE are first, its simplicity and, sec-
ondly, the overall analysis, with all possible operational losses included in one single index. To

INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY 385



Table 3. Main causes of losses by quality in wind power (*Not fully the responsibility of operators).

Losses Example Related papers Investigation
Decision
support Controllers

Machine
learning Others

Out of
requirements

Frequency
voltage
harmonics
flickers
converters` fault

Fluctuations in output – Al kez et al. (2020), Benzohra et al. (2020), Margaris et al.
(2011), Mahela et al. (2020)

X

Loses due frequency – Datta, Shi, and Kalam (2019), Prasad, Purwar, and Kishor
(2019), Wang, Wang, and Liu (2020)

X X

Flickers – Al kez et al. (2020), Mohammadi, Fadaeinedjad, and Naji (2018) X
Losses in quality due to wave misalignments – Li et al. (2020), Wen et al. (2018) X
Harmonics – Zamzoum et al. (2020), Bantras et al. (2012) X X
Voltage fluctuation – Mohammadi, Fadaeinedjad, and Naji (2018), Sáiz-Marín et al.
(2015), Sáiz-Marín, Lobato, and Egido (2018), Ge et al. (2016)

X X

Losses due to power flow controller and converter`s fault – Sridhar and Kumar
(2019), Yoo et al. (2019), Liang et al. (2022)

X

Grid
availability*

Curtailment
inertia
security
grid faults
ramps

Estimation and investigation of curtailment in different countries – Davison-Kernan
et al. (2019), Jorgensen, Mai, and Brinkman (2017), Mc Garrigle, Deane, and Leahy
(2013), Nycander et al. (2020)

X X

Proposed method to reduce curtailment – Probst (2020), Mora, Spelling, and Van Der
Weijde (2019), Zhang et al. (2018), Soroudi, Rabiee, and Keane (2017), Wang et al.
(2018)

X X X

Reducing/Monitoring ramps – Zhang et al. (2014), Kiviluoma et al. (2016), Martín-
Martínez et al. (2013)

X

Hybrid system to reduce curtailment and instability – Wimalaratna et al. (2022), Al-
Ghussain et al. (2023), Kealy (2023)

X

Instability in grid, reduce inertia – Basu, Staino, and Basu (2014), Luo, Shi, and Wang
(2020), Zhang et al. (2020), Đaković et al. (2020), Nobela, Bansal, and Justo (2019),
Rona and Güler (2015), Beza and Bongiorno (2019), Jiang, Karimirad, and Moan
(2014), Simão et al. (2017), Tharakan and Panigrahi (2017), Yang et al. (2022)

X X X X

Transmission Cabling
impedance
controllers
equipment
intermediaries

Lifespan and efficiency of cables – Bantras et al. (2012), Pérez-Rúa, Das, and Cutululis
(2019), Rentschler, Adam, and Chainho (2019), Jin et al. (2019)

X X

Reducing transmission losses – Almeida et al. (2020), Li, Yu, and Xu (2018), Wang
et al. (2019), Gustavsen and Mo (2017), Cullinane et al. (2022), Jiang, Li, and Liu
(2022)

X X X

Losses in grid due to wind penetration – Makhloufi, Koussa, and Pillai (2017), Sultana
et al. (2016), Da Rosa et al. (2016)

X X

Impact of impedance and harmonic resonance – Sowa, Domínguez-García, and
Gomis-Bellmunt (2019), Beza and Bongiorno (2019)

X
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exemplify this last advantage, back in Section 3.2, one of the solutions found to reduce wake losses is
through the yaw control system. Nonetheless, some researchers used the same yaw system to
increase quality performance by reducing ramps. These are two different outcomes to be managed
by the same actuator, where one can affect the other. There is a study which suggests an optimum
point for these two losses (van Dijk et al. 2017), however, it is not clear if these interventions can
also affect availability. With that in mind, OEE seems to be a great solution to find overall
improvements.

Another important observation about decision-making through OEE is that it can, and should,
be related to the financial perspective. Even though it is out of scope of this paper, any improvement
suggested should find a balance between increased production and extra costs, since the final objec-
tive is to reduce LCoE, keeping equipment reliability and power quality high. Some papers, indeed,
have proposed new equipment, gadgets, or more intrusive solutions, however, most of those pre-
sented in this review focused on changing control principles or using algorithms such as machine
learning to find a better performance scenario, which probably does not require significant invest-
ments. Focusing on machine learning, due to computational developments, improved processors,
and a large and confident amount of data, including real-time data, the use of artificial intelligence
and algorithms brought a huge variety of possibilities in different areas of study. Related to wind
power losses, this tool proved to be an efficient method to find solutions to improve performance
and reduce losses in all the three categories defined in OEE, finding optimal settings or improving
predictions. Additionally, some studies present mixed algorithms, statistics and machine learning
within the OEE simulation (Heng et al. 2019).

To sum up, another three possible advantages of using OEE can be identified as follows. First,
finding the actual OEE and tracking when the best rate was achieved can help operators and
researchers to better understand the equipment. Second, the OEE tool considers that any equip-
ment is unique, which means that the tool is conceptually tailored for each turbine particularity
and wind farm location. Finally, some components reduce their performance before breakdown
(Reder, Yürüşen, and Melero 2018), so monitoring OEE has a potential preventive application,
by detecting problems that could potentially affect performance, but do not trigger any fault signals,
warning operators for upcoming failures.

5. Conclusion

Wind energy has developed so far at an accelerated rate initially relying on subsidies or financial
incentives. However, to become more attractive to investors and more independent, the final
cost of energy needs to become more competitive. The most common way to define total cost is
through LCoE, which can be obtained through the division of total costs and total production

Figure 5. Main operational losses in wind power.
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during the assets’ entire lifespan. Using LCoE as a reference, there are two approaches to reduce the
final price: reducing costs or increasing its production.

Other industries have developed different tools to assess and increase production, achieving the
best performance from their equipment. One of these tools, largely used in the manufacturing
industry, is OEE, which focuses on minimising all possible operational losses in the process. To
assess the best alternative, a simple index is created gathering all losses, through which the best
rate implies better equipment effectiveness. The aim of this paper was to perform and report a lit-
erature review to identify the main losses in wind turbine deployments and to adapt the OEE tool to
wind energy assets.

Different from manufacturing industries, wind energy has different causes of losses. Therefore,
an extension of the main losses causes was proposed as shown in Figure 5, following the assump-
tions contained in the flowchart in Figure 4. In addition, some of the benefits of using OEE were
discussed in Section 4, including the main aspect, a global assessment of operational losses. Since
one decision can affect others, having all causes of losses in one index is a valuable tool for com-
parison and decision-making.

For future work, it is proposed to quantify losses and estimate OEE from different farms using
the consideration of this review, in order to assess and confirm the benefits of this metric, and check
if any adjustments are needed. Since wind energy is surrounded by uncertainties, a stochastic
approach might be more suitable than deterministic for the quantitative analysis. Another impor-
tant task is to relate OEE values with cost analysis.
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