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1. Introduction 

The viability of aerial taxi missions is highly dependent on the mass and reliability of the electrical 

power system to supply uninterrupted power to the propulsion [1–3]. Yet, the electrical power 

system is limited by the low maturity, in terms of power and energy density, of the current 

available critical technologies. Therefore, the integration of the technologies into a single power 

and propulsion system requires significant attention to provide a viable solution capable of 

supporting the mission requirements. 

Following from this, there is a clear need for a consolidated capture and project of relevant 

electrical technology capability and availability in order to develop effective solutions. This white 

paper presents a summary and discussion of 10-year roadmaps for key electrical technologies 

required for electrical vertical take-off and landing (eVTOL) aircraft design. The technologies 

covered are critical to the power system design and include energy storage, power electronics, 

power machines, and protection devices. Power-to-weight and energy-to-weight ratios have 

been obtained from public domain sources on existing technologies, market projections, and 

projection targets from advisory bodies in order to establish technology progression trendlines. 

These can subsequently be used to influence electrical power and propulsion system design 

choices and strategies for future platforms. 

 

2. Energy Storage – Battery Technologies 

Higher specific energy density battery technology can provide longer mission range and/or 

increased mission rates between recharging. While power dense batteries are required for 

eVTOLs to allow high discharge rate for the high power requirement during the hovering and 

landing phases, and allows faster charging which help extends batteries’ longevity and safety 

margins. Batteries with high power discharging are especially essential for eVTOL aircraft 

designs with high disc loading which compromises the energy density of the battery [4, 5]. This 

shows an evident trade-off between high energy and power dense batteries to support the flight 

mechanism and mission economics of eVTOL aircraft. From this, depending on the aircraft 

design, appropriate selection of batteries can be attained through a tailored combination of 

battery cell chemistry to achieve energy dense with high power capabilities to satisfy the mission 

requirements with focus on maintaining low weight and volume. 
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Lithium-ion batteries are the main energy dense, market-available option for eVTOL 

applications, whereas the emerging Lithium air (Li-air)/Lithium-Sulfur (Li-S) [6–8] and Lithium 

metal polymer/Solid State battery technologies [9, 10], are being pursued for further increased 

energy density. In terms of energy density levels of battery technology, the urban air mobility 

(UAM) community have published various projections. At a cell level, Roland Berger indicated 

that in 2019, the maximum Lithium-ion battery cell level energy density was around 300 Wh/kg 

[11], but by 2025 Lithium metal polymer/solid state batteries should achieve energy densities of 

greater than 400 Wh/kg, and by 2030 an energy density of greater than 500 Wh/kg may be 

achieved using lithium air technologies. In conjunction, NASA has published projected cell level 

projections of 400 Wh/kg by 2025 and with a higher projection of 600 Wh/kg by 2030 [12]. The 

UK ATI also provides a 500 Wh/kg cell level projection for 2030, similar to Roland Berger [11]. 

Combining the various energy density data projected by the UAM community above with other 

publicly available information for cell level energy density from manufacturers [14-38]. Figure 1 

presents a combined roadmap of battery technology from 2016 to 2030 (including the 10 year 

projection from 2020 to 2030). In this, a trendline linking past and projected energy densities are 

shown. In contrast to the UAM specific data presented in the roadmap, there is evidence that 

automotive and UAV sectors have already reached or exceeded the 400 Wh/kg threshold in 

2018-2019 [16, 17]. 

An outlier to the Lithium-ion battery projections is discussed above, in 2019 Innolith announced 

intentions to develop a novel electrolyte variant aimed for cell level energy density of 1000 Wh/kg 

battery by 2024 with lifespan greater than 800 cycles [39]. To this date, the company has not 

posted any following up of the technology in development. Additionally, Lyten is currently 

developing a graphene-based Li-S battery with potential to achieve 900 Wh/kg with cycles 

greater than 1,400 for electric vehicles [38]. 

In Figure 1, the data points for cell energy density are labelled as “prior” for technology available 

from 2017 to the start of 2022 and projected densities from later 2022 to 2032 are labelled as 

“projected” densities. Although purely electric eVTOL propulsion is possible with lower battery 

energy density levels, Roland Berger [11] states that a 500 Wh/kg cell level energy density or 

above is required for electric propulsion to become competitive, compared to traditional 

propulsion options. From the in Figure 1, Equation (1) is extracted and can be used to estimate 

the energy density progression of batteries in the following years. 
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 Energy Density (Wh/kg) = 20.938 · Year – 41961   (1) 

 

Figure 1. Batteries Roadmap Highlighting Technology Energy Density Prior to 2022 and Projected. 

In addition to the cell level energy density road mapping, the battery energy density is reduced 

by roughly by a further 25% when taking into account the battery overhead packaging and the 

operating range of the battery’s state of charge [22, 23], thus reducing the usefulness of the full 

energy density. The lifespan of some of the novel cell technologies are currently limited to a low 

cycle which increases the operational and maintenance costs of the aircraft. Furthermore, a 

range of technologies are in the process for production in the upcoming year/s [28, 29], while 

others are in continued development requiring additional years for certification, production, and 

ready for commercialisation [20, 24, 38, 39]. 

3. Electric Motors for Propulsion 

Electric motors convert the power from the electrical system to mechanical propulsion system 

to provide the thrust required to maintain flight. The main design drivers for electric motors in 
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the UAM market and eVTOL applications is high power and torque density, and efficiency for a 

light-weight design [40, 41, 42]. The design and the nature of flight phases of the eVTOL aircraft 

demands a motor with high torque capability and limited speed range. DEP enable significant 

reduction of the noise level to operation requirement in UAM setting compared to helicopters 

[43–45]. While the current available and technology progression of motors in the automotive 

industry are focused on the production of high speed motors for EV applications [42]. However, 

high-torque electric motors are currently available at low power density thus suffer from 

increased weight in comparison to high speed motors. 

With regards to motor types, permanent magnet motors (e.g., permanent synchronous Motor 

(PMSM) appear to be the most appropriate choice for eVTOL aircraft propulsion. This is as a 

result of its high torque density, compact sizing, high efficiency and fast transient response [46, 

47]. The capability PMSM to maintain full torque is well suited for the requirements of eVTOLs’, 

in particular the higher consumption take-off and landing flight phases. Having said that, PMSM 

are costly and require complex control system when compared to other motor technologies [46, 

47]. 

In terms of current technology levels, the automotive industry have been the main application 

driver for developing light-weight high speed motors for EV applications. Recent advancement 

in the automotive industry have published achieved power densities up to 13 kW/kg with plans 

to excel beyond 15 kW/kg [48, 49]. These technologies are high speed motors with a potential 

use for aerospace applications but require mechanical reduction gearbox to control the speed 

range of the motors. Whereas motors operating at low speed range with high-torque capability 

offer a direct drive system which enables low noise emission without the need of a gearbox and 

reduces the reliability and power loss of the mechanical system [40]. 

In terms of technology projections, the ATI have published the achieved power density by 2020 

is at around 3 kW/kg for small aircraft/urban air transport applications, with subsequent 

projections of 7.5 kW/kg by 2026 [13] for sub-regional aircraft, and 12 kW/kg by 2030 for mid-

size commercial aircraft. While NASA 10 years research goals are targeting a power density of 

13 kW/kg by 2025, and 15-years goals of 16 kW/kg by 2030 with improved efficiency [50]. 

However, the high power densities achievable might still not be all suitable for eVTOL 

applications due to their aforementioned low speed high torque requirements coupled with noise 

requirements. Two roadmaps for electrical machines might be suitable for eVTOL aircraft are 
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presented. The first roadmap is for machines configured for rated speeds between 1000 RPM 

and 2500 RPM consistent with ranges of known eVTOL designs with ten or less rotors shown 

in Figure 2. An additional roadmap shown in Figure 3, is to cover the progression of higher 

speed motors, which may be more suited to small diameter eVTOL applications with over ten 

rotors, which the machines can operate at higher RPM while maintaining low noise levels [51, 

52]. This could be achievable as Lilium claims their aircraft is well under the regulation 

requirements to operate in urban areas while having an aircraft design with 36 small diameter 

motors rotating in a high RPM [53]. 

 

To reiterate the fact that the selection of electric motors is highly dependent on the aircraft 

design, weight budget, and the product availability. The recent development of technologies has 

presented different options for electrical motors suitable for eVTOL applications, such as direct 

driven high torque motors, high speed motors with a reduction gearing system, or compact motor 

design with integrated power electronics. The current aerospace and automotive market show 

an increase of development in integrated high speed electric motors design which includes 

power electronics and reduction gears, if needed, in a single compact packaging. This integrated 

design offer increased power density for power electronics and machines altogether up to and 

greater than 11 kW/kg (e.g., [54–59]). For high power dense products introduced by the 

automotive industry, re-design or re-packaging is required to comply with the aerospace 

standards, these changes might reduce the published power density of the product. Besides 

that, the detrimental factor of the selection is based on the noise emitted from the propeller tip 

speed and propulsion system, which in turn is heavily dependent on the aircraft design and 

motor arrangement. 

 

Combining the power density data projected by ATI and NASA discussed with other publicly 

available power density references for existing 1000 RPM to 2500 RPM range motors from 

manufacturers [60]- [69], Figure 2 presents a combined roadmap of motor technology eVTOL 

designs with less than 10 rotors. The data points are labelled as “prior” for technology available 

from 2016 to the start of 2022 and projected densities from later 2022 to 2032 are labelled as 

“projected” densities.  In this, a trendline linking past and projected power densities are again 

included. From the trendline in Figure 2, Equation (2) is extracted and can be used to estimate 
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the energy density progression of electric motors with a speed of 1000 RPM to 2500 RPM in 

the following years. 

 

 

Figure 2. High Torque Electric Propulsion Motor Roadmap Highlighting Technology Power Density Prior to 2022 and 
Projected. Suitable for eVTOL of and less than 10 Direct Drive Rotors. 

High Torque Motor (kW/kg) = 0.5769 · Year − 1160.3    (2) 

Similar to Figure 2, Figure 3, presents a combined roadmap of motor technology eVTOL designs 

with 10 rotors and higher in the range of 2500 RPM up to 10,000 RPM from manufacturers [70]- 

[80]. The projections of power density for high speed motors (2500+ RPM) are higher than low 

speed motors (1000-2500 RPM), this is mainly due to the automotive efforts to develop high 

speed motors for EV applications [42]. All the data presented for the projections are based on 

what is available in the public domain. From the in Figure 3, Equation (3) is extracted and can 

be used to estimate the energy density progression of electric motors with a speed of 2500+ 

RPM in the following years. 
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Figure 3. High Speed Electric Propulsion Motor Roadmap Highlighting Technology Power Density Prior to 2021 and Projected 
Suitable for eVTOL with More Than 10 Geared Rotors. 

 High Speed Motor (kW/kg) = 0.7582 · Year − 1523.9  (3) 

In addition to the presented roadmaps, thermal cooling system is an important factor to consider 

as the choice of the cooling method highly affects the weight and motor arrangement. According 

to [81], the thermal cooling system can contribute up to 30% of the motor dry weight. However, 

the weight of the thermal cooling system is often not incorporated as a part of the published 

power density of the motor, it is considered separate which reduces the published power density. 

There are many types of cooling system, yet for eVTOL aircraft and high torque density 

applications air-cooling is widely used due to the airflow surrounding the motors [40]. Air-cooling 

motors are thus lighter in weight due to the use of the surrounding air and less complex in design 

than liquid cooled motors [40]. However, they have less effective heat rejection than liquid 

cooled motors. As such, cooling system is chosen depending on the propulsion design, location, 

and access to abundant airflow around the motors. 
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4. Power Electronics 

Power electronics are used to regulate the power from the energy storage in order to drive the 

electric motors. The main requirements of power electronics devices is to regulate and control 

the power flow with high efficiency and reduced volume and weight. 

Recent development in wide-band gap materials i.e. Gallium Nitride (GaN) and Silicon Carbide 

(SiC) offers lighter switches and fewer losses than Silicon modules. SiC modules are expensive 

and are currently utilised in aerospace niche markets thereby widely available in high voltages 

[82]. With the current demands for the electrification of the automotive industry, mass production 

will drive the costs of power electronics modules down [83]- [86]. Additionally, Cree, Inc. is 

investing heavily in SiC and is expected to mass produce devices in 2024 [87]. Whereas GaN 

is less costly but the voltage is limited to roughly 600 V as it is used in consumer applications. 

With the high demands of GaN in the automotive industry, the voltage is expected to reach 900 

V in the near future [11, 82]. The progress of these technologies is mainly for the automotive 

industry and thus would require further adaption for aerospace airworthiness certification to be 

used in eVTOL aircraft. 

In terms of power density targets for power conversion devices, advisory bodies have divided 

the projections for AC/DC and DC/AC devices and the DC/DC devices. For AC/DC and DC/AC 

inverters, the US Department of Energy (DOE) has funded research projects in widegap 

semiconductors and inverters for the automotive industry for a power density target of more than 

14.1 kW/kg by 2020 [88]. The UK Advanced Propulsion Centre (APCUK) has set different 

targets for the power density by 2025 for Inverter to be 22 kW/kg [89], while Horizon 2020 

European project aims to achieve a target of 15 kW/kg with an efficiency of 99%, a reported 

TRL was 5 in 2018 [90]. The ATI aims to achieve a target of 10 kW/kg by 2025 [13]. 

The power density targets for DC/DC converter are as following, the DOE funded research 

projections for 2-port (bidirectional buck-boost) to be 15 kW/kg and 6 kW/kg by 2025 [89]. NASA 

has set a power density goal of 19 kW/kg sponsoring research with General Electric to produce 

SiC/Silicon DC/DC converter but has not set a specific date. The 2-port DC/DC converter is 

bidirectional buck-boost with 2-ports non-isolated [89]. 

Although SiC and GaN based power conversion devices is the trend in automotive and 

aerospace industries, yet there are limited data on the weight and power density of power 
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conversion devices available in the public domain. Combining the power density data projected 

by DOE and ATI discussed with other publicly available power density references for AC/DC 

devices [84] [91-100], Figure 4 presents a combined roadmap of AC/DC power conversion 

devices. From this, a trendline linking past and projected power densities is again included. In 

the Figure, the data points for the power density advertised from manufacturers and from 

research prototypes are labelled as “Prior” are available from 2014 to the start of 2022. Projected 

densities from later 2022 to 2032 are labelled as “projected” densities. From Figure 4, Equation 

(4) is extracted and can be used to estimate the energy density progression of inverters (AC/DC) 

in the following years. 

 
Figure 4. AC/DC Power Conversion Roadmap Highlighting Technology Power Density Prior to 2022 and Projected. 

 
AC/DC (kW/kg) = 0.7331 · Year − 1457.8   (4) 

While Figure 5 presents a combined roadmap of DC/DC converters power density [90][101-

108]. In the Figure, the data points for the power density advertised from manufacturers and 

from research prototypes for DC/DC devices power density are labelled as “prior” for technology 

available from 2014 to the start of 2022 and projected densities from later 2022 to 2032 are 

labelled as “projected” densities. From Figure 5, Equation (5) is extracted and can be used to 

estimate the energy density progression of converter (DC/DC) in the following years. 
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Figure 5. DC/DC Power Conversion Devices Roadmap Highlighting Technology 

 DC/DC (kW/kg) = 0.5094 · Year − 1012.3  (5) 

The presented data points of the power electronics devices have limited information regarding 

what is included in the advertised power density, such as the filtering components. The weight 

and size of the Electromagnetic Interference (EMI) filter has a significant impact to the overall 

weight of the power electronics devices contributing to between 25% to 40% of the total device 

weight [109, 110]. 

 

5. Power Protection 

Protection devices are essential to isolate any potential faults that might occur during a journey, 

as well as ensure the safety of the electric aircraft power system and its inclusion. The main 

requirement of protection devices for eVTOL aircraft is the ability to isolate the fault rapidly for 

high voltages and fault current. 

Conventional resettable protection devices are Electro-mechanical molded case circuit breaker 

(MCCB), circuit breakers and DC contactors. MCCBs are available in high DC voltages for the 
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Photovoltaic industry [111, 112], yet they have relatively slow response time for DC systems 

and are also susceptible to arcing damage causing low lifetime [113]. The DC contactors and 

conventional circuit breakers have their limitations for high voltage and high power demands for 

EV or electric aircraft applications [114]. 

Fuses are available in a wide range of high voltage, cheap, and small in size. With the recent 

development in the automotive industry, hybrid Pyrofuse protection device was developed as a 

solution to similar issues faced in the state of the art electric vehicles [114, 115]. Pyrofuse is 

unlike conventional fuses as it has characteristics such as: excellent at clearing low fault 

currents, better cycling performance, lower conduction losses, and the time-current curve can 

be tuned to fit the system [114, 115]. In terms of current development, Panasonic and Gmbh 

[116] have presented a new type of Pyrofuse to provide fault protection and isolation for high 

power density battery applications. Bosch [117] and Texas Instruments [118] are developing 

current sensing circuits for externally triggered Pyrofuses. Mersen have developed a hybrid 

Pyrofuse protection solution for fast DC overcurrent limitation suitable for high voltage 

requirements for aerospace applications [114, 119]. The authors in [114] have presented the 

testing of Mersen’s self-triggered Xp-series Pyrofuse with a fault level of 11 kA at 500 VDC. 

With regards to the implementation of Pyrofuses in aerospace environment, Mersen [119] in 

2016 had also stated its intention to test the Xp-series Pyrofuse in an Airbus concept aircraft, 

although no publicly available update on this test has been provided to date. Safran and 

Pyroalliance are also developing protection solutions using Pyrofuses for high voltage electric 

aircraft applications [120]. However, Pyrofuse devices are non-resettable which introduces 

further challenges in certifying the device for use in aerospace application.  

The recent development in resettable semiconductor devices succeeded in the limitation of 

conventional protection devices, offering a fast tripping speed against short circuit faults [121]. 

As a consequence, solid-state circuit breaker (SSCB) and solid-state power controller (SSPC) 

have recently received extensive attention in research [113]. The SSCBs offer fault current 

interruption; it trips when the current exceeds the threshold. Similarly, SSPC can detect 

abnormal excess of fault energy (I2) which trips according to a threshold current. In addition to 

that, the SSPC also has the capability to detect arc faults, fast fault clearance, and power-load 

management with the control of a digital processor [122, 123]. 
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SSCBs are available commercially in high voltages for non-aerospace applications (e.g., 1kV 

and up to 5 kA [124]). Similarly, SSPCs are available but at low voltages, as shown in Table 1. 

The on-state losses of a SSCB are significantly greater than in typical circuit breakers [125]. 

Therefore when scaling up, the increased on-state and energy losses of both SSPCs and 

SSCBs leads to increased requirements for cooling which contributes to a significant portion of 

the devices’ weight [125, 126]. Active and liquid cooling systems offers reduced size and weight 

of the overall system than passive cooling methods [125]. Further development is required to 

reduce the volume and weight of the cooling and packaging of these devices to reduce the 

weight of the power system in eVTOL aircraft. Nevertheless, it is important to highlight that the 

presented weight of the SSPC modules in Table 1 obtained from the manufacturer datasheet 

doesn’t include heatsink nor external cooling. 

 
Table 1. List of Current Available SSPCs [125]- [130] 

Reference no. 
Voltage 

(V) 
Current 

(A) 
Power 
(kW) 

Weight 
(g) 

Power 
Density 

(kW/kg) 
SPDP50D375 375 50 1.5 650 28.8 

SPDP50D28-1 55 50 2.75 40 68.75 

SSP-21116 270 15 4.05 115 35.2 

MDSPC270M-50xL 270 500 135 350 385.7 

P800 28 150 4.2 500 8.4 

P600 28 80 2.24 500 4.48 
 

As there is limited information available on protection devices in the public domain thus with 

insufficient data points a 10-year technology roadmap is not feasible. The following projections 

can provide a timeline for SSPCs maturity. From the roadmap in [132], SSPC fault current 

interruption devices with 100 kW and 750 VDC is highly confident to be available into market in 

N+1 timeframe (according to [133], initial operational capability in 2015-2025), and power up to 

1MW and 750 VDC in N+2 timeframe (According to [133], translates to 2025-2030). While 

SSCBs devices maturity will have a TRL of 4-6 by 2025 [132]. 
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6. Conclusion 

From the presented literature review in this white paper there is a notable increase in the 

development of battery and power electronics technologies suitable for the use in eVTOL 

aircraft. While the requirement for the development of power machines for the automotive 

industry is different than the requirement for eVTOL and aerospace application; the s show 

slower pace improvement in the power density. Additionally, there is a lack of information 

published from manufacturers regarding development targets and power density of the power 

protection devices in the public domain. Whilst solid-state switches improvements in power 

electronics can potentially be transferred to the development of power protection components, 

but nothing is published regarding that as well. 

Using the trendlines from the Figures presented in this white paper, Table 2 provides a summary 

of the power and energy density of current existing technologies from 2017 and future 

projections in 2025 and 2030. The technologies covered are critical to the power system design 

and include batteries for the energy storage, power electronics, and power machines. With 

regards to protection devices, due to insufficient data points, a 10-year technology roadmap was 

not feasible. 

 
Table 2. Current Existing and Future Projections of Technological Parameters Abstracted from the Roadmaps 

Technologies Energy/Power Density 
2017 2025 2030 

Batteries (Wh/kg) Cell level 270.9 438.5 543.1 

 Pack level 203.2 328.8 407.35 

Electric Machines 

(kW/kg) 

High torque motors 

High speed motors 

3.3 

5.4 

7.9 

11.5 

10.8 

15.2 

Power Electronics 

(kW/kg) 

Converter (DC/DC) 

Inverter (AC/DC or DC/AC) 

15.2 

20.9 

19.2 

26.7 

21.78 

30.39 

 

Most importantly to not is that these technologies are still low in maturity for the use in eVTOL 

aircraft which can hinder the exploration of novel designs, and increasing the challenges of 

designing light weight aircraft with high reliability and redundancy viably satisfy a range of 
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missions. This highlights the need to understand their integration into a viable design and set 

requirements for future targets to achieve the mission targets without compromising the safety 

of the aircraft and its inclusion. 

 

The recently introduced Pyrofuse device in the literature show a potential for use in aerospace 

applications. This device can offer low-weight solutions for the use as a protection device in the 

power system architecture. However, it is non-resettable which requires further work to 

investigate the performance and robustness of the Pyrofuse device to assist the acceleration 

this emerging market. Therefore, the first step into assessing the use of the Pyrofuse is by 

modelling the device in an aerospace environment enabling the capability for further 

investigations. 
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