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Abstract
The metal additive manufacturing (AM) process has proven its capability to produce complex, near-net-shape products 
with minimal wastage. However, due to its poor surface quality, most applications demand the post-processing of AM-built 
components. This study proposes a method that combines convolutional neural network (CNN) classification followed by 
electrical discharge-assisted post-processing to improve the surface quality of AMed components. The polishing depth and 
passes were decided based on the surface classification. Through comparison, polishing under a low-energy regime was 
found to perform better than the high-energy regimes with a significant improvement of 74% in surface finish. Also, lower 
energy polishing reduced the occurrences of short-circuit discharges and elemental migration. A 5-fold cross-validation 
was performed to validate the models, and the results showed that the CNN model predicts the surface condition with 96% 
accuracy. Also, the proposed approach improved the surface finish substantially from 97.3 to 12.62 μm.

Keywords Metal additive manufacturing · WEDP · Artificial intelligence · Polishing · Image processing

1 Introduction

The metal additive manufacturing (AM) process uses a 
layer-by-layer build strategy to produce complicated parts 
from CAD STL files. The process possesses several advan-
tages over conventional manufacturing methods due to its 
capability to produce complex components with minimal 
wastage [1]. However, the parts produced by AM process 
have inferior surface integrity in terms of surface finish, 
subsurface hardness, wear resistance, and residual stresses 
[2, 3]. In order to address the aforementioned issues, the 
post-processing of AM components is considered a neces-
sity [4]. Though polishing can improve the surface quality 
of as-built components, selecting the right polishing depth 
is of supreme importance to reduce wastage and minimize 
dimensional deviation.

Several finishing techniques have been proposed in 
the past to improve the surface integrity of metal AM 

components. The board categories of polishing/finishing 
methods are laser polishing, conventional (mechanical) pol-
ishing, abrasive polishing, chemical polishing, and hybrid 
polishing [4]. Laser polishing is one of the widely used 
methods to improve the surface integrity of metal AM com-
ponents. One of the earlier implementations of the method 
to polish metal AM components was by Lamikiz et al. [5]. 
When compared to the as-built selective laser melt (SLM) 
component, a surface roughness improvement of 80% (from 
7.5 to 1.5 μm) was achieved through laser polishing. Zhihao 
et al. [6] further improved the results to achieve a surface fin-
ish of up to 0.1 μm during fibre laser polishing of SLM-built 
Inconel 718. However, the processing time of laser polishing 
is higher due to the smaller spot diameter. Recently, chemi-
cal polishing has also been utilized to finish the metal AM 
components; however, it cannot reach intricate and com-
plex profiles [7]. Tyagi et al. [8] reported the performance 
improvement of electro-polishing over chemical polishing 
in terms of achievable surface finish. Also, the process is 
not environmentally friendly and is difficult to control. 
Abrasive flow machining was used to reduce the surface 
roughness from 14 to 2 μm by Peng et al. [9]. In addition to 
a 40% enhancement in surface finish, a 15% improvement 
in subsurface hardness is observed after ultrasonic cavita-
tion abrasive finishing [10]. Conventional polishing methods 

 * P. M. Abhilash 
 abhilash.p-m@strath.ac.uk

1 Centre for Precision Manufacturing, DMEM, University 
of Strathclyde, G1 1XJ, Glasgow, UK

2 Department of Mechanical Engineering, Indian Institute 
of Technology, Palakkad, Kerala 678557, India

/ Published online: 11 April 2023

The International Journal of Advanced Manufacturing Technology (2023) 126:3873–3885

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-11388-z&domain=pdf
http://orcid.org/0000-0001-5655-6196


1 3

like milling and grinding have also been attempted to finish 
metal AM components. Salmi et al. [11] used CNC mill-
ing for finishing the metal AM components. A comparative 
study on the effectiveness of milling, blasting, grinding, and 
micromachining in polishing SLM-built Ti6Al4V parts was 
conducted by Bagehorn et al. [12]. Among these, milling 
was found to be the most effective method for improving the 
surface finish. However, mechanical polishing is not suitable 
to finish intricate profiles.

At this juncture, several researchers started to explore 
hybrid polishing techniques to overcome the limitations of 
the existing methods. Yamaguchi et al. [13] introduced a 
hybrid technique which combines magnetic-assisted polish-
ing and burnishing to impart compressive residual stresses 
to AM-built components. Furthermore, a hybrid method 
combining chemical and abrasive polishing was reported to 
improve the surface finish of AM-built Inconel 625 by 45% 
[14]. Subsequently, Iquebal et al. [15] combined milling and 
abrasive finishing to improve the surface finish and porosity 
of AM-built SS316 components. Bai et al. [16] performed 
a hybrid mechanical-chemical polishing for finishing SLM-
fabricated SS316L parts. The technique improved the sur-
face finish of both top and side surfaces. In the past, electric 
discharge-based finishing operation has been successfully 
implemented on metallic components [17]. Based on this 
understanding, wire electric discharge polishing (WEDP) 
is one of the newest hybrid techniques to enhance the sur-
face quality of metal AM components [18, 19]. The method 
resulted in improved surface finish, elemental migration, 
subsurface microhardness, and wear performance.

For polishing the metal AM components, the required 
polishing depth and parameters are to be decided based 
on the as-built surface condition and defects. Image pro-
cessing–based surface classification of AM components 
is a topic of growing research interest due to its effortless 
handling and in-process inspection capabilities. Among the 
existing image processing methods, the convolutional neural 
network (CNN) is one of the most capable and promising 
deep learning methods for surface classification. A CNN-
based laser polishing strategy was devised by Caggiano et al. 
[20]. The polishing parameter selection was based on the 
surface condition predicted using a CNN model. Zhang et al. 
[21] have demonstrated the capability of CNN to predict 
and classify AM surface images. In this work, the authors 
have classified the surfaces based on the quality of hatch line 
overlaps to produce a good-quality surface. Weimer et al. 
[22] developed deep CNN to automate the detection and 
classification of machined surface defects. Here CNN sys-
tematically extracts relevant features from training data to 
accurately predict the surface defects with minimal human 
intervention. The performance of various CNN architec-
tures with respect to accuracy and computational runtime 
is compared in this study. Since the previous CNN-based 

techniques demand a large quantity of labelled image data 
for accurate prediction, Xiang et al. [23] explored the pos-
sibility of developing a semi-supervised CNN model which 
works with limited and low-quality data. The proposed 
method classifies weld pool images into “under melt,” “over 
melt,” and “good weld.” The trained model was validated 
using real-world metal AM images, and the results obtained 
were very promising.

In this study, a CNN classifier is developed to categorize 
the AM component from its surface images. This is an easier 
and more convenient approach for the automatic identifica-
tion of surface conditions, based on which the polishing con-
ditions can be decided. While the existing polishing methods 
were proven to be capable of improving the surface quality 
of metal AM components, they also have several limitations 
largely due to the difficulty in controlling the polishing pro-
cess. Therefore, in this study, an electric discharge-assisted 
polishing method is employed which uses low-energy dis-
charge pulses to precisely remove the required depth, in such 
a way that the surface defects/irregularities are eliminated 
from the AM surface.

1.1  Electric discharge‑assisted polishing method

A hybrid polishing method called WEDP is proposed in this 
study. In WEDP, the mechanism of finishing is by melting a 
thin layer of the uneven surface by controlled and repetitive 
low-discharge energy sparks as shown in Fig. 1. The dis-
charges happen between a thin metallic wire and a conductive 
workpiece. The discharge energy results in localized temper-
ature rise causing melting of the workpiece surface asperities. 
Unlike the EDM cutting operation, in WEDP, the wire does 
not travel into the surface but moves along the periphery of 
the workpiece surface [24, 25]. To completely remove the 
peaks and valleys of an AM-built surface, the minimuam 
polishing depth required will be equal to Sz (maximum profile 
height of a surface, i.e. the maximum difference between the 
highest peak and lowest valley) as shown in Fig. 1. Polish-
ing removes the irregularities and defects of the top surface, 
thereby resulting in an overall enhancement of surface qual-
ity. The polishing is performed in a low discharge energy 
regime to minimize the thermal effects.

2  Materials and methods

Compared to other machine learning models, a convolu-
tional neural network (CNN) is better equipped for AM sur-
face classification due to its better efficiency, robustness, 
and generalization capabilities. CNN is a deep learning 
method which uses inter-connected neurons to classify the 
images into various groups or categories [26]. Each neuron 
is a computational unit which passes its output to the next 
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layer and so on. Each inter-neuron connection will have a 
weight and bias associated with it which are tuned during 
the training phase to maximize the classification accuracy 
[27]. A ResNet-50 architecture, a feed-forward backpropaga-
tion data flow, and a gradient descent training algorithm are 
considered for the study. This structure contains 50 layers 
with 5 convolutions as shown in Fig. 2. The first convolution 
contains a single layer which is followed by the Maxpool 
layer. The remaining 4 convolutions have layer sizes of 9, 
12, 18, and 9, respectively. These convolutional layers are 
followed by an average pooling layer and a fully connected 
layer. Each layer has different sets of kernels/filters which 
are matrices which stride over the input data to extract cer-
tain relevant features by performing dot product operations.

The input image is resized into 224-by-224 pixels. The 
final activation layer of the CNN structure is a SoftMax 
function. The function predicts a multinomial probability 
distribution based on the received inputs from the previous 
layers. The SoftMax function is given as

where k is the number of classes and z is the input to the 
final layer.
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A cross-entropy loss function is used to train the neural 
network. If ŷi is the predicted class probability, yi is the 
true class probability and k is the number of responses; the 
cross-entropy loss function is given by

The function takes the minimum value if the predicted 
class probabilities are equal to the true class probabilities.

Cross-entropy is a preferred loss function for image 
classification tasks where the task is to predict the prob-
ability of a class over a set of classes. It is a computa-
tionally efficient function that quantifies the difference 
between actual and predicted probabilities effectively even 
for large-scale deep networks. One of the reasons why it 
is a preferred function to train neural networks is its abil-
ity to give stable gradients during backpropagation. On 
the other hand, unstable gradients may be generated by 
incompatible loss functions and may cause the training to 
fail. Finally, the cross-entropy function is statistically sta-
ble because it is a convex function with a single minimum 
and is robust to minor input noises.

The overall summary of the proposed approach is 
shown in Fig. 3 and is described as follows:

Loss = −

k
∑

i=1

yi. log
(

ŷi
)

Fig. 1  Schematic of the WEDP 
process
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• Firstly, 5 groups of AM samples are fabricated by vary-
ing the hatch spacing as it is evident from the literature 
that hatch spacing plays a significant role in determin-
ing the quality of metal AM surface [14, 15]. Each 
printed sample is labelled from level 1 to level 5 based 
on the increasing order of hatch spacing. Among the 5 
groups, level 1 is the smoothest having the least hatch 
spacing and level 5 is the roughest. Fifty images are 
captured for each surface condition. These 250 images 
along with their corresponding class labels constitute 
the training data.

• The surface roughness parameter (Sz) is measured for 
each surface condition to relate the class labels with the 
required polishing depth. Since Sz represents the largest 
peak-to-valley distance, polishing depth is selected based 
on the Sz value. This ensures the complete elimination 
of all surface defects and irregularities present in the as-
built surface. To suppress the effect of outliers, Sz meas-
urement is conducted thrice and the average Sz value is 
considered as the polishing depth.

• The trained CNN model classifies the new AM as-built 
surface image into its appropriate surface category. The 
predicted category (levels 1 to 5) and its corresponding 
Sz value determines the polishing requirements including 
polishing depth and the number of passes.

• Subsequently, WEDP is performed to remove the surface 
defects and unevenness from the as-built AM component.

An EOS M290 DMLS (direct metal laser sintering) metal 
3D printer is used to fabricate the samples. The sample 
dimensions are 15 mm × 10 mm × 10 mm. The workpiece 
material used in the present study is Ti6Al4V. An Elec-
tronica make wire electrical discharge machine is used to 
polish the metal AM specimens in this study. A zinc-coated 
brass wire of 0.25 mm diameter is chosen as the wire elec-
trode. The machine can operate in multiple energy regimes, 
of which the lowest discharge energy regime is chosen for 
polishing the AM fabricated components. The parameter 
settings for EDM and AM processes are given in Table 1. 
Imaging was done using an Olympus optical microscope 

Fig. 3  Summary of the pro-
posed polishing approach
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Table 1  Process parameters and 
their levels used for printing

Mu machine units

MAM parameters Values WEDP parameters Values

Layer thickness (μm) 30 Wire diameter (mm) 0.25
Laser power (W) 280 Wire feed rate (m/min) 3
Laser scanning speed (mm/s) 1250 Discharge current (A) 40, 10
Hatch distance (mm) 0.1, 0.2, 0.4, 0.6, 

0.8
Servo voltage (V) 20

Pulse on time, TON (Mu) 15
Pulse off time, TOFF (Mu) 10
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under 10× magnification. Currently, the imaging is done 
offline after the part is printed since the microscope cannot 
be mounted inside the build chamber. However, online imag-
ing and analysis are feasible by installing portable imag-
ing hardware like a USB camera inside the build chamber. 
Modelling and image processing operations were done using 
MATLAB version 2022a.

3  Results and discussion

3.1  Polishing under different energy regimes

Experimental studies are conducted to compare the maxi-
mum effective polishing depth under different energy 
regimes. When operated in a high-energy regime, WEDP 
is capable of removing a deeper layer in a single pass com-
pared to lower energy. Even though operating in higher 
energy mode reduces the polishing time, the quality of the 
surface is much inferior to that of a polished surface as 
seen in Table 2. The lower energy mode shows a significant 

surface roughness improvement of 46% and 74% when con-
sidering Sz and Sa, respectively.

The higher energy mode produces a considerably higher 
number of short circuit pulses during the spark erosion 
which causes deeper craters and surface defects [28, 29]. 
The short-circuit pulses are caused due to the ineffective 
flushing of debris from the inter-electrode gap. In addition, 
this regime also produces higher discharge energy/spark and 
peak discharge current. The cumulative effect is a coarser 
surface with deeper microcraters [30]. The low-energy 
regime is selected for the proposed polishing operation due 
to the aforementioned reasons. The pulse cycle comparison 
is shown in Fig. 4.

To train the CNN model, surfaces belonging to differ-
ent categories are imaged as shown in Fig. 5. Fifty images 
were captured per category at different orientations and 
regions to increase the model’s robustness. The average 
surface roughness values (Sa and Sz) for all the conditions 
are given in Table 3. Corresponding to its surface rough-
ness value, level 1 requires the least polishing depth and 
level 5 requires the most. It was experimentally found that 
a single polishing pass can effectively remove a maximum 
of 60 μm only. Therefore, multiple polishing passes are 
required if Sz > 60 μm.

3.2  Performance of CNN model

A ResNet 50 architecture is followed for CNN-based image 
classification in this study. Here, the characteristic features 
of each image class are digitally extracted and then subse-
quently used for image classification. This is a supervised 
learning algorithm where the image class labels are given 
during the training. The ResNet architecture consists of con-
volutional layers for filtering the image data using kernels, 

Table 2  Performance comparison of WEDP under different energy 
regimes

Parameters Low energy 
regime

High energy 
regime

% Deviation

DE (μJ) 124.3 976.1 87.3
Ip (A) 4.7 10.3 54.4
Sz (μm) 12.62 23.52 46.3
Sa (μJ) 0.92 3.61 74.5
Normal spark (%) 83.4% 18.37% 77.9
Short circuit spark (%) 2.51% 53.19% 95.2

(a) (b)

Short circuit discharges

Shorter Voltage pulsesConsistent voltage

No short circuits

Fig. 4  Typical pulse cycles under a WEDP and b WEDM
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pooling layers for data compression, and improving com-
putational efficiency. Iteratively, the model automatically 
extracts and learns the relevant and distinguishing features 
of each class. The final layer is a SoftMax layer which gives 
outputs in the range (0,1) which represents the probability 
of each class. The overall workflow of the CNN classifier is 
shown in Fig. 6.

ResNet50 used for this application is a pre-trained form of 
a model trained with over a million training images from the 
database—ImageNet [31]. The pre-trained networks reduce 
the risks of errors and save significant training time, which 
otherwise would take days/weeks to complete. The weights 
which are most likely to give good accuracy are preloaded 
and frozen to prevent them from altering. The model can 
train to a new classification task by tuning the weights of 

just the fully connected and output SoftMax layers. The 
computational cost for ResNet 50 is compared against other 
deep-learning image classification models by Li et al. [32]. 
In this study, the computational cost is expressed in terms 
of time complexity and model size based on the number 
of parameters. The parameter number (PN) for ResNet-50 
is 23.5 million, which is lesser than competitive deep net-
works like Alexnet (PN = 58.3 million) and VGG16 (PN 
= 134.2 million). In terms of the number of floating-point 
operations (FLOPs) for the considered image size of 224 × 
224 and batch size of 1, ResNet 50 (FLOPs = 3.80 ×  109) 
outperforms VGG16 (FLOPs = 1.55 ×  1010) but falls behind 
Alexnet (FLOPs = 7.25 ×  108). For the current dataset con-
sisting of 250 images, the average training time is 42.17 s. 
The total time estimate was extracted using the MATLAB 
2022 inbuilt functions tic and toc.

However, for a more conclusive depiction of the superior 
computational efficiency of ResNet-50, it has to be evaluated 
against other competitive algorithms for the same training 
dataset, which is not attempted as a part of this study and 
will be taken up in the future.

A fivefold cross-validation sampling strategy was fol-
lowed for this study which is shown in Fig. 7. Here, the 
entire dataset is divided randomly into 5 groups of 50 images 
each. Initially, 4 out of 5 groups (200 images) are used to 

Fig. 5  Different metal AM 
surface images. a Level 1. b 
Level 2. c Level 3. d Level 4. e 
Level 5

(a) (b) (c)

(d) (e)

Table 3  Surface roughness for different surface labels

Surface label Sa (μm) SD Sz (μm) SD No. of passes

Level 1 7.87 1.37 51.88 8.48 1
Level 2 13.01 2.85 73.76 9.06 2
Level 3 14.63 3.01 101.47 11.54 2
Level 4 15.49 4.52 105.74 13.85 2
Level 5 23.00 7.63 153.45 17.93 3

Fig. 6  CNN workflow for sur-
face classification
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LEARNED FEATURES
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LEVEL 2  X
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train the CNN model and the remaining group (50 images) 
is used to test the model performance. Subsequently, the 
training is repeated by considering a different group as the 
test data. The training is repeated till each group is used as 
test data at least once. This method is a superior strategy to 
the conventional 70-30 division for training and testing data-
sets. Cross-validation improves data utilization and prevents 
biased results.

The overall prediction accuracy of the model is presented 
using a confusion matrix, which summarizes the number of 
accurate predictions among all class labels in a matrix form. 
Here, the correlation between predicted labels (y-axis) and 
true labels (x-axis) is presented. The diagonal green ele-
ments show the number of right predictions out of 50 data 

points. The red elements show the inaccurate predictions 
corresponding to each class. For instance, when the surface 
was actually level 1, it was predicted correctly in 47 out of 
50 instances and it is inaccurately predicted as level 2, in 
the remaining 3 occasions. In the case of level 5, the surface 
was accurately predicted as level 5 in 46 instances and was 
predicted as level 4 in the remaining 4 instances. Level 2 
was accurately predicted every time. Overall, 240 out of 250 
predictions were accurate which gives an overall accuracy 
of 96% as indicated by the matrix shown in Fig. 8. It is also 
observed that all instances of inaccurate predictions have 
been for borderline cases, i.e., the surfaces are miscatego-
rized as the immediate next class (level 1 as level 2, level 3 
as level 2, level 4 as level 5, and so on). This marginal error 
is expected due to the discrete classification criteria.

A few existing studies which compare the classification 
performance of ResNet-50 architecture are given below:

• Konovalenko et al. [33] classified the rolled steel surface 
defects based on different CNN architectures. Shallow 
architectures like ResNet-34 have displayed poor gener-
alization capabilities, whereas deeper ResNet-152 had 
issues with overfitting. ResNet-50 was concluded as the 

Fig. 7  Fivefold cross-validation 
sampling strategy Training set

Training set

Training set

Training set

Testing set

Testing set

Testing set

Testing set

Testing set

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Training set

Training set

Training set

Training set

0 % 20 % 40 % 60 % 80 % 100 %

Fig. 8  Confusion matrix for CNN classifier

Table 4  Classification results from the feasibility study

Performance AlSi10Mg SS316L Ti6Al4V

Laser power (W) 370 150 280
Scan speed (mm/s) 1500 400 1200
Hatch spacing (μm) 130 80 140
Layer thickness (μm) 40 40 40
Sz (μm) 44.2 67.39 67.1
True category Level 1 Level 2 Level 2
Number of images tested 10 10 10
Number of accurate predictions 8 9 9
Classification accuracy 80% 90% 90%
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optimal depth of the CNN model yielding an overall pre-
diction accuracy of 96.9%.

• Mascarenhas and Agarwal [34] compared the perfor-
mance of ResNet 50 against VGG16 and VGG19 for 
image classification. ResNet 50 exhibited the best pre-
diction accuracy followed by VGG 19 and VGG 16.

• Wen et  al. [35] compared the performance of 
ResNet-50 against VGG-16, VGG-19, and Inception 
V3 for surface fault detection in smart manufacturing. 
The performance of ResNet-50 was found superior 
with 98.9% mean accuracy in comparison with other 
deep learning classifiers.

The primary reason for the superior performance of 
ResNet-50 CNN in comparison to other deep learning mod-
els is its deeper architecture and the capacity to learn distin-
guishable features from images using residual connections. 
This enables ResNet-50 CNN to learn more complicated 
patterns and classify similar-looking images with better 
accuracy. In addition, this architecture addresses the issue 

of vanishing gradients by using skip connections, which 
improves its prediction accuracy and results in quicker 
convergence.

3.3  Confirmation test on different materials

The capability of the CNN model to categorize AM-fabricated 
components of different materials and parameters other than the 
testing dataset is described in this section. For this, AM-fabri-
cated components made of AlSi10Mg, SS316L and Ti6Al4V 
are selected. AlSi10Mg belongs to level 1 and has an Sz value of 
72.1 μm. The other 2 samples belonged to level 2. Ten images 
each were captured of all the 3 samples. The printing parameters 
along with the CNN prediction accuracy are given in Table 4.

The classification accuracy was found to be 80%, 90%, 
and 90% to predict the classes of AlSi10Mg, SS316L, and 
Ti6Al4V, respectively. The AM surface images of AlSi10Mg, 
SS316L, and Ti6Al4V are shown in Fig. 9. The overall valida-
tion accuracy of 87% will get improved if images from differ-
ent materials are included in the training data.

Fig. 9  Metal AM surface 
images of a AlSi10Mg, b 
SS316L, and c Ti6Al4V

(a) (b) (c)

Fig. 10  SEM images of a as-
built metal AM surface and b 
polished surface; 3D surface 
profilometer images of c as 
built metal AM surface and d 
polished surface
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It is observed that the model gives the best accuracy 
while classifying the same material and parameters, but 
still produces slightly lower, yet acceptable results with 
the change in materials. This is because the irregularities 
like balling defects, pores, voids, and stair stepping are 
common for all the metallic materials which can easily be 
classified using the proposed model. This is clear from 
an overall accuracy of ~96% when using the same mate-
rial (with reference to Fig. 8) and 80 to 90% when using 
different materials and parameters (Table 4). That being 
said, to ensure model robustness to changes in materi-
als, more comprehensive training data is preferred with 
several common materials and parameters. Developing Fig. 11  Surface roughness comparison of metal AM samples before 

and after polishing

Fig. 12  EDS analysis of metal 
AM fabricated component 
under a as-built condition, b 
after WEDP, and c bar chart 
comparing the elemental distri-
bution before and after WEDP
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such a robust CNN model is planned as future work. The 
current work acts as a proof of concept and a positive 
step towards the development of a material-independent 
model.

3.4  Surface quality comparison

This section discusses the surface quality improvements 
after electrical discharge-assisted post-processing of metal 
AM components. Microstructural images are captured to 
compare the effect of polishing using a FESEM (Zeiss Gem-
ini SEM300). As given in Fig. 10a, the as-built surface is 
observed to be very coarse and uneven with many voids and 
microglobules primarily due to the presence of unmelted and 
partially melted metal powders. In comparison, the polished 
surface is observed to be very uniform without any observ-
able microsized features (Fig. 10b).

An AEP make non-contact 3D profilometer is used to 
measure the roughness parameters. 3D surface morphology 
images of as-built and polished samples are presented in 
Fig. 7. It can be seen that the as-built surface (Fig. 10c) has 
deep valleys and high peaks in comparison to a smoother 
surface with microcrater-like features in the polished surface 
(Fig. 10d). Overall, an 86% improvement in surface rough-
ness is observed after polishing. The Sz value was reduced 
from an average of 97.3 to 12.62 μm as shown in Fig. 11. 
It is also worth mentioning that the surface roughness of 
all polished samples is very similar. The Sa values also 
improved from 14.8 to 0.92 μm upon finishing.

One of the main limitations of the electrical discharge 
machining process is the elemental migration from the tool 
electrode to the workpiece [36]. This is due to the material 
removal from the tool electrode during the sparking and its 
subsequent deposition onto the polished surface. Energy-dis-
persive X-ray spectroscopy (EDS) analysis was performed 
to quantify the presence of zinc and copper on the polished 
surface. Under the as-built condition, only the constituent 
elements were present on the surface. However, after pol-
ishing, the presence of zinc and copper is detected on the 
surface, but in very marginal traces as seen in Fig. 12. Values 
0.73% of copper and 0.43% of zinc are considered negligible 
compared to the weight percent of other elements.

WEDP addresses several technological and scientific limi-
tations of alternate polishing methods to finish AM compo-
nents as given in Table 5. Laser finishing of AM components 
is slow since the laser spot is small compared to the polishing 
area. Also, it is challenging to maintain the right focus and to 
polish the internal features. In comparison, WEDP is relatively 
fast since the entire part thickness is polished together. In the 
case of chemical polishing, process control is challenging 
especially in maintaining dimensional accuracy [47]. Moreo-
ver, there is a high possibility of elemental contamination and 
localized property alterations in the finished component. Abra-
sive polishing can result in abrasive impingement and radial 
error in sharp corners and edges [47]. WEDP on the other 
hand is well suited to maintain dimensional and corner accu-
racy since the polishing depth is extremely customizable and 
can be accurately controlled through its low discharge pulses.

Table 5  A comparison of various finishing methods for AM components

S. no. Authors/article Methods Intelligent 
depth detec-
tion

Surface finish 
improvement

Scientific/technological challenges

1 Varga et al. [37] Sliding friction burnishing × 64 to 83% • Low polishing rate
• Possibility of surface scratches

2 Han et al. [38] Abrasive flow finishing × 76.6% • Possibilities of abrasive impinge-
ment into the surfaces

• Smoothing of sharp part edges
3 Zhang et al. [39] Magnetic abrasive finishing × 75.7%

4 Baicheng et al. [40] Chemical polishing × 39.5% • Low polishing rates, chemical con-
tamination of polished surfaces

• Process control is challenging
5 Tyagi et al. [41] × 62.39%

6 Lamikiz et al. [42] Laser polishing × 80.10% • Higher HAZ, slower process
• May locally alter the microstructure7 Caggiano et al. [20] ✓ 62 to 78%

8 Sofu et al. [43] EDM polishing × 82% • Formation of recast layer
• Possibility of generating tensile 

residual stresses
9 Chan et al. [44] × 80.25%

10 Kaynak and Tascioglu [45] Conventional finish machining-
turning

× 89.72% • Tool wear related challenges
• Difficulty in fininhsing internal 

complex features
11 Kaynak and Kitay [46] × 75.71%

12 Proposed study Wire electric discharge polishing ✓ 86% • Possibility of generating tensile 
residual stresses
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In this study, the superior performance of WEDP when 
combined with the intelligent polishing depth approach has 
resulted in an overall better surface finish improvement in 
comparison with most of the alternate polishing techniques. 
The only minor con is its tendency to produce tensile resid-
ual stress being a thermal process. However, recent research 
in EDM looks promising to address this issue and research-
ers are currently successful in producing EDM-processed 
parts having comparable residual stresses and fatigue life to 
that of mechanically processed components [48].

Apart from the aforementioned advantages, Jibin et al. 
have recently reported that WEDP produces uniform and 
defect free surfaces, uniform subgrain morphology, minimal 
elemental migration, improved microhardness, and reduced 
coefficient of friction [24]. Moreover, the process demon-
strated reduced thermal residual stresses, better corrosion 
resistance, and no visible phase changes [25].

4  Conclusions

A hybrid process combining CNN and electric discharge-
assisted polishing is proposed to improve the surface qual-
ity of the metal AM components. The proposed approach 
of CNN-based intelligent polishing depth identification 
followed by WEDP has demonstrated promising results 
in enhancing the surface integrity of metallic AM compo-
nents. The results reveal the capability of the deep learn-
ing approach to accurately classify the AM-built surfaces 
according to their surface morphology. Subsequent electric 
discharge-assisted finishing has significantly improved the 
surface finish and eliminated the defects such as cracks, 
microglobules, and voids. The approach will have sub-
stantial industrial applications since it saves time and cost 
otherwise spent on manual inspection and polishing depth 
calculation.

The salient conclusions from this study are:

• Surface post-processing through a low-energy regime of 
electric discharge-assisted polishing produced superior 
surface quality compared to under a high-energy regime 
(cutting). A 74% improvement in average surface rough-
ness (Sa) and a 40% reduction in elemental migration are 
observed during polishing in comparison to cutting.

• A deep-learning CNN model was successfully trained 
to predict the surface category of AM components. The 
obtained accuracy of the prediction was 96%.

• According to surface conditions, polishing depth and 
number of passes were determined based on Sz val-
ues. Surface unevenness and defects are reduced to a 
minimum after electrical discharge-assisted polishing. 
The surface roughness was improved by 86% from an 
average of 97.3 to 12.62 μm.

• Only a negligible amount of foreign elements (0.73% of cop-
per and 0.43% of zinc) were found on the polished surface.

Though the approach is very promising even in its present 
form, a few future improvements can make the model even 
better. Being a supervised learning model, CNN’s accuracy 
and robustness are closely related to the quality of the training 
data. With the current training dataset, the scope of the appli-
cation is better suited for the considered material and param-
eters. A more extensive dataset including various materials 
and wider parameter ranges will improve the robustness of the 
model. Furthermore, the present approach can only address the 
external roughness and defects, but it can be developed further 
to identify internal defects as well if advanced imaging tech-
niques like computed tomography (CT) are utilized to generate 
training image data. Finally, there is potential to develop the 
presented method into a real-time/in situ approach for surface 
classification and polishing depth computation by installing 
suitable vision sensors in the build chamber.
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