
ACTA IMEKO
ISSN: 2221-870X
March 2023, Volume 12, Number 1, 1 - 5

ACTA IMEKO | www.imeko.org March 2023 | Volume 12 | Number 1 | 1

Measuring with confidence: leveraging expressive type
systems for correct-by-construction software

Conor McBride1, Georgi Nakov1, Fredrik Nordvall Forsberg1

1 Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK

Section: RESEARCH PAPER

Keywords: type systems; correctness; metrology; programming languages

Citation: Conor McBride, Georgi Nakov, Fredrik Nordvall Forsberg, Measuring with confidence: leveraging expressive type systems for correct-by-
construction software, Acta IMEKO, vol. 12, no. 1, article 15, March 2023, identifier: IMEKO-ACTA-12 (2023)-01-15

Section Editor: Daniel Hutzschenreuter, PTB, Germany

Received November 19, 2022; In final form February 28, 2023; Published March 2023

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: supported by the UK National Physical Laboratory Measurement Fellowship project “Dependent types for trustworthy tools”.

Corresponding author: Georgi Nakov, e-mail: georgi.nakov@strath.ac.uk

1. INTRODUCTION

The digital transformation of metrology offers both
challenges and opportunities. With increased software usage and
complexity, there is also a need to increase trust in the
computations performed — how do we know that the software
is doing what is expected of it? Computer Science offers a wide
range of formal methods and verification techniques to tackle
this challenge. As always, there is a balance to be struck between
how much additional effort is required from the user, and how
useful the verification procedure can be. Our main thesis is that
a lot can be achieved by simply “bridging the semantic gap”
between human and machine: current common practice is for
computers to mindlessly execute instructions, without
understanding for what purpose. This means that any verification
must happen after the fact, by a separate process. What if,
instead, there would be some way of communicating our intent
as we are writing our software? Then the machine could help us
write it, rather than just tell us off for getting it wrong…

We advocate for the use of type systems as a lightweight
method to communicate intent. Dependently typed programming
languages are a new breed of languages which have type systems
which are expressive and strong enough to use types to encode
the meaning of programs to whatever degree of precision is
needed. We can ensure that types can be automatically checked

at compile-time, and so they provide machine-certification of the
program's behaviour at low-cost. Concretely, we therefore get
both lightweight and machine-certified trust in the correctness of
software.

In the metrology domain, in particular, we can make good use
of implicit tacit knowledge such as dimensional correctness to
help the computer help us. This is work currently done by
humans, but there is no reason why it could not be done
automatically by a machine instead. As a small case study, we
show that by turning informal comments about the expected
input format of data into machine-readable form, we can not
only check that given data conforms to the format, but
automatically generate code for reading from disk and converting
to appropriate units, thus eliminating a source of bugs and
increasing trust in the software.

Our goals are similar to other software projects for calculation
with physical quantities [1], [2], but we put additional emphasis
on the use of types as a convenient method of communication
between human and machine. Thus, our focus is on how
dependently typed programming languages can provide a sound
basis for developing software for metrology rather than
describing any such software in detail.

ABSTRACT
Modern programming language type systems help programmers write correct software, and furthermore helps them write the software
they actually intended to write. We show how expressive types can be used to encode dimension and units of measure information,
which can be used to avoid dimensional mistakes and guide software construction, and how types can even help to generate code
automatically, which eliminates a whole class of bugs.

mailto:georgi.nakov@strath.ac.uk

ACTA IMEKO | www.imeko.org March 2023 | Volume 12 | Number 1 | 2

2. TYPE SYSTEMS AS LIGHTWEIGHT FORMAL METHODS

In programming languages such as Fortran or C, types such
as floating-point numbers or integers are used to help the
compiler with memory layout. A pleasant side effect is that basic
errors such as trying to divide an integer by a string can be
detected and reported at compile time, rather than at run time.
While useful for avoiding disastrous results, this is quite a
negative view on types: they are against errors, but are they also for
something?

Types can be used to make an active contribution by offering
guidance during the program construction process, not just
criticism afterwards. We pay upfront by stating the type of the
program we want to write, but are then paid back in the machine
being able to use those types to offer suggestions for functions
to call, or even generate code for boring parts of the program.
The space within which we search for programs is
correspondingly smaller and better structured.

For such help to be meaningful, the types available need to be
sufficiently expressive; it is usually not very instructive to be told
that we need to for example supply an integer, nor is it going to
be very helpful for the compiler to generate a floating-point
number for us. As another example, consider a type whose
elements are matrices. As given, this is again not very helpful —
a matrix can, after all, be seen as a (structured) collection of
numbers, and we just said that numbers in themselves do not
carry much meaning. But we can refine our type of matrices to a

type Matrix(𝑛, 𝑚) which keeps track of the size 𝑛 × 𝑚 of the
matrix: e.g., the type of matrix multiplication can be usefully
expressed as

Matrix(𝑛, 𝑚) × Matrix(𝑚, 𝑘) → Matrix(𝑛, 𝑘)

i.e., insisting that the sizes of the input matrices are compatible,
and determining size of the output matrix. Furthermore, if we
were trying to write a program to implement matrix
multiplication, the above type would give us helpful hints on
what we need to produce.

For another example, consider implementing a program that
creates a block matrix by putting two given matrices next to each
other. It is natural to give it type

Matrix(𝑛, 𝑚) × Matrix(𝑛, 𝑘) → Matrix(𝑛, 𝑚 + 𝑘)

i.e., we insist that both input matrices have the same number of
rows, and the number of columns in the output matrix is the sum
of the number of columns in the input matrices. We see that

computations such as 𝑚 + 𝑘 naturally arise in types — to do a
proper job classifying such programs as meaningful, our systems
must thus allow values and computations to occur in types. Such
type systems are called dependent type systems [3], as types can
depend on values. They give us enough expressive power to
meaningfully communicate our intentions to the compiler.

3. UNITS OF MEASURE USING TYPES

The metrology domain is perhaps especially well-suited for
the use of types to guarantee correctness, because the prevalent
use of dimensions (such as length and time) and units of measure
(such as metres and seconds) in many respects play the same role
as types: it is not dimensionally correct to add a metre and a
second, just like it is not data type correct to add an integer and
a string. It thus seems natural to use type systems to reduce

dimension checking to type checking. Indeed, many mainstream
languages have support for units, implemented using a wide
range of techniques, from static types to dynamic run-time
checks (see Bennich-Björkman and McKeever's survey [4] for
more):

• Microsoft's F# [5] has units of measure built-in to static
type checking;

• C++'s Boost Units library [6] uses templates to check
units statically;

• Java has a proposed API adding classes for dimensioned
quantities [7], but run-time casts are inevitable;

• Haskell's type system can now encode basic units of
measure as a library [8] or a typechecker plugin [9];

• Python libraries such as Pint [10] cannot do static
checking of dimensional correctness, but implement run-
time checks instead. Similarly, MATLAB has support for
dynamic unit checking using the Symbolic Math Toolbox
[11].

Many of these solutions however provide no static
guarantees, or rely on rather ad-hoc extensions of the type
system, often with unintelligible error messages as a result.
Encoding dimensions using dependent types is a more principled
way to include dimension checking in a programming language.
In the rest of this section, we briefly describe how we
implemented a typechecker including dimensions [12].

First, how are we to represent dimensions themselves?

Following Kennedy [13], we fix a set 𝐷 of fundamental

dimensions (such as length L time T and mass M). We may
multiply or divide dimensions (for example forming mass per

time squared M/T2), and the order of dimensions do not matter

(mass times length 𝑀 ⋅ 𝐿 is the same as length times mass 𝐿 ⋅
𝑀). These considerations lead us to model dimensions as
elements of the free Abelian group over the set of fundamental

dimensions 𝐷 [14].
For type checking, we need to be able to decide if two given

dimensions are equal or not. This is made easier by a normal form
for elements of the free group: we first (arbitrarily) impose a total

order on the fundamental dimensions 𝐷 (for example mass

before length before time 𝑀 < 𝐿 < 𝑇). Any dimension may be
given as a finite product of distinct fundamental dimensions, in
the chosen order, raised to nonzero integral powers. Hence to

check equality of dimensions 𝑑 =
?

𝑑′, we can reduce 𝑑 and 𝑑′ to

normal forms 𝑑 = Mn0 ⋅ L𝑛1 ⋅ T𝑛2 , 𝑑′ = M𝑛0
′

⋅ L𝑛1
′

⋅ T𝑛2
′
 and

then straightforwardly check equality of the exponents 𝑛𝑖 =
?

𝑛𝑖
′ ,

rather than applying the group axioms directly.
With equality of dimensions in place, the crucial step in

making dimension checking part of type checking is to also allow
abstract dimensions [15]: addition is not length-specific, but works
in one arbitrary dimension, which can stand for any dimension in
particular. Similarly, multiplication and division of quantities
multiplies and divides arbitrary dimensions respectively. By
giving addition and multiplication these types and taking our
refined notion of equality of dimensions into account, dimension
checking simply becomes type checking. Gundry [16] has shown
that the property of programs still having most general types is
retained in this setting.

As discussed by e.g., Hall [17], dimension checking seems to
be more fundamental than “unit checking”. When dimensions
are encoded in types, units can be introduced as “smart

constructors” such as Watt _W: R → 𝑄(M L2 T−3) — the type

of this function says that for any real number 𝑟, we get a quantity

ACTA IMEKO | www.imeko.org March 2023 | Volume 12 | Number 1 | 3

𝑟 W of dimension M L2 T−3. If this is the only way to introduce
quantities, we can ensure that only meaningful expressions enter
the system. Similarly, by only allowing the extraction of an actual
number at dimensionless types (which can for example be
achieved by dividing a quantity by a unit constant), only
physically meaningful information can flow out of the system.

The described approach is agnostic in the concrete choice of
fundamental dimensions; indeed, if one wants to distinguish
between torque and energy, for example, which both have the

same dimension M L2 T−2 in the International System of Units
(SI) [18], then one could introduce separate dimensions for them.
A more principled approach would be to extend our system
utilising aspects from the M-layer representation of quantities [19],
but we use a conceptually simple representation here, as our aim
is to demonstrate how dimension checking can be internalised as
type checking.

4. USING TYPES TO AUTOMATICALLY GENERATE CODE

Types are not just a stick to be beaten with when one makes
a mistake; they can also act as a carrot, for example by enabling
code generation. As a simple demonstration of this principle, we
have developed a program that automatically generates code for
reading and validating input data based on type declarations. The
implementation is available at https://github.com/g-
nakov/mgen.

Many metrology software packages come with careful
descriptions of input formats in their documentation, usually
describing what input is required (e.g., “thermal conductivities”),
in what form (e.g., “an array with an entry for each layer”), and

in what unit (e.g., “W m-2 K−1”). However, these are written for
humans, not machines, and consequently the code to read the
inputs and convert them to the internal units used, if applicable,
is also written by humans. This is typically fiddly code, with
perhaps nested loops, and many opportunities for off-by-one
errors to slip in.

Our approach is instead to make the description of the input
format formal, so that it can be understood by a machine, which
can then write the code for reading the inputs. In practice, this
requires minimal changes to the description — mostly ensuring
that the required data is actually present.

An example input description is displayed in Figure 1. An

input is declared with its name (for example ivals and nlayer,

followed by a colon ‘:’ followed by its description, which is for
the benefits of humans. An input is either a composite object

(such as ivals), a scalar field (such as nlayer), or an array (such

as kappas). Details about inputs which are important for the

machine are tagged with an @ symbol, such as if an input is a

number (for example, nlayer is tagged as a @number), or an

array of a certain length (for example, lams is tagged as an array

of size @nlayer). Later inputs can refer to earlier inputs for their

description (for example, the description of lams refer to

nlayer) — we are making full use of dependent types by allowing
later entries to depend on earlier ones. Each non-number field

entry has a unit attached to it, again indicated by an @ symbol.
These can either be attached to individual fields of an array (such

as for the array kappas), or uniformly for the whole array (such

as the array rs). Also note that we allow SI derived units such as

Watt W — we convert these to their standard form in terms of
SI base units internally.

Given an input description, we first validate that it is sensible:
that array lengths are numbers, that field names are not repeated,
and that each scalar field has a unit. This way, we can catch simple
mistakes in the input description such as typos or undeclared
input fields.

After validating the input description, we can generate code
for reading input data following it. We currently generate Matlab
and Python code, but there is nothing particular about the choice
of languages — it would be possible to cover most programming
languages. For the input description from Figure 1, we generate
the following Matlab code — the corresponding Python code
can be found in Figure 2.

function ivals = getinputsfromfile(fname);
f1 = fopen(fname);
c1 = textscan(f1, `%f`);
src = c1{1};
fclose(f1);

rPtr = 1;
ivals.nlayer = src[rPtr];
rPtr = rPtr + 1;
for i = 1:ivals.nlayer
 ivals.lams[i] = 1e3 * src[rPtr+i];
end
rPtr = rPtr + ivals.nlayer;
ivals.kappas[1] = 1e-2 * src[rPtr+1];
for i = 2:3
 ivals.kappas[i] = 1e-3 * src[rPtr+i];
end
rPtr = rPtr + 3;
for i = 1:3
 ivals.rs[i] = 1e3 * src[rPtr+i];
 ivals.cps[i+3] = src[rPtr+i+3];
end
rPtr = rPtr + 6;
ivals.tflash = 1e-3 * src[rPtr];

ivals :
 nlayer : contains the @number of layers (2 or 3) in the sample
 lams : array of thermal conductivities of layer @nlayer (in @W m^-2 K^-1).
 kappas : contains radius of
 - sample (in @cm)
 - laser (in @mm)
 - measuring (in @mm)
 rs : heat transfer coefficient for losses in @W m^-2 K^-1
 - from front face
 - from rear face
 - curved side face
 cps : specific heat capacities in @J kg^-1 K^-1
 - of the front face
 - of the rear faced
 - of the curved side face
 tflash : duration of laser flash in @ms

Figure 1. Formal input data description.

https://github.com/g-nakov/mgen
https://github.com/g-nakov/mgen

ACTA IMEKO | www.imeko.org March 2023 | Volume 12 | Number 1 | 4

We make sure to generate fresh variable names for the read

pointer rPtr, the file handle f1 and the file contents c1 and src.
The rest of the names are guaranteed to be non-clashing, since
we have validated the description. We then sequentially read the
data, advancing the read pointer as we go along. We use the unit
information to scale data into the units used internally in the
program. Note also that we have taken the opportunity to merge

the loops for ivals.kappas and ivals.rs into a single loop. These
are exactly the kind of code transformations that are easy to get
wrong if done manually — in contrast, we can reason generically
that this transformation will always be correct. As a result, the
generated code looks like similar to code that one would write by
hand, but without the risk of making, for example, an off-by-one
error somewhere.

Another guiding principle for our code generation tool is
convenience of use of the input data afterwards — the whole
exercise would be pointless if the user manually would have to
convert the data into a different data type after reading. Hence,
we make sure to store the data in a data type that is “natural” for
the chosen language, and which allows for a direct access of the
fields following the input data description. In Matlab, structure
arrays readily meet these requirements, but we have to take extra
care to explicitly generate the needed classes in Python.

5. CONCLUSIONS AND FUTURE WORK

Type systems could be a powerful tool in the digitalisation of
metrology. By exploiting advances in dependent type systems, we
have shown that we can strengthen our ability to reason about
dimensional correctness, and also bridge the gap between
human-readable semantic specifications of data, and the actual
code representing it in a specific programming environment.
Crucially, we were able to reap these benefits with minimal
additional costs - we put to good use already existing
typecheckers without having to rewrite the infrastructure in place
from scratch.

We have chosen a straightforward treatment of dimensions as
elements of a free group, and units as constants; this choice does

not accurately disambiguate for example radians rad = m m−1

and square radians sr = m2 m−2, even though they are of very
different nature. However, we stress that this is not an inherent
limitation in the methodology of using types for dimensions —
dimensionless quantity ratios can if necessary be tracked
separately in types, using the same principles as presented here,
which we hope to do in the future. Overall, the work reported
here is part of a larger project to incorporate dependent types in
Matlab programs for correctness checking, including
dimensional correctness.

ACKNOWLEDGEMENTS

Thanks to Alistair Forbes, Keith Lines and Ian Smith for
discussions about this work. The authors would also like to thank
the attendants of the first IMEKO TC6 International
Conference on Metrology and Digital Transformation for the
useful suggestions and comments on a presentation of this work,
in particular the suggestion to extend code generation also to
Python. Funding: supported by the UK National Physical
Laboratory Measurement Fellowship project “Dependent types
for trustworthy tools”.

6. REFERENCES

[1] M. P. Foster, Quantities, units and computing, Computer
Standards & Interfaces 35 (2013), pp. 529–535.
DOI: 10.1016/j.csi.2013.02.001

[2] B. D. Hall, Software for calculation with physical quantities, 2020
IEEE International Workshop on Metrology for Industry 4.0 IoT,
Rome, Italy, 2020, pp. 458–463.
DOI: 10.1109/MetroInd4.0IoT48571.2020.9138281

[3] A. Bove, P. Dybjer, Dependent types at work, LerNet ALFA
Summer School 2008 Revised Tutorial Lectures (2009), pp. 57–99.
DOI: 10.1007/978-3-642-03153-3_2

[4] O. Bennich-Björkman, S. McKeever, The next 700 Unit of
measurement checkers, 11th ACM SIGPLAN Int. Conference on

class Ivals():
 __slots__ = ("lams", "kappas", "rs", "cps", "tflash", "nlayer")

 def __init__(self):
 self.lams = {}
 self.kappas = {}
 self.rs = {}
 self.cps = {}

ivals = Ivals()
with open(fname, 'r') as f1:
 src = f1.readlines()
 rPtr = 0
 ivals.nlayer = int(src[rPtr])
 rPtr = rPtr + 1
 ivals.tflash = 1e-3 * float(src[rPtr])
 rPtr = rPtr + 1
 for i in range(0, 3):
 ivals.cps[i] = float(src[rPtr + i])
 ivals.rs[i+3] = 1e3 * float(src[rPtr + i + 3])
 rPtr = rPtr + 6
 ivals.kappas[0] = 1e-2 * float(src[rPtr + 0])
 for i in range(1, 3):
 ivals.kappas[i] = 1e-3 * float(src[rPtr+i])
 rPtr = rPtr + 3
 for i in range(0, ivals.nlayer):
 ivals.lams[i] = 1e3 * float(src[rPtr + i])

Figure 2. Generated Python code from the data description in Figure 1.

https://doi.org/10.1016/j.csi.2013.02.001
https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138281
https://doi.org/10.1007/978-3-642-03153-3_2

ACTA IMEKO | www.imeko.org March 2023 | Volume 12 | Number 1 | 5

Software Engineering, Boston, USA, 2018. pp. 121–132.
DOI: 10.1145/3276604.3276613

[5] A. Kennedy, Types for units-of-measure: theory and practice.
Central European Functional Programming School 2009, Revised
Selected Lectures (2010), pp. 268–305.
DOI: 10.1007/978-3-642-17685-2_8

[6] M. C. Schabel, S. Watanabe, Boost C++ Libraries, Chapter 42
(Boost.Units 1.1.0), 2010. Online [Accessed 13 January 2023]
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_unit
s.html

[7] J.-M. Dautelle, W. Keil, O. Santana, JSR 385: Units of
measurement, 2021. Online [Accessed 13 January 2023]
https://unitsofmeasurement.github.io/pages/about.html

[8] T. Muranushi, R. Eisenberg, Experience report: type-checking
polymorphic units for astrophysics research in Haskell, 2014 ACM
SIGPLAN symposium on Haskell, Gothenburg, Sweden, 2014,
pp. 31–38.
DOI: 10.1145/2633357.2633362

[9] A. Gundry, A typechecker plugin for units of measure: domain-
specific constraint solving in GHC Haskell, 2015 ACM SIGPLAN
symposium on Haskell, Vancouver, Canada, 2015, pp. 11–22.
DOI: 10.1145/2804302.2804305

[10] Pint Developers, Pint: makes units easy, 2022. Online [Accessed
13 January 2023]
https://pint.readthedocs.io/

[11] Mathworks, MATLAB units of measurement, 2022. Online
[Accessed 13 January 2023]
https://www.mathworks.com/help/symbolic/units-of-
measurement.html

[12] C. McBride, F. Nordvall Forsberg, Type systems for programs
respecting dimensions, in: Advanced Mathematical and

Computational Tools in Metrology and Testing XII. F. Pavese, A.
B. Forbes, N. F. Zhang, A. G. Chunovkina (editors). World
Scientific, Singapore, 2022, ISBN 978-981-124-237-3, pp. 331–
345.
DOI: 10.1142/9789811242380_0020

[13] A. Kennedy, Programming languages and dimensions, Ph.D.
dissertation, University of Cambridge, 1995.

[14] C. C. Sims, Computation with Finitely Presented Groups,
Cambridge University Press, Cambridge, 1994, ISBN 978-051-
157-470-2.
DOI: 10.1017/CBO9780511574702

[15] M. Wand, P. O'Keefe, Automatic dimensional inference, in:
Computational Logic: Essays in Honor of Alan Robinson. J.-L.
Lassez, G. Plotkin (editors), MIT Press, Cambridge,
Massachusetts, 1991, ISBN 978-0-262-12156-9, pp. 479–486.

[16] A. Gundry, Type inference, Haskell and dependent Types, Ph.D.
dissertation, University of Strathclyde, 2013.

[17] B. D. Hall, Software representation of measured physical
quantities, in: Advanced Mathematical and Computational Tools
in Metrology and Testing XII. F. Pavese, A. B. Forbes, N. F.
Zhang, A. G. Chunovkina (editors). World Scientific, Singapore,
2022, ISBN 978-981-124-237-3, pp. 273-284.
DOI: 10.1142/9789811242380_0016

[18] BIPM, The International System of Units ('The SI Brochure')
(Ninth ed.). Bureau International des Poids et Mesures, 2019.
Online [Accessed 13 January 2023]
http://www.bipm.org/en/si/si_brochure/

[19] B. D. Hall, M. Kuster, Representing quantities and units in digital
systems, Measurement: Sensors 23 (2022), 6 pp.
DOI: 10.1016/j.measen.2022.100387

https://doi.org/10.1145/3276604.3276613
https://doi.org/10.1007/978-3-642-17685-2_8
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_units.html
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_units.html
https://unitsofmeasurement.github.io/pages/about.html
https://doi.org/10.1145/2633357.2633362
https://doi.org/10.1145/2804302.2804305
https://pint.readthedocs.io/
https://www.mathworks.com/help/symbolic/units-of-measurement.html
https://www.mathworks.com/help/symbolic/units-of-measurement.html
https://doi.org/10.1142/9789811242380_0020
https://doi.org/10.1017/CBO9780511574702
https://doi.org/10.1142/9789811242380_0016
http://www.bipm.org/en/si/si_brochure/
https://doi.org/10.1016/j.measen.2022.100387

	Measuring with confidence: leveraging expressive type systems for correct-by-construction software
	1. INTRODUCTION
	2. TYPE SYSTEMS AS LIGHTWEIGHT FORMAL METHODS
	3. UNITS OF MEASURE USING TYPES
	4. USING TYPES TO AUTOMATICALLY GENERATE CODE
	5. CONCLUSIONS AND FUTURE WORK
	6. REFERENCES

