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1. INTRODUCTION 

The digital transformation of metrology offers both 
challenges and opportunities. With increased software usage and 
complexity, there is also a need to increase trust in the 
computations performed — how do we know that the software 
is doing what is expected of it? Computer Science offers a wide 
range of formal methods and verification techniques to tackle 
this challenge. As always, there is a balance to be struck between 
how much additional effort is required from the user, and how 
useful the verification procedure can be. Our main thesis is that 
a lot can be achieved by simply “bridging the semantic gap” 
between human and machine: current common practice is for 
computers to mindlessly execute instructions, without 
understanding for what purpose. This means that any verification 
must happen after the fact, by a separate process. What if, 
instead, there would be some way of communicating our intent 
as we are writing our software? Then the machine could help us 
write it, rather than just tell us off for getting it wrong… 

We advocate for the use of type systems as a lightweight 
method to communicate intent. Dependently typed programming 
languages are a new breed of languages which have type systems 
which are expressive and strong enough to use types to encode 
the meaning of programs to whatever degree of precision is 
needed. We can ensure that types can be automatically checked 

at compile-time, and so they provide machine-certification of the 
program's behaviour at low-cost. Concretely, we therefore get 
both lightweight and machine-certified trust in the correctness of 
software. 

In the metrology domain, in particular, we can make good use 
of implicit tacit knowledge such as dimensional correctness to 
help the computer help us. This is work currently done by 
humans, but there is no reason why it could not be done 
automatically by a machine instead. As a small case study, we 
show that by turning informal comments about the expected 
input format of data into machine-readable form, we can not 
only check that given data conforms to the format, but 
automatically generate code for reading from disk and converting 
to appropriate units, thus eliminating a source of bugs and 
increasing trust in the software. 

Our goals are similar to other software projects for calculation 
with physical quantities [1], [2], but we put additional emphasis 
on the use of types as a convenient method of communication 
between human and machine. Thus, our focus is on how 
dependently typed programming languages can provide a sound 
basis for developing software for metrology rather than 
describing any such software in detail. 
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they actually intended to write. We show how expressive types can be used to encode dimension and units of measure information, 
which can be used to avoid dimensional mistakes and guide software construction, and how types can even help to generate code 
automatically, which eliminates a whole class of bugs. 
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2. TYPE SYSTEMS AS LIGHTWEIGHT FORMAL METHODS 

In programming languages such as Fortran or C, types such 
as floating-point numbers or integers are used to help the 
compiler with memory layout. A pleasant side effect is that basic 
errors such as trying to divide an integer by a string can be 
detected and reported at compile time, rather than at run time. 
While useful for avoiding disastrous results, this is quite a 
negative view on types: they are against errors, but are they also for 
something? 

Types can be used to make an active contribution by offering 
guidance during the program construction process, not just 
criticism afterwards. We pay upfront by stating the type of the 
program we want to write, but are then paid back in the machine 
being able to use those types to offer suggestions for functions 
to call, or even generate code for boring parts of the program. 
The space within which we search for programs is 
correspondingly smaller and better structured.  

For such help to be meaningful, the types available need to be 
sufficiently expressive; it is usually not very instructive to be told 
that we need to for example supply an integer, nor is it going to 
be very helpful for the compiler to generate a floating-point 
number for us. As another example, consider a type whose 
elements are matrices. As given, this is again not very helpful — 
a matrix can, after all, be seen as a (structured) collection of 
numbers, and we just said that numbers in themselves do not 
carry much meaning. But we can refine our type of matrices to a 

type Matrix(𝑛, 𝑚) which keeps track of the size 𝑛 × 𝑚 of the 
matrix: e.g., the type of matrix multiplication can be usefully 
expressed as 
 

Matrix(𝑛, 𝑚) × Matrix(𝑚, 𝑘) → Matrix(𝑛, 𝑘) 
 
i.e., insisting that the sizes of the input matrices are compatible, 
and determining size of the output matrix. Furthermore, if we 
were trying to write a program to implement matrix 
multiplication, the above type would give us helpful hints on 
what we need to produce. 

For another example, consider implementing a program that 
creates a block matrix by putting two given matrices next to each 
other. It is natural to give it type 
 

Matrix(𝑛, 𝑚) × Matrix(𝑛, 𝑘) → Matrix(𝑛, 𝑚 + 𝑘) 
 
i.e., we insist that both input matrices have the same number of 
rows, and the number of columns in the output matrix is the sum 
of the number of columns in the input matrices. We see that 

computations such as 𝑚 + 𝑘 naturally arise in types — to do a 
proper job classifying such programs as meaningful, our systems 
must thus allow values and computations to occur in types. Such 
type systems are called dependent type systems [3], as types can 
depend on values. They give us enough expressive power to 
meaningfully communicate our intentions to the compiler. 

3. UNITS OF MEASURE USING TYPES 

The metrology domain is perhaps especially well-suited for 
the use of types to guarantee correctness, because the prevalent 
use of dimensions (such as length and time) and units of measure 
(such as metres and seconds) in many respects play the same role 
as types: it is not dimensionally correct to add a metre and a 
second, just like it is not data type correct to add an integer and 
a string. It thus seems natural to use type systems to reduce 

dimension checking to type checking. Indeed, many mainstream 
languages have support for units, implemented using a wide 
range of techniques, from static types to dynamic run-time 
checks (see Bennich-Björkman and McKeever's survey [4] for 
more): 

• Microsoft's F# [5] has units of measure built-in to static 
type checking; 

• C++'s Boost Units library [6] uses templates to check 
units statically; 

• Java has a proposed API adding classes for dimensioned 
quantities [7], but run-time casts are inevitable; 

• Haskell's type system can now encode basic units of 
measure as a library [8] or a typechecker plugin [9]; 

• Python libraries such as Pint [10] cannot do static 
checking of dimensional correctness, but implement run-
time checks instead. Similarly, MATLAB has support for 
dynamic unit checking using the Symbolic Math Toolbox 
[11]. 

Many of these solutions however provide no static 
guarantees, or rely on rather ad-hoc extensions of the type 
system, often with unintelligible error messages as a result. 
Encoding dimensions using dependent types is a more principled 
way to include dimension checking in a programming language. 
In the rest of this section, we briefly describe how we 
implemented a typechecker including dimensions [12]. 

First, how are we to represent dimensions themselves? 

Following Kennedy [13], we fix a set 𝐷 of fundamental 

dimensions (such as length L time T and mass M). We may 
multiply or divide dimensions (for example forming mass per 

time squared M/T2), and the order of dimensions do not matter 

(mass times length 𝑀 ⋅  𝐿 is the same as length times mass 𝐿 ⋅
𝑀). These considerations lead us to model dimensions as 
elements of the free Abelian group over the set of fundamental 

dimensions 𝐷 [14]. 
For type checking, we need to be able to decide if two given 

dimensions are equal or not. This is made easier by a normal form 
for elements of the free group: we first (arbitrarily) impose a total 

order on the fundamental dimensions 𝐷 (for example mass 

before length before time 𝑀 < 𝐿 < 𝑇). Any dimension may be 
given as a finite product of distinct fundamental dimensions, in 
the chosen order, raised to nonzero integral powers. Hence to 

check equality of dimensions 𝑑 =
?

𝑑′, we can reduce 𝑑 and 𝑑′ to 

normal forms 𝑑 = Mn0 ⋅ L𝑛1 ⋅ T𝑛2 , 𝑑′ = M𝑛0
′

⋅ L𝑛1
′

⋅ T𝑛2
′
 and 

then straightforwardly check equality of the exponents 𝑛𝑖 =
?

𝑛𝑖
′ , 

rather than applying the group axioms directly. 
With equality of dimensions in place, the crucial step in 

making dimension checking part of type checking is to also allow 
abstract dimensions [15]: addition is not length-specific, but works 
in one arbitrary dimension, which can stand for any dimension in 
particular. Similarly, multiplication and division of quantities 
multiplies and divides arbitrary dimensions respectively. By 
giving addition and multiplication these types and taking our 
refined notion of equality of dimensions into account, dimension 
checking simply becomes type checking. Gundry [16] has shown 
that the property of programs still having most general types is 
retained in this setting. 

As discussed by e.g., Hall [17], dimension checking seems to 
be more fundamental than “unit checking”. When dimensions 
are encoded in types, units can be introduced as “smart 

constructors” such as Watt _W: R → 𝑄(M L2 T−3) — the type 

of this function says that for any real number 𝑟, we get a quantity 
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𝑟 W of dimension M L2 T−3. If this is the only way to introduce 
quantities, we can ensure that only meaningful expressions enter 
the system. Similarly, by only allowing the extraction of an actual 
number at dimensionless types (which can for example be 
achieved by dividing a quantity by a unit constant), only 
physically meaningful information can flow out of the system. 

The described approach is agnostic in the concrete choice of 
fundamental dimensions; indeed, if one wants to distinguish 
between torque and energy, for example, which both have the 

same dimension M L2 T−2 in the International System of Units 
(SI) [18], then one could introduce separate dimensions for them. 
A more principled approach would be to extend our system 
utilising aspects from the M-layer representation of quantities [19], 
but we use a conceptually simple representation here, as our aim 
is to demonstrate how dimension checking can be internalised as 
type checking. 

4. USING TYPES TO AUTOMATICALLY GENERATE CODE 

Types are not just a stick to be beaten with when one makes 
a mistake; they can also act as a carrot, for example by enabling 
code generation. As a simple demonstration of this principle, we 
have developed a program that automatically generates code for 
reading and validating input data based on type declarations. The 
implementation is available at https://github.com/g-
nakov/mgen. 

Many metrology software packages come with careful 
descriptions of input formats in their documentation, usually 
describing what input is required (e.g., “thermal conductivities”), 
in what form (e.g., “an array with an entry for each layer”), and 

in what unit (e.g., “W m-2 K−1”). However, these are written for 
humans, not machines, and consequently the code to read the 
inputs and convert them to the internal units used, if applicable, 
is also written by humans. This is typically fiddly code, with 
perhaps nested loops, and many opportunities for off-by-one 
errors to slip in. 

Our approach is instead to make the description of the input 
format formal, so that it can be understood by a machine, which 
can then write the code for reading the inputs. In practice, this 
requires minimal changes to the description — mostly ensuring 
that the required data is actually present. 

An example input description is displayed in Figure 1. An 

input is declared with its name (for example ivals and nlayer, 

followed by a colon ‘:’ followed by its description, which is for 
the benefits of humans. An input is either a composite object 

(such as ivals), a scalar field (such as nlayer), or an array (such 

as kappas). Details about inputs which are important for the 

machine are tagged with an @ symbol, such as if an input is a 

number (for example, nlayer is tagged as a @number), or an 

array of a certain length (for example, lams is tagged as an array 

of size @nlayer). Later inputs can refer to earlier inputs for their 

description (for example, the description of lams refer to 

nlayer) — we are making full use of dependent types by allowing 
later entries to depend on earlier ones. Each non-number field 

entry has a unit attached to it, again indicated by an @ symbol. 
These can either be attached to individual fields of an array (such 

as for the array kappas), or uniformly for the whole array (such 

as the array rs). Also note that we allow SI derived units such as 

Watt W — we convert these to their standard form in terms of 
SI base units internally. 

Given an input description, we first validate that it is sensible: 
that array lengths are numbers, that field names are not repeated, 
and that each scalar field has a unit. This way, we can catch simple 
mistakes in the input description such as typos or undeclared 
input fields. 

After validating the input description, we can generate code 
for reading input data following it. We currently generate Matlab 
and Python code, but there is nothing particular about the choice 
of languages — it would be possible to cover most programming 
languages. For the input description from Figure 1, we generate 
the following Matlab code — the corresponding Python code 
can be found in Figure 2. 
 
function ivals = getinputsfromfile(fname); 
f1 = fopen(fname); 
c1 = textscan(f1, `%f`); 
src = c1{1}; 
fclose(f1); 
 
rPtr = 1; 
ivals.nlayer = src[rPtr]; 
rPtr = rPtr + 1; 
for i = 1:ivals.nlayer 
  ivals.lams[i] = 1e3 * src[rPtr+i]; 
end 
rPtr = rPtr + ivals.nlayer; 
ivals.kappas[1] = 1e-2 * src[rPtr+1]; 
for i = 2:3 
  ivals.kappas[i] = 1e-3 * src[rPtr+i]; 
end 
rPtr = rPtr + 3; 
for i = 1:3 
  ivals.rs[i] = 1e3 * src[rPtr+i]; 
  ivals.cps[i+3] = src[rPtr+i+3]; 
end 
rPtr = rPtr + 6; 
ivals.tflash = 1e-3 * src[rPtr]; 

ivals : 
  nlayer : contains the @number of layers (2 or 3) in the sample 
  lams   :  array of thermal conductivities of layer @nlayer (in @W m^-2 K^-1). 
  kappas : contains radius of 
    - sample (in @cm) 
    - laser (in @mm) 
    - measuring (in @mm) 
  rs : heat transfer coefficient for losses in @W m^-2 K^-1 
    - from front face 
    - from rear face 
    - curved side face 
  cps : specific heat capacities in @J kg^-1 K^-1 
    - of the front face 
    - of the rear faced 
    - of the curved side face 
  tflash : duration of laser flash in @ms 

Figure 1. Formal input data description. 

https://github.com/g-nakov/mgen
https://github.com/g-nakov/mgen
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We make sure to generate fresh variable names for the read 

pointer rPtr, the file handle f1 and the file contents c1 and src. 
The rest of the names are guaranteed to be non-clashing, since 
we have validated the description. We then sequentially read the 
data, advancing the read pointer as we go along. We use the unit 
information to scale data into the units used internally in the 
program. Note also that we have taken the opportunity to merge 

the loops for ivals.kappas and ivals.rs into a single loop. These 
are exactly the kind of code transformations that are easy to get 
wrong if done manually — in contrast, we can reason generically 
that this transformation will always be correct. As a result, the 
generated code looks like similar to code that one would write by 
hand, but without the risk of making, for example, an off-by-one 
error somewhere. 

Another guiding principle for our code generation tool is 
convenience of use of the input data afterwards — the whole 
exercise would be pointless if the user manually would have to 
convert the data into a different data type after reading. Hence, 
we make sure to store the data in a data type that is “natural” for 
the chosen language, and which allows for a direct access of the 
fields following the input data description. In Matlab, structure 
arrays readily meet these requirements, but we have to take extra 
care to explicitly generate the needed classes in Python. 

5. CONCLUSIONS AND FUTURE WORK 

Type systems could be a powerful tool in the digitalisation of 
metrology. By exploiting advances in dependent type systems, we 
have shown that we can strengthen our ability to reason about 
dimensional correctness, and also bridge the gap between 
human-readable semantic specifications of data, and the actual 
code representing it in a specific programming environment. 
Crucially, we were able to reap these benefits with minimal 
additional costs - we put to good use already existing 
typecheckers without having to rewrite the infrastructure in place 
from scratch. 

We have chosen a straightforward treatment of dimensions as 
elements of a free group, and units as constants; this choice does 

not accurately disambiguate for example radians rad = m m−1 

and square radians sr = m2 m−2, even though they are of very 
different nature. However, we stress that this is not an inherent 
limitation in the methodology of using types for dimensions — 
dimensionless quantity ratios can if necessary be tracked 
separately in types, using the same principles as presented here, 
which we hope to do in the future. Overall, the work reported 
here is part of a larger project to incorporate dependent types in 
Matlab programs for correctness checking, including 
dimensional correctness. 
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