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Abstract. We investigate critical points of a Landau-de Gennes (LdG) free energy in

three-dimensional (3D) cuboids, that model nematic equilibria. We develop a hybrid

saddle dynamics-based algorithm to efficiently compute solution landscapes of these

3D systems. Our main results concern (a) the construction of 3D LdG critical points

from a database of 2D LdG critical points and (b) studies of the effects of cross-section

size and cuboid height on solution landscapes. In doing so, we discover multiple-layer

3D LdG critical points constructed by stacking 3D critical points on top of each other,

novel pathways between distinct energy minima mediated by 3D LdG critical points

and novel metastable escaped solutions, all of which can be tuned for tailor-made static

and dynamic properties of confined nematic liquid crystal systems in 3D.

Keywords : Landau–de Gennes model, three-dimensional cuboid, nematic liquid crystals,

solution landscape, saddle point, bifurcation, transition pathway

1. Introduction

Liquid crystals are mesophases intermediate between the solid and liquid states. The

simplest liquid crystal phase is the nematic phase for which the constituent molecules

have no positional order, but tend to align along certain locally preferred directions

[1], referred to as nematic directors. Consequently nematic liquid crystals (NLCs) have

direction-dependent physical, optical and rheological properties [2, 3]. Thus, NLCs have

widespread applications in opto-electronics, nanodevices and materials technologies. A

crucial feature of NLC systems concern topological (point or line) defects, interpreted

as discontinuities in the directors, which have been visualized in polymeric materials or

through mesoscale simulations of the local orientation of the molecules [4]. The defects

play important roles in self-assembled structures, colloidal suspensions and multistable
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systems, and often label families of observable equilibria and transient states in static

and dynamic phenomena for confined NLC systems [5, 6, 7].

There are multiple microscopic, mean-field and macroscopic/continuum theories

for NLCs, e.g. Maier-Saupe, Oseen-Frank, Ericksen theories and the Landau-de Gennes

(LdG) theory, which is the most powerful and general continuum theory amongst its

competitors [8, 9]. The LdG theory is a variational theory and describes the NLC state

by a macroscopic order parameter, the Q-tensor order parameter with five degrees of

freedom, and the physically observable NLC states as minimizers of an appropriately

defined LdG free energy, subject to physically relevant boundary conditions. Of course,

the LdG free energy typically has multiple energy minimizers and non energy-minimizing

critical points, all of which make the mathematics and physics of NLCs challenging

and fascinating. The precise details are given in the next section, but there has been

substantial recent work on the reduced LdG model, valid for two-dimensional (2D)

confinement and for planar director profiles [10, 11, 12, 13]. In this reduced LdG

framework, there are only two degrees of freedom and the reduced LdG energy effectively

reduces to the celebrated Ginzburg-Landau energy for superconductors [14]. There has

been a body of work for reduced LdG critical points on a 2D square domain with tangent

boundary conditions, motivated by the experimental work in [15]. For small squares on

the nano-scale, there is a unique reduced LdG critical point, coined as the Well Order

Reconstruction Solution (WORS), which has a pair of orthogonal line defects along

square diagonals [16]. The WORS is globally stable when the square edge length is

sufficiently small, but loses stability as the edge length increases [10]. For a large square

domain, there are two types of experimentally observed stable states: the diagonal (D)

state for which the director is aligned along the square diagonal and the rotated (R)

state for which the director rotates by π radians between a pair of opposite square edges

[15]. In [17], the authors investigate the solution landscape of the reduced LdG model

on square domains, and recover the typical WORS, D, and R states, along with new

unstable states that have multiple point/line defects, and the switching mechanisms

between them. More generally, reduced LdG models have been studied on 2D polygons

such as a hexagon, 2D discs and rectangles, and the reader is referred to [18, 19, 20, 21].

The 2D studies cited above are limiting cases of 3D studies, with vanishing height

[14]. This raises the fundamentally important question - reduced 2D studies only exploit

two out of five degrees of freedom in the LdG framework and how do the additional

degrees of freedom manifest in 3D? From an application point of view, 3D studies

are much needed in generic scenarios such as liquid crystal displays, food science, and

biology [22]. In general, 2D solutions (or critical points of a reduced LdG free energy)

can be viewed as z-invariant 3D LdG critical points, invariant in the third dimension.

With an additional dimension in 3D, we have the possibility of 3D z-variant solutions

with complicated defect structures [4, 23], more complicated solution landscapes with

z-variant 3D stable and unstable critical points, z-variant pathways between different

critical points and far greater tunability of solution landscapes for designer material

properties. In [24], the authors report a mixed solution in a 3D cuboid that interpolates
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between two distinct stable D states, on the top and bottom cuboid surfaces. In a

cylinder, we have a 3D escaped solution with two ring disclinations, and the domino-like

transition pathway mediated by a z-variant unstable LdG critical point is energetically

preferable to the z-invariant pathways [25]. Various 3D knotted defect fields in confined

NLCs are shown in [26], which cannot be captured by 2D studies alone. The authors

of [4] report the experimental visualization of the defect structure, and demonstrate

the continuous switching between a +1/2 point defect and a −1/2 defect by twisting

along z-direction, again outside the remit of 2D studies. These genuinely 3D features of

confined NLCs motivate us to systematically study LdG solution landscapes, with the

full five degrees of freedom, on a 3D cuboid as a generic example, by using 2D critical

points in [11, 17] as a solution database.

In this paper, we focus on critical points of a LdG free energy on a 3D cuboid, with

the full five degrees of freedom, that model nematic equilibria and admissible nematic

states, imposing tangent Dirichlet boundary conditions on lateral surfaces and natural

boundary condition on top and bottom surfaces. There are two geometry-dependent

variables: the edge length of the square cross-section denoted by λ, and the cuboid

height denoted by h. Our goal is to use the database of reduced 2D LdG critical points

in [11, 17] (for a square domain) to systematically construct both z-invariant and z-

variant critical points of a 3D LdG energy. In doing so, we find that many z-variant

solutions have inherently small eigenvalues for the Hessian of the LdG energy, reflected

in the insignificant energy cost of moving cross-sectional solution profiles up and down,

provided h is large enough. We design a hybrid numerical scheme to deal with the ill

conditioned saddle dynamics and convergence issues, caused by such small eigenvalues.

This hybrid numerical scheme for the saddle dynamics allows us to efficiently explore the

solution landscapes of this 3D system as a function of λ and h, with special attention to

the elusive unstable LdG critical points and how to control their instabilities. Our first

numerical result concerns the 3D z-invariant critical points that are a translationally

invariant version of the 2D reduced LdG critical points. These 2D critical points survive

in 3D but are more unstable in 3D, i.e. they have higher Morse indices or equivalently,

more unstable directions in 3D compared to 2D. Our main results concern new 3D LdG

critical points, labelled as A− B − C, where A, B and C are reduced 2D LdG critical

points, A is the profile on the top cuboid surface, B corresponds to the middle slice and

C corresponds to the bottom slice. In particular, we can use pathways, A → B → C

on the 2D solution landscape, where B has a higher Morse index than A and C, to

construct such 3D LdG critical points, labelled by A−B−C. We believe these numerical

results to be of wide interest, since they provide a general recipe (which could fail in

some situations) for constructing higher-dimensional critical points of a free energy from

lower-dimensional critical points. The recipe is intuitive but the plethora of numerical

results, the symmetries of the 3D LdG critical points and their defect sets give great

inroads into cutting-edge computational and modelling questions at the interface of

theory and applications. There are some interesting by-products of these numerical

experiments, which could be relevant for novel NLC applications engineered with 3D
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cuboids. We explore 3D nematic solution landscapes as outlined above and in doing

so, find an energetically favourable pathway between two z-invariant energy-minimizing

D states, and this pathway is featured by a z-variant transition state, for large enough

λ and h. Thus, z-variant critical points can be relevant for the switching between

z-invariant states, which is interesting in its own right.

We also numerically compute bifurcation diagrams for the 3D LdG critical points, as

a function of λ and h, which show that z-invariant solutions become more unstable while

some z-variant solutions become more stable, as h increases. We observe the emergence

of multiple-layer solutions, which are effectively blocks of dual 3D LdG critical points

stacked on top of each other, and the Morse indices of these multi-layered solutions

depend on the number of layers. Whilst we solve for the full five degrees of freedom for

the LdG Q-tensor and allow for all variables to depend on all three spatial dimensions,

the majority of our numerical results only have three degrees of freedom and the z-

variant critical points emerge from the z-dependence of the degrees of freedom or the

z-dependence of the nematic directors i.e. the nematic directors lie in the xy-plane

but are not translationally invariant. In the last sub-section, we numerically find a

branch of escaped solutions for which the directors are out-of-plane, and which exploit

the full five degrees of freedom, including the metastable escaped central (EC) state,

and we investigate the transition pathway between the EC state and energy-minimizing

z-invariant D state.

This paper is organized as follows. In Sec. 2, we briefly review the LdG theory for

NLCs and introduce the domain and the boundary conditions. In Sec. 3, we propose a

hybrid numerical scheme for the saddle dynamics to speed up the computation of saddle

points. In Sec. 4, we present a detailed study of the 3D LdG model on cuboid. We

finally present our conclusions in Sec. 5.

2. The Landau–de Gennes theory

We work within the celebrated LdG theory, which is the most general continuum theory

for nematic liquid crystals (NLCs). The LdG theory describes the NLC state by a

macroscopic order parameter, the LdG Q-tensor order parameter, that distinguishes

NLCs from isotropic liquids in terms of anisotropic macroscopic quantities, such as the

magnetic susceptibility and dielectric anisotropy [1]. Mathematically, the Q-tensor is

given by a symmetric, traceless 3× 3 matrix as shown below:

Q =

q1 − q3 q2 q4
q2 −q1 − q3 q5
q4 q5 2q3

 . (1)

From the spectral decomposition theorem, we can write the Q-tensor as

Q =
3∑
i=1

λiei ⊗ ei,
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where {e1, e2, e3} are the eigenvectors of the Q-tensor and λ1 6 λ2 6 λ3 are the

associated eigenvalues respectively, subject to
∑3

i=1 λi = 0. The eigenvectors model

the preferred directions of spatially averaged local molecular alignment in space or the

nematic directors, and the eigenvalues are a measure of the degree of orientational order

about these directions. A Q-tensor is said to be isotropic if Q = 0, uniaxial if Q has

a pair of repeated non-zero eigenvalues, and biaxial if Q has three distinct eigenvalues

[1, 27]. Physically, a uniaxial NLC phase has a single distinguished direction of averaged

molecular alignment, such that all directions perpendicular to the uniaxial director are

physically equivalent. A biaxial phase has a primary and secondary nematic director.

The LdG theory is a variational theory, based on the premise that the physically

observable configurations are modelled by minimizers of an appropriately defined LdG

free energy [1]. There are several forms of the LdG free energy, and in this manuscript

we work with a particularly simple form:

E[Q] :=

∫
V

[
L

2
|∇Q|2 + fB (Q)

]
dA, (2)

where the first term in the integrand is the Dirichlet elastic energy density that penalizes

spatial inhomogeneities, and the second term is the thermotropic potential, fB that

dictates the preferred NLC phase as a function of temperature.

|∇Q|2 :=
∂Qij

∂rk

∂Qij

∂rk
, i, j, k = 1, 2, 3, fB(Q) :=

A

2
trQ2−B

3
trQ3+

C

4
(trQ2)2−fB,0. (3)

More precisely, the working domain is a cuboid V = [−λ, λ]2×[−λh, λh] where λ is edge-

length of the 2D square cross-section and h is a measure of the height (h > 0); L > 0

is a material-dependent elastic constant, A = α(T − T ∗) is the rescaled temperature,

with α > 0 and T ∗ is a characteristic liquid crystal temperature; B,C > 0 are material-

dependent bulk constants. The minimizers of fB depend on A, and determine the NLC

phase for spatially homogeneous samples. When A > B2

24C
, the minimizer of fB is the

isotropic state, and for A < 0, the minimizers of fB constitute a continuum of uniaxial

Q-tensors defined by

N =

{
Q = s+

(
n⊗ n− I

3

)}
,

where

s+ =
B +

√
B2 − 24AC

4C
,

and n is an arbitrary unit vector field that models the uniaxial director.

By rescaling the system according to (x̄, ȳ, z̄) = (x
λ
, y
λ
, z
λ
), λ̄2 = 2Cλ2

L
and dropping

the bars in subsequent discussions (so that all results are in terms of dimensionless

variables), the non-dimensionalized LdG free energy is given by,

E[Q] :=

∫
V

[
1

2
|∇Q|2 + λ2

(
A

4C
trQ2 − B

6C
trQ3 +

1

8
trQ2)2 − fB,0

2C

)]
dA. (4)
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The normalized domain is V = Ω × [−h, h], Ω = [−1, 1]2 is the two-dimensional cross-

section of the cuboid, and λ2 describes the cross-sectional size. In what follows, we

take fixed values of the parameters B = 0.64 × 104Nm−2, C = 0.35 × 104Nm−2, and

L = 4×10−11N, which roughly correspond to the commonly used NLC material, MBBA

[28, 29]. We focus on a special temperature A = −B2/3C, which is a representative

low temperature, to largely facilitate comparison with 2D results in [11, 17]. Then

fB,0 = A
3
s2+− 2B

27
s3+ + C

9
s4+ with s+ = B/C [29], is added to ensure a non-negative energy

density.

Of prime importance are nematic defects which have distinct optical signatures

under a polarizing microscope [1] and can be used to label families of LdG critical points.

Motivated by the results in [14], we use an innovative measure to identify defects. At

the special temperature A = −B2/3C, we have a branch of LdG critical points, Qc,

with q4 = q5 = 0 and constant q3 = − B
6C

, i.e.

Qc = q(x, y, z) (n1 ⊗ n1 − n2 ⊗ n2)−
B

6C
(2z⊗ z− n1 ⊗ n1 − n2 ⊗ n2) , (5)

where n1(x, y, z) is a 2D nematic director in the square plane, and z is the unit-vector in

the z-direction [12]. These critical points only have 2 degrees of freedom, q and a degree

of freedom associated with n1, such that n1 and n2 are orthogonal 2D unit vectors.

For such critical points, the defect set is identified with the nodal set of q i.e. a set of

no order in the cross-sectional planes of the cuboid. Whilst solving for all five degrees

of freedom, we numerically recover a class of critical points with only two degrees of

freedom as above, and the z-dependence of q and n1 generates the novel z-variant 3D

LdG critical points. Hence, for LdG critical points with only two degrees of freedom as

above, we use λ3−B/6C (λ3 is the maximum eigenvalue of Q) to visualize the location

of defects [17, 19, 21]. We use the colorbar, λ3 − B/6C, in Sections 4.1-4.5.

For critical points with out-of-plane directors that exploit the full five degrees

of freedom, defects can be tracked by the isosurface of biaxiality parameter β2 =

1 − 6tr(Q3)2/(tr(Q2))3, 0 6 β 6 1. We have β2 = 0 if and only if Q is uniaxial or

isotropic [30], and hence, we use the biaxiality parameter, β2 to track defects in Sec.

4.6, which focuses on escaped critical points.

With regards to boundary conditions, we use tangent Dirichlet boundary conditions

on the lateral surfaces and Neumann boundary conditions on the top and bottom

surfaces of the cuboid. The tangent Dirichlet conditions require the leading nematic

director (with the largest positive eigenvalue) to be tangent to the edges of the 2D

cross-section, Ω of the 3D cuboid. This creates a natural mismatch at the four vertices

of Ω. Following the linear interpolation approach in [14, 21, 31], we define the Dirichlet

condition, Q = Qbc on the lateral surfaces, x = ±1 and y = ±1, in terms of a function
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BD D-BD-D

(a) (b)

Figure 1. The plot of (a) z-invariant boundary distortion (BD) state and (b) z-variant

D-BD-D state [24]. The name of D-BD-D indicates that it displays D (Diagonal),

BD (Boundary Distortion), and D profiles on the top, middle, and bottom slices,

respectively. The color bar and the white lines label the scalar order parameter and

the director. The blue regions (λ3 − B/6C < 0.1) represent the NLC defects and we

omit it in some following figures for better visualization.

with a shape parameter,

Qbc(x = ±1, y, z) = s+
3


−Tε(y) 0 0

0 2Tε(y) 0

0 0 −Tε(y)

 ,

Qbc(x, y = ±1, z) = s+
3


2Tε(x) 0 0

0 −Tε(x) 0

0 0 −Tε(x)

 ,

(6)

where

Tε(t) =


(1 + t)/ε, −1 6 t 6 −1 + ε,

1, |t| 6 1− ε,
(1− t)/ε, 1− ε 6 t 6 1.

(7)

We take a sufficiently small 0 < ε � 1, and the qualitative solution profiles are not

changed by the choice of the interpolation. The Neumann boundary conditions

∂Q

∂n
= 0, z = {−h, h}, (x, y) ∈ Ω, (8)

where n is the normal vector, allow for z-invariant states i.e. NLC states which are

invariant across the height of the cuboid (see Fig. 1(a)).

The critical points of the LdG free energy in (4) are classical solutions of the

corresponding Euler-Lagrange equations:

∆Q = λ2
(
A

2C
Q− B

2C

(
Q2 − tr(Q)2

3
I

)
+

1

2
tr(Q)2Q

)
, (9)
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with the imposed boundary conditions on the lateral surfaces (6), and natural boundary

conditions in (8). The energy minimizers model the physically observable states, and

there are a plethora of non energy-minimizing solutions of (9). In what follows, we study

the relationships between the non energy-minimizing and energy-minimizing solutions of

(9), and how the solution connectivity can be used to construct 3D NLC configurations

on a cuboid. The cuboid is a generic and physically relevant example and our methods

can be generalized to arbitrary 3D geometries.

3. Numerical method

In this section, we describe the numerical methods used to compute the critical points of

the LdG free energy in (4), with special attention to the non energy-minimizing critical

points which are typically hard to find. The critical points, Q, are solutions of the

Euler-Lagrange equations (9), which are a system of five nonlinear partial differential

equations, for the five components of the Q-tensor in (1) and we solve for all 5 degrees

of freedom, q1, . . . , q5.

A critical point of the LdG free energy, Q̂ is stable if the Hessian of the associated

LdG free energy, ∇2E(Q̂), has only positive eigenvalues, and unstable if it has a negative

eigenvalue. We study unstable saddle points of the LdG free energy, that are unstable

in specific eigendirections. More precisely, for a non-degenerate index-k (Morse index)

saddle point Q̂, the Hessian ∇2E(Q̂) has exactly k negative eigenvalues: λ1 6 · · · 6 λk,

corresponding to k unit eigenvectors v̂1, · · · , v̂k subject to
〈
v̂i, v̂j

〉
= δij, 1 6 i, j 6 k.

A stable critical point Q̂ is an index-0 critical point, i.e., the smallest eigenvalue of

∇2E(Q̂) is positive. While a stable state can be relatively easily found by gradient

descent method using a proper initial guess, finding a transition state (an index-1 saddle

point) or high-index saddle points is much more difficult. There are numerical methods

for the computation of transition pathways mediated by index-1 saddle points, e.g.

string methods [32, 33], but they largely depend on a proper initial guess. However,

initial guesses for saddle points are not easy to find since we typically do not have a

priori knowledge of saddle points on the energy landscape. In what follows, we review

the method of saddle dynamics and propose a hybrid numerical scheme to circumvent

numerical stiffness and convergence issues.

3.1. Saddle dynamics

The saddle dynamics (SD) method [34, 35, 36] has been successfully used to efficiently

compute the LdG critical points on 2D domain [19, 21, 37]. We review the SD method

in the following. The SD for an index-k saddle point Q (denoted by k-SD) is defined to
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be, 
Q̇ = −(I− 2

k∑
i=1

viv
>
i )∇E(Q),

v̇i = −(I− viv
>
i −

i−1∑
i=1

2vjv
>
j )∇2E(Q)vi, i = 1, 2, · · · , k,

(10)

where I is the identity operator. To avoid evaluating the Hessian of E(Q), we use the

dimer

h(Q,vi) =
∇E(Q + lvi)−∇E(Q− lvi)

2l
(11)

as an approximation of ∇2E(Q)vi, with a small dimer length 2l. By setting the k-

dimensional subspace V = span
{
v̂1, · · · , v̂k

}
, Q̂ is a local maximum on Q̂ + V and a

local minimum on Q̂+V⊥, where V⊥ is the orthogonal complement of V . The dynamics

for Q in (10) can be written as

Q̇ =

(
I−

k∑
i=1

viv
>
i

)
(−∇E(Q)) +

(
k∑
i=1

viv
>
i

)
∇E(Q)

= (I− PV) (−∇E(Q)) + PV (∇E(Q)) ,

(12)

where PV∇E(Q) =
(∑k

i=1 viv
>
i

)
∇E(Q) is the orthogonal projection of ∇E(Q) on V .

Thus, (I− PV) (−∇E(Q)) is a descent direction on V⊥, and PV (∇E(Q)) is an ascent

direction on V .

The dynamics for vi, i = 1, 2, · · · , k in (10) can be obtained by minimizing the k

Rayleigh quotients simultaneously with the gradient type dynamics,

min
vi

〈
vi,∇2E(Q)vi

〉
, s.t. 〈vi,vj〉 = δij, j = 1, 2, · · · , i, (13)

which generates the subspace V by computing the eigenvectors corresponding to the

smallest k eigenvalues of ∇2E(Q).

3.2. Hybrid numerical scheme

We label hierarchies of LdG saddle points in a 3D cuboid by A-B-C, where A, B and C

are the 2D profiles on z = h, z = 0 and z = −h. We conjecture that when h is large

enough, we can move the middle state, generically denoted by B, up and down, without

a significant energetic cost. If one eigenvalue, λmin is close to zero (Fig. 2), then this

will cause numerical issues including the stiffness and slow convergence of the saddle

dynamics.

We elaborate on the numerical issues further by using k-saddle dynamics to find

a target saddle point Q∗, for which the smallest absolute eigenvalue, λ1 is such that

|λ1| < ε and we consider the Jacobian operator of k-saddle dynamics,

Hierarchies of critical points of a Landau-de Gennes free energy on three-dimensional cuboids
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Figure 2. The smallest eigenvalue of D-BD-D versus h at λ2 = 30.

J(Q,v1, · · · ,vk) =
∂(Q̇, v̇1, · · · , v̇k)
∂(Q,v1, · · · ,vk)

=


JQ JQ1 JQ2 · · · JQk

J1Q ∗ 0 · · · 0

J2Q ∗ ∗ · · · 0
...

...
...

...

JkQ ∗ ∗ · · · ∗

 (14)

where

JQ =
∂Q̇

∂Q
= −

(
I−

i=k∑
i=1

2viv
>
i

)
∇2E(Q), (15)

JQi =
∂Q̇

∂vi
= −2

(
v>i ∇E(Q)I + vi∇E(Q)>

)
. (16)

Now, we consider the spectral decomposition of ∇2E(Q∗),

∇2E(Q∗) =
i=m∑
i=1

λiv
∗
iv
∗
i
>, |λ1| 6 |λ2| 6 · · · 6 |λm|. (17)

Note that ∇E(Q∗) = 0, consequently,

J(Q∗,v∗j1 , · · · ,v
∗
jk

) =
∂(Q̇∗, v̇∗j1 , · · · , v̇

∗
jk

)

∂(Q∗,v∗j1 , · · · ,v
∗
jk

)
=


JQ∗ 0 0 · · · 0

J1Q∗ ∗ 0 · · · 0

J2Q∗ ∗ ∗ · · · 0
...

...
...

...

JkQ∗ ∗ ∗ · · · ∗

 (18)

JQ∗ = −

(
I−

i=jk∑
i=j1

2v∗iv
∗
i
>

)
i=m∑
i=1

λiv
∗
iv
∗
i
> =

i=m∑
i=1

(−1)α(i)λiv
∗
iv
∗
i
>, (19)

where ji, i = 1, · · · , k are the subscripts corresponding to negative eigenvalues and

α is the indicator function of the set {ji, i = 1, · · · , k}. Thus, Cond2(J(Q∗)) >

Hierarchies of critical points of a Landau-de Gennes free energy on three-dimensional cuboids
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Cond2(JQ∗) = |λm|/|λ1|, which is relatively large due to the smallness of λ1, i.e., the k-

saddle dynamics is stiff when the iteration point is close to Q∗. Consequently, the saddle

dynamics offers high impedance to v∗1. In fact, the saddle dynamics (10) is a special

gradient method and it exhibits the “jagged phenomenon”, i.e., the iteration point will

slowly move along eigenvector corresponding to the smallest absolute eigenvalue. The

convergence rate is largely dependent on the degree of separation between |λ1| and

|λm|. These numerical difficulties motivate us to develop a suitable numerical method

to accelerate (10).

The large stiffness of (10) necessitates an absolutely stable (A-stable) scheme. The

linear term in (10) is implicit for numerical stability. The nonlinear term, |Q|2Q, is

also semi-implicitly discretized in time direction as |Qn|2Qn+1 for better numerical

stability. The term |Qn|2Qn+1 is very beneficial for solving linear equations in the

semi-implicit scheme, because it is a positive definite term of the diagonal elements.

Instead of re-generating unstable eigendirections with the gradient type dynamics in

(10), we apply a single-step Locally Optimal Block Preconditioned Conjugate Gradient

(LOBPCG) method [38] to calculate the unstable eigendirections, and the Hessians are

also approximated by dimers [34]. The semi-implicit scheme is given by,



Qn+1 −Qn

∆tn
=∆δxQn+1 − λ2

(
A

2C
Qn+1 +

1

2
|Qn|2Qn+1 −

B

2C

(
Qn

2 − |Qn|2

3
I

))
+ (2

k∑
i=1

vn,iv
>
n,i)∇δxE(Qn),

Renew vn,i as vn+1,i with single-step LOBPCG, i = 1, 2, · · · , k.
(20)

This semi-implicit scheme is A-stable and it allows us to choose a large step size,

which suffices for our purpose. We use finite difference methods to estimate the spatial

derivatives in (20) with mesh size δx = 1/32. We have tested that the solutions are not

sensitive to smaller choices of δx by refining the mesh size.

The convergence rate is still slow due to the small eigenvalue, even with a large

time step. We use Newton’s method to accelerate the tail convergence, i.e., when the

gradient is large, the saddle dynamics is used to ensure that Qn falls into the basin of

attraction of Q∗, and then Newton’s method pushes Qn to Q∗, with a higher convergence

rate. However, Newton’s method requires solving a large sparse ill-conditioned linear

system, Rn = ∇2E(Qn)δQ + ∇E(Qn) = 0, at each step, and we hence, choose the

Inexact-Newton method, i.e., give Rn a tolerance ‖Rn‖ 6 ηn‖∇E(Qn)‖ with ηn < 1.

When the linear system is not very ill-conditioned (Cond2(∇2E(Qn) 6 108), it can

be solved within this tolerance by iteration methods, e.g., the generalized minimal

residual method (GMRES) and symmetric successive over-relaxation method (SSOR).

A small ηn achieves faster convergence but leads to more expensive computational

costs to solve the linear system. When Qn is not too close to Q∗, the matrix is not

heavily ill-conditioned and we can solve the linear system more exactly to accelerate
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the convergence and keep Qn in the basin of attraction of Q∗; when Qn is close to Q∗,

we choose a larger ηn to save computational cost. Combining these considerations, we

choose ηn = min(C, η̄n), η̄n = 1
1+100‖∇E(Qn)‖ , and 0 < C < 1 is a constant to guarantee

at least linear convergence rate. In our numerical calculations, the calculation speed is

more sensitive to the choice of C, a small C is more efficient when h is relatively small.

We solve five large sparse linear systems (five degrees of freedom) in (20) at

every time step, and the single-step LOBPCG needs another 4k derivative evaluations,

which is computationally expensive, particularly for finding higher-index saddle points.

Fortunately, we can use the explicit scheme combined with the Barzilai-Borwein step

size [39] to save the computational cost at the beginning of the iteration. Thus, we use

the explicit system, combined with the semi-implicit scheme and the Inexact-Newton

method to propose the final hybrid numerical scheme:


The explicit scheme of (10), ‖∇E(Qn)‖ > µ and n 6 N,

The semi-implicit scheme (20), ‖∇E(Qn)‖ > µ and n > N,

Qn+1 = Qn + δQ, ‖∇2E(Qn)δQ +∇E(Qn)‖ 6 ηn‖∇E(Qn)‖ ,Oherwise,

(21)

where N is a step parameter to automatically identify the stiffness of (10). For the

well-conditioned case (Fig. 3(a)), the iteration point can reach ‖∇E(Qn)‖ < µ within

the step parameter, by means of the explicit scheme alone, and then Inexact-Newton

method pushes convergence to the saddle point. For ill-conditioned cases (Fig. 3(b)),

the explicit scheme cannot achieve ‖∇E(Qn)‖ < µ within the step parameter, and the

semi-implicit scheme is used to achieve ‖∇E(Qn)‖ < µ followed by the Inexact-Newton

method to complete tail convergence.

(a) (b)

Figure 3. The upward search for finding the index-1 D-BD-D from the stable D state

by following the 1-SD (the initial condition is D+0.5*(v1 + v2)) with (a) h = 1 and

(b) h = 2. The parameters in (21) are µ = 10−2, N = 15000, C = 0.99.
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3.3. Construction of the solution landscape

The solution landscape is an umbrella term used to describe the collection of unstable

saddle points and stable critical points of the LdG free energy. Crucially, the solution

landscape contains penetrating information about the pathways between critical points:

how high-index saddle points are connected to low-index saddle points, and eventually

to index-0 stable critical points. Solution landscapes contain crucial information about

the connectivity of a system, and can track how the unstable and stable eigendirections

evolve as we connect the different critical points, noting that not all critical points can

be connected.

Following the discrete SD dynamics (21), we can construct the solution landscape

without tuning initial guesses, by two algorithms: the downward search that enables

us to search for connected index-s saddle points from known index-s (k > s)

saddles (Q,v1,v2, · · · ,vk), two typical choices for the initial guess of s-SD are

(Q ± εvs+1,v1,v2, · · · ,vs); the upward search to find connected index-k saddle points

from known index-s (k > s) saddles (Q,v1,v2, · · · ,vs, v̄s+1, · · · , v̄k), where v̄i, i =

s+ 1, · · · , k are stable eigenvectors of Q, two typical choices for the initial guess of the

k-SD are (Q±εv̄s+1,v1,v2, · · · ,vs, v̄s+1, · · · , v̄k) [17, 40]. In the next section, we present

our numerical results, based on this hybrid numerical scheme for solution landscapes.

4. Results

4.1. z-invariant LdG critical point (A-A-A)

In [16], the authors study LdG critical points on a square domain, with edge length λ

and tangent boundary conditions, and study how the critical points depend on λ. For λ

small enough, there is a unique critical point, coined as the Well Order Reconstruction

Solution (WORS), which is also the unique energy minimizer. The Q-tensor of WORS

has a constant set of eigenvectors, and is distinguished by a uniaxial cross with negative

scalar order parameter, along the diagonals i.e. the corresponding Q is of the form

Qu = s
(
n⊗ n− I

3

)
with s < 0, on the square diagonals. Physically, this means that

there is a planar defect cross along the square diagonals such that the NLC molecules

are disordered in the square plane, on the diagonals. In [10], the authors analyze the

WORS at the special temperature A = −B2/3C and show that the WORS critical point

is defined by

QWORS = q(x̂⊗ x̂− ŷ ⊗ ŷ)− B

6C
(2ẑ⊗ ẑ− x̂⊗ x̂− ŷ ⊗ ŷ)

where x̂, ŷ, ẑ are the unit-vectors in the coordinate directions, and q is a solution of the

Allen-Cahn equation with prescribed boundary conditions.

The WORS exists as a 2D LdG critical point on all square domains, for all λ.

One can numerically show the smallest eigenvalue of the Hessian of the LdG energy,

at the WORS critical point, on Ω, is strictly decreasing with increasing λ. At the first

bifurcation point, λ = λ∗, the 2D WORS becomes an index-1 saddle point and bifurcates
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into two stable D solutions. The D solutions are approximately uniaxial with the uniaxial

director along one of the square diagonals. There are two rotationally equivalent D

solutions. At the second bifurcation point λ = λ∗∗, the index-1 WORS bifurcates into an

index-2 WORS with two unstable eigenvectors, v1 and v2, and two boundary distortion

(BD) solutions appear at approximately λ2 = 15. With the disturbance along v1 on

WORS, the leading eigenvector aligns along a square diagonal and the WORS relaxes

(”relax” refers to following either gradient flow or saddle dynamics) to a D state. With

the disturbance along v2, the diagonal cross for the WORS is pulled apart, leading to

two planar line defects near a pair of opposite square edges, relaxing into a BD state.

A defect line is interpreted to be a line with no planar nematic order in the square

plane, i.e., isotropic lines in the square plane but note that Q 6= 0 along the defect lines,

since there is negative uniaxial ordering along z-the normal to the square domain. Each

unstable BD further bifurcates into two unstable R solutions, where each R solution

is approximately uniaxial such that the uniaxial director rotates by π-radians between

a pair of opposite square edge. As λ further increases, the unstable R solutions gain

stability, and we have 4 rotationally equivalent R solutions related to each other by

π/2-rotations.

In what follows, we use this catalogue of 2D LdG critical points - WORS, BD, D

and R, to construct 3D critical points on the 3D cuboid. These 2D LdG critical points

exist as z-invariant 3D critical points i.e. critical points of the form

Q3D(x, y, z) = Q2D (x, y,−h) ∀x, y ∈ Ω, z ∈ [−h, h],

and in this section, we study the z-invariant 3D WORS critical point on a 3D cuboid

with cross-sectional edge length, λ, and height h. We show that there are differences

between the 2D and 3D cases, even when restricted to z-invariant LdG critical points.

index-2

WORS (2D)

WORS (3D)

index-4

v1 v2 v3 v4

(a)

(b) v1 v2

Figure 4. (a) The 2D WORS computed on Ω, and its unstable eigenvectors at λ2 = 15.

(b) The 3D WORS with its unstable eigenvectors v1, · · · , v4 with λ2 = 15, h = 1.
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Table 1. The index of 2D and 3D (h = 1) WORS versus λ2. Nz−variant is the

number of unstable z-variant eigenvector of WORS, i.e., the index of 3D WORS minus

the index of 2D WORS.

λ2 2 7 10 12 15 19 22 30

index of 2D WORS 0 1 2 2 2 4 4 4

index of 3D WORS 0 1 2 3 4 6 7 10

Nz−variant 0 0 0 1 2 2 3 6

The 3D WORS is a z-invariant 3D LdG critical point (see Fig. 4(b)) for all λ and

h, with the boundary conditions specified in (6). The 3D WORS is the global energy

minimizer for sufficiently small λ [24]. In other words, WORS-type solutions are not a

2D-artefact. By analogy with the 2D case, the 3D WORS loses stability as λ increases,

for a fixed h. In fact, for a fixed λ and h = 1, we numerically observe that the index of

the 3D z-invariant WORS is always greater than or equal to the index of the 2D WORS.

For example, the 3D WORS is an index-4 saddle point at λ2 = 15, h = 1 with two z-

invariant unstable eigenvectors as in the 2D case. One can verify that the eigenvectors

of a 2D LdG critical point are also the eigenvectors of the corresponding z-invariant 3D

LdG critical point. However, the 3D WORS can also accommodate unstable z-variant

eigenvectors like v3 and v4 as shown in Fig. 4(b). With the disturbance along v3 (v4)

on WORS, the top surface (z = h) relaxes to a D (BD) state and the bottom surface

(z = −h) relaxes to another D (BD) state, while the middle slice retains the WORS

profile. As λ increases, the 3D z-invariant WORS critical point has an increasing number

of z-variant eigenvectors (which cannot be accommodated in the 2D case) and hence,

this intuitively explains why the 3D z-invariant WORS has a higher Morse index than

its 2D counterpart, for λ is large enough, some of which is tabulated in Table 1.

4.2. 3D LdG critical points constructed by 2D pathways (A1-B-A2)

This subsection is devoted to numerical examples that illustrate the relationships

between solution landscapes on a 2D square and a 3D cuboid, i.e. examples that

exemplify the effect of the third dimension. In Fig. 5, we construct the solution

landscape on a 2D square and a 3D cuboid at λ2 = 19. Here, the 2D WORS is an

index-4 saddle point. Following the 3-SD along v4, a T state (there are four T states if

symmetry is taken into account) is numerically computed, and an index-2 H state can

be obtained from the T state following 2-SD dynamics. Further, the H state relaxes to

the index-1 BD state, and the BD state relaxes to the stable D state, which is the global

energy minimum.

Next, we consider the solution landscape on a cuboid or a 3D well with λ2 = 19

and h = 1. The 3D WORS is an index-6 saddle point, with two unstable z-variant

eigenvectors. We can naturally observe the connectivity between the 2D saddle points

as 3D z-invariant saddle points on a cuboid. For example, the 3D z-invariant WORS
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index-6

WORS

index-5

T H

index-4

index-3

B-W-B

BD

index-2 index-1 minimum

D-W-D D-B-D D

WORS T H BD D

index-4 index-3 index-2 index-1 minimum
(a)

(b)

Figure 5. The solution landscape on (a) 2D square and (b) 3D cube at λ2 = 19. The

arrow from the higher-index saddle to the lower-index saddle represents a downward

search, that is, the solution (in the arrow’s tail) with a small perturbation is able to

converge to the solution in the arrow’s head by following the SD in (10). In terms of

nomenclature, B and W are the shorthand of BD and WORS, respectively.

relaxes to the 3D z-invariant T state and then the z-invariant 3D H state, and further

the z-invariant 3D BD state by following the unstable eigenvectors. However, we also

observe z-variant 3D LdG critical points which cannot be observed in the 2D scenario.

The z-invariant 3D saddle points are connected to z-variant 3D LdG critical points,

so that 3D solution landscapes offer multiple routes for tuning system properties. For

example, we observe that the z-invariant 3D H state relaxes to the z-variant B-W-

B saddle point, for which the top surface exhibits the BD profile, the middle slice

supports the WORS profile and the bottom surface is the other BD profile (related by

π/2 coordinate rotation). We can use the 2D solution landscape to heuristically explain

the emergence of these z-variant 3D LdG saddle points. In fact, from H to B-W-B, the

2D H saddle points on the top and bottom surfaces relax to two different BD saddle

points. From B-W-B to D-W-D, the 2D BD states on the top and bottom surfaces relax

to two different D states; from D-W-D to D-B-D, the 2D WORS state on z = 0 relaxes

to the BD state. At the base of the solution landscape, the D-B-D state stabilizes to

the z-invariant D state, following the unstable eigenvector of the BD state on z = 0.

These numerical results show that 3D z-invariant solutions can be generalized

from 2D solutions, but with different Morse indices because 3D solutions can often

accommodate unstable z-variant eigenvectors, and the z-variant LdG critical points

usually accommodate two lower-index 2D solutions on the top and bottom surfaces

accompanied by a higher-index 2D saddle point on z = 0, reminiscent of a pathway

between two distinct 2D LdG critical points on the 2D solution landscape. This brings
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(a)
WORS

TseTnw

Hw Hn

Jne Jes

Re Rs

WORS T-W-T

T

H-W-H

H-T-H H J-T-J R-T-R J

R

index-10 index-8

index-7

index-5 index-4 index-3 index-2 index-1

minimum

D

WORS

BD1BD2

Jnw Jne

D1Rw D2 Re

(b)

WORS B-W-B

BD R-B-R

D-W-D D-B-D

D

index-10 index-6

index-4 index-3

index-2 index-1

minimum

(c)

(d)

2D
T-W-T

H-W-H

H-T-H

J-T-J

R-T-R

3D
B-W-B

R-B-R

D-W-D

D-B-D

3D2D
index-8 index-7

index-6 index-5

index-4 index-3

index-2 index-1

minimum

Figure 6. (a-b) are two pathway maps in the 2D solution landscape and the 3D

solutions found by them at λ2 = 30. (c-d) are the corresponding 3D configurations and

their connections in (a-b). The colors of the node specify the Morse indices of saddle

points. The subscripts (e=east, w=west, n=north, s=south) distinct rotationally

equivalent solutions. The symmetrical part in the pathway maps is omitted by the

dashed arrows.

us to a question - can we use pathways between distinct 2D LdG critical points as a

database to construct 3D z-variant LdG critical points? The answer is affirmative and

we use two 2D pathway maps, WORS→T→H→J→R and WORS→BD→J→D (R), to

construct two branches of 3D solutions at λ2 = 30 in Fig. 6.

As shown in Fig. 6(a), at λ2 = 30, we have four 2D T states which are index-3,

and the transition pathway between them passes through the index-4 WORS. We take

this transition pathway as an initial guess and obtain a 3D z-variant LdG critical point,

T-WORS-T, by using the SD. Similarly, we can obtain 3D z-variant LdG saddle points,

H-W-T, H-T-H, J-T-J, and R-T-R from the following pathways on the 2D solution

landscape: Hn →WORS→ Hs, Hn → Tse → Hw, Jes → Tse → Jne, and Rs → Tse → Re,

respectively. Combined with the z-invariant solutions, we construct a branch of 3D LdG

critical points in Fig. 6(c) from Fig. 6(a). We observe that the 3D LdG critical points,
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with a high-index 2D LdG saddle point on the top, bottom, and middle slices, usually

have a high Morse index. As we progress from the parent state (WORS) of the 3D

solution landscape, the indices of the 2D LdG critical points on the top and bottom

typically decrease or the index of the 2D middle slice decreases. For example, the

z-invariant WORS is an index-10 saddle point and relaxes to an index-8 T-W-T by

relaxing the top and bottom surfaces to the 2D T profile (which is of lower 2D index

than WORS). The T-W-T relaxes to an index-7 H-W-H critical point, by relaxing the

T states to the H states, or relaxing the middle slice to T (which has lower index than

WORS) results in a 3D z-invariant index-7 T state. The H-W-H relaxes the middle slice

to T, or the z-invariant T state relaxes the top and bottom slices to the H state, so that

both of these 3D LdG critical points relax to an index-5 H-T-H. The index-5 H-T-H

further relaxes to index-4 z-invariant H state. The H-T-H state has two line defects

running throughout the cuboid, that smoothly interpolate between the +1/2 planar

point defect and −1/2 planar point defect on the top and bottom surfaces respectively,

and this cannot be observed in 2D. A different lesson can be learnt from H→ J-T-J and

R-T-R → J; in some cases, we can decrease the index of a z-variant 3D LdG saddle

point by increasing the index of the 2D critical point on the top, bottom or middle slices

(but not all three simultaneously). For example, from the index-4 H to index-3 J-T-J,

the Morse index of the middle slice increases, whilst the index of the top and bottom

surfaces decreases. In fact, though the Morse index of a 2D T state is higher than 2D

H state, J-T-J has a lower index than the z-invariant H critical point, since we cannot

have a pathway between Jne and Jes without crossing a T state, as is evident from the

2D solution landscape in Fig 6(a).

Similarly, we use the 2D solution landscape in Fig. 6(b) to construct a branch of 3D

LdG critical points in Fig. 6(d). From the index-10 WORS to the index-6 B-W-B, the

top and bottom profiles change from the WORS to the BD state respectively. Following

the unstable eigendirection of B-W-B, the WORS can move down and the B-W-B state

relaxes to the 3D z-invariant BD state. From the index-4 z-invariant BD state to the

index-3 R-B-R, the top and bottom profiles relax the BD to the R state. The index-2 D-

W-D saddle point cannot be found by the downward search from BD and R-B-R, while

it can be found from B-W-B, since the BD states on the top and bottom surfaces can

easily relax to the D states. However, not all pathways on 2D solution landscapes lead to

3D LdG critical points i.e. we cannot construct the z-variant J-BD-J state from the 2D

pathway Jnw → BD1 → Jne at λ2 = 30 due to the limit of the domain size, whereas we

can find it for λ2 > 40. This raises the fundamentally interesting question of whether

we can provide algorithmic recipes for using pathways on 2D solution landscapes for

systematically constructing 3D LdG critical points, in the λ2 →∞ limit.

4.3. The transition pathways

The transition state is the index-1 saddle point and plays a key role in determining the

energy barrier of such a transition pathway [41, 42, 43]. In this section, we compare two
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Re

Jne
index-1

Jse
index-1

D1-BD-D2
index-1

D1 D2

Figure 7. Transition pathways between two dual D states, D1 and D2, on a cube

at λ2 = 30, h = 1. The vertical axis is the LdG energy (4), and the horizontal axis

describes the transition pathway.

different pathways between the z-invariant stable D1 and D2 states; the first pathway

proceeds via z-invariant critical points and is identical to a pathway in the 2D solution

landscape and the second pathway proceeds via a z-variant 3D LdG saddle point

inaccessible in 2D studies. In the 2D case, D1 and D2 correspond to diagonal states

with the director along a square diagonal; there are two diagonal states due to two

orthogonal square diagonals. The D1 and D2 states cannot be connected by a single

transition state in 2D for large domain size [17, 44]. The switching between D1 and

D2 must go through a two-stage transition that involves the metastable R state and

two energy barriers brought on by the transition states - Jse and Jne. In fact, the

pathway sequence D1 → Jse → Re → Jne → D2 also exists in 3D and is a candidate

for the switching pathway between the z-invariant D1 and D2 states on a cuboid (Fig.

7). However, in 3D, we can directly switch between the two dual D states by passing

through the z-variant index-1 D-B-D saddle point, because the system can break the

2D restriction. We believe the second pathway is more likely to occur in practice than

the first one, since it has a lower energy barrier and follows a single transition state

(D-BD-D), without the risk of being trapped into metastable states such as the rotated

states.

From our numerical results, we speculate that there will typically be an energetically

favourite one-stage transition pathway between dual global minima, for 3D wells with

polygonal cross-sections, where the transition state is a z-variant 3D LdG transition

state. Such z-variant transition states are inaccessible in 2D scenarios. For instance,

in a hexagon [19], the transition pathway between two dual stable Para states follows
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a two-stage transition, with the risk of being trapped in a metastable state. If we

generalize our work to 3D wells with a hexagonal cross-section, we will have z-variant

3D LdG critical points which could be exploited to generate new transition pathways

between the dual globally stable Para states.

4.4. The effects of λ2 and h on the 3D Solution Landscape

In this section, we make some preliminary observations about the effects of λ2 and h on

the NLC solution landscape. These observations are far from complete, but do set the

scene for challenging analytic and numerical studies.

Our main observations can be summarized as follows. As λ2 and h increase, the

solution landscape becomes increasingly complicated with a large number of z-variant

LdG saddle points. In fact, as h increases, the index of z-variant LdG saddle points

decreases i.e. increasing h stabilizes z-variant LdG critical points to some extent or at

least suppresses some of their instabilities. Another notable observation is the emergence

of multiple-layer solutions for large enough λ2 and h. The multiple-layer solutions are

effectively block solutions obtained by stacking z-variant LdG saddle points on top

of each other. For example, (D-W-D)2 is a LdG saddle point, compatible with the

boundary conditions in (6), obtained by the superposition of two D-W-D saddle points.

We make these observations more precise by computing part of the bifurcation

diagram, for solutions of (9) subject to (6), as a function of λ2 with h = 1, in Fig. 8(a).

We track the Morse indices of the solutions in Sec. 4.2, since a change in the Morse

index signals the onset of a bifurcation [21]. The WORS is the unique LdG critical point

for small enough λ, and has the highest Morse index in the bifurcation diagram; thus,

WORS is typically used as the parent state to construct the 3D solution landscape. At

λ2 = 7, the WORS loses stability and bifurcates into a stable z-invariant D state. At

λ2 = 10, the index-1 WORS bifurcates into an index-2 z-invariant WORS and an index-

1 z-invariant BD. At λ2 = 12, an index-2 WORS bifurcates into an index-3 WORS, and

an index-2 z-variant D-W-D which cannot be observed in the 2D case. More stable and

unstable solutions can be numerically computed with large λ2. It is noteworthy that the

index-6 WORS bifurcates into an index-7 WORS, and an index-6 2-layer solution: (D-

W-D)2 which features two blocks of D-W-D, i.e., the chain D-W-D-W-D from the top to

the bottom surface. This procedure could be repeated n number of times in principle,

to construct n-layer solutions for a positive integer n, and these multiple-layer solutions

offer new optical and mechanical possibilities for designer materials technologies.

We also track part of the bifurcation diagram as a function of h in Fig. 8(b), to

study the effect of the cuboid height on the solution landscape, at λ2 = 19. We only

focus on the WORS and BD branches for simplicity. For h = 0, i.e., in the 2D case,

the WORS is an index-4 saddle point and the BD is an index-2 saddle point. As h

increases, the WORS can accommodate z-variant unstable eigenvectors, and the index-

4 WORS bifurcates into an index-5 WORS and an index-4 D-W-D at h = 0.5; the

index-5 WORS bifurcates into an index-6 WORS and an index-5 B-W-B at h = 0.7.
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Figure 8. (a) Bifurcation diagram as a function of λ2 at h = 1. (b) Bifurcation

diagram as a function of h at λ2 = 19. Each small rectangle represents a solution as

shown in Fig. 5 and Fig. 6 and the color represents the Morse index. The subscript

is used to distinguish solutions with similar defect configurations and the superscript

represents a solution accommodate multiple layers, e.g., (D-B-D)2 has two layers of

D-B-D. Each T-junction represents a pitchfork bifurcation. We omit some subsequent

bifurcation by using the dashed line for a concise description.
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At h = 0.85, the BD can accommodate z-variant unstable eigenvectors, and bifurcates

into an index-2 BD and an index-1 D-B-D. As h further increases, the z-invariant BD

state can accommodate multiple z-variant unstable eigenvectors and bifurcates into an

index-2 (D-B-D)2 and an index-3 (D-B-D)3 at h = 2 and h = 3, respectively.

As h increases, the energetic penalty of distortions in the z-direction decreases which

informally explains why we observe more z-variant LdG saddle points with decreasing

Morse indices. In Fig. 2, we plot the smallest eigenvalue of the Hessian of the LdG

energy at D-B-D as a function of h, which converges to zero as h → ∞. As shown in

Fig. 8(b), we also observe that the Morse index of D-W-D state decreases as h increases.

In the next subsection, we discuss the multiple-layer solutions in more detail. D-W-D

and D-B-D have lower indices as h increases.

4.5. Multiple–layer solutions (A1-B-A2-B-A1)

(a)
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index-2
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(b)

(c)

Gradient flow
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index-3
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D
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index-1

(D-B-D)2

index-2

Figure 9. The D-B-D type solutions and the downward search along their unstable

eigenvectors with (a) one layer (b) two layers and (c) three layers at λ2 = 30.

In this section, we study the relationship between the Morse indices of multiple-
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layer solutions and the number of layers, some of which has been touched on in Sec. 4.4.

It is intuitive to expect that multiple-layers solutions, with more layers, have a higher

Morse index, and we use the D2-B-D1 saddle point (labelled as D-B-D), to illustrate

this point in Fig. 9. The one layer, D-B-D saddle point, is an index-1 saddle point.

Following the disturbance along v1, the BD profile on the middle slice relaxes to the

D1 state, that is, the BD slice moves up, and the D-B-D saddle point relaxes to the

z-invariant D1 state, by following gradient flow dynamics (recall that there are two

diagonal states, D1 and D2, corresponding to the two square diagonals of Ω). The

eigendirection, v1, is an unstable eigendirection, since the z-invariant D state is a stable

state and has a lower energy than the D-B-D saddle point. The two-layer saddle point,

(D-B-D)2 (D1-B-D2-B-D1) is an index-2 saddle point with two unstable eigendirections,

v1 and v2. Following the disturbance along v1, both of the BD states relax to D1, and

(D-B-D)2 relaxes to the z-invariant D1 state. Following the disturbance along v2, the

top BD state relaxes to the D2 state and given the natural boundary conditions, the

D1 state at the top also switches to the D2 state, while the second BD state relaxes

to the D1 state. Hence, (D-B-D)2 relaxes to the D-B-D saddle point, by following

the 1-SD. Since the D-B-D saddle point has a lower elastic energy than the (D-B-D)2

saddle point, and the z-invariant D state is a LdG energy minimizer, v1 and v2 are

unstable eigendirections and the corresponding eigenvalues are ordered as |λ1| > |λ2|
and 0 > λ2 > λ1. Consider the three-layer solution D2-B-D1-B-D2-B-D1, labelled by

(D-B-D)3 which is an index-3 saddle point, with three unstable eigendirections, v1, v2,

and v3. Following the disturbance with v1, the three BD states relax to D1, and the (D-

B-D)3 saddle point relaxes to the z-invariant D1 state. Following the disturbance with

v2, the bottom BD relaxes to D2 state and the top BD relaxes to D1 state, while the

second BD state is almost unchanged. Consequently, the top block relaxes to D1 and the

bottom block relaxes to D2, and the (D-B-D)3 saddle point relaxes to the one-layer saddle

point denoted by D-B-D. Following the disturbance with v3, the three BD cross-sections

move downwards, and the bottom BD state relaxes to the D2 state, and thus, the (D-B-

D)3 saddle point relaxes to the two-layer saddle point, (D-B-D)2 (D2-B-D1-B-D2). Since

E(D) (the energy of the D state)< E(D−B−D) < E((D−B−D)2) < E((D−B−D)3),

vi, i = 1, 2, 3 are unstable eigendirections, and the corresponding negative eigenvalues

are ordered as follows: |λ1| > |λ2| > |λ3|.
Based on these numerical findings, our conjecture is that the multiple-layer solution,

(D-B-D)n is an index-n saddle point with unstable eigendirections v1, · · · ,vn. With the

disturbance of vi, 1 6 i 6 n, the (D-B-D)n relaxes to (D-B-D)(i−1) saddle point, by

following the (i− 1)-SD. If n is even, then we have the same diagonal state (D1 or D2)

at the top and bottom; if n is odd, we necessarily have different diagonal states on the

top and bottom. The energy of (D-B-D)(i−1) is lower than that of (D-B-D)n, for all

1 6 i 6 n. It is an open question as to whether these numerical observations can be

proven or generalized to other multiple-layer saddle points.
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4.6. Escaped solutions

λ2

ECD (index-1)

EC (minimum)

λ2c≈70.45

(a) 
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λ2

(b) 

C

index-2

D

minimum

ECD

index-1

EC

minimum

Figure 10. (a) The saddle-node bifurcation between EC and ECD, and the cross-

section of the EC and ECD at λ2=74. (b) The transition pathway beween EC and D

in 2D case at λ2=74. Color bar is the biaxiality parameter β2 = 1−6tr(Q3)2/(tr(Q2))3

(see Sec. 2). The vertical axis is the 2D LdG energy and the horizontal axis describes

the transition pathway.

Recall the five degrees of freedom of the LdG critical points denoted by q1, . . . , q5 in

(1). For the numerical results presented in the previous sections, we have q4 = q5 = 0,

i.e. this physically means that Q has a fixed eigenvector in the z direction and the

remaining two eigenvectors are in the xy-plane. In other words, the preceding numerical

results only exploit 3 degrees of freedom - q1, q2 and q3, with q3 being largely constant.

This raises the interesting question - do we have LdG critical points, with this choice

of boundary conditions in (6) and natural boundary conditions on z = ±h, that

exploit the full five degrees of freedom? In [12], the authors demonstrate two escaped
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solutions with non-zero q4 and q5, and non-constant q3, on a 2D square domain with

an isotropic concentric square inclusion [12]. We build on the work in [12] and add

Gaussian perturbation to the z-invariant C state (see Fig. 10(b) or [17]) to construct

a suitable initial condition that converges to two escaped solutions in our framework.

These escaped solutions exist for relatively large λ2, and they are z-invariant stable

states, labelled as escaped +1 center (EC+) and escaped -1 center (EC-), where ±1

indicates that the director rotates by ±π radians anticlockwise around the center. They

have non-zero q4 and q5 profiles and are energetically degenerate, and hence, we only

study the EC state with +1 center (Fig. 10(a)). Using the upward search, we can find

an index-1 ECD from the stable index-0 EC state, for λ2 > 70.45. In fact, the stable

EC and index-1 ECD emerge from a saddle-node bifurcation at λ2 ≈ 70.45, without

bifurcation connections with the WORS branch. As λ2 increases, the EC state is always

stable whilst the Morse index of the ECD increases, and bifurcates into multiple z-

invariant and z-variant escaped solutions. We do not analyze this further in this paper,

largely because the structure of this escaped branch is similar to the WORS branch in

Sec. 4.

Since the EC and ECD LdG critical points are z-invariant, their cross-sections exist

as critical points in 2D cases, for the same value of λ2. The 2D ECD critical point is an

index-1 saddle point, while the 2D EC is a metastable state since it has higher energy

than the D state at λ2 = 74. We investigate the transition pathway between EC and D

in the 2D case at λ2 = 74 (Fig. 10(b)). The transition state is the index-1 ECD state,

and the energy barrier ( E(ECD)−E(EC)) is low, so that the system can easily escape

from the trap of the metastable EC state. It is noteworthy that the transition pathway

passes through an index-2 C state, which is connected to the WORS and the C state has

only three degrees of freedom. In other words, in order to transition from the EC state

(which exploits five degrees of freedom) to the D state (which exploits three degrees of

freedom, or two degrees of freedom if q3 is constant as in (5)), the escaped directors are

pulled back into the xy-plane, and the transition pathway goes from escaped branch to

the WORS branch, and finally, reaches the D state.

5. Discussion and conclusion

We study critical points of a LdG free energy on a 3D cuboid with Dirichlet tangent

boundary conditions on lateral surfaces and natural boundary condition on top and

bottom surfaces, in terms of two geometry-dependent variables: the cuboid size λ, and

the height h. First, we design a hybrid numerical scheme to discretize and accelerate

the saddle dynamics. It is worth noting that our new numerical scheme can be directly

generated to other domains (e.g. 3D wells with other polygonal cross-sections) and

boundary conditions (e.g. weak tangential boundary condition).

Our notable findings include (i) z-variant LdG critical points that depend on the

third dimension, (ii) new pathways between energy minimizers mediated by z-variant

critical points which are inaccessible in 2D, (iii) multiple-layer LdG critical points and
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(iv) novel stable escaped solution branches. Essentially, the solution landscapes become

increasingly complicated as λ2 and h increases. We find intimate connections between

pathways on 2D solution landscapes (for 2D domains in a reduced LdG framework) and

z-variant 3D LdG critical points. Whilst our work is not exhaustive, we can typically

construct z-variant 3D LdG critical points by interpolating between two distinct 2D

reduced LdG critical points, and the interpolation usually involves a third higher-index

2D critical point on the middle slice of the cuboid. Of course, not all pairs of 2D reduced

LdG critical points are compatible; we typically need 2D dual critical points that are

connected by a pathway on the 2D solution landscape, to construct the z-variant 3D

counterpart. As λ → ∞, we speculate that we could use the entire database of dual

2D critical points to construct z-variant 3D LdG critical points. We note that the

2D studies in [11, 12, 17] provide excellent initial conditions for the 3D solvers (with

five degrees of freedom) in our paper, and hence, reduced studies have value in higher

dimensions too.

There are numerous open questions stemming from this work, which could have far-

reaching impact in mathematics and applications. For example, can we have 3D LdG

critical points that interpolate between escaped solution and a non-escaped solution?

Are there other disconnected LdG critical points on a 3D cuboid and if so, how to

find them? Our working domain is a cuboid with a square cross-section, but these

methods could be easily generalized to a 3D well with an arbitrary 2D cross-section e.g.

rectangle, hexagons etc. In fact, on a rectangle, we lose the degeneracy between different

critical points e.g. the dual BD states are not energetically degenerate on a rectangle

and the 2D WORS branch divides into two unconnected branches [21]. Thus, some

of the solutions in this paper, e.g., BD-WORS-BD will have a different structure for a

3D well with a rectangular cross-section. Finally, we could work with weak tangential

anchoring on the lateral well surfaces, as opposed to Dirichlet conditions. In particular,

the nematic director profile on the lateral surfaces is constrained to be one-dimensional

by (6), which severely constrains the solution space. Weak boundary conditions allow

for more freedom on the lateral surfaces, which naturally adds further possibilities for

the corresponding solution landscapes. Finally, there is scope for rigorous asymptotic

analysis in the λ2 →∞ limit [14], and we expect close correspondence with some of the

analytic results in [45] in this limit.
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