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A B S T R A C T

With the widespread deployment of smart meters worldwide, quantification of energy used by individual
appliances via Non-Intrusive Load Monitoring (NILM), i.e., virtual submetering, is an emerging application
to inform energy management within buildings. Low-frequency NILM refers to NILM algorithms designed to
perform load disaggregation at sampling rates in the order of seconds and minutes, as per smart meter data
availability. Recently, many deep learning solutions for NILM have appeared in the literature, with promising
results. However, besides requiring large, labelled datasets, the proposed deep learning models are not flexible
and usually under-perform when tested in a new environment, affecting scalability. The dynamic nature
of appliance ownership and usage inhibits the performance of the developed supervised NILM models and
requires large amounts of training data. Transfer learning approaches are commonly used to overcome this
issue, but they often assume availability of good quality labelled data from the new environment. We propose
an active learning framework, that is able to learn and update the deep learning NILM model from small
amounts of data, for transfer to a new environment. We explore the suitability of different types of acquisition
functions, which determines which function inputs are most valuable. Finally, we perform a sensitivity analysis
of the hyperparameters on model performance. In addition, we propose a modification to the state-of-the-
art BatchBALD acquisition function, to address its high computational complexity. Our proposed framework
achieves optimal accuracy-labelling effort trade-off with only 5%–15% of the query pool labelled. The results
on the REFIT dataset, demonstrate the potential of the proposed active learning to improve transferability and
reduce the cost of labelling. Unlike the common approach of retraining the entire model once a new set of
labels is provided, we demonstrate that full re-training is not necessary, since a fine-tuning approach can offer
a good trade-off between performance achieved and computational resources needed.
1. Introduction

Since the beginning of the industrial era, human activities are the
main driver of climate change — long-term shifts in temperatures and
weather patterns, which have now become an existential threat to the
world. To mitigate the effects of climate change, the European commis-
sion adopted a set of policy initiatives for making Europe climate neu-
tral by the end of 2050. According to these initiatives, net greenhouse
gas (GhG) emissions need to be reduced by 55% by 2030, compared
to the 1990 levels [1]. To achieve this goal, energy efficiency and
ptimizing energy consumption in buildings play an important role.
Efficient building energy management requires detailed,

ine-grained information related to energy consumption patterns. To
xtract such information, energy disaggregation, also referred to as
on-Intrusive Load Monitoring (NILM), is an attractive option versus
he more expensive and intrusive submetering option to acquire the
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same data. NILM [2] consists of breaking down the total building’s
power consumption into its subcomponents, giving insight into how
much electricity is consumed by individual electrical devices, and
hence, can lead to quantifying the cost of each energy-consuming
activity [3], not only in terms of price, but also GhG emissions.

In the early years of NILM research, availability of high-frequency
load measurements with sampling frequency of the order of kHz or
higher was often assumed (high-frequency NILM). However, due to
concerns related to user privacy, data storage, and data management,
and with the widespread deployment of commercial low-sampling rate
smart meters worldwide, low frequency power measurements, with
sampling granularity of 1–10 s have become widely available; hence,
low-frequency NILM used in the supervised setting in [4,5] and unsuper-
vised in [6], has become the main focus of research recently [7]. Low-
frequency NILM is fundamentally different to high-frequency NILM.
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While the latter, effectively exploits signal transients and harmonic
signal analysis to distinguish between multiple appliances and two
appliances of the same kind (for example, two air conditioners) [8],
low-frequency NILM has to rely on steady-state power measurements
only, requiring completely different methodological approaches to ad-
dress this inverse problem via effective and robust machine learning or
statistical data analysis [4].

NILM methods can be event-based or model-based. In event-based
NILM, e.g. supervised [4] and unsupervised [6] graph signal process-
ing approaches, a generic optimization-based approach [9], and an
approach using multi-scale wavelet packet tree and ensemble bag-
ging tree [10], events, e.g., the moment an appliance is switched
on or off, are detected in the aggregate signal in an unsupervised
manner (e.g., using adaptive thresholding as in [11,12]), and then
assigned to known appliances by a supervised classifier (e.g., graph
signal processing-based [6,13], Support Vector Machine (SVM) [14],
ecision Trees (DT) [11], k-NN [15], Dynamic Time Warping (DTW)-
ased [11]; see [16] for a recent review). In contrast, in model-based
ILM, a separate model that takes aggregate measurements as input
nd consumption or on/off state of an appliance as output, is created
or extracting power consumption of each appliance, without relying on
rior event detection (see, e.g., Hidden Markov Model (HMM) based
ethods — the unsupervised approach of [17,18] for incorporating
omain knowledge using generic appliance models, [19] for approxi-
mate inference in additive factorial HMMs, [20] for signal aggregate
constraints in additive factorial HMMs, and spatio-temporal pattern
networks [21]). Although event-based approaches are easier to imple-
ment and deploy due to data reduction via extraction of events, they
rely heavily on accurate edge detection, and hence are, in practice,
susceptible to measurement noise and unknown appliances, causing
misclassification of appliances with similar operational power range,
as reported in [4,6].

To mitigate the aforementioned issues related to errors introduced
by edge detection, model-based methods have become dominant in the
literature, with deep neural network (DNN)-based solutions growing
in popularity. With model-based methods, a separate regression model
is typically created for disaggregation of each load, e.g., a separate
model for washing machine and another for microwave. Although
existing DNN-based NILM algorithms demonstrate good disaggregation
performance, there remain major challenges to address before large
scale deployment and adoption [7]. Current DNN-based NILM methods
require large amounts of labelled data, which is time consuming and
expensive to obtain requiring either submetering, reliable time diaries
and expert knowledge. Additionally, labelling is not a one-off task due
to the large diversity of devices used in different houses/buildings, and
dynamic nature of these devices – i.e., differing power consumption
profiles for the same type of appliance or setting, or power signatures
of appliances change over time due to wear-and-tear over the years of
usage, or new appliances frequently introduced – all requiring regular
re-labelling, as pointed out in [7,22]. This is a significant challenge to
existing NILM models, causing them not to work as expected, because
conditions (or data statistics) have changed compared to the ones
in which the models were developed and trained. In the context of
reliability, practicality and maintaining acceptable accuracy in a real-
world building setting, a recent review paper [7] suggests continuous
learning and active learning methods to develop flexible algorithms,
adaptable to changing environments.

Active learning [23] is a modern approach to machine learning,
proposed to significantly reduce the amount of data needed to train
a model by selecting data samples that would improve its performance
the most, via intelligently designed acquisition functions. See also a re-
ent review [24]. Active learning can improve transferability of models
y labelling only a small portion of data from the new environment, and
mprove adaptability, by labelling on-the-fly new appliance data [7].
ctive learning can boost public trust and confidence when using
2

rtificial intelligence algorithms, by implementing a human-in-the-loop
concept giving domain experts the opportunity to interact with the
model by iteratively re-labelling selected samples.

For the more challenging and less investigated time series signal
analysis, active learning has been explored in [25] for time series
anomaly detection, but without transfer learning. Active transfer learn-
ing is proposed in [26] for data forecasting, but active learning is used
to choose samples from source domains, with known data distribution
both in source and target domains. On the other hand, we consider a
more realistic scenario where models need to be adapted and deployed
to new environments with unknown data distributions where labelled
data is not available, and has to be queried. Active learning for time
series classification for applications in driving trajectories learning
is presented in [27]. The models used include a SVM and a fully
connected neural network, to classify a data point in a latent space for
each trajectory. Data used in experiments is balanced for known classes.
Although the data is in the time series format, stream-based acquisition
functions, that facilitate real-time learning were not considered in [27],
and the models were not transferred to a new environment. In our
paper, we deal with electricity measurement datasets, which are highly
imbalanced and dynamic. Moreover, we explore stream-based acquisi-
tion functions suitable for time series data, which have the advantage
of online implementation. Furthermore, we demonstrate transfer of a
model to a new environment.

There have been a few early attempts to apply active learning to
high-frequency, event-based NILM, assuming unrealistic perfect event
detection. The first attempt, [28], uses a kNN classifier to assign
events extracted from high-frequency load measurements to specific
appliances — it is shown that active learning outperforms random
selection, but under the assumption of perfect event detection. In [29],
a SVM classifier is used, also with high-frequency measurements and
perfect event detection assumed. Semi-supervised learning and active
learning for NILM are combined in [30], using an RF classifier — the
combination outperformed semi-supervised learning alone, but again
with high frequency load measurements and perfect event detection
assumed. Although a deep learning model is used within the active
learning loop in [31], it is still fundamentally an event-based method
and assumes perfect event detection with high frequency measure-
ments. These approaches do not take into account errors introduced
by the event-detection step prior to NILM classification or load estima-
tion. Furthermore, to the best of our knowledge, there have not been
attempts to design active learning methods for low-frequency model-
based NILM and testing in a practical scenario with real, dynamic
electrical measurements data.

In this paper we propose the first active-learning based method
for low-frequency model-based NILM, that can operate at scale using
smart meter measurements. As opposed to the research already con-
ducted on active learning for NILM reviewed above, our approach uses
low-frequency measurements and model-based NILM method, with a
separate model trained for each appliance disaggregated, eliminating
the need to introduce impractical assumptions of perfect event detec-
tion. In particular, we leverage on the Wave-net NILM approach of [32],
as one of the currently best performing models reported in the recent
comparative study [33]. We note that though [32] is used to showcase
the proposed methodology, other DNN-based NILM solutions, such
as deep neural networks from [34], sequence-to-point convolutional
neural networks from [35], recurrent neural network from [36], con-
volutional and gated recurrent unit-based neural networks from [37],
a hybrid of a convolutional and a recurrent neural network from [38],
or one-to-many CNN architecture from [39], can be used instead with
the proposed active learning methodology.

We explore different approaches of selecting the most critical sam-
ples to label, i.e., acquisition functions, and discuss their limitations
and effect on accuracy and transferability. In the aforementioned active
learning approaches — [28] using a kNN classifier, [29] with an SVM
classifier, [30] using an RF classifier, and [31] using a DNN, high-

frequency, event-based NILM methods are used with classic
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uncertainty-based acquisition functions, which yield one data sample
at a time. Since DNN methods process a batch of data samples at a
time, it is necessary to group the samples before labelling. Creating
a batch of samples by simply joining individually queried samples
will likely result in samples that are very correlated; this reduces the
effectiveness of learning, since for the model to learn more effectively,
it is important that it learns from diverse data. For that reason, we
explore BatchBALD [40] which can choose a diverse batch of samples
but can be computationally demanding [41].

We consider three practical scenarios in terms of availability of
labelled data, and analyse how the proposed methods perform in
various scenarios. We perform a sensitivity analysis w.r.t pre-set hyper-
parameters. We discuss optimal performance-complexity trade-off and
determine whether complexity can be reduced without performance
loss by not re-training the entire model after each interaction, as is
commonly done in existing approaches — re-training a k-NN classifier
in [28], an SVM classifier in [29], an RF classifier in [30], or a DNN
in [31]. In summary, the contributions of this study are as follows.

• We propose the first active learning framework for model-based
low-frequency NILM on real, dynamic data with no assumptions
unlike previous literature that assumed perfect edge detection
when investigating active learning for event-based NILM for high
frequency data.

• We demonstrate how the proposed active learning framework can
improve transferability of NILM models to unseen target domains.

• We provide a detailed analysis of the effects of four different
querying strategies on performance and transferability, in realistic
scenarios, using real household electrical measurements.

• We quantify the trade-off between accuracy and labelling effort
and define an optimal trade-off point.

• A modified BatchBALD is proposed to address the high computa-
tional complexity of the original BatchBALD acquisition function.

• We show that using fine-tuning after each active learning iteration
without re-training the entire model saves on computational time
without performance loss.

• We perform detailed sensitivity analysis of the proposed method
w.r.t the choice of active learning hyper-parameters, showing that
the proposed approach is not sensitive to the number of samples
queried but is sensitive to confidence threshold.

The rest of the paper is organized as follows. Background on low-
requency NILM with deep learning, as well as background on active
earning with active learning approaches for the NILM problem is
resented in Section 2. Section 3 describes the methodology used in
this study: the workflow of the proposed method, as well as acquisition
functions used. Section 4 provides details of conducted experiments,
ataset, DNN-based low-frequency NILM model used, and evaluation
ethods used. Results are presented and discussed in Section 5, before

we conclude in Section 6.

2. Background

In this section a brief background on NILM is first provided, includ-
ing a review of DNN-based NILM and transfer learning approaches for
NILM. Then, active learning is described and the existing work on active
learning approaches for NILM is reviewed.

2.1. Low-frequency non-intrusive load monitoring

NILM [2] consists of breaking down the total power consumption
of a building into individual loads. That is, the task of NILM is to
estimate the power consumption of individual appliances given only the
aggregate power consumption. With increased availability of data due
to large-scale smart metering roll-out world-wide, low-frequency NILM,
3

where measurements are collected at frequencies below 1 Hz, has been
dominant in the recent literature, as observed in recent reviews (see [7]
for challenges, methods and perspectives for NILM, [33] for a review of
DNNs applied to low-frequency NILM, and [42] for NILM solutions for
very low-rate smart meter data) due to practicality and low complexity
in terms of data management and communication resources.

Low-frequency NILM is a multi-source separation problem [2] in a
very low signal-to-noise ratio environment, and hence is particularly
challenging in real-case scenarios, due to many similar loads running
in parallel in a house, numerous unknown loads, loads changing over
time, and measurement noise. Hence, though introduced over 30 years
ago, NILM remains a significant research challenge.

2.1.1. DNN-based low-frequency NILM and model transferability
Numerous machine learning approaches have been used in the

past (see Introduction and survey papers such as [43,44]), with DNN-
based methods dominating current literature, due to their very good
performance (see e.g, [45,46] for comparisons between traditional and
DNN-based NILM approaches), flexibility and ease of use (once the
models are trained).

A recent review paper [33] summarizes DNN-based low-frequency
NILM approaches, concluding that the use of convolutional layers in
neural networks has gained in popularity recently — [32] proposes
a fully convolutional DNN for a fast sequence-to-point implementa-
tion; [37] proposes a CNN architecture, designed to be a generalized
network which performs well when transferred to a new domain; [47]
proposes a sequence-to-subsequence learning using a CNN; [48] pro-
poses a scale- and context-aware neural network containing convolu-
tional layers; and [49] proposes a CNN and multilabel classification. Re-
current neural network elements in [37,38], and newer concepts, such
as generative adversarial networks (GANs) in [47,48] and attention
mechanisms in [50,51] have also been attempted. The best performing
approaches are the ones using convolutional layers, adversarial losses,
multi-task learning and post processing techniques.

Transferability of DNN-based NILM models, i.e., their adaptability
to new conditions using user feedback and continuous learning ap-
proaches, as well as privacy preserving issues are identified to be key
challenges of the current NILM state of the art [7]. The ability to use
existing models, or adapt them efficiently to new, unseen environments
with dynamic environmental factors and end-user patterns of use, is
very important to enable large-scale NILM applications.

Transferability of two DNN architectures across three publicly avail-
able datasets — REDD [52], REFIT [53] and UKDALE [54] is ex-
plored in [37], without adaptation to new environments. Transfer-
ability was successful, though a drop in performance was observed
compared to when training and testing with the data from the same
dataset. Transferability with adaptation to a new environment is ex-
plored in [22], as well as in [51,55] — DNN models are fine-tuned
using labelled data from new datasets. In [56], cross-domain and cross
appliance transferability is investigated, concluding that if statistics of
power consumption are similar between different domains, fine-tuning
is not required.

Although transfer learning for NILM has drawn attention recently,
many challenges still remain. When transferring a pre-trained DNN-
based NILM model to a new environment, the performance is likely
to drop significantly. On the other hand, availability of good quality
and large amount of labelled data from new domains is assumed when
using fine-tuning approaches. In practice, obtaining such labelled data
from a new environment requires submetering or manual annotation
via a time diary, both of which are resource intensive.

2.2. Active learning

Active learning is used to reduce the amount of data needed to train
a deep learning model, with the intuitive understanding that different
samples from the dataset have a different contribution to training the

model, and if the ones that contribute the most are included in training,
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other samples (i.e., those either very similar or of low importance to
training) do not have to be, and by excluding them the performance of
the model should not decrease significantly [23].

First, a small subset of available data is labelled and included in
he training of the initial model. The rest of the data, called ‘‘query
ool’’, is not labelled. The initial model makes predictions with the
ata from the query pool, and for each made prediction, it estimates the
ertainty associated with the prediction. The more uncertain the model
s, the higher the information content of the query pool. Therefore,
he samples that the model are the most uncertain about are passed
o a domain expert for labelling and included in the training set when
eturned. Then, the model is retrained using the extended training
et. This procedure repeats iteratively until satisfactory performance
s achieved. Informativeness of a sample can also be determined in-
ependently of the model’s output, for example, using distance-based
easures. The function used to determine informativeness of a sample,
hether it depends on the model output or not, and to choose which
amples are labelled and included in training is called ‘‘acquisition
unction’’ or sampling strategy. The choice of the acquisition function
mpacts the performance of the active learning model.
If the model decision is made by evaluating all available samples

nd picking the most valuable of all — then an active learning method
ses ‘‘pool-based sampling’’, with the obvious limitation that it cannot
e used for near real-time labelling. If the data comes in streams, and
ach sample is evaluated as it comes and the decision if it should or
hould not be queried is made at that time, then the active learning
ethod exploits ‘‘stream-based sampling’’ [24].
For deep learning models, forming a batch of individually selected

amples may lead to correlated samples inside a batch, which is un-
esirable. Therefore, batch-aware methods are introduced, such as a
tate-of-the-art method, BatchBALD [40], demonstrated in [41,57] to
ave a good performance for many benchmark datasets, but with high
omputational complexity. It is based on mutual information between
atches of samples and model parameters.

.2.1. Active learning for time series data
Active learning has only recently been introduced for time series

ata to solve anomaly detection tasks [25,58]. Two publicly available
ime series datasets used in [25] have significantly shorter lengths of
ecordings (5 weeks and 7 days, respectively) than the one used in
ur study (approximately 2 years). Acquisition functions used in [25]
nclude uncertainty sampling, interval random sampling, and top-k
ampling based on abnormality score, and a combination (union) of
hem all. Stream-based sampling was not investigated.
Anomaly detection with active learning and two contrast Varia-

ional Autoencoder (VAE)-based models is proposed in [58]. Combina-
ion of anomaly scores and standard deviation of posterior distribution
t each point for both models is used for choosing samples in the active
earning process. However, VAEs do not capture time dependencies in
ata, which makes them not optimal for time series data. Moreover, this
ethod trains three models in total — two VAEs and one query model
hich is trained to choose samples based on autoencoders’ outputs,
hich makes the method complex, and hence, training phase is done
ffline. Our method uses a single DNN model, capable of capturing
emporal patterns, that performs both load disaggregation and selection
f samples to be queried, which makes it more convenient for full
nline deployment — for both inference and fine-tuning phases.
An integration of transfer and active learning for time series predic-

ion is presented in [26]. The settings are different to ours — in [26],
ctive learning is used to choose samples from source domains, which
re most suitable for transfer to a target domain with known data
istribution, while we consider a more realistic scenario, when source
omain data are labelled and available, and we adapt the model to
new environment with unknown data distribution, and labels have
o be queried since they are not available in advance. Time series
4

lassification with active learning for applications in learning of driving m
rajectories is presented in [27]. A SVM and a fully connected neural
etwork were used, for classification of a data point in a latent space
or each trajectory. Classes used are balanced, while in our paper,
ighly imbalanced electrical measurements are used. Although data
sed in [27] is time-series, stream-based acquisition functions suitable
or online learning were not considered. In our paper, we explore
tream-based uncertainty sampling, which, besides being convenient
or time series, has the advantage of online implementation since it does
ot require the whole query pool to be available in advance.
In contrast to [27], we investigate transfers between different en-

ironments, for on/off classification of several types of household
evices; we discuss the effect of different query strategies, including
tream-based querying, suitable for time-series data; we analyse the
est trade-off between labelling effort and accuracy, and also we discuss
dvantages of fine-tuning over re-training models at each iteration to
educe implementation complexity.

.2.2. Active learning for NILM
Recent reviews of NILM, including state-of-the-art NILM data sets,

eature engineering, as well as learning approaches for NILM are pre-
ented in [16,33]. Although new and relevant techniques such as
ransfer learning and federated learning are discussed, active learning
as not been mentioned. This is mainly due to the very limited amount
f work on the topic of active learning for NILM with only few initial
tudies published so far, all focusing on the methodologically very
ifferent, high-frequency NILM problem. One of the first attempts to
pply active learning to high-frequency NILM [28] uses a kNN classifier
rained on BLUED dataset [59] to identify which activation belongs to
hich appliance. An active learning framework where the algorithm
ntelligently selects instances for queries based on an informative-
ess measure, Euclidean distance of the samples in the feature space,
s compared to the scenario where the algorithm randomly selects
nstances to query. The impact of different probability- and distance-
ased query strategies as well as the choice of the initial training set
or event-based high-frequency NILM was investigated in [29]. The
erformance was evaluated using cross-dataset validation with BLUED
ataset [59] and their own ISS kitchen dataset. A combination of
emi-supervised and active learning is proposed for training a random
orest classifier for event-based high-frequency NILM on high frequency
LUED dataset [59] in [30]. The results show that including active
earning outperforms the used semi-supervised learning approach. An
ctive deep learning approach was used in [31], also for an event-based
ILM, where a combination of three high-frequency NILM datasets,
LAID [60], WHITED [61] and COOLL [62] with discrete wavelet
ransform were used to extract high-dimensional appliance features
rom original current signals.

.3. Summary

From the above literature review, one can notice that the active
earning approaches for high-frequency NILM (sampling rate in order
f kHz) yield promising results, but under some impractical constraints,
.g., active learning frameworks for event-based NILM using high-
requency measurements are proposed with the assumption that perfect
vent detection exists. To the best of our knowledge, there is no work
elated to active learning for model-based low-frequency NILM, which
re more popular now due to their good performance and practicality
ue to smart metering roll-out, as per [16,33].
We address this gap in this paper by proposing an active learn-

ng framework for model-based low-frequency NILM, using WaveNet-
ased DNN, proven to have good performance and robust to vari-
ble duration of patterns of appliances in traditional (i.e., non active
earning) settings [32]. No assumptions are made as in above active
earning for NILM literature. Furthermore, we explore stream-based
ncertainty sampling, which has the advantage of online implementa-
ion. We demonstrate the effectiveness of the proposed method on the
hallenging REFIT dataset [53], which consists of low-frequency load

easurements typical of national smart meter roll-outs.
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3. Methodology

In this section, the proposed workflow of the active learning frame-
work for the model-based low-frequency NILM is described. The frame-
work comprises: (i) the formulation of the training set, query pool and
testing set, (ii) the various acquisition functions being explored and
(iii) the DNN-based NILM model used to showcase the proposed active
learning methodology. These are each discussed next.

3.1. Proposed active learning workflow for NILM

As shown in Fig. 1, the dataset is divided into an initial and
very small training set (𝐷𝐷𝐷train), a query pool (𝐷𝐷𝐷pool) and a test set.
amples from the query pool are considered unlabelled and comprise
representative set of typical on/off samples. A deep learning NILM
lgorithm is first trained using 𝐷𝐷𝐷train. After the initial training, the
btained model makes predictions on the data from the query pool.
he model uses an acquisition function to choose which samples from
he query pool should be used for further learning (the set of chosen
amples is denoted as 𝑄𝑄𝑄). Having estimated confidence of predictions
n data from the query pool, the algorithm queries samples that it
as most uncertain about, i.e., the samples that would improve the
erformance of the model the most, by asking for their corresponding
abels. Then these queried samples and their corresponding labels are
dded to the training data set and they are removed from the query
ool. After this step, in the next iteration, the model is trained again
ith the extended data set that includes newly queried samples. New
redictions are made for the samples left in the query pool, and samples
hat are chosen for querying are added to the training set and removed
rom the query pool, and so on. This procedure is repeated until all the
amples are queried or a stopping criterion met. The stopping criterion
an be, for example, the number of queried samples in total, or the
stimated achieved accuracy.

.2. Acquisition functions

Acquisition functions are used to choose which samples to query.
he goal is to trade-off between the achieved accuracy and the number
f queried samples. The acquisition functions are mainly based on
stimated model uncertainty, which is assessed through its output, but
ther approaches are used as well — for example, the distance of a
5

ample from the other available samples, or a combination of the for-
er two methods. In the following the activation functions considered
re described, adapted here to the low-frequency DNN-based NILM
roblem.

.2.1. Uncertainty sampling — least confidence
A classification algorithm returns a vector consisting of probabilities

f the input samples belonging to each of the classes present in the data
et. This vector can be used to assess the confidence of the algorithm
n making its prediction by looking at the probability of the predicted
lass (the highest probability in the vector). If this value is close to
, then the model is confident about its prediction. Otherwise, i.e., if
one of the class probabilities is significantly larger than others, then
he algorithm is not confident in its prediction. That is, for each sample,
he highest prediction probability among all the classes can be taken as
measure of confidence.
Since the DNN-models usually process multiple points at a time,
pooling function based on a single probability value for the target
ield (i.e., a set of samples considered at the same time) is defined. In
articular, since the state of the target field is considered to be on if
t contains at least one sample labelled as on-state (i.e., appliance is
n), the maximum probability value of the target field (the maximum
mong all samples in the field) is used as a confidence measure. This
cquisition function is used in pool-based or stream-based sampling
ashion, as described next.

• Pool-based sampling
In pool-based sampling, the algorithm makes predictions on the
whole query pool (all samples from the pool have to be evalu-
ated), and then a fixed number of predictions that have the lowest
confidence values for the predicted class are queried, expertly
labelled and added to the training set. The other samples remain
in the pool for querying in the next iteration. An example of pool-
based sampling is shown in Fig. 2(a) with query pool set 𝐷𝐷𝐷pool of
ten samples and four samples 𝑄𝑄𝑄 chosen for query. The numbers
represent the output of the model, which can be treated as the
certainty of the model (its confidence) when making predictions
for each sample from the query pool.

• Stream-based sampling
In stream-based sampling, samples arrive one by one in a se-
quence. The decision whether a sample should be queried is made
by comparing the probability of the predicted class with a prede-
fined threshold — if the probability is lower than the threshold,
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o

𝑦𝑦
Fig. 2. Pool-based uncertainty (a), stream-based uncertainty (b) and BatchBALD (c) sampling strategy examples. Each number represents the predicted class probability — certainty
f the model when making prediction for each sample in 𝐷𝐷𝐷pool. In this example, four samples are queried per one active learning iteration. The used threshold for stream-based
uncertainty is 𝑇 = 0.9. The used number of MC dropout iterations (stochastic forward passes) for BatchBALD is 3.
the sample is queried and added to the training set, otherwise, it
remains in the pool for querying in the next iteration. An example
of stream-based sampling from the same query pool 𝐷𝐷𝐷pool, with
threshold 𝑇 = 0.9 and four samples chosen for query 𝑄𝑄𝑄 is shown
in Fig. 2(b). If there are less samples than a predefined number
of samples whose values fall below the threshold (four in the
example in Fig. 2(b)), the active learning process stops, meaning
that the model reached high confidence for most the samples.

3.2.2. BatchBALD
Deep learning models typically process a batch of input samples

at a time. When using pool- and stream-based uncertainty sampling
described above, similarity between chosen samples is not taken into
account. If the model is uncertain about one sample, the chances are
high that it will be uncertain about other very similar samples (likely to
be from the same appliance). That can lead to high redundancy in the
chosen samples for querying. In order for learning to progress faster,
choosing more diverse batches is necessary.

The BatchBALD [40] acquisition function searches for the optimal
batch of samples among all available samples, based on the joint
mutual information between the current batch of samples and the
model parameters. In this case, the DNN model needs to be Bayesian,
which means that its weights are probability distributions instead of
single values. This allows estimating model uncertainty based on the
variance in the outputs of multiple runs of a model — the greater the
variance, the greater the uncertainty of the model, and vice versa. The
score of a batch of samples is calculated according to:

𝑎BatchBALD({𝑥𝑥𝑥1...𝑥𝑥𝑥b}, 𝑝(𝜔𝜔𝜔 ∣𝐷𝐷𝐷train)) = 𝐼(𝑦𝑦𝑦1∶b;𝜔𝜔𝜔 ∣ 𝑥𝑥𝑥1∶b,𝐷𝐷𝐷train)

= 𝐻(𝑦𝑦𝑦1∶b ∣ 𝑥𝑥𝑥1∶b,𝐷𝐷𝐷train) − 𝐸p(𝜔𝜔𝜔∣𝐷𝐷𝐷train)𝐻(𝑦𝑦𝑦1∶b ∣ 𝑥𝑥𝑥1∶b,𝜔𝜔𝜔,𝐷𝐷𝐷train),
(1)

where, 𝑥𝑥𝑥1∶b is a batch of 𝑏 samples drawn from the query pool 𝐷𝐷𝐷pool,
𝑦1∶b is the corresponding batch of model predictions, and 𝜔𝜔𝜔 denote the
DNN model parameters. 𝐼 stands for mutual information, 𝐻 entropy,
𝐸 mathematical expectation, and 𝑝 probability density function.

Bayesian approximation for a standard DNN model can be made
using the Monte Carlo (MC) dropout technique [63]. Dropout layers
are added to the neural network, and multiple stochastic forward
passes are simply collected and averaged. The diversity of prediction
6

probabilities of different forward passes reveals how confident the
model is about the sample — the higher the variance the lower the
confidence. Importantly, the neural network itself remains unchanged.
An example of a batch of samples chosen by the BatchBALD algorithm
is illustrated in Fig. 2(c). Note that a batch containing a sample with
confidence value of 1 can be selected to be queried, if the diversity of
the model output is high among the results of different forward passes.

3.2.3. Random sampling
Random sampling, or random query strategy, is the case when a

number of samples to be queried is randomly chosen from the query
pool — there is no special rule for selecting them, and the model’s
output for the samples from the query pool is not considered when
drawing samples from the pool. This strategy is used as a baseline strat-
egy, and all other strategies which include computing informativeness
of samples from the query pool are expected to exceed the prediction
performance of the random sampling strategy.

3.3. Low-frequency NILM algorithm

For demonstration purposes, the WaveNet-based NILM approach
of [32] is selected, which is highlighted [33] as one of the best perform-
ing algorithms for low-frequency NILM. A separate model is created
for disaggregating each appliance, which facilitates transferability. One
of the model’s major benefits is that it has a large field of view. It
produces concatenated and processed outputs from multiple layers in
the network, each with different fields of view, enabling this model
to recognize patterns at multiple scales. Since duration of active use
times of loads can vary significantly, this feature is favourable. The
algorithm performs binary classification in a sequence-to-point fashion
— that is, it slides a window of input aggregate energy consumption
measurements to predict whether an appliance is turned on or off at
the central point of the sliding window.

4. Experimental setup: Dataset, evaluation metrics and parameter
selection

This section provides descriptions of the dataset, evaluation metrics
and parameter settings used for demonstration of the proposed method-
ology. Three experiments are designed to explore the key contributions
of this paper. This is followed by the evaluation methodology used to

assess the performance of the proposed active learning approach.
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4.1. Dataset

A publicly available electrical load measurement dataset - RE-
FIT [53] was used to showcase the active learning methodology in this
paper. It consists of whole house, as well as, appliance-level energy
consumption measurements from 20 households in the United Kingdom
over a period of 2 years, from 2013 to 2015. Energy consumption
of 9 individual appliances per house was measured at an 8-sec in-
terval. For this paper, following the example of [32], the data was
resampled to a sampling interval of 10 s REFIT has been used widely
for benchmarking NILM algorithms (e.g., in [37] for transferability
evaluation of two proposed DNN models; in [56] for cross-domain and
cross-appliance transfer; in [22] for context-aware load disaggregation;
in [55] to address generalization of NILM models; and in [51] where
a transformer architecture is proposed for complexity reduction and
transferability), and is considered one of the most challenging open
access NILM datasets due to the diversity of appliance profiles across
houses monitored.

In this paper, appliance models for which active learning is devel-
oped are kettle, microwave, toaster and dishwasher, due to their high
frequency of use, high consumption, and their presence in most houses.
As there is imbalance in the on- and off-time for the 4 appliances
chosen, data balancing is performed — when training, i.e., the same
amount of on and off samples is included when generating one batch
of data samples to mitigate bias. Aggregate measurements expressed
in Watts were normalized using z-normalization 𝑍 = 𝑥−𝜇

𝜎 , where 𝑥 is
the original measurement, 𝜇 mean of all measurements in the training
data set, 𝜎 the standard deviation of all measurements in the training
data set and 𝑍 is the normalized value. Since the focus is on on/off
state classification, to determine whether an appliance was turned on
or off, a threshold is applied to the consumption measurements for each
appliance, according to Table 1. That is, if the appliance consumption
value is above this on-power threshold, then the appliance is considered
to be turned on.

4.2. Experiments

1. In the first experiment, we assess whether the active learn-
ing approach can be successfully applied to model-based low-
frequency NILM when training and testing domains are the
same (i.e., the same house is used for training and testing,
albeit with different train, query pool and test sets). Practically,
in this scenario, only a small set of labelled measurements is
available for initial training of the model. For example, this can
be achieved using time-diaries for a short period of time, where
householders will keep a time-of-use record of their appliances.
During the inference-making process, labelling of queried sam-
ples can be achieved as follows: via a domain expert and/or
the householder will occasionally be asked to confirm when a
particular appliance was run, e.g., via an app.

2. In the second experiment, we test whether active learning can
enhance the performance of the model when transferred to
a new, unseen house. Thus, in practice, time diaries are not
needed, since initial training is performed on a publicly ac-
cessible dataset. As in Experiment 1, a human will be asked
occasionally to label the selected samples from the query pool.
We use the data from several houses (excluding the test house)
for the initial training set, and the data from the test house
for query pool and testing set. Since after each active learning
iteration, the model is fully retrained using the initial training
samples plus all the samples that were queried, the initial train-
ing set has to be kept small. Hence, only few REFIT houses are
7

used for training (see Table 1).
Table 1
On-state power threshold in [W] and training houses in Experiment 2 for each target
appliance.
Appliance Training houses NAR On power threshold [W]

Kettle
House 6 0.69

2000House 8 0.78
House 17 0.58

Microwave
House 6 0.69

200House 8 0.78
House 17 0.58

Toaster
House 6 0.69

50House 7 0.58
House 8 0.78

Dishwasher
House 3 0.56

10House 6 0.69
House 9 0.61

3. In the third experiment, we use a large pre-training dataset
comprising all REFIT houses containing appliances of interest
(excluding the test house), instead of a small set of houses as in
Experiment 2. When such a large pre-training dataset is used, it
is infeasible to perform full retrain of the model after each active
learning iteration. Instead, in this experiment, we use active
learning together with incremental learning [64] to explore if a
larger pre-training dataset combined with fine-tuning the model
with the samples queried from the unseen house gives better
results than using a smaller pre-training dataset and fully retrain-
ing the model after each active learning iteration. It is important
to note that complexity of fine-tuning approach does not depend
on the size of pre-training dataset, so it can be arbitrarily large
— only newly labelled samples are used when fine-tuning, which
is not the case with the full-retrain approach of Experiment
2. In this experiment we also test different settings of active
learning hyper-parameters — the number of samples queried for
a complete active learning iteration for pool- and stream-based
uncertainty acquisition, and the confidence threshold value for
stream-based acquisition function.

In all these experiments various activation functions are used and their
effectiveness is evaluated. The random query strategy is always used as
a baseline.

4.3. Parameters

Houses selected for pre-training for each appliance in the second
experiment, exploring transferability, are shown in Table 1. The choice
was made following the example of [37], and by calculating noise-
aggregate ratio (NAR) for all houses, so that there are houses with low,
middle, and high NAR present in the pre-training data set, given by:

𝑁𝐴𝑅 =
∑𝑇

𝑡=1 ∣ 𝑦𝑡 −
∑𝑀

𝑖=1 𝑥
(𝑖)
𝑡 ∣

∑𝑇
𝑡=1 𝑦𝑡

. (2)

Here, 𝑦𝑡 denotes the total aggregate energy consumption at time instant
𝑡, 𝑥(𝑖)𝑡 is the consumption of appliance 𝑖, 𝑇 is the monitoring time period,
and 𝑀 denotes the number of known appliances in the house.

REFIT House 2 is chosen for evaluation due to the fact that it is
commonly used for testing in NILM literature — [37,56], hence it is
suitable for validation and benchmarking. In addition, it contains all
the appliances of interest, and has a mid-range NAR of 0.67.

All the parameters used for the training of the DNN, as well as in
the active learning loop, are shown in Table 2. The parameters are kept
the same as in [32] or are obtained heuristically using the training set.
In particular, the input window lengths for kettle and microwave are
set to 27 −1 samples and for dishwasher to 210 −1, based on the results
reported in [32]. The same window length is set for toaster, since it

has similar operation time as kettle and microwave. Target field size
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Table 2
Model training and active learning hyper-parameters. 1 sample = 1 window.
Parameter Value

Input window size Kettle, microwave, toaster 27 − 1
dishwasher 210 − 1

Target field 100
Batch size 27

Number of maximum epochs 20
Early stopping patience (epochs) 5
Learning rate 10−3

Fine-tuning learning rate 10−4

Number of samples queried per active learning iteration 27

Initial training set size for Experiment 1 (samples) 213

Query pool size (samples) BatchBALD 212

other query strategies 216

Number of maximum queried samples 214

Confidence threshold Exp.1 — microwave & Exp. 2 — toaster 0.95
all other experiments 0.9

Number of MC dropout iterations 5
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of 100 samples is selected as the best performing in [32]. Training
is limited to 20 epochs maximum, because of numerous re-training
required during the iterative active learning process, and early stopping
with patience of 5 epochs is introduced to prevent overfitting. The fine-
tuning learning rate is set an order of magnitude lower than the original
learning rate used for pre-training, because the weights are already
adjusted during pre-training, and although they are tuned, they should
not be impacted significantly. In Experiment 3, all trainable network
layers are fine-tuned.

The number of samples that are queried for one active learning
iteration is kept the same as the batch size used in the training process.
Data from the target, evaluation house is split into training set (for
Experiment 1), query pool and test set so that each set is a represen-
tative set of typical on/off samples from the target house. The initial
training set size in Experiment 1 is set to only 213 samples, based on the
practical assumption that only a small labelled dataset is available (via
a small time-diary); a small initial training set also makes the active
learning process feasible, since the initial training set plus queried
samples are all used for model training at each active learning iteration.
The query pool size is set to 216 samples, to be reasonably larger than
the initial training set — to keep the ratio of the labelled and unlabelled
number of samples low, and to allow the model to have a variety
of samples to choose from, compared to the initial training set. For
the BatchBALD acquisition function, the query pool is subsampled to
212 samples, because of the computational demands of the algorithm.
The maximum number of queried samples is set to 25% of the whole
query pool (i.e., 214), since this number is sufficient for the performance
to stop increasing rapidly (as shown in Section 5), and to keep the
time needed for conducting experiments reasonably short. Only for
BatchBALD acquisition function, it is set to the whole sub-sampled
query pool, considering its size (i.e., 212).

The confidence threshold for stream-based uncertainty acquisition
function is set to 0.9, except for microwave in Experiment 1 and toaster
n Experiment 2 it is increased to 0.95, because all the predicted class
robabilities are above 0.9 at the beginning of the active learning pro-
ess, which causes the process to stop without querying any samples.
he number of Monte Carlo (MC) dropout iterations that are used in
atchBALD acquisition function is set to 5, which is enough to get a
ense of the consistency of model outputs through multiple stochastic
orward passes.
Specifications of the PC used for experiments are: Intel(R) Core(TM)

7-7800X CPU @ 3.50 GHz, 32 GB RAM, and a NVIDIA TITAN Xp GPU.

.4. Evaluation metrics

The performance of the deep learning NILM algorithm is evaluated
sing 𝐹1 score — the harmonic mean of precision and recall:

𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

= 𝑇𝑃
1

, (3)
8

𝑇𝑃 + 2 ⋅ (𝐹𝑃 + 𝐹𝑁) t
here TP stands for true positives — when the target sample is positive
appliance on) and the prediction is positive; FP for false positives —
hen the target sample is negative (appliance off), but the prediction
s positive; and FN for false negatives — when the target sample is
ositive, but the prediction is negative. The performance of the model
s measured after each querying iteration on the test data set that is
ncluded neither in the training set nor in the query pool.
Active learning results are presented as achieved 𝐹1 score against

he percentage of query pool labelled samples. The exact number of
ueried samples can be obtained having in mind the total query pool
ize as per Table 2. The optimal point of such a curve is computed
s the point that has the minimal Euclidean distance from the ‘‘ideal’’
oint whose coordinates are the 𝐹1 score equal to 1 and the number
f queried samples equal to 0, calculated according to the following
quation:

𝑖𝑠𝑡 =

√

√

√

√(1 − 𝐹1)2 +
(

∣𝑄𝑄𝑄total ∣
∣𝐷𝐷𝐷pool ∣

)2
, (4)

where the total number of queried samples is denoted by ∣𝑄𝑄𝑄total ∣, while
∣ 𝐷𝐷𝐷pool ∣ denotes the size of the query pool. This point is considered
optimal as the aim is to achieve a high 𝐹1 score while keeping the
umber of queried samples, i.e., the labelling effort as low as possible.
ptimal points are shown as dots in the active learning curves.
The improvement w.r.t the initial model performance – 𝐹1 initial,

hen none of the samples from the query pool are labelled and added
o training, and a gap to the heuristic bound performance – 𝐹1 bound,
chieved when the whole query pool is labelled, are calculated accord-
ng to the following equations:

𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐹1 − 𝐹1 initial

𝐹1 initial
, (5)

𝑔𝑎𝑝 =
𝐹1 bound − 𝐹1

𝐹1 bound
. (6)

It is expected that by adding new samples to the initial training
et, the performance will improve. However, the improvement could
e negative if the performance drops, due to, for example, adding
on-informative samples to the training set from the query pool. On
he other hand, the results are expected to be worse compared to the
euristic bound 𝐹1 bound, but the results could exceed this bound, due
o, for example, overfitting the model with a very large training dataset,
hich would lead to the 𝑔𝑎𝑝 being negative.

. Results & discussion

In this section we present results from each of the three experiments
escribed in Section 4.2. We discuss the performance of active learning,

ransfer learning of DNN-based NILM models with active learning,
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retraining the whole model using the entire training dataset or only
fine-tuning using the new labelled samples after each iteration, as well
as the effect of different acquisition functions on performance and
transferability in a realistic scenario — using real, dynamic house-
hold measurements. In addition, we discuss sensitivity to active learn-
ing hyper-parameters. All the curves in the plots are smoothed using
Savitsky–Golay filter of order 3 and window length 11.

5.1. Experiment 1 Results

The results from the first experiment — demonstrating that active
earning can be successfully applied to model-based low-frequency
ILM by taking data from a single REFIT house, House 2, for the initial
raining, query pool and test sets, are shown in Fig. 3. The horizontal
xis shows the percentage of samples from the query pool that are
abelled, and the vertical axis shows 𝐹1 score achieved by the model.
The red dotted line reports 𝐹1 bound, when model is trained on the initial
training data set and the whole query pool (100%) together. Those
performance bounds are inline with those reported in [32]. The black
dotted line shows the initial 𝐹1 score obtained by using the initial
training set only.

Note that the experiments were not run until the whole query pool is
added to the training data set, but were stopped after 25% of the query
pool is added, so the plots show the performance up to that point. For
the stream-based uncertainty acquisition function, the active learning
process can stop earlier if the stopping criterion is met, i.e., there are
insufficient samples with probability of the predicted class below the
threshold to form a batch.

The optimal points calculated according to (4) are also marked
in the active learning curves for each appliance and query strategy
explored in corresponding colours in Fig. 3, showing the best trade-
off between labelling effort and accuracy achieved. As expected, the
performance of all methods increases with the number of samples
added to the training set, and it increases faster for the pool- and
stream-based uncertainty acquisition functions than it does for random
sampling. Therefore, active learning gives promising results for the
training models to disaggregate kettle, microwave and toaster.

It can be seen from Fig. 3, that pool-based and stream-based sam-
pling achieve the optimal performance-complexity point very early
(after as little as 5% for kettle and 15% for toaster and microwave,
of labelled samples added to the training set), and much before the
random sampling baseline except for dishwasher.

For dishwasher there is an increase in performance with samples
being labelled, mainly in the range between 1% and 17% of the query
pool samples labelled; the increase of random sampling is the same as
that of the pool-based strategy, implying that the contribution of all
samples in the query pool is similar, or that the pool-based query strat-
egy cannot identify the most informative samples. The stream-based
sampling, however, consistently outperforms the other two methods.

Table 3 shows the portion of the query pool that needs to be added
to the training set so that the model exceeds 90% of the heuristic bound
performance. If 90% was not achieved, the maximum 𝐹1 score and the
corresponding portion of query pool are shown. It is worth noticing
that with only up to 20% of the query pool samples being labelled
and added to the training set, the performance is close to the bound
for all appliances, which indicates that the labelling effort could be
reduced by as much as 80%. The smallest labelling effort is required
for kettle, whose performance is very good to start with, and is of
short duration (hence, with a small number of queried samples, many
activations can be processed). On the other hand, the most labelling
effort is required for toaster and microwave, due to the fact that the
model does not disaggregate these two appliances well, as can be seen
from the final performance bound, which is around 0.6 for both these
appliances. This can also be due to the fact that microwave and toaster
have a more statistically complex load profile compared to kettle and
are used with different settings, hence more samples are needed to
capture the statistics. Interestingly, both pool-based and stream-based
sampling achieve similar performance, indicating that off-line labelling
9

is not needed and samples can therefore be labelled as they arrive.
Table 3
Experiment 1: Labelling effort, i.e., % of the labelled query pool samples, ∣ 𝑸 ∣, needed
o exceed 90% of the bound 𝐹1 score (if possible). The bound F1 corresponds to the
esults when the entire query set (100%) is used for training.

Kettle Microwave Toaster Dishwasher

Pool-based ∣ 𝑸 ∣/∣ 𝑸pool ∣ 1.6% 10.2% 18.5% 15.8%
𝐹1/𝐹1 bound 92% 90% 90% 90%

Stream-based ∣ 𝑸 ∣/∣ 𝑸pool ∣ 1.6% 19.33% 12.1% 8.4%
𝐹1/𝐹1 bound 90% 91% 82% 90%

5.2. Experiment 2 Results

The results of Experiment 2 are shown in Fig. 4. A pre-trained model
is transferred to unseen REFIT House 2, and the samples from this house
are gradually labelled and added to the training set. The black dotted
line represents the disaggregation performance of the pre-trained model
on House 2 data without any data from that house added to the training
set (0% of the query pool sampled labelled), i.e., before any adaptation
to the new environment. The red dotted line reports the heuristic bound
𝐹1 score as in Experiment 1. Even though the query pool for BatchBALD
acquisition function is sub-sampled from the original larger pool, curves
are shown with respect to the larger pool, to line up the number of
queried samples with other acquisition functions.

As can be seen from the plots in Fig. 4, the proposed active learning
approach yields promising results for all four appliances tested. As
expected, strategically selecting the samples to query significantly im-
proves the performance w.r.t random sampling. Pool- and stream-based
uncertainty acquisition functions perform similarly, with pool-based
being slightly better for kettle and microwave, and stream-based being
slightly better for dishwasher until it reaches high confidence for all
samples belonging to the pool. This can also be observed by the
optimal points that are reached very early (after only 5%–10% samples
labelled). The performance of dishwasher has the steepest increase over
a number of iterations. This is expected due to dynamic nature of
dishwasher loads within the house — newly added samples provide
new information due to variation in dishwasher power patterns over
different runs. This is less pronounced with kettle and microwave
since newly added samples after 5%–10% of query pool samples being
added do not enlarge anymore the informativeness of the training
pool. Regarding the toaster, there is a huge jump immediately when
fine-tuning is performed due to a large difference between the toaster
signature in the target domain (House 2) and those available in the
training set. However, after that, the newly added samples do not
improve the performance anymore, which can be attributed to the fact
that disaggregating toaster is in general very challenging and the results
have already come closer to the bound in Fig. 3.

The BatchBALD acquisition function performs similarly to the ran-
dom acquisition function, which can be explained by the very limited
size of the query pool. The BatchBALD acquisition function is very com-
putationally expensive and could not handle a large query pool due to
memory constraints. It is not used for dishwasher due to the extremely
small query pool size, and hence observed lack of improvement beyond
the initial training.

Table 4 shows the improvement w.r.t the initial performance and
the gap to the heuristic bound as defined in Eqs. (5) and (6). The
best results are shown (maximum performance) within the first 25%
of samples added to training, as well as the results with the optimum
trade-off points. The results show a high level of improvement for all
appliances, bearing in mind that a much higher improvement is desired
for lower-performing initial models, i.e., microwave and toaster, since
the initial results for kettle and dishwasher were already high. A very
small gap for kettle, dishwasher and toaster with pool- and stream-
based sampling indicates that there is very little room for improving
querying strategies. The optimal trade-off points are generally close to

the maximum performance.



Applied Energy 341 (2023) 121078T. Todic et al.
Fig. 3. Experiment 1: Models trained and tested on REFIT House 2 for kettle (a), microwave (b), toaster (c) and dishwasher (d). The red broken line shows the 𝐹1 score bound
obtained by using the entire query pool (100%) for training. The dots represent the optimal points obtained using (4). The black broken line is the result obtained with initial
training only (0% query pool labelled).
Table 4
Experiment 2: The improvement of the initial performance of the NILM model
transferred to a new house using active learning when labelling at most 25% of the
query pool, and the gap to the heuristic bound. The results are given for the optimal
trade-off point as well as for the best performance.

Kettle Microwave Toaster Dishwasher

Maximum performance

Pool-based Improvement 8.68% 79.23% 104.00% 19.42%
Gap −1.02% 14.34% 15.31% 1.95%

Stream-based Improvement 6.77% 73.63% 122.11% 18.59%
Gap 0.75% 17.02% 10.14% 2.64%

BatchBALD Improvement 1.70% 22.51% 72.38% –
Gap 5.47% 41.45% 28.43% –

Optimal trade-off points

Pool-based Improvement 7.85% 76.26% 97.71% 13.63%
Gap −0.25% 15.76% 17.92% 6.71%

Stream-based Improvement 6.77% 73.63% 122.11% 13.17%
Gap 0.75% 17.02% 7.79% 7.09%

Table 5 shows the comparison of 𝐹1 score when initially training
the model using data from the same house where the model will be
deployed (no transfer), and when a pre-trained model, trained with
10

already available data from multiple houses is transferred to the new
house. One can see that both sampling strategies show very small drop
in performance when transferred to a new target domain, indicating
very fast adaptation due to effectively using the query pool.

Note that the models pre-trained with data from multiple houses
can perform better than models trained and tested using data from the
same house. This is due to the fact that, as per Experiment 1 settings,
initial training set is of very limited size when training and testing with
data from the same house, as in a practical scenario, those data will be
obtained from time-diaries kept by householders. On the other hand,
in Experiment 2, larger amount of data from multiple houses, from an
already available, public dataset containing submeter measurements is
used, which offers a better variety of data samples for the model to
learn.

Considering the presented results of this experiment, it can be
concluded that active learning can be used to effectively enhance the
performance of pre-trained active learning models when transferred
to a new environment, whose appliance profiles (e.g., toaster) are
statistically different. Similarly to Experiment 1, stream based sampling
shows no performance loss compared to pool based sampling, thereby
indicating that online learning is possible.

5.3. Experiment 3 Results

In Experiment 2, after each iteration, when new samples are added

to the training set, the entire model is retrained, as is commonly



Applied Energy 341 (2023) 121078T. Todic et al.

p

Fig. 4. Experiment 2: Models pre-trained with small dataset transferred to REFIT House 2 for kettle (a), microwave (b), toaster (c) and dishwasher (d). Full retrain of the model
is performed in each active learning iteration. The red broken line shows the 𝐹1 score bound as per Experiment 1. The broken black line shows the initial 𝐹1 score obtained using
re-training set only. The dots represent the optimal points obtained using (4).
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Table 5
Comparison of the transfer learning results (Experiment 2) and no-transfer learning
(Experiment 1) in terms of the maximum 𝐹1 score achieved when labelling at most
25% of query pool. The best results are shown in bold.

Kettle Microwave Toaster Dishwasher

Maximum performance

Pool-based No-transfer 0.8511 0.5756 0.5626 0.8860
Transfer 0.8587 0.4968 0.5251 0.8922

Stream-based No-transfer 0.8241 0.5254 0.5142 0.8897
Transfer 0.8436 0.4813 0.5717 0.8860

Optimal trade-off points

Pool-based No-transfer 0.8217 0.5591 0.5501 0.8046
Transfer 0.8521 0.4886 0.5089 0.8489

Stream-based No-transfer 0.8291 0.5254 0.5142 0.8324
Transfer 0.8436 0.4813 0.5717 0.8455

performed in the active learning literature. However, due to these
frequent re-training process, the initial training set has to be kept very
small, and therefore the execution time to obtain improvements is high.
To attempt to mitigate the aforementioned problem, in Experiment 3,
we do not retrain the entire model after each iteration, which enables
us to increase the size of the initial training set. The results of this
experiment — i.e., transfer of a DNN-based NILM model to a new house
11

i

with a large pre-training dataset and fine-tuning are shown in Fig. 5 and
able 6.
It can be seen from Fig. 5, that the active learning process in this

xperiment is more stable — active learning curves do not deviate
ith fine-tuning, especially in the beginning of the process, which is
xpected since the models are not fully retrained. The optimal trade-off
oints are again achieved early, with only 5%–15% of added labelled
amples, and as observed in previous experiments before, pool-based
nd stream-based uncertainty sampling lead to similar performance.
In Table 6, gap values are negative both for maximum performance

for all appliances) and optimal points (for all appliances except dish-
asher, where it is still very small) when using pool- and stream-based
ampling strategies, meaning that bound performance is exceeded, im-
lying that it is worth to use large pre-training datasets and fine-tuning
pproach.
For toaster, the pre-trained model performs poorly in the new

ouse, but despite that, a higher 𝐹1 score is achieved compared to
xperiment 2. Poor initial performance is attributed to the statistical
iversity in toaster models, and the fact the House 2 toaster model,
nd hence load profile, is not available in other houses; however, the
ctive learning approach with fine-tuning overcomes this problem, as
hown in Fig. 5(c) and negative gap values in Table 6.
Due to the high computational demands of retraining, BatchBALD
n Experiment 2 could handle only a limited number of samples from
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Fig. 5. Experiment 3: Models pre-trained with large datasets transferred to REFIT House 2 for kettle (a), microwave (b), toaster (c) and dishwasher (d). Fine-tuning of the model
is performed in each active learning iteration without retraining. The red broken line shows the 𝐹1 score bound as in Experiment 1. The broken black line shows the initial 𝐹1
score obtained using pre-training set only. The dots represent the optimal points obtained using (4).
Table 6
Experiment 3: 𝐹1 score achieved by the NILM model transferred to a new house using
the large pre-training dataset and the fine-tuning approach to active learning when
labelling at most 25% of query pool.

Kettle Microwave Toaster Dishwasher

Maximum performance

Pool-based Improvement 12.79% 122.69% 4475.845% 16.84%
Gap −4.58% −19.98% −9.97% −2.56%

Stream-based Improvement 9.71% 103.55% 4226.17% 13.95%
Gap −1.72% −9.67% −3.97% −0.02%

BatchBALD Improvement 3.58% 35.23% 1090.60% –
Gap 3.96% 27.14% 71.39% –

Modified BatchBALD Improvement 7.26% 71.55% 2752.35% –
Gap 0.55% 7.57% 31.45% –

Optimal trade-off points

Pool-based Improvement 9.62% 116.48% 4243.62% 12.97%
Gap −1.64% −16.64% −4.39% 0.84%

Stream-based Improvement 9.71% 103.55% 4226.17% 12.47%
Gap −1.72% −9.67% −3.97% 1.27%

Modified BatchBALD Improvement 3.88% 62.30% 2752.35% –
Gap 3.68% 12.55% 31.45% –
12
the query pool. In this experiment, since re-training is not performed
after each label is added, but only fine-tuning, we adapt BatchBALD
such that the query pool updates each time a batch of samples is drawn
out of it and newly arrived samples are put in the pool to replace the
drawn ones. Thus, this could be considered as a hybrid of a pool- and
stream-based acquisition and is referred to modified BatchBALD.

The proposed modified BatchBALD method with the introduced
adaptation performs better than random sampling for kettle and mi-
crowave, compared to the bound performance. In general, BatchBALD
performs worse than pool- and stream-based uncertainty sampling,
which can be explained by the fact that all samples in the query pool
are not highly correlated and it is sufficient to look at their importance
and not mutual correlation.

A comparison of full retrain (Experiment 2) and fine-tuning (Experi-
ment 3) in terms of 𝐹1 score is presented in Table 7. Looking at the plots
in Fig. 5, and at Table 7, it can be observed that the performance of the
model that is pre-trained using a very large dataset and fine-tuned with
queried samples reaches higher 𝐹1 score for all appliances tested than
the model that is pre-trained using a smaller dataset and fully retrained
at each iteration (i.e, Experiment 2).

Using models pre-trained with large datasets and fine-tuning, in-
stead of full retrain, yields the best results among all 3 experiments,
with an important benefit that should not be neglected — a significant

decrease in time needed for completing the active learning process. An
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Table 7
Comparison of full retrain (Experiment 2) and fine-tuning (Experiment 3) — for each
appliance the best 𝐹1 score the model achieved when at most 25% of the query pool
s labelled.

Kettle Microwave Toaster Dishwasher

Maximum performance

Pool-based Full retrain 0.8587 0.4968 0.5251 0.8922
Fine-tuning 0.8889 0.6959 0.6818 0.9333

Stream-based Full retrain 0.8436 0.4813 0.5571 0.8860
Fine-tuning 0.8646 0.6361 0.6446 0.9102

BatchBALD Full retrain 0.8035 0.3396 0.4437 –
Fine-tuning 0.8163 0.4226 0.1774 –

Optimal trade-off points

Pool-based Full retrain 0.8521 0.4886 0.5089 0.8489
Fine-tuning 0.8639 0.6765 0.6472 0.9024

Stream-based Full retrain 0.8436 0.4813 0.5717 0.8455
Fine-tuning 0.8646 0.6361 0.6446 0.8984

Fig. 6. The speed-up of fine-tuning compared to the full retrain approach to active
learning for various sizes of the pre-training dataset (in the number of samples). The
horizontal axis shows the number of labelled samples from the query pool.

insight in speed-up that the fine-tuning approach enables is shown in
Fig. 6 for various sizes of the pre-training dataset, by using the number
f samples included in training as an indicator of time needed for
raining. The speed-up 𝑆 is computed as a ratio of samples included in
he model training with the full retrain approach (pre-training samples
queried samples) denoted as ∣𝐷𝐷𝐷𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 ∣, and samples included in the
odel training with the fine-tuning approach (queried samples only,
𝑄𝑄𝑄 ∣), according to:

=
∣𝐷𝐷𝐷pre−train ∣ + ∣𝑄𝑄𝑄 ∣

∣𝑄𝑄𝑄 ∣
. (7)

As it can be seen from Fig. 6, the larger the pre-training dataset,
the higher the speed-up of the fine-tuning approach. The fine-tuning
approach offers significant time savings, most of which happens in the
early active learning process, which is when the model’s performance
increase is most rapid, as per the results of all aforementioned ex-
periments. Moreover, as mentioned before, with fine-tuning, the size
of pre-training dataset can be arbitrarily large, since only the queried
samples are used during training.

The results of sensitivity analysis regarding the number of samples
queried for one iteration for random, pool- and stream-based uncer-
tainty are shown in Fig. 7. Note that the horizontal axis of the plot
shows the percent of the query pool labelled, i.e., the labelling effort.
It can be seen from the figure that the performance is not sensitive to
13

the number of queries per iteration.
Results of sensitivity analysis with regards to the confidence thresh-
old used for stream-based uncertainty acquisition function are pre-
sented in Fig. 8. A lower confidence threshold leads to more challenging
samples added to the training set, and hence faster improvement in
performance compared to higher thresholds. On the other hand, a
higher confidence threshold implies that more samples are going to
be considered, so the process runs for longer. For dishwasher, all
confidence threshold levels provide equally steep performance increase,
which is likely due to a large number of samples with the confidence
level below the lowest threshold (0.9), caused by other loads with
similar wattage present in the training dataset, for example, dishwasher
is often confused with washing machine [12].

5.4. Results summary

• Active learning can be successfully applied to model-based low-
frequency NILM to reduce labelling effort, and to enhance perfor-
mance of models transferred to new environments.

• Performance of stream-based acquisition function, that can be
performed online, is on par with pool-based one that requires
presence of the whole query pool in advance and hence cannot
be used online.

• Batch-aware acquisition function (BatchBALD [40]) was inferior
to other acquisition functions explored, due to its high computa-
tional demands. To mitigate the complexity and low accuracy of
the original BatchBALD, a modification of it has been introduced.

• Optimal trade-off between accuracy and labelling effort is
achieved with 5%–15% of query pool labelled in most of the
cases.

• Fine-tuning offers a good trade-off between accuracy and la-
belling effort and therefore full retrain at each iteration may not
be necessary.

• Performance of active learning with pool- and stream-based ac-
quisition functions is not sensitive to the number of samples
queried per iteration — same labelling effort yields same perfor-
mance, but if more samples are queried in one iteration, fewer
iterations are required.

• The lower the confidence threshold for stream-based uncertainty
acquisition function, the faster the improvement of the model
in the beginning of the active learning process; the higher the
confidence threshold, the longer the process runs.

6. Conclusions

In order to take advantage of large scale smart meter rollout and
NILM to be deployed widely to get itemized electricity consumption
reports for improved energy management, it is important to have a
way to adapt NILM algorithms to new houses efficiently, to get best-
performing algorithms with as little labelled data as possible. This
paper demonstrated the viability of active learning to reduce labelling
effort, as well as to improve transferability of deep learning models
to statistically different and dynamic electrical measurements. Three
different experiments were conducted — first, to show that labelling ef-
fort can be significantly reduced by using active learning and providing
labels only for valuable samples; second, to show that the performance
of DNN-based NILM models with active learning, can be enhanced
when transferred to a new environment by labelling reasonably small
amount of new samples that are informative; and third, to show that
full retrain of deep learning models after each active learning iteration
may not be necessary – fine-tuning with only newly labelled data from
the new environment can produce satisfactory results, offering a good
trade-off between performance achieved and computational resources
needed.

Different acquisition functions were explored, including pool- and
stream-based uncertainty, and batch-aware BatchBALD acquisition
function along with a modified BatchBALD to address complexity of
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Fig. 7. Experiment 3 — Sensitivity analysis: Models pre-trained with large datasets transferred to REFIT House 2 for kettle (a), microwave (b), toaster (c) and dishwasher (d).

ine-tuning of the model is performed in each active learning iteration with a variable number of samples queried — 128 (solid line), 256 (dash-dotted line) and 384 (dotted line).
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he original BatchBALD. Worth noting is that the performance of the
tream-based uncertainty, which can be implemented online, was on
ar with pool-based uncertainty, which requires availability of the
hole query pool in advance, and hence cannot be implemented online.
atchBALD acquisition function can consider only small query pool
izes, because of its high computational requirements, and therefore
ts performance was inferior to other acquisition functions. To over-
ome this, a modification is introduced to update the query pool in
stream-like fashion, to obtain a hybrid of pool- and stream-based
trategy. Though the modified BatchBALD outperformed the original
atchBALD, its performance is still inferior to pool- and stream-based
ncertainty strategies. Optimal trade-off between labelling effort and
ccuracy was discussed — in most of the cases, the optimal point was
chieved with 5%–15% of query pool labelled, which indicates that
abelling effort could be reduced by as much as 85%. Changing number
f samples queried per active learning iteration offers achieving the
ame performance in lower number of iterations, but with the same
abelling effort. Setting lower threshold for stream-based uncertainty
cquisition function provides steeper increase in performance, while
etting higher threshold offers a longer lasting active learning process.
Further work is required to develop a batch-aware and computation-

lly efficient query strategy that is specifically designed for NILM. Also,
nteraction of NILM domain experts or end users would be worth ex-
loring as well to determine the impact of labelling error, as people are
rone to making errors when providing labels for queried samples, and
heir trust and confidence in using AI can be affected by the process.
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Fig. 8. Experiment 3 — sensitivity analysis: Models pre-trained with large datasets transferred to REFIT House 2 for kettle (a), microwave (b), toaster (c) and dishwasher (d).
ine-tuning of the model is performed in each active learning iteration using the stream-based uncertainty acquisition function with different confidence thresholds (THR).
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