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Abstract—Despite its popularity in literature, there are few 
examples of machine learning (ML) being used for industrial 
nondestructive evaluation (NDE) applications. A significant 
barrier is the ‘black box’ nature of most ML algorithms. This 
paper aims to improve the interpretability and explainability 
of ML for ultrasonic NDE by presenting a novel 
dimensionality reduction method: Gaussian feature 
approximation (GFA). GFA involves fitting a 2D elliptical 
Gaussian function an ultrasonic image and storing the 
seven parameters that describe each Gaussian. These 
seven parameters can then be used as inputs to data 
analysis methods such as the defect sizing neural network 
presented in this paper. GFA is applied to ultrasonic defect 
sizing for inline pipe inspection as an example application. 
This approach is compared to sizing with the same neural 
network, and two other dimensionality reduction methods 
(the parameters of 6 dB drop boxes and principal component 
analysis), as well as a convolutional neural network applied 
to raw ultrasonic images. Of the dimensionality reduction 
methods tested, GFA features produce the closest sizing 
accuracy to sizing from the raw images, with only a 23% 
increase in RMSE, despite a 96.5% reduction in the 
dimensionality of the input data. Implementing ML with GFA 
is implicitly more interpretable than doing so with principal 
component analysis or raw images as inputs, and gives 
significantly more sizing accuracy than 6 dB drop boxes. 
Shapley additive explanations (SHAP) are used to calculate 
how each feature contributes to the prediction of an 
individual defect’s length. Analysis of SHAP values 
demonstrates that the GFA-based neural network proposed 
displays many of the same relationships between defect 
indications and their predicted size as occur in traditional 
NDE sizing methods. 

Index Terms—Interpretability, machine learning 
ultrasound, defect characterization, neural network, plane 
wave imaging, simulation 

I. INTRODUCTION

Inferring the structural integrity of components without 

damaging them is an essential task for many industries, 

especially those with high-value or safety critical components. 

Non-destructive evaluation (NDE) techniques solve this 

challenge through analysis of a component’s response to 

stimuli such as X-ray or ultrasound. Most NDE inspections 

must be carried out many times and usually produce very high-

dimensional data, making manual data interpretation 

expensive. This motivates the use of automated data analysis, 

and as this is essentially a pattern recognition challenge, 

machine learning (ML) is well-suited. This has been shown 

repeatedly by the demonstration of human-level data 

interpretation performance both in NDE [1]–[9] as well as 

related fields such as computer vision [10] and medical imaging 

[11], [12].  

This paper considers defect sizing for ultrasonic inline pipe 

inspection as an example industrial application. Earlier work 

for this application has shown that a convolutional neural 

network (CNN, [13]) can provide accurate defect sizing for 

experimental data, even when a simulated training set is used 

[9]. This drastically lowers the amount of experimental data 

required to implement ML based defect sizing. It has also been 

shown that domain adaptation can be used to further increase 

sizing accuracy if a small amount of experimental training data 

is available to supplement simulated training data [14] and 

effective uncertainty quantification is possible using a deep 

ensemble [15]. However, qualification of inspections using ML 

for safety critical applications such as pipeline inspection is still 

a challenge due to the ‘black-box’ nature of ML making it hard 

to build trust in, and certify, its predictions. This paper aims to 

tackle this issue by improving both the interpretability and local 

(i.e., for a specific test sample) explainability of ML based 

models for ultrasonic defect sizing. Note that in this paper the 

term model is used exclusively to describe any algorithm learnt 

from data, for example, a neural network, while simulation is 

used to describe a physics-based approach to approximating 

real data. 

The precise definitions for interpretability and explainability 

are disagreed upon both between and within research fields. 

This work follows the definitions laid out in [16]. 

Interpretability is a domain specific notion, but in general it is 

the ability for a human to understand the link between cause 

and effect without anything other than the model itself. An 

explanation is an approximation of a model that aims to 

describe the cause of a local prediction. The term explainability 

is used here to follow convention but, as pointed out in [16], 

“summaries of predictions,” “summary statistics,” or “trends” 

are more truthful descriptors as the fact that “explanations” are 

an approximation to the complex internal calculations within a 

model is often overlooked. 

Explanations for ML based on images are commonly 

provided by saliency maps which describe the locations in the 

input data that most significantly impact the prediction. There 

are many methods for creating saliency maps, such as gradient-

weighted class activation mapping (grad-CAM, [17]), local 

interpretable model-agnostic explanations (LIME, [18]), deep 

learning important features (DeepLIFT, [19], [20]) and layer-

wise relevance propagation (LRP, [21]). Shapley additive 

explanations (SHAP, [22]) provide a unified view of these 

methods, giving model-agnostic feature importance values for 
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any type of input data and any type of model. However, as 

pointed out in [16] a saliency map does not show what about 

that location in the image is important (e.g., 

texture/amplitude/color). In the authors’ opinions this means 

saliency maps are of little use for most ML based defect 

classification where images or time domain signals are used as 

input, as highlighting the defect’s indication in the data is of 

little use when it is usually already clear where the indication 

is. In other words, the challenge is interpreting how properties 

of an indication inform the prediction, rather than explaining 

which parts of an image led to the prediction. The root cause of 

this problem is a lack of interpretability in the model, due to the 

complex nature of the input data.  

While interpretable ML is a relatively new field it has 

attracted a lot of research attention from the computer science 

community in recent years, due to its potential to address the 

‘black box’ nature of ML [23]. However, within NDE there 

have been only a small number of publications with a focus on 

either explainable or interpretable ML. Saliency-map based 

explanations have been produced using LIME, for ultrasonic 

defect detection [24]. Text-based explanations have been used 

with a human-designed decision tree for crack characterization 

[25], an effective approach when the decision-making process 

of the model is simple enough to be explained in a small 

number of sentences. Improving the interpretability of ML 

methods for ultrasonic NDE data has been achieved by 

replacing the trainable convolutional filters of a CNN with 

filters matched to the shape of Lamb waves [26] in application 

to localizing damage in aluminum plate using guided waves. 

Another published approach is to use well-known 

dimensionality reduction methods such as principal component 

analysis (PCA) to reduce the complexity of input data. This has 

been used with a support vector machine (SVM) to detect 

damage in carbon fiber reinforced polymer plate using 

ultrasonic guided wave data [27].  

As discussed in [28] it is important to consider what 

constitutes useful interpretability for the relevant domain when 

applying ML, as it can vary a lot between applications. In NDE, 

useful interpretability usually stems from the ability to relate a 

model’s inner workings to the reasoning of a skilled human 

operator or a physics-based approach. Ensuring input data is of 

a reasonably low dimensionality is also essential for achieving 

this goal, as humans are not able to process high-dimensional 

data effectively. To achieve improved interpretability for NDE 

data analysis, this paper proposes a novel dimensionality 

reduction method, optimized for ultrasonic NDE images, called 

Gaussian feature approximation (GFA). GFA reduces 

ultrasonic images to a small number of meaningful descriptors 

of defect indications, making models trained on these 

descriptors interpretable and explainable, while still providing 

accurate defect sizing. GFA operates by fitting a 2D elliptical 

Gaussian to defect indications in ultrasonic images. Predictions 

of a ML model trained on GFA features are interpretable 

because GFA features are based on properties of the defect 

indication, which are meaningful to a human operator. This 

contrasts with ML models trained on raw images, where the 

functional relationship between the input and output is very 

hard for humans to interpret. Local explanations are enabled by 

GFA as methods such as SHAP can be used to indicate how 

individual properties of a defect indication contribute to the 

defect size prediction. In industrial use this can enable each 

defect sizing prediction to be presented alongside local feature 

importance values. These can be viewed by a skilled operator 

to ensure predictions are being informed by features that are 

relevant to crack size (e.g., amplitude and indication size in 

direction of the defect). Global explanations (i.e., describing 

the average behavior of the sizing model) could also be 

generated, through the use of techniques such as partial 

dependence plots and global surrogate models, but these 

methods are unable to produce the per-sample explanations that 

SHAP can provide. 

To allow comparison of sizing accuracy using GFA, two 

other well-known methods are applied to create reduced 

dimensionality feature spaces: principal component analysis 

(PCA) and the parameters of 6 dB drop boxes fitted around 

defect indications. Defect sizing is achieved by training a dense 

neural network on PCA, 6 dB drop and GFA features as well as 

a convolutional neural network (CNN) [13] on the raw 

ultrasonic images. CNNs are state of the art for learning from 

images and using them to address the sizing challenge 

presented in this paper has been explored previously in [9]. 

CNNs are used in this paper as a high accuracy, low 

interpretability, baseline method to compare against. 

All three dimensionality reduction methods and their 

corresponding sizing algorithms are applied to ultrasonic plane 

wave imaging (PWI) images. Detection is already considered 

complete, so the target is to size the defects of interest (surface 

breaking cracks) from the PWI images. The simulation and 

experimental set-ups are designed to closely approximate the 

conditions in the example application of this paper: ultrasonic 

inline pipe inspection. The usefulness of GFA, coupled with a 

neural network for sizing, and kernel SHAP to produce local 

explanations, is judged by interpretability, explainability and 

sizing accuracy. The rest of the paper is structured as follows. 

Section II describes the inspection setup, and all data sets used 

in this paper, Section III describes all relevant data pre-

processing and analysis methods, Section IV the sizing 

accuracy and explainability results and Section V conclusions. 

II. INSPECTION SETUP AND DATA SETS

This section describes the inspection setup, the experimental 

and numerical procedures used to create PWI data, and the 

parameter space covered by that data. Following on from 

previous work, these setups and procedures are the same as 

those used in [9], [14] & [15]. 

A. Inspection, Imaging and Simulation Methodologies

Inline pipe inspection is a technique often used to assess the

integrity of oil and gas pipelines in which a pipeline inspection 

gauge (PIG) travels within the pipe, making measurements of 

the surrounding pipe-wall. One of the aims of this inspections 

is to detects and size surface breaking cracks. These defects can 
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occur while the pipeline is in operation, due to environmental 

factors and in-service stresses. While these cracks can form at 

any radial location, the stress distribution in pipes means they 

usually occur on the outer surface. This work focuses on the 

‘offline’ sizing (i.e., once the PIG has been removed from the 

pipe) of these outer-wall, surface-breaking cracks for oil 

pipelines, with inline detection assumed already complete. An 

inspection setup is created to closely approximate in-service 

conditions without the requirement to access an actual oil 

pipeline. As illustrated in Fig. 1a a commercially available 

5MHz, 0.3 mm pitch, 40 element phased array (Imasonic, 

Voray-sur-l'Ognon, France) is used to induce shear plane waves 

in a 10 mm thick stainless-steel plate (approximating a large 

diameter pipe wall). The array is operated using a Peak NDT 

(Derby, UK) MicroPulse 5 array controller, receiving on all 

elements individually, with a sample rate of 50MHz, to form 

plane wave capture (PWC) data. The array is immersed in water 

as an approximation for oil that has similar sound speed. 

Surface-breaking cracks are approximated by 0.3 mm wide 

electrical discharge machine (EDM) notches. 

As shown in Fig. 1b, data is collected from either side of the 

defect. This is done to replicate the ring of arrays found on a 

PIG. Each of these arrays fires a normal-incidence wave at 𝜓 =
0° and an angled wave that travels in the fluid at 𝜙 = ±19°, 

inducing a 𝜓 = ±45° shear wave in the steel plate. The normal-

incidence wave is used to calculate standoff (𝜍) and thickness 

(𝛤), to enable accurate imaging. All sizing is done using the 

angled waves. An A-Scan is received from the angled wave on 

each of the array’s 40 elements, forming the PWC data. This is 

then filtered using a Gaussian filter centered at 5 MHz with a -

40 dB half width of 4.5 MHz. The filtered PWC data is then 

focused along a ray path to create images, with the overall 

process termed Plane Wave Imaging (PWI) [29]. The term ’ 

views’ is used to describe ray-paths when more than one is 

applied to the same physical area. Views are described by the 

modalities of their transmit and receive legs (L for longitudinal, 

S for shear) separated by a hyphen. The two views found to be 

most successful for sizing the surface breaking defects 

considered in this paper are the SS-S and SS-L half-skip views 

(i.e., reflecting once off the backwall of the plate in 

transmission but returning directly in reception). Each array 

produces an SS-S and SS-L view for each defect, with the 

region of interest being the full 10 mm depth of plate thickness 

Fig. 1. a) A diagram of the inspection scenario using a plane wave at angle 𝜓 to the sample normal transmitted in the sample with a standoff and 
thickness of 𝜍 and 𝛤 where 𝐿, 𝜃 and 𝑃 represent the crack length, angle and position respectively, b) all half-skip shear (S) and longitudinal (L) 
mode ray-paths used in this paper where 𝑥, 𝑧 are the co-ordinates of the imaging point and 𝑥𝑜𝑢𝑡, 𝜍 the co-ordinates of the returning ray on the front 
wall, c) an example set of simulated images for a defect with 𝑃 = 19 mm, 𝐿 = 2 mm and 𝜃 = 8° and d) a fully experimental set of images for a 
defect of the same parameters. Note that the black lines show the true extent of the defects, and all images are on the same dB color scale, 
normalized to the maximum intensity in the experimental set. The areas displayed with more transparency are outside the region insonified by the 
incident plane wave. Figure reproduced from [9].  
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and across the insonified region of the backwall, located at 12-

22 mm from the array centre in the X-direction. This region is 

imaged with pixel size (𝛿) set at the diffraction limit, i.e., half 

the shear wavelength (
𝜆𝑆

2
= 0.317 mm), to include all available 

information without unnecessary computational cost. These 

two views for the two arrays result in a 32x32x4 set of data.  

Simulated data is used to train the neural networks presented 

in this paper, as creating sufficient experimental training data 

is prohibitively slow and expensive. To achieve a good trade-

off between simulation accuracy and computational expense a 

hybrid finite element (FE) / ray-based approach is used. The 

defects are modelled as rectangular, 0.3 mm wide perfect 

reflectors as there is minimal transmission through them. A 

local FE simulation is applied to calculate the scattering matrix 

for defects across all {𝐿, 𝜃} combinations in response to a 

unimodal plane wave [30]. These scattering matrices are then 

input into an analytical ray-based model [31], [32] to produce 

PWC data for all {𝐿, 𝜃, 𝑃} combinations. The contributions 

from grain noise and structural reflections are included by 

summation with PWC data recorded from a defect-free sample 

[33]. The resulting A-Scans are then filtered and imaged, as 

described above, to form the four relevant PWI images. This 

simulation approach follows the one used in [9], [14], [15]. 

Example sets of simulated and experimental images for a 

defect of 𝑃 = 19 mm, 𝐿 = 2 mm and 𝜃 = 8° is given in Fig. 

1c. These images are passed through one of the dimensionality 

reduction methods described in Section III.B before being sized 

using the neural network described in Section III.C. 

B. Dataset Summary

The application considered in this paper requires the sizing

of defects, after their detection. The target is therefore the 

extent of the defect perpendicular to the surface, 𝐷 = 𝐿 cos(𝜃). 

The parameter space of defects considered is defined by 𝑃, 𝐿, 𝜃. 

All experimental defects used are 0.3 mm wide notches on the 

surface of the stainless-steel plate furthest from the array, 

manufactured using electrical discharge machining (EDM). 

Table I summarizes the experimental data. Variation in 𝑃 is 

achieved by movement of the array relative to the defect and 

negative 𝜃 achieved by positioning the array on the other side 

of the defect. This results in a total of 1,485 experimental PWI 

image sets from the 30 manufactured defects. Table II describes 

the parameter space coverage of the 16,875 simulated PWI 

image sets. To enable the ML based sizing algorithms 

described in Section III.C the simulated and experimental 

datasets are further split into: 

Simulated, Training: 85% (14,343) of simulated data used to 

optimise the weights and biases of the network. 

Simulated, Validation: 7.5% (1,266) of simulated data used 

during the design stage to qualitatively test for overfitting to the 

training set. 

Simulated, Testing: 7.5% (1,266) of simulated data used to 

test the sizing accuracy of the network on previously unseen 

data. 

Experimental, Validation: 15% (216) of experimental data 

used during the design stage to select the network’s 

hyperparameters, test for overfitting to the simulated data and 

implement the training stop condition. 

Experimental, Testing: 85% (1,269) of experimental data 

used to test the network’s sizing accuracy on previously unseen 

data. 

The training/validation/testing split for simulated data is 

drawn randomly, from a uniform distribution, across all image 

sets (i.e., across all {𝐿, 𝜃, 𝑃}). This contrasts with the 

experimental validation/testing split, which is drawn randomly 

in {𝐿, 𝜃} space. This distinction guarantees that data from the 

same physical defect is not split across different sets, ensuring 

that the 𝐿, 𝜃 combinations used to demonstrate performance are 

distinct to the 𝐿, 𝜃 combinations used to tune the network’s 

hyperparameters and implement the training stop condition. 

TABLE I EXPERIMENTAL DATA SET SUMMARY 
The experimental test set contains only the L/θ combinations marked “Test” 

while the experimental validation set only those marked “Val”. 

Table reproduced from [15] 

TABLE II SIMULATED DATA SET SUMMARY 
Table reproduced from [15] 
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III. DATA PROCESSING AND ANALYSIS METHODS

This section describes the data processing and analysis 

methods used in this paper: an initial image windowing step, 

the dimensionality reduction used to improve interpretability, 

the neural network architectures used to predict defect size, and 

kernel SHAP: the technique used to produce local explanations. 

A. Windowing Images

As exampled in Fig. 1c,d, the PWI image sets in this paper

often contain artefacts caused by views other than the one being 

imaged. This can cause difficulties for sizing algorithms, 

especially those using transform-coding-based features (such 

as PCA), as information about the artefact can become 

‘entangled’ with information about the imaged mode. To avoid 

this, the PWI images are windowed around the defect location 

before implementing any dimensionality reduction or sizing in 

this paper. This step is not a fundamental requirement for any 

of the presented methods, but is a logical pre-processing step, 

as forcing the model to focus on the location of the defect, and 

removing unhelpful information, improves sizing accuracy and 

simplifies explanations. It is also simple to execute for this data 

set as surface-breaking defects are easy to locate due to their 

strong corner reflections when insonified at 𝜓 = ±45°. 

Locating a defect on the backwall is implemented by 

summation of the four associated PWI images (see Fig. 2a for 

example). The 𝑋-location is then found using the maxima in the 

resulting 32x32 composite image. Using this method on all 

experimental and simulated data in this paper produces a 

maximum 𝑋-location error of 0.56 mm (1.76 pixels). A 

window is then applied to the PWI images around the 

calculated backwall location of the defect (𝑥𝑊) to isolate the 

correct indication. In this paper, the window size is set to be 

3.15 mm (10 pixels) in 𝑋 and 6.30 mm (20 pixels) in 𝑍. This 

window size is selected to be large enough to cover indications 

from all possible defects within the domain of operation, with 

minimal contributions from artefacts. An example of a set of 

windowed PWI images is given in Fig. 2a. 

B. Dimensionality Reduction Methods

Three different dimensionality reduction methods are

applied to the windowed PWI images in this paper; PCA, 6 dB 

drop and GFA. The first two of these methods are well-known 

and presented for comparisons to GFA. 

1) Principal Component Analysis

PCA is the process of finding the sequence of orthogonal

vectors that best explain the variance of sets of high 

dimensional data [34]. PCA is often used to find a reduced set 

of features, with minimal loss of information, for use in ML 

[35]. In this paper, the principal components are calculated 

using the windowed, simulated, training set PWI images. The 

four images per defect are handled individually, using different 

PCA transforms, to preserve the separation of information 

between images. 𝑀𝑃 different principal components are kept

for each 10×20 image. To make the reduced dimensionality 

consistent with that of with GFA (described in Section 3)), 

𝑀𝑃 = 7 in this paper. As shown in Fig. 3, 𝑀𝑃 = 7 describes

96% of the variance in the simulated training set, showing that 

the majority of the information in the images has been captured. 

Fig. 2. a) An example of an experimental, windowed PWI image set, from a defect with 𝑃 = 17.4 𝑚𝑚, 𝐿 = 2 𝑚𝑚 and 𝜃 = 15° with the calculated 
location of the defect on the backwall (𝑥𝑊) shown as a blue cross and the true extent of the defect shown in black, b) the top 6 dB of the windowed 
PWI images (in black) and their 6 dB bounding boxes (in red) and c) 2D elliptical Gaussians fit to the windowed PWI images using GFA. In all 
images the full, unwindowed image, is displayed in the background.  
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2) 6 dB Drop

6 dB drop is a well-established defect sizing method in NDE.

It is based upon the idea that if a defect is the strongest indicator 

in an image, the image region within 6 dB of the peak value can 

be used as a good approximation of the true size of the defect. 

Traditionally, crack-like defects are sized using the longest 

edge of a rectangular bounding box that encloses all pixels 

within 6 dB of the peak [36].  

In this paper, the 6 dB drop bounding box is obtained by 

finding the rectangle with the minimum area that can fit the 

relevant pixels. The relevant pixels are selected by picking the 

region of conjoined pixels above -6 dB with the largest total 

amplitude. Picking the highest conjoined region of high 

amplitude in this way reduces the chance of noise expanding 

the size of the box. The SS-L, 𝜓 = 45° image in Fig. 2b shows 

an example of high amplitude noise excluded by this approach. 

The 6 dB drop bounding box calculated with this method is 

used both for dimensionality reduction and as a direct sizing 

method in this paper. Calculating the parameters of the 

bounding box (𝑋-position, 𝑍-position, orientation, width and 

height), results in 5 features per image. These features carry no 

information directly related to the indication’s amplitude. GFA 

features do contain amplitude information, so for a fair 

comparison, when sizing from 6 dB box features using the 

neural networks presented in Section C.2), two additional 

features are used, resulting in 𝑀6𝑑𝐵 = 7 features. These two

additional features are chosen to be the maxima and root mean 

square (RMS) of all pixels within the bounding box, above -

6 dB (i.e., the black pixels in Fig. 2b). Direct, traditional sizing 

with 6 dB drop is also considered, and is implemented by taking 

the mean of the longest edges of the boxes fitted to each image. 

3) Gaussian Feature Approximation

GFA is a novel dimensionality reduction method presented

in this paper with the aim of creating a feature space that is 

informative (i.e., retains the information needed for accurate 

defect sizing), interpretable (i.e., meaningful to NDE operators) 

and improves the quality of local explanations. GFA is 

performed by fitting a 2D elliptical Gaussian function to each 

PWI image and using the parameters that define that Gaussian 

as the features of the image. GFA features describes a defect 

indication in a similar fashion to 6 dB drop features, but with a 

more robust fitting procedure that is not dependent on selecting 

a threshold value, and avoids the need for pre-processing to 

deal with conjoined pixels. It is also a richer feature space, 

containing more information about the indications shape, as 

well as the background noise level. As shown in Section IV.A, 

these differences make sizing on GFA features significantly 

more accurate than sizing on 6 dB drop features. 

GFA is motivated by the importance of a defect indication’s 

amplitude, spatial size and location in traditional NDE sizing 

techniques. These underlying features are encoded within PWI 

images, but not in a form that allows for interpretable models 

to be trained on them. Fitting an appropriate shape to a PWI 

image disentangles properties of the defect indication from 

each other, as well as from information relating to noise and 

artefacts. The shape used for fitting in GFA is a 2D elliptical 

Gaussian, this can be described by amplitude at position in the 

𝑋 and 𝑍 direction (𝑥, 𝑧), given by 

𝑓𝑥,𝑧(𝐴, 𝑥0, 𝑧0, 𝜎𝑋, 𝜎𝑍, 𝛩, 𝐵)

= 𝐴𝑒−𝑎(𝑥−𝑥0)2−𝑏(𝑥−𝑥0)(𝑧−𝑧0)−𝑐(𝑧−𝑧0)2
+ 𝐵

(1) 

𝑎 =
cos2(𝛩)

2𝜎𝑋
2

+
sin2(𝛩)

2𝜎𝑍
2

 , 

 𝑏 =
sin(2𝛩)

2𝜎𝑋
2

−
sin(2𝛩)

2𝜎𝑍
2

 , 

𝑐 =
sin2(Θ)

2𝜎𝑋
2

+
cos2(Θ)

2𝜎𝑍
2

(2) 

using seven GFA features: amplitude (𝐴), 𝑋-position (𝑥0), 𝑍-

position (𝑧0), 𝑋-sigma (𝜎𝑋), 𝑍-sigma (𝜎𝑍), angle (𝛩) and offset

(𝐵). Finding the optimum set of parameters is achieved by 

minimizing 

ℓ(𝐴, 𝑥0, 𝑧0, 𝜎𝑋, 𝜎𝑍, 𝛩, 𝐵) = ∑ ∑(𝑓𝑥,𝑧 − 𝐼𝑥,𝑧)2

𝑧𝑥

(3) 

Fig. 3. The variance of the training set captured by different numbers 
of PCA components. 

TABLE III  INITIAL GUESS AND BOUNDS FOR GFA FEATURES. 
Lower and upper bounds are inclusive. 

max(Ix,z) refers to the maxima in the current image for which GFA features are being calculated. 

xW is the centre of the 10×20-pixel window and δ is the image resolution (δ =
λS

2
= 0.317 mm)

η is calculated by the root mean square of an experimental PWI image set from a defect free sample. 

Parameter Amplitude, 𝐴 
𝑋-position, 𝑥0

(mm) 

𝑍-position, 𝑧0

(mm) 

𝑋-sigma, 𝜎𝑋

(mm) 

𝑍-sigma, 𝜎𝑍

(mm) 

Angle, 𝛩 

(rad) 
Offset, 𝐵 

Initial guess max(𝐼𝑥,𝑧) argmax
𝑥

(𝐼𝑥,𝑧) argmax
𝑧

(𝐼𝑥,𝑧) 0.5𝛿 2δ 0 0 

Lower bound 0 𝑥𝑊 − 5δ 0 0 0 −𝜋/4 0 

Upper bound max(𝐼𝑥,𝑧) 𝑥𝑊 + 5δ 20δ 10δ 20δ 𝜋/4 20𝜂 
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where 𝐼𝑥,𝑧 is the windowed PWI image and the summations are

over the windowed region only. This optimization problem is 

solved in this paper by using SciPy’s curve fitting function [37] 

with the trust region reflective minimization algorithm [38] as 

it is particularly suitable for large, bounded problems such as 

this one. The bounds and initial guess for the seven parameters 

that define 𝑓𝑥,𝑧 are described in Table III. It is important to note

that bounding 𝑥0 and 𝑥0 within the window is necessary as ℓ
has zero gradient when the Gaussian’s centre is far away from 

the window. Also, constraining −
𝜋

4
< 𝛩 <

𝜋

4
 is necessary to

ensure there aren’t two equivalent solutions with 𝜎𝑋 and 𝜎𝑍

values swapped. 

In principle, more than one Gaussian could be fit to each 

image. However, for the application presented in this paper, 

adding a second Gaussian per image and sizing using a neural 

network (as presented in Section C.2)) was not found to 

increase sizing accuracy. This is likely because most 

information useful to the sizing process can be captured by one 

Gaussian. This is further evidenced by the root mean square 

error (RMSE) for GFA based sizing only being 23% higher 

than sizing from the original image (detailed sizing accuracy 

results are presented in Section IV.A). It should be noted that if 

fitting more than one Gaussian is deemed necessary it should 

be done in series (i.e., fit the second Gaussian, 𝑓𝑥,𝑧
2  , to 𝐼𝑥,𝑧 −

𝑓𝑥,𝑧
1 ) rather than in parallel. This is to ensure the ordering of the

GFA features is meaningful to the sizing algorithm. More 

complexity could also be added to 𝑓𝑥,𝑧 by using more complex-

shaped fitting functions with more parameters, such as 

skewness or properties of background noise, but this would 

reduce the interpretability of the feature space, so should not be 

done without certainty that the extra features are informative 

for the task at hand. 

GFA, as introduced in this section, creates a feature space 

that is implicitly more interpretable than the raw PWI images 

and enables useful local explanations. GFA features are 

interpretable as they each uniquely describe a property of the 

defect indication which is meaningful to an NDE practitioner. 

They are also only minorly affected by background noise and 

artefacts, meaning sizing on GFA features is guaranteed to be 

informed by the defect indication, and not overfitted to other 

confounding features. Local explanations are made more useful 

by GFA as they can ascribe importance to specific aspects of a 

defect indication with GFA features instead of a saliency map 

in real space. Explainability is further discussed in Sections D 

and 0. 

C. Neural Network Architectures for Defect Sizing

1) Convolutional Neural Network

As a baseline approach with high accuracy and low

interpretability the raw PWI images are sized using the CNN 

designed for this data set in [9]. CNNs are state-of-the-art for 

image classification tasks due to the power of convolutional 

layers to map structured, high-dimensional data to informative 

feature spaces [10]. The CNN architecture used here is 

illustrated in Fig. 4a. The input is composed of the four 32×32 

PWI images stacked in the third dimension, akin to how natural 

Fig. 4. Neural network architectures used in this paper, as described in Section III.C: a) CNN, b) NN-Single, c) NN-Split. 
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image CNNs treat red, green and blue channels. The general 

structure is made up of repeated blocks of convolutional and 

max-pooling layers for feature extraction, followed by fully 

connected layers for regression. Rectified linear unit (ReLU) 

activation is used throughout. Ten percent dropout is applied to 

the fully connected layer inputs for regularization. The state-of-

the-art Adam optimizer [39] is used to train the CNN with a 

learning rate of 0.001, in mini-batches of 128, with a patience 

of 150 epochs (i.e., until 150 epochs with no reduction in 

experimental validation set loss). The network hyperparameters 

(depth, filter size and number, dropout rate, neuron number 

etc.) have been selected to optimize experimental validation set 

accuracy. More details on this design process can be found in 

[9]. Refer to [40] for ML terminology. 

There are three minor changes to the implementation of the 

CNN between [9] and this paper. Firstly, only a single network 

is needed to predict 𝐷. The network used matches the structure 

of the L network in [9]. Secondly, dropout is increased to 0.3, 

which resulted in slightly better experimental validation set 

accuracy (~4%) at the cost of needing ∼50 more epochs to 

converge. Thirdly, the windowing of the PWI images described 

in Section A must be accounted for. For computational 

Fig. 5. Experimental validation set RMSE for the NN-Split architecture applied to GFA features, with different hyperparameters. Details of the 
exact hyperparameters tested are given in Table IV. The error bars represent ± standard deviation over five independent initializations. 

TABLE IV  HYPERPARAMETERS FOR ALL TESTED NN-SPLIT ARCHITECTURES, AS SHOWN IN FIG. 5.  
The selected architecture is highlighted in green. 

Number of 

weights 

RMSE 

(mm) 

Neurons in each layer  

(before full connection) 

Neurons in each layer 

(after full connection) 

3329 0.64 1024, 1024, 1024, 1024 64, 32 

3409 0.69 16, 16 64, 32 

4481 0.61 16 64, 32 

4769 0.62 32, 32 64, 32 

7873 0.55 64, 64 64, 32 

12225 0.55 64, 64, 64, 64, 64, 64 64, 32 

20609 0.47 256 64, 32 

52321 0.50 512, 256, 128, 64, 32 64, 32 

53889 0.46 256, 256, 256 64, 32 

70529 0.45 256, 256, 256 64, 32 

87169 0.44 256, 256, 256, 256, 256 64, 32 

103809 0.45 256, 256, 256, 256, 256, 256, 0, 0 64, 32 

369281 0.42 512, 512, 512, 512, 512, 512 64, 32 

602241 0.39 1024, 1024, 1024 64, 32 

865409 0.40 1024, 1024, 1024, 1024 64, 32 

865921 0.40 1024, 1024, 1024, 1025 64, 32, 16 

933057 0.39 1024, 1024, 1024, 1027 128, 32 

939265 0.40 1024, 1024, 1024, 1026 128, 64, 32 

1128577 0.40 1024, 1024, 1024, 1024, 1024 64, 32 

1391745 0.40 1024, 1024, 1024, 1024, 1024, 1024 64, 32 

1918081 0.39 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 64, 32 

5402753 0.39 2048, 2048, 2048, 2048, 2048, 2048 64, 32 
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efficiency this could, in principle, be done by reducing the input 

layer size to 10×20×4 and concatenating the 𝑋-position with 

flattened features before the dense layers. However, as the 

purpose of including CNN-based sizing in this paper is as a 

baseline for sizing accuracy, computational efficiency is not of 

major concern. Therefore, the images are simply zero-padded 

to their original 32×32×4 size before being input into the CNN. 

This offers a simple way to encode 𝑋-position without 

drastically altering the CNN design and potentially reducing 

sizing accuracy. 

2) Dense Neural Network

Training a sizing algorithm from a set of unstructured

numerical features such as those produced by GFA, PCA and 

6 dB drop can be done with many ML algorithms (e.g., random 

forest, support vector machine and k-nearest neighbors). In this 

paper, sizing from the reduced feature sets is done using a dense 

neural network, i.e., layers of neurons that are fully connected 

to preceding layers. This gives a natural comparison with the 

CNN as both algorithms operate in a similar fashion and have 

the capability to represent complex, non-linear functions. To 

match the CNN, the dense neural networks in this paper are 

trained with the Adam optimizer and use ReLU activation 

functions on all layers except the input and output. As with 

CNNs these are also common design choices for dense neural 

networks. All other hyperparameters are selected via the same 

design process as presented in [9]; grid search, with selection 

made using the lowest GFA experimental validation set RMSE. 

The optimal learning rate was found to be 1 × 10−4.

Application of dropout and L2 regularization were tested but 

found to increase validation set error, suggesting that they are 

unnecessary for this reduced dimensionality input data, and so 

are not used.  

In the initial design process for the number of neurons in 

each layer (i.e., width) and number of layers (i.e., depth), the 

dense neural network was set to follow a common structure: a 

sequential set of fully connected layers of reducing width. This 

architecture is illustrated in Fig. 4b and referred to as NN-

Single from here onwards. However, in following iterative 

design stages it was found that fixing the number of neurons 

but removing connections between the features from different 

image modes improved performance. This produces a structure 

of four dense neural networks, fully connected in the final few 

layers. This architecture is illustrated in Fig. 4c and referred to 

as NN-Split from here onwards. The authors believe that NN-

Split outperforms NN-Single, even with the same number of 

neurons, because it allows the initial layers to compose the 

features from an individual image into a more expressive form 

without immediately entangling them with features from other 

images. The experimental validation set RMSE for all NN-Split 

widths and depths tested are given in  Fig. 5, and their 

hyperparameters described in Table IV. As found in [9] for the 

design of the CNN, NN-Split with GFA and 6 dB features 

shows a ‘diminishing returns’ relationship between the number 

of weights (here used as a proxy for complexity) and sizing 

accuracy. PCA features provide good sizing accuracy even with 

the lowest complexity networks tested. The architecture 

selected (indicated by a dashed line in Fig. 5, and illustrated in 

Fig. 4c) is deemed to be a good trade-off between 

computational complexity and performance for GFA features, 

and provides good sizing accuracy with all three feature types. 

It is interesting to note that despite the input data dimensionality 

reduction of 96.5% (i.e., from 10 × 20 × 4 to 7 × 4) the 

number of weights in NN-Split are only 76% lower than in 

CNN. This suggests that the relationship between both 6 dB 

drop and GFA features, and crack size is still very complex and 

non-linear, despite the dimensionality reduction. 

Understanding why PCA features require a significantly less 

complex neural network to achieve good sizing accuracy 

requires further research. 

D. Local Explanations using Kernel SHAP

There are many popular methods for creating local

explanations for ML predictions. A unifying view for these 

methods, termed SHAP, has been presented in [22]. SHAP 

aims to produce game theory results (i.e., Shapley values [41], 

[42]) in a computationally efficient manner and unifies most 

modern model explanation methods (LIME [18], DeepLIFT 

[19], [20], LRP [21] and classic Shapley estimation methods 

[43]–[45]) as different versions of the same framework. The 

underlying logic behind SHAP is to approximate the output of 

the original prediction model, given the current input, 𝑓(𝑥), 

with a linear explanation model, given a set of simplified inputs 

(e.g., bag of words for text features or saliency maps for 

images), 

𝑓(𝑥) ≈ 𝑔(𝑧′) = 𝜑0 + ∑ 𝜑𝑖𝑧𝑖
′

𝑀

𝑖=1

(4) 

where 𝑧′ ∈ {0,1}𝑀, 𝑀 is the number of simplified input features

and 𝜑𝑖 the importance of each feature (i.e., the SHAP values).

𝜑0 is set to be the mean of each feature in the model’s training

set in this paper, as is common in most published 

implementations. 𝜑𝑖 is a function of the current input, 𝑥.

If features are assumed to be independent when 

approximating conditional expectations, as in LIME and 

Fig. 6. The change in mean absolute SHAP values (Δ =

∑ ∑ |𝜑𝑖,𝑗,𝑎,𝑏 − 𝜑𝑖,𝑗,5000,5000|28
𝑗=0

5
𝑖=0 ) for NN-Split, sizing from GFA features, 

for different numbers of binary mask iteration (𝑎) and background data 
samples (𝑏). Δ = 0.01 is deemed to be sufficiently low so a contour at 
this level (as described by the white dotted line) is used to select 𝑎 and 
𝑏. 
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DeepLIFT, then SHAP values can be estimated directly using 

the Shapley sampling values method [45]. This involves 

uniformly sampling permutations of 𝑧𝑖
′ . Note that for most

applications, setting a feature to 0 does not effectively represent 

the absence of that feature (𝑧𝑖
′ = 0), so instead, that feature is

set to a value sampled from the training set. The issue with the 

Shapley sampling values method is that sampling enough to get 

an accurate explanation is slow to compute for large numbers 

of inputs. Kernel SHAP [22] is a more computationally 

efficient sampling method as it jointly estimates all 𝜑𝑖 using a

linear regression formulation, leading to fewer required 

samples for accurate estimation of Shapley values. This is 

achieved by weighting samples of 𝑧′ by a kernel,

𝑘(𝑧′) =
𝑀 − 1

(𝑀
𝑠

)𝑠(𝑀 − 𝑠)
(5) 

where 𝑠 is the number of ones in 𝑧′ and (𝑀
𝑠

) represents 𝑀 

choose 𝑠. This is a very similar approach to that of LIME, but 

removes the need to select a loss function, weighting kernel, or 

regularizer, while guaranteeing local accuracy, missingness 

and consistency (as defined in [22]) in the explanation. The 

only two hyperparameters for kernel SHAP are the number of 

binary mask iterations (𝑎) and samples of training data in the 

background data set (𝑏). The number of iterations to calculate 

SHAP values is 𝑎 × 𝑏. 

To select an 𝑎 and 𝑏 that ensures sufficient sampling, without 

excessive computation, a grid search is carried out. For each 

combination of 𝑎 and 𝑏 tested the SHAP values of five random 

experimental test set image sets, for a NN-Split model using 

GFA features, are calculated. The mean absolute difference 

between these SHAP values and those calculated with a large 

number of samples (𝑎 = 𝑏 = 5000) is calculated, 

Δ = ∑ ∑|𝜑𝑖,𝑗,𝑎,𝑏 − 𝜑𝑖,𝑗,5000,5000|

28

𝑗=0

5

𝑖=0

(6) 

where 𝜑𝑖,𝑗,𝑎,𝑏 represents the SHAP value for data set 𝑖 and

feature 𝑗. The results of this for grid search are displayed in Fig. 

6. Δ = 0.01 is considered to indicate sufficient convergence, so

𝑎 = 750, 𝑏 = 450 are selected for use in the rest of this paper

as this is the minimum number of kernel SHAP samples

necessary to achieve Δ = 0.01. 

IV. RESULTS

This section gives a comparison of sizing accuracy when 

using the dimensionality reduction techniques presented in 

III.B with the ML architectures presented in III.C. The

interpretability of the presented sizing networks is discussed

and local explanations of predictions using GFA with NN-Split

are presented.

A. Sizing Accuracy

While sizing accuracy is not the main focus of this paper, an

interpretable defect sizing algorithm that can’t size reasonably 

accurately is not of any use. The current gold-standard accuracy 

for this data set is CNN-based sizing on the raw ultrasonic 

images [9]. As shown in Fig. 7, this provides a RMSE of 

0.58 mm. Note that this is 29% lower than the same architecture 

trained on unwindowed images, proving the value of removing 

information unrelated to the task at hand. For all the ML based 

sizing methods thirty independently trained networks are 

trained, with the bars in Fig. 7 displaying the mean RMSE and 

± one standard deviation plotted as error bars. 

The least accurate sizing is provided by 6 dB drop. Both 

training a NN-Split on the 7 × 4 parameters of the 6 dB drop 

box (including maxima and RMS amplitude information) and 

directly using the mean of the longest sides (as is the traditional 

method) for sizing produces poor sizing with an experimental 

test set RMSE of 0.843 mm and 1.26 mm respectively. Note 

that just using the longest edge of one SS-S image gives 33% 

higher RMSE than the mean of all four. The high sizing error 

when using 6 dB drop features is likely because they do not 

carry enough information relevant to sizing the defects. The 

next most accurate sizing technique is NN-Split, using 7 PCA 

components, concatenated with the window’s 𝑋-position. This 

gives a RMSE of 0.73 mm. GFA with NN-Split offers the 

closest sizing accuracy to the CNN with a RMSE of 0.71 mm, 

despite having only 7 features per image. NN-Single 

predictions on GFA data are 14% higher than NN-Split 

predictions on the same data. This motivates the use of NN-

Split as it offers better sizing accuracy despite containing 73% 

less weights. 

Fig. 7. RMSE across the full experimental test set (1269 sets of PWI images) for all dimensionality reduction methods and associated sizing 
methods discussed in this paper. The error bars represent over thirty independent initializations. 
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B. Interpretability and Explainability

As discussed in Section I, training a CNN on raw ultrasonic

images is a ‘black box’ approach, as it is not interpretable, and 

local explanations are limited to saliency maps. PCA provides 

a lower dimensionality input data but neither the magnitude nor 

form of the components has physical meaning, so are not 

explainable or interpretable. Sizing based on GFA and 6 dB 

drop box features is interpretable as the features are simple 

descriptors of the defect indication. Also, as these 

dimensionality reduction methods are only minorly affected by 

background noise and artefacts, the operator can be confident 

that sizing predictions are informed only by the defect 

indication. Despite the similar levels of interpretability, GFA is 

significantly more useful than 6 dB drop due to the 

significantly lower sizing error, as presented in Section A.  

As well as the implicit interpretability provided by sizing 

with GFA features, useful local explanations can be created 

with them. As described in Section III.D, SHAP values can be 

calculated to indicate the importance of each feature to the 

sizing prediction for a specific defect. An example of how this 

could be visualized for an operator is given in Fig. 8. The 

magnitude of the SHAP values indicate how important each 

feature is to the prediction and their sign (i.e., positive or 

negative) shows whether that feature is pushing the prediction 

higher or lower from 𝜑0. For the example in Fig. 8, the most

impactful features are the 𝜎𝑍 of the SS-S views. This makes

intuitive sense as all defects in this paper are oriented roughly 

in the 𝑍-direction and in these two views there is high 

amplitude specular reflections from the full extent of the defect. 

Visualizing local explanations of interpretable ML models in 

this way can allow operators to interrogate individual 

predictions, building trust in them and spotting occasions when 

they are not functioning as expected. 

To analyze overall feature importance for the trained NN-

Split model, SHAP values are calculated for every defect in the 

experimental test set. These SHAP values are then visualized 

in a ‘bee-swarm’ plot [46] in Fig. 9. In this plot each defect is 

represented as 28 dots, one for each feature. A dot’s color 

represents the normalized magnitude of the feature and its 𝑋-

position is determined by SHAP value. Dots placed at the same 

X-position are plotted with different vertical positions to avoid

covering each other. The features are sorted by their mean

absolute SHAP value

𝐹𝑗 =
1

𝑁
∑|𝜑𝑖,𝑗|

𝑁

𝑖=0

(7) 

where 𝑖 represents the index of the sample in the test set and 𝑗 

Fig. 8. An example explanation visualization for a sizing prediction from an experimental test set example with 𝑃 = 17.7 𝑚𝑚, 𝐿 = 2 𝑚𝑚 and 𝜃 = 15°.  
The sizing is achieved using NN-Split and GFA features and the feature contributions calculated using kernel SHAP. The 3D plots display the original 
PWI image as a colourmap, a visualization of the GFA fit as a wireframe surface and the GFA features drawn with arrows colored in relation to the 
SHAP bar chart. An interactive version of this figure can be found at https://richardp1234.github.io/GFA-Vis/index4.html.  
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the feature. Viewing explanations for the entire test set in this 

manner is a useful tool for developing ML algorithms as it 

allows the engineer to ensure the features expected to be 

informative are consistently given the most importance. 

𝐹 for the top four features in Fig. 9 is significantly larger than 

for others, indicating that these are the features that impact 

crack size prediction the most. The fact that 𝜎𝑍 for the two SS-

S views is considered important by the network builds trust in 

its predictions. This is because the SS-S view produces the 

indications most closely matching the true extent of the defect 

and 𝜎𝑍 is similar to the parameter used by traditional 6 dB

sizing. The fact that the SS-L view amplitudes are the top two 

most impactful features is an interesting result. It is the authors’ 

belief that this may be where the network is inferring 𝜃, to 

account for the variations in amplitude and 𝜎𝑍 it causes. This

hypothesis is based on the high correlation between true crack 

angle and the angle of the indication (i.e., 𝜃 and 𝛩) in these 

views (Spearman’s correlation = 0.56). Fig. 9 also shows that 

the features not used by classical NDE sizing techniques are 

assigned low 𝐹. These include, for example, the width of the 

indication (𝜎𝑋) and the background noise level (𝐵).

The correlations between the value of features (color of the 

dots in Fig. 9) and their impact on network output (𝑋-position 

of the dots in Fig. 9) can also be in inspected, and here too we 

find similar behaviors as found in classic physics-based NDE 

sizing methods:  

• 𝐴 and 𝜎𝑍 values are positively correlated with defect size.

• The nearer a defect is to the array (low 𝑥0 for 𝜓 = 45°,

high 𝑥0 for 𝜓 = −45°), the larger the SHAP value. This

positively contributes to the 𝐷 prediction, correcting for

the fact that defects near to the array appear smaller,

because they are not insonified over their full extent.

• Defects angled towards the array (-ve 𝛩 for 𝜓 = 45°, +ve

𝛩 for 𝜓 = −45) have larger SHAP values. This positively

contributes towards the 𝐷 prediction, correcting for the

fact that these indications have significantly lower

amplitude in SS-L modes.

There are more complex interactions happening with 𝑧0, 𝜎𝑥

and 𝐵 that are harder to draw conclusions from in Fig. 9, but 

they are also lower in average feature importance (𝐹) and have 

less significance for physics-based defect sizing.  

There are a few outliers in Fig. 9. Most notably, there are 

three samples with significantly larger |SHAP| values for 𝜎𝑋 in

the SS-L views (i.e. 𝜎𝑋 (2) and 𝜎𝑋 (4)) when compared to the

rest of the test set. These three sample are also outliers in terms 

of their 𝜎𝑋 values as GFA has fit a wide Gaussian to the image.

This fitting has occurred because there is only a very low 

amplitude response from the defect in these views, leading 

GFA to mostly fit to variations in the background noise. It is 

hypothesized that this raised feature importance is an 

indication of the sizing network using this increased 𝜎𝑋 as a

way to detect a view with little to no signal in, however, 

analyzing outliers in this fashion is challenging. Unexpected 

SHAP value outcomes such as these indicate sizing predictions 

that should be flagged for further analysis by a human and/or 

more advanced automated analysis. This highlights, again, the 

usefulness of local explainability. 

V. CONCLUSIONS

This paper has presented GFA, a novel dimensionality 

reduction method, aimed at improving the interpretability and 

explainability of ML for ultrasonic NDE. Defect sizing with a 

neural network (NN-Split), trained on simulated GFA features, 

tested on experimental data, has been shown to produce a 

RMSE only 23% higher than a CNN applied to the full PWI 

image sets, despite the dimensionality reduction from 10 ×
20 × 4 to 7 × 4. The other dimensionality reduction methods 

tested all provided comparable or worse sizing performance. In 

terms of interpretability, GFA improves upon both the original 

images and PCA. 6 dB drop features have comparable 

interpretability to GFA but provide significantly less accurate 

sizing. 

GFA provides improved interpretability to models that use 

the features as, unlike individual pixel values, their values are 

meaningful to NDE operators. Also, as GFA features are only 

minorly affected by artefacts and background noise, sizing on 

GFA features is guaranteed to be informed by the defect 

indication, and not overfitted to other confounding features. 

`

Fig. 9. A bee-swarm plot of the SHAP values for the experimental test 
set with sizing achieved using NN-Split and GFA features. (𝑛) 
represents the 𝑛𝑡ℎ imaging mode as indicated in Fig. 8. The features 
are sorted by 𝐹𝑗 =

1

𝑁
∑ |𝜑𝑖,𝑗|𝑁

𝑖=0  where 𝑖 represents the index of the 
sample in the test set and 𝑗 the feature. 4 × 𝐹 is plotted as gray bars, 
this has been scaled by 4 in this plot for ease of visual comparison 
between features. 
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GFA also enables useful local explanations as methods such as 

kernel SHAP can be used to inform the operator which features 

are important to the sizing of a specific defect and if that feature 

contributes positively or negatively to the prediction. It should 

be noted that SHAP values are a simplification of the model, 

assuming a linear combination of independent features, so 

cannot fully explain global model behavior. However, they can 

still be of great use in building trust in a model’s predictions, 

by comparison with the decision-making process of expert 

intuition or physics-based sizing approaches.  

If further interpretability was desired beyond that of GFA, as 

described in this paper, the feature with the lowest average 

SHAP value (i.e., lowest 𝐹𝑗) could be removed from the

training set and the network retrained using only the remaining 

features. This could be done iteratively until validation set 

RMSE became unacceptably large, or the feature space was 

deemed to be small enough to have satisfactory interpretability. 

This iterative training approach could also be used in 

applications where it is useful to discover which GFA feature 

is the most impactful to the task at hand, akin to the aim of 

sparse identification of nonlinear dynamics (SINDy) [47].  

GFA, as presented in this paper, is readily applicable to all 

ultrasonic NDE image analysis. If windowing around one 

defect indication per image is not possible, the iterative fitting 

of more Gaussians can be used to better capture the useful 

information. In general, fitting functions to NDE data to reduce 

its dimensionality is an approach that is generalizable to other 

modalities and data structures (e.g., electromagnetic NDE data 

and ultrasonic B-Scans) and increasingly, a computationally 

tractable task. 2D elliptical Gaussians, as used in GFA, are 

effective for ultrasonic images of approximately straight crack-

like defects, but using a different function will be necessary 

when defect indications are a significantly different shape. For 

example, parameterizing the curvature of a defect indication 

would be necessary for analyzing B-Scan data or more complex 

defects. 

APPENDIX 
Supporting code and data are available at the University 

of Bristol data repository, data.bris, at 

https://data.bris.ac.uk/data/dataset/2o82rzo6d5ly32h7msblzq4

y8v. 
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