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Viscoplastic fluids can hold bubbles/particles stationary by balancing the buoyancy stress
with the yield stress — the key parameter here is the yield number Y : ratio of the yield
stress to the buoyancy stress. In the present study, we investigate a suspension of bubbles
in a yield-stress fluid. More precisely, we compute how much is the gas fraction φ that
could be held trapped in a yield-stress fluid without motion. Here the goal is to shed
light on how the bubbles feel their neighbours through the stress field and to compute the
critical yield number for a bubble cloud beyond which the flow is suppressed. We perform
2D computations in a full periodic box with randomized positions of the monosized
circular bubbles. A large number of configurations are investigated to obtain statistically
converged results. We intuitively expect that for higher volume fractions the critical
yield number is larger. Not only here do we establish that this is the case, but also we
show that short range interactions of bubbles increase the critical yield number even
more dramatically for bubble clouds. The results show that the critical yield number is a
linear function of volume fraction in the dilute regime. An algebraic expression model is
given to approximate the critical yield number (semi-empirically) based on the numerical
experiment in the studied range of 0 6 φ 6 0.31, together with lower and upper estimates.
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1. Introduction

Bubbles in yield-stress fluids arise in both geophysical and industrial processes, ranging
from bubbling mud pits through aerated chocolate to foamed cement. This fact has
stimulated a number of studies, on both individual bubbles and multiple bubbles.
The latter has mostly concentrated on the rheological behaviour of these mixtures
and especially foamy yield-stress fluids. Kogan et al. (2013) generalized a theoretical
homogenization framework introduced initially for suspensions of particles in yield-
stress fluids (Chateau et al. 2008) and studied the shear rheology of these materials
experimentally. Goyon et al. (2010) also investigated the drainage of foamy materials
induced by shear.
In this study however, we focus on the static stability of a cloud of bubbles in a yield-

stress fluid which is directly relevant to a large number of applications in which the
mixture remains stationary. By stability here we mean entrapment of bubbles without
motion. The oil and gas industry has long used foamed cements (and drilling fluids) in well
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construction (Benge et al. 1982; Ahmed et al. 2009). Major themes of the investigation of
the Deepwater Horizon oil spill (National Commission on the BP Deepwater Horizon Oil
Spill and Offshore Drilling 2011) concerned the stability of the foamed slurry downhole,
its testing and suitability for this well. In the wider construction industry, both escaping
and trapped bubbles can be desirable in cement pastes, either entrained into the slurry
during processing or purposefully foamed. Producing an air void system within concrete
by inducing rising bubbles helps concrete to become resistant to freeze-thaw cycles, and
thus bubble rise in fresh cement paste is of interest (Ley et al. 2009).

Our motivation comes from a different process: gas emissions from tailings ponds
resulting from oil sand production. In these ponds, fine and mature fluid tailings form
stratified layers which do not appear to consolidate significantly over timescales of many
decades. The bulk rheology of this layer exhibits a yield stress (Derakhshandeh 2016).
Anaerobic microorganisms bio-degrade naphtha producing methane, which can be one
of the main sources of gas emission from tailing ponds. Carbon dioxide is also produced
(Small et al. 2015). In this case, the ideal scenario will be to prevent bubbles from rising
or indeed we might wish to estimate what is a “safe” trapped gas fraction to be held in
the pond. Similar mechanisms in geological materials, such as shallow marine, terrestrial
sediments and in some flooded soils, also lead to the formation of bubbles (Boudreau
2012).

Motion of an individual bubble in a yield-stress medium has been studied many times
with different approaches. Here we use the simplest viscoplastic model, i.e. Bingham
fluid, since we are interested in the onset of motion, which is the same for any “simple”
yield-stress fluid model (Frigaard 2019). Tsamopoulos and co-workers (Tsamopoulos
et al. 2008; Dimakopoulos et al. 2013) in a series of papers investigated this problem
using different numerical schemes and reported drag coefficients and steady shapes of
bubbles for a wide range of effective parameters such as the Reynolds, Bingham and
Bond numbers. Experimental studies (Sikorski et al. 2009; Lopez et al. 2018; Pourzahedi
et al. 2021b) have explored the velocity and shape of air bubbles rising through Carbopol
gel, where elasticity of the yield-stress fluid causes a fore-aft asymmetry in the bubble
shapes (a tear-drop shape). Some analytical models have been developed to capture this
phenomenon (Sun et al. 2020).

Nevertheless, in the subject of the present study, there is little direct numeri-
cal/experimental work to describe the onset of motion. The motion onset problem
was first formulated mathematically by Dubash & Frigaard (2004). Very recently, we
conducted a systematic study on the yielding of an individual bubble with different
shapes and surface tensions (Pourzahedi et al. 2021a). Meanwhile, Chaparian et al.
(2018) have demonstrated that a cluster of particles (with bridges of unyielded material
which connect the particles together) can be formed when particles are close enough in
a yield-stress fluid, which dramatically increases the critical yield number. Koblitz et al.
(2018) have reported the same phenomenon on investigating sedimentation limits in a
dilute suspension of rigid particles within a yield-stress fluid.

Here we focus on a cloud of bubbles (also called a “swarm of bubbles” in the literature:
Marrucci 1965; Gummalam & Chhabra 1987) and how the bubbles feel their neighbours
and interact with each other. We compute the critical yield number for a bubble cloud
beyond which the flow is suppressed and explore the different contributing influences.
An outline of the paper is as follows. In §2, we set out the problem and review the key
features of the implemented numerical method. The main results are presented in §3 and
conclusions drawn in §4.

Clouds of bubbles in a viscoplastic fluid
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2. Problem statement

2.1. Mathematical formulation

We consider inertialess incompressible bubbly flow of a yield-stress fluid governed by
the non-dimensional equation,

0 = −∇p+ ∇ · τ− 1

1− ρeg, in Ω \ X̄, (2.1)

and the Bingham model, τ =

(
1 +

Y

‖γ̇‖

)
γ̇ iff ‖τ‖ > Y,

γ̇ = 0 iff ‖τ‖ 6 Y.
(2.2)

Here p is the pressure inside the ambient yield-stress liquid, τ the deviatoric stress tensor,
ρ = ρ̂b/ρ̂l the ratio of the bubble density to the liquid density, eg the basis vector

in the gravity direction (vertically downward) and Y = τ̂y/∆ρ̂ĝR̂ is the yield number
(∆ρ̂ = ρ̂l − ρ̂b). Here, we scaled the dimensional pressure (p̂) and the deviatoric stress
tensor (τ̂) with the buoyancy stress (ρ̂l − ρ̂b) ĝR̂ and the velocity vector (û = (û, v̂)) with
the velocity,

Û =
∆ρ̂ĝR̂2

µ̂l
,

which arises from balancing the buoyancy stress with a characteristic viscous stress
(µ̂lÛ/R̂); here R̂ is the radius of the monodispersed circular bubbles and µ̂l the plastic
viscosity of the liquid. Quantities with the hat symbol (̂·) are dimensional. In (2.2), γ̇ is
the rate of strain tensor and ‖ · ‖ is the norm associated with the tensor inner product:

c : d =
1

2

∑
ij

cij dij ;

e.g. ‖τ‖ =
√
τ : τ. Note that generally for bubbles ρ̂b � ρ̂l, hence in practice ∆ρ̂ ≈ ρ̂l

and ρ ≈ 0. The whole domain (yield-stress fluid and bubbles) is denoted by Ω, the
gas fraction by X and the bubble surfaces by ∂X. Hence the bubble area fraction is
φ = meas(X)/meas(Ω).

On the bubble surfaces (∂X) the jump in the traction vector is balanced by the surface
tension in the normal direction. In the inviscid limit (µ̂b ≈ 0), the tangential stress
vanishes:

(σ · n) · t = 0, on ∂X, (2.3)

and the normal component satisfies

−p+ pb + (τ · n) · n =
γ

κ
, on ∂X, (2.4)

where σ = −pI + τ is the Cauchy stress tensor, pb is the pressure inside the bubble,
κ(= 1) is the radius of curvature and γ (= γ̂/∆ρ̂ĝR̂2); γ̂ is the surface tension coefficient.
Depending on the application, one might generate significant non-zero tangential stresses
through specialised surfactant, e.g. as in Feneuil et al. (2020), but this is ignored here.

The main aim of our study is to compute the critical value of Y that separates
a stable/static cloud from a moving cloud. Entrapment of particles and bubbles is
characteristic of yield stress fluids. It is intuitive that on increasing the yield stress
(i.e. Y ) an increasing number of bubbles in the cloud will be trapped. Hence, we attain
Yc which is the lowest Y for which there is no motion.

----
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Figure 1. (a) Slipline solution about a circular bubble (see Chaparian & Tammisola (2021) and
Pourzahedi et al. (2021a) for more details). (b) Speed contour |u| at Y = 0.17 about a circular
bubble.

Following Dubash & Frigaard (2004) and Pourzahedi et al. (2021a), the critical yield
number is defined and can be computed directly from:

Yc ≡ sup
v∈V, v 6=0

−
∫
Ω\X̄

v · eg dA∫
Ω\X̄
‖γ̇ (v) ‖ dA

−

∫
∂X

γ

κ
(v · n) dS∫

Ω\X̄
‖γ̇ (v) ‖ dA

 (2.5)

where V is the set of admissible velocity fields. As discussed by Pourzahedi et al. (2021a)
for a circular bubble, the surface tension does not change the critical yield number since
γ/κ is constant over ∂X and the flow is divergence free, hence the numerator of the
second term in (2.5) vanishes. In other words, since the bubble is circular, it is in its
equilibrium shape and the only yielding contribution comes from the bubble buoyancy.
Hence in the present study, assuming the cloud of bubbles consists of circular bubbles,
we neglect the surface tension in what follows.

Our objective is to compute Yc(φ) in a meaningful way. Pourzahedi et al. (2021a) have
shown that for a single circular bubble the critical yield number is Yc,0 = 0.1718 (see
figure 1); using both the method of characteristics for a perfectly-plastic medium (panel
(a)) and computationally using an adaptive augmented Lagrangian scheme (panel (b)).
The critical yield number of an individual bubble is the limit of zero volume fraction,
i.e. Yc,0 = Yc(φ→ 0).

2.2. Methodology

We perform computations with randomized positions of the circular bubbles in a square
box (with periodic conditions applied on horizontal and vertical faces of the domain),
the size of which is 20×20 (due to scaling the bubbles radii = 1). We handle the bubbles
in the numerical simulation by the same method discussed in detail by Pourzahedi et al.
(2021a). In overview, we use the augmented Lagrangian method coupled with an adaptive
finite element method (Roquet & Saramito 2003) implemented in FreeFem++ (Hecht
2012) to solve equations (2.1) to (2.4). The computational procedure has been validated
extensively in our previous studies (Chaparian & Frigaard 2017; Chaparian et al. 2020;
Chaparian & Tammisola 2021; Pourzahedi et al. 2021a), with the mesh adaptivity to
capture yield surfaces to high resolution. We calculate pb for each bubble to satisfy
incompressibility by using a Lagrange multiplier. Indeed, in the incompressible limit,
on the surface of each bubble

∫
(u · n) dS = 0. Other details of handling the bubbles

are explained in Pourzahedi et al. (2021a). Since we focus on the onset of motion, no
deformation strategy for bubble surfaces is implemented in the numerical scheme. In other
words, if Y < Yc then the bubbles move and would deform consequently. However, we are

Clouds of bubbles in a viscoplastic fluid
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Figure 2. (a) Velocity contour at Y = 0.25 for a randomized cloud with φ = 0.055 (b) Average
velocity of the bubbles versus the yield number for different realizations (in blue colour with
different intensities). Only a few configurations have been shown to avoid cluttering the figure.

not interested in the situations after motion in the present study, so these calculations
are not used, i.e. we increase Y until there is no motion.

The numerical experiment protocol in the present study is as follows. For a fixed area
fraction, based on the size of the computational domain, we calculate the number of
bubbles N (i.e. φ = Nπ/L2, with here L = 20) and randomly assign bubble position. By
changing the yield number, we assess the average velocity of the bubbles as a function
of Y via:

NπUavg =

∫
Ω\X̄

u · eg dA, (2.6)

which follows from the continuity equation, i.e. what flows up must flow down. A sample
computation at φ = 0.055 and Y = 0.25 is shown in figure 2(a).

Having computed Uavg as a function of the yield number (one blue curve in figure
2(b)), we calculate the Y for which the flow stops and hence the critical yield number for
i− th configuration Y ic . We repeat this procedure for other randomized configurations at
the same volume fraction. After computing a large number of different configurations we
average the data to approximate Yc for a specific volume fraction: Yc(φ) = (

∑n
i=1 Y

i
c )/n.

Note that computations for each single Y for each configuration requires 4-5 cycles of
mesh adaptations. Thus the entire calculation is intensive. We ensure that the number of
configurations n is enough to reach statistically converged results for the mean (typically
n = 25). We also compute the standard deviation of each sequence of n configurations.

The last point to mention is about the size of the periodic box which is chosen as L =
20. We have experimented with different sizes and concluded that L = 20 is sufficiently
large to get unbiased data. A larger box could be preferable but we need to compromise
as here the adaptive augmented Lagrangian method is used to capture reliable results
at the yield limit, and this is rather exhaustive. It should also be noted that finite size
effects are less relevant than for fluids without a yield stress.

3. Results

Following the Monte Carlo procedure described above, the computed critical yield
number Yc(φ) is shown in figure 3, represented by the black circles. The error bars mark
the minimum and maximum Y ic obtained in the series of randomized configurations at
fixed volume fraction.

As depicted, the critical yield number increases with the gas volume fraction, which
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Figure 3. Critical yield number versus bubble concentration φ. The black circle symbols are the
randomized cloud bubble simulations results with error bars. The cyan curve is the expression
(3.1) & (3.2). The red line marks the single bubble limit: Yc,0 = 0.172. The blue line shows
the results obtained from the equally spaced bubbles, as in figure 4. The purple continuous line
shows the results obtained from the equally spaced pairs illustrated in figure 6. The dashed
purple line shows equally spaced large bubbles of equivalent area to the bubble pairs.

φ N n Yc SD min{Y i
c } max{Y i

c }
0.055 7 20 0.305 0.0357 0.25 0.35
0.102 13 25 0.430 0.0525 0.375 0.5
0.204 26 30 0.769 0.1063 0.65 0.85
0.306 39 30 1.110 0.1432 0.95 1.3

Table 1. Yc and statistics of randomized simulations

is intuitive. A similar increase has been shown for non-colloidal particle suspensions
recently by Koblitz et al. (2018). This increase has two main reasons. Firstly, when
the amount of gas increases, a larger yield stress is required to stabilize the mixture.
Secondly, as demonstrated by Chaparian et al. (2018), some networks/clusters of particles
can be formed by unyielded bridges which increase Yc since it is no longer individual
bubbles/particles that should be brought to a halt by the yield stress; indeed it is the
larger bubbles/particles networks that are the last to stop as Y is increased.

The increase in Yc is linear at low volume fractions, but clearly deviates from linear
behaviour at larger φ. In our methodology, we have increased Y for each configuration
until the flow is arrested. In other words, we are increasing the yield stress to reach the
critical value. We can represent this as τ̂y,c(φ):

Yc (φ) =
τ̂y,c (φ)

∆ρ̂ĝR̂
=
τ̂y,c(0)

∆ρ̂ĝR̂

τ̂y,c (φ)

τ̂y,c(0)
= Yc,0

τ̂y,c (φ)

τ̂y,c(0)
= Yc,0 f(φ). (3.1)

Here f(φ) represents the increase in Yc(φ) over the single bubble Yc,0. On fitting to the
data we find:

f(φ) =
τ̂y,c (φ)

τ̂y,c(0)
= 1 + 14.49 φ+ 21.26

φ2

2
, (3.2)

which is sketched by the broken cyan curve in figure 3. For future reference, the computed
data are given in table 1 including the standard deviation.
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Figure 4. Schematic of the equally spaced bubbles with the desired volume fraction and the
sample computation at Y = 0.18 with φ = 0.055 (i.e. L1 = 7.56 given that R = 1). The contour
shows |u|.

3.1. Further analysis and bounds

Figure 3 contains other curves that shed light on different contributions to the
buoyancy-yield stress balance. To get an estimation of the minimal increase in the
critical yield number by the increased volume fraction, we simulate the flow around an
individual bubble in a periodic box of size L1 =

√
π/φ; see figure 4. In other words, in

this simulation we focus on a bubble suspension in which the bubbles are equally spaced
and so the hydrodynamic interactions are minimal compared to the randomized bubble
cloud. There are other regular spacings (e.g. hexagonal), but it is reasonable to assume
that the in-line arrangement is more likely to yield to motion. The critical yield numbers
predicted by these “conceptual” suspensions are shown in blue in figure 3. While, as
expected, Yc increases with φ in these simulations as well, the large gap between the
blue line and the circle symbols (cloud data) explicitly demonstrates that short range
interactions between the bubbles play an important role in yielding.

For deeper understanding of the short range interactions, we have revisited a couple
of cloud simulations in the dilute regime (mostly at φ = 5.5%). We have found that the
critical yield number for the cloud is quite close to Yc of the dominant pair. By dominant
pair we mean the pair of bubbles that causes high velocity/motion and hence yielding
because of their proximity and relative orientation. For instance, for the cloud shown
in figure 2(a), the dominant pair is highlighted in red (pair A). It is apparent from the
velocity contour that the maximum velocity occurs between these bubbles and this pair is
connected by an unyielded bridge. The second dominant pair is highlighted yellow (pair
B). We perform simulations in which we just model these pairs ignoring all other bubbles
in the cloud and setting u = 0 in the far field. In other words, we simulate the two
bubbles which are proximate in an ambient quiescent pool of viscoplastic fluid. Figure
5(a-d) reveals more flow features (velocity and log(‖γ̇‖) fields) around these dominant
pairs. The top panels are associated with the pair A and the bottom panels with the pair
B extracted from the sample simulation shown in figure 2.

The critical yield number for the cloud shown in figure 2(a) is Yc = 0.265, for the
dominant pair (i.e. pair A) it is Yc = 0.25, and for the second dominant pair (i.e. pair
B) we find Yc = 0.225. For the sake of conciseness, we do not compare Yc of all the
simulated clouds with the dominant pair, but in almost all the cases we have checked the
two critical yield numbers are approximately the same in the dilute regime.

It should be mentioned that generally finding the dominant pair is not trivial and one
can easily imagine cases of non-uniqueness or where a larger cluster is dominant. Nor is
the dominant pair necessarily the same for bubbles as for solid particles. For instance,
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Figure 5. Flow fields around isolated pairs extracted from figure 2: top row panels are associated
with the closest pair (A) and the second closest pair (B). (a,b) Velocity contours for bubbles;
(c,d) Contour log(‖γ̇‖) for bubbles; (e,f) Velocity contours around particles. (a,c) Y = 0.225;
(b,d) Y = 0.2; (e) Y = 0.1425; (f) Y = 0.17. Please note that the critical yield number for these
configurations are : (a,c) Yc = 0.25; (b,d) Yc = 0.225; (e) Yc = 0.145; (f) Yc = 0.1725.

figure 5(e,f) shows the same arrangements of the pairs (A and B) when they are solid
particles. Interestingly, pair B is the dominant pair in the case of solid particles. Pair
B are almost vertically aligned and this triggers the formation of an unyielded bridge
between the solid particles which connects the particles together and increases Yc. More
precisely, in the case of bubbles, the larger critical yield number is associated to pair
A (Yc = 0.25) whereas in the case of solid particles, the larger critical yield number is
associated to pair B (Yc = 0.1725). Hence, in different physical problems, the dominant
pair could have different configurations. Indeed, it is a multi-dimensional problem in
which proximity and orientation of bubbles/particles are two important parameters.

At higher volume fractions, the whole cloud cannot be reduced to a dominant pair. It
is indeed a network of bubbles that controls yielding and extracting that cluster from a
fully packed realization is not trivial. However, to get an estimation, we also investigate
another “designed” suspension in which we force each two bubble pair to have strong
short range interaction by almost touching each other when they are aligned vertically; see
figure 6. We again perform simulations in a small periodic box of size L2 =

√
2π/φ. The

critical yield number of these type of clouds is shown by the purple curve in figure 3. As
we see, this leads to an upper bound for the randomized cloud data since the interactions
are forcefully increased. However, if the two touching bubbles are merged to form a larger
single bubble of equivalent area, the critical yield number is the dashed purple curve in
figure 3 which gives a much smaller Yc because the interactions are absent. It is interesting
to note that in this sense bubble coalescence may not be optimal for (onset of) motion!
This same procedure could be extended by making the interactions even more dramatic
such as having a vertical chain of three or four touching bubbles instead of two bubbles,
presumably with larger upper bounds for Yc.

4. Summary & conclusions

In this study we have focused on clouds of bubbles in a yield-stress fluid and mainly
have discussed the critical entrapment conditions of these bubbles. The main objective
is to respond to practical problems of environmental or industrial nature: how much gas

Clouds of bubbles in a viscoplastic fluid
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Figure 6. Schematic of the equally spaced twin pairs with the desired volume fraction and the
sample computation at Y = 0.4 with φ = 0.055 (i.e. L2 = 10.69 given that R = 1). The contour
shows |u|.

fraction can be held in a yield-stress fluid? To this end, we performed exhaustive sets of
computations with randomized positions of bubbles in a full periodic box and monitored
the average velocity of the bubbles as a function of the yield number Y (i.e. the ratio of
the fluid yield stress to the buoyancy stress). The critical yield number which marks the
flow/no flow limit was then extracted for each bubble cloud and a Monte Carlo procedure
was used to determine averaged Yc as a function of gas fraction.

As expected, we found that for larger volume fractions, the critical yield number
is larger. In the dilute regime the behaviour is linear, but for larger volume fractions
the increase is more drastic. To highlight the different contributions, we also performed
simulations for equally spaced suspensions of bubbles, which gives a lower bound to Yc
due to the larger gas fraction. Computations for vertically aligned twin touching bubbles
lead to an upper bound. The short range interaction of bubbles significantly increases
the critical yield number, similar to the formation of clusters in suspension of particles
in a yield-stress fluid (Chaparian et al. 2018; Koblitz et al. 2018). This fact highlights
the importance of computing randomized configurations.

The relevance of randomized distributions is very problem dependent. In situations
where bubbles nucleate within a static fluid, e.g. the oil sands tailing pond application
introduced earlier, this is likely reasonable, although mono-sized bubbles are an approxi-
mation. Equally, the sensitivity to clustering at higher concentrations is hard to account
for, e.g. it may occur due to initial non-uniformity in naphtha concentration. Other
bubbly (yield stress) liquids may be more structured e.g. in a processing flows. Vigorous
shaking of bubbly mixtures can also easily result in non-spherical static bubbles, e.g. see
the images in Dubash & Frigaard (2004). Thus, we are only scratching the surface here.
Our work can be, for example, extended to bidispersed/more realistic bubble clouds and
also larger φ. For 3D flows with spherical bubbles, we expect that similar mechanisms
and trends would be found, concerning Yc, but of course quantitatively different. The
main barrier here is to develop fast and effective computational methods. Even with the
above, we deal only with a mechanical balance. In a static configuration with Y > Yc,
diffusive effects of gas solubility may still affect bubble size (i.e. ripening), eventually
exceeding our mechanical limits.

Our study includes new perspectives in the study of bubbly flows of yield-stress
fluids and even more complex multiphase systems of gels and pastes; the emphasis is
on the onset of motion by buoyancy driven bubbles. In recent years, the knowledge of
particle/bubble suspensions in yield-stress fluids has mostly expanded in the rheological
studies (Dagois-Bohy et al. 2015; Kogan et al. 2013), i.e. for a given volume fraction how

Clouds of bubbles in a viscoplastic fluid
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is the bulk rheology of the mixture changed? Typically this results in a multiplicative
scaling of the rheological constants. Here we too have such a scaling, captured in f(φ);
see expression (3.2). Note that the linear increase in f(φ) is much larger than those
of rheological closures. The point to emphasize is that there are two quite different
considerations: (i) the rheology of a bubbly mixture (with no density difference between
phases) when placed under shear, extension etc., and (ii) the limit under which buoyancy
driven bubble flows do not occur: studied here for the first time.
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