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First principle Digital Twins (DT) for marine engines are widely used to estimate in-cylinder pressure, which is a key
parameter informing health of ship power plants. However, development and application of DT faces barriers, as they
require exhaustive calibration and high computational power, which render their implementation for shipboard systems
challenging. This study aims at developing a data-driven DT of low computational cost for predicting instantaneous
pressure. Two different approaches using Artificial Neural Networks (ANN) with distinct input parameters are as-
sessed. The first predicts in-cylinder pressure as a function of the phase angle, whereas the second predicts the discrete
Fourier coefficients (FC) corresponding to the in-cylinder pressure variations. The case study of a conventional medium
speed four-stroke diesel marine engine is employed, for which the first principle DT based on a thermodynamic, zero-
dimensional approach was setup and calibrated against shop trials measurements. The DT is subsequently employed to
generate data for training and validating developed ANNs. The derived results demonstrate that the second approach
exhibits mean square errors within ±2% and requires the lowest computations cost, rendering it appropriate for marine
engines DTs. Sensitivity analysis results verify the amount of training data and number of Fourier coefficients required
to achieve adequate accuracy.
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ABBREVIATIONS

DT: Digital Twin
CAD: Crank Angle Degrees
ANN: Artificial Neural Network
0D-3D: Zero Dimensional-3 Dimensional
CBM: Condition Based Maintenance
RMSE: Root Mean Square Error
MSE: Mean Square Error
R2: Coefficient of determination

INTRODUCTION

Maritime transportation accounts for around 80% of the world
freight movements, considerably impacting the environment. Sev-
eral technologies and strategies are developed to maintain maritime
transport machinery including marine engines, power plants with
a support from first principles digital twins (DT), which are based
on thermodynamic and fluid dynamic principles and pertinent con-
servation laws. These thermodynamic DT are proven effective for
predicting performance parameters of thermal engines. However,
these DTs are required to solve differential equations depending on

dimensionality of the problem from 0D to 3D. These type of cal-
culations demand considerable computational power and cost ren-
dering their shipboard application challenging. Hence, the ship op-
erators are reluctant to implement them for shipboard use. A fast
and accurate solution to predict the marine engines performance is
more suitable for shipboard applications.

The in-cylinder pressure is a key parameter representing the
combustion phenomena inside cylinders of marine engines and pro-
vide information for fault detection, diagnosis and prognosis as re-
ported in Tsitsilonis and Theotokatos [2018, 2021]. Hence, pre-
diction of instantaneous in-cylinder pressure is crucial for health
analysis of marine engines. Digital twins are widely used tools to
predict the combustion and eventually the engine in-cylinder pres-
sure variation. They are very common in several industrial sectors
like automotive, marine, and energy . Apart from DT, efforts are
made to develop a concept of a dimensionless pressure curve in
the frequency domain rendering prediction of in-cylinder pressure
estimation as important aspect to ensure proper functioning of re-
ciprocating combustion engines Zeng and Assanis [2004]

Artificial Neural Networks (ANN) are data-driven based ap-
proaches that can be used to predict the performance parameters
of mechanical systems. Nowadays, ANNs are getting popular in
the shipping industry. Review of applications of ANN in internal
combustion engines is reported by Bhatt and Shrivastava [2022].
The effectiveness of ANNs is proved for applications requiring the
prediction of marine diesel engine performance Noor et al. [2016],
Non-linear Auto Regressive Exogenous input (NARX-ANN) Rap-
todimos and Lazakis [2020] and Fuel oil consumption prediction
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Figure 1: Methodology of the study depicting two approaches (highlighted by 1 and 2) used to form the data-driven DT.

from ship main engine Gkerekos et al. [2019]. Apart from perfor-
mance prediction, ANNs are utilised to carry out condition based
maintenance (CBM) for fishing vessels with medium speed diesel
engines Basurko and Uriondo [2015] and marine propulsion sys-
tem Cipollini et al. [2018]. Moreover, ANNs are useful for fault
diagnosis in ship systems including the diagnosis of clearance in
valves of engines Zhu [2009], faults in engine cooling system Zhou
and Xu [2010] and bearing faults Yang et al. [2007]. They are also
utilised to detect the abnormalities in the system in absence of any
fault with a data collection Raza and Liyanage [2009]. In general,
health assessment and condition monitoring of the ship machinery
systems can be improved by ANN with self organising maps for
engine Raptodimos and Lazakis [2018], multi net neural networks
system with non intrusive sensors Porteiro et al. [2011] and convo-
lutional neural networks Wang et al. [2021].

The literature review points out methods and gaps to determine
the engine in-cylinder pressure. DT require exhaustive calibration,
high computational power, and advanced processors, rendering. On
the other hand, data-driven models based on machine learning tech-
niques are utilised only to estimate quasi-steady operating parame-
ters as time series, however lacking the ability to predict instanta-
neous signals. Some networks based on complex radial basis func-
tions (RBF) are studied using the vibrations and speed signals to
estimate the pressure profile from combustion engine by Johnsson
[2006]. However, their increased complexity with RBF and extra

sensors requirement hinder the direct application of these networks
for ships machinery applications.

This study aims at developing a data-driven DT of low compu-
tational cost to predict the in-cylinder pressure at healthy conditions
of a case marine engine using the minimum set of input parameters.
The required training data is generated through the use of a thermo-
dynamic DT, which was setup for the case study of a marine four-
stroke engine. This DT was validated against in-cylinder pressure
signals experimentally measured in five operating points. Two ap-
proaches for developing data-driven DT based on ANN are consid-
ered and compared based on the root mean square errors obtained
using estimated values and baseline values (in-cylinder values from
DT). The comparison is done over the full operating envelope of
the case marine engine. A sensitivity study is performed on the sec-
ond ANN DT to assess the impact of the training data amount and
the harmonic orders (Fourier series coefficients number) on the DT
prediction accuracy.

METHODOLOGY

The detailed methodology is described in this section consisting
following steps:

• Step I: Data generation
In-cylinder pressure profiles for all the steady operating points,
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Figure 2: In-cylinder pressure profiles obtained by calibrated DT referring to an operating point of the considered marine engine.

covering working envelope of marine engine, are generated
using the developed zero-dimensional DT.

• Step II: DT Development
An Artificial Neural Network is developed and trained using
data generated from previous step. Two approaches are used to
form ANNs as showcased in schematic of methodology (Fig-
ure 1). The first approach develops an ANN by considering as
input the engine speed, power, cylinder number and crank an-
gle, whereas it provides as output the in-cylinder pressure. The
second approach develops another ANN to predict the Fourier
coefficients representing a pressure curve using as input the en-
gine speed, power and cylinder number. The in-cylinder pres-
sure for each operating point is reconstructed based on these
coefficients.

The data pre-processing required for DT development in step II
is described in Subsection DT development. It involves, the pres-
sure profile conversion required for second approach (Subsection
Definition of pressure profile using Fourier transform), feature se-
lection (Subsection Feature selection), splitting data into training
and testing data sets (Subsection Training and validation) and data
standardisation(Subsection Feature standardisation).

Step I: Data generation
Initially, a thermodynamic digital twin (based on thermodynamic
principles and conservation laws) is setup and calibrated to match
the engine performance parameters according the shop trials. The
marine engine used in this case is medium speed, 9 cylinder, 4-
stroke, turbocharged engine from Wärtsilä. The information related
to the reference engine is presented in Table 1. The MATLAB plat-
form is used to develop the 0D DT of each subsystem. The detailed

information about the DT can be found in Tsitsilonis et al. [2021],
Tsitsilonis and Theotokatos [2021]. The framework developed by

MCR 9,450 kW @ 500 RPM
No. of Cylinders 9

Cylinder Bore 460 mm
Clutch-in Speed 300 RPM

Turbocharger ABB TPL 77-A30

Table 1: Reference system technical specifications.

Tsitsilonis and Theotokatos [2022] is used to calibrate the engine.
The calibration involves the determination of the combustion and
friction mean effective pressure parameters for the reference op-
erating point. Subsequently, the calibration determines the values
of the Woschni-Anisits combusiton model constants by considering
all the remaining shop test operating points. The DT is validated
as per the engine shop tests results. The validation results can be
found in Tsitsilonis and Theotokatos [2022]. The DT is further
used to generate series of data points (in-cylinder pressure profiles)
considering the engine operating envelope. Figure 2 presents the
derive in-cylinder pressure profiles obtained by the calibrated DT.
Around 5000 operating points spread all over the operating enve-
lope of the considered marine engine are simulated ranging from
350 to 500 rpm.

Step II: DT development

This section focuses on development of DT based on ANN to pre-
dict in-cylinder pressure. Two approaches mentioned in previous
sections are used to form a machine learning problem based on fea-
ture selection process.
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Feature selection

Feature selection is an important step to select the required input
parameters fro the DT development. They should contain the re-
quired information to predict the target variable (in-cylinder pres-
sure in this case). The engine speed and power are the important
parameters to represent an engine operating point. However, the
target variable is an instantaneous function of the crank angle (0–
720 degrees for four-stroke engines). Therefore, two approaches
are considered herein. The first one follows the traditional instanta-
neous problem formulation with the crank angle as input along with
engine performance parameters like engine speed and power to pre-
dict pressure at respective crank angle. While, the second approach
accepts only engine performance parameters to predict complete
in-cylinder pressure curve for 720 crank angles. The first approach
(Number 1 in Figure 1) considers the estimation of the in-cylinder
pressure mapped as a function of the engine speed, power, cylinder
number and crank angle, according to the following equation:

P (α) = f(N,P, ncyl, α) (1)

where N,P, ncyl are the engine speed, power and cylinder number
respectively, whereas α denotes the crank angle.

The second novel approach (Number 2 in Figure 1) considers
only the engine speed and power as input to derive the in-cylinder
pressure diagram (complete engine cycle) at the considered oper-
ating point. However, an extra step is inserted for converting the
in-cylinder pressure signal to a set of discrete Fourier coefficients
considering a specified number of harmonic orders (N). The in-
cylinder pressure signal is approximated and mapped as function
of engine speed and power according to the following equation:

P (α) = f(C1, C2..CN ) = f(N,P ) (2)

The method of converting in-cylinder pressure curve to Fourier
series coefficients is based on the use of Fourier Transform as men-
tioned in following subsection. These Fourier coefficient are em-
ployed as the target variables for neural network and subsequently
used to reconstruct the finally predicted in-cylinder pressure signal.

Definition of pressure profile using Fourier Coefficients

The characteristic in-cylinder pressure curve contains crucial infor-
mation related to the efficiency, power, and emissions from internal
combustion engines. The pressure measurement is carried out from
each cylinder of a marine engine as a function of crank angle de-
grees associated to particular operating points. However, it is easier
to use pressure signals as a function of discrete coefficients rather
than crank angular measurement by reducing the number of dimen-
sions of machine learning problem. In the open literature, a number
of studies are reported, with the aim to reconstruct in-cylinder pres-
sure pulse curve using Fourier coefficients for several applications
by Johnsson [2006], Zeng and Assanis [2004], Taraza et al. [2005].
Similar strategy is used to convert simulated pressure curves from
Section Data generation as a function of coefficients called Fourier

Coefficients as follows,

p(α) ⇒ f(FC1, FC2, ....) (3)

Figure 3: Reconstruction of pressure signal from N harmonic orders
with 2N+1 number of Fourier coefficients (x-axis is crank angle degrees
(CAD)).

The Fourier analysis can be used to convert the periodic func-
tion (pressure) repeating for every two revolutions (for four-stroke
engine) into Fourier series using the following equation, as reported
in Zeng and Assanis [2004],

p(α) = a0 +
∞∑

n=1

ancos

(
2πnα

T

)
+

∞∑
n=1

bnsin

(
2πnα

T

)
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(5)

The coefficient A0 is the average value of the in-cylinder pres-
sure within the engine cycle, whilst AN and BN coefficients rep-
resent the multiplication factors (amplitudes) to the cosine and sine
functions with N harmonic orders. The number of harmonic orders
required to exactly recreate the pressure curve (with practically zero
error), depends on the pressure signal sampling number (typically
1oCA sampling requires 720 harmonic orders for four-stroke en-
gine). However, referring to the goal of reducing dimensions for
machine learning problems, less number of harmonic orders should
be selected without loosing meaningful information for estimating
faults. Figure 3 represents the reconstruction of the in-cylinder
pressure profile using 2N+1 number of Fourier coefficients. As N
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increases, the error in comparison with actual in-cylinder signal re-
duces. Therefore, N=50 (101 Fourier coefficients) is selected for
comparison of two approaches proposed in this study. A sensitivity
analysis based on the N to identify the DT error is presented in the
results section.

((a)) Training data samples

((b)) Test/Validation data samples

Figure 4: Histogram of samples used for training and validation/test data
over the operating range of the investigated marine engine (test/train ratio
= 0.15)

Feature standardisation

The data used to create ANN needs pre-processing to ensure bet-
ter accuracy. Standardisation of data (also called as Centering) is
done to set mean of each input/output parameter equal to zero. This
captures only the variation in the data points to determine hyper
parameters is ANN.

All numerical attributes in the data set are standardised by re-
moving the mean and scaling to unit variance. For a numerical
attribute x, a standardised attribute x′ is produced by,

x′ =
x− µ

σ
(6)

where µ is the mean value the attribute, and σ is the standard de-
viation. All attributes are standardised, so that they can contribute
equally to the objective function that is used for training of devel-
oped DT.

Training and validation data

After standardisation, the generated data is classified into training
and validation/test data sets. Training data is normally used for
selecting the hyper parameters/weights of the ANN based on back
propagation of error discussed in the next section. Validation/test
data is kept separate from the training process. This test data is
used after to test the DT and validate the accuracy.

The selection of this tests data is critical to check the DT ac-
curacy over the engine operating envelope. The test/train ratio (γ)
determines the percentage of data used for this separation, and is
defined by the following equation:

γTest/Train =
NTest

NTrain
(7)

This study employs testing samples for validation of accuracy of
DT, following the training process. In this respect, the distribution
of test samples should be similar to training data sets including data
points all over the operating range. Figure 4 presents the distribu-
tion of training and validation data-sets for the considered marine
engine operating envelope.

Figure 5: Artificial Neural Network (Multi Layer Perceptron) with one
hidden layer Szoplik [2015].
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Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are inspired by biological ner-
vous systems. They are used to perform machine learning tasks
including classification and regression. ANNs are extremely versa-
tile as they can accurately model complex non-linear behaviour of
any system based on the data provided.

MultiLayer Perceptron (MLP) networks, which are also known
as multilayer feed forward networks, are widely used in practical
applications. A typical multi layer feed forward network is repre-
sented in Figure 5. Two important parameters of MLP are the num-
ber of hidden layers (between input and output) and the number of
units per layer (hidden layer sizes). Excluding the input and output
layers, different architectures call for different number of hidden
layers.

The number of neurons in the hidden layer is also not speci-
fied in literature, and thus they must be selected by trial and error
basis. This study considers two approaches employing ANN to pre-
dict the in-cylinder pressure and compare the results. Therefore, the
same number of hidden layers and neurons is selected for both ap-
proaches. Considering the non-linear relationship between inputs
and output, an activation function called Exponential Linear Unit
(ELU) is used at each neuron of hidden layer followed by a linear
activation function at the output layer.

Table 2: Summary of the first modelling approach

Layer (type) Output shape Parameters
Input layer (None,4) 0
Hidden layer (Dense) (None,10) 50
Hidden Layer (Dense) (None,10) 110
Output layer (None,1) 11

The details of the developed ANNs based on the first modelling
approach is provided in Table 2. The input layer consists of 4 in-
put parameters, in specific, engine speed, engine power, crank an-
gle (α) and cylinder number, based on which the in-cylinder pres-
sure is predicted. The output layer has only one parameter, which
is in-cylinder pressure at given crank angle (α). The second ap-
proach employs only 3 inputs (engine speed, power and cylinder
number) and estimated in total 909 outputs (101 per cylinder) with
AN , BN and A0 corresponding to 50 harmonic orders (N=50). The
in-cylinder pressure for each cylinder is then calculated based on
these 101 (909 for 9 cylinders) coefficients. The details of this ANN
structure are provided in Table 3.

Table 3: Summary of the second modelling approach

Layer (type) Output shape Parameters
Input layer (None,3) 0
Hidden layer (Dense) (None,10) 30
Hidden Layer (Dense) (None,10) 110
Output layer (None,909) 999

The training of the two ANNs is carried on the training data

sets selected from Section . The Adam optimiser is used to reduce

((a)) Engine Speed = 392 rpm & Engine Power = 2970 kW

((b)) Engine Speed = 424 rpm & Engine Power = 3066 kW

((c)) Engine Speed = 492 rpm & Engine Power = 6116 kW

Figure 6: Performance comparison two approaches w.r.t. true (reference)
values [f(N,P, α, ncyl) and f(N,P, ncyl)]

the Root Mean Square Error (RMSE) between the reference values
y and predicted values ŷ by using back propagation of gradients
over hyper parameters determined in previous steps in optimisation
process. Adam optimiser is able to adapt to new learning rates based
on the number steps required to reach global minimum for RMSE.
The RMSE is calculated using following equation:

RMSE =

√√√√ n∑
i=1

(y − ŷ)2 (8)

The accuracy of the given regression models is determined by the
coefficient of determination (R2) on the validation data, which is
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calculated by the following equation:

R2 = 1−
∑n

i=1(y − ŷ)2∑n
i=1(y − ȳ)2

(9)

where
∑n

i=1(y − ŷ)2 is the sum of residuals, and
∑n

i=1(y − ȳ)2

is the total sum of squares (equal to variance) of the validation data
with ȳ denoting the mean value. In the best case, when the modelled
values exactly match the reference values, R2 becomes equal to 1.

RESULTS

Based on the followed methodology, the ANNs are trained on the
training data selected from pool of synthetic data generated through
simulations. The results from the training and validation of the two
approaches are presented in this section. The accuracy or error men-
tioned in this section represents the test/validation data sets only.

The time taken to train the DT through the back propagation of
error varies with the number of inputs and the data used for training.
Therefore, to compare the two methods, apart from the structure of
ANN, the number of selected harmonic orders (N) are kept constant
to 50, whereas the test to train ratio (γ) is fixed to 0.15.

Figure 7: Histogram of error (in percentage) in estimation of in-cylinder
pressure from the two approaches.

The training is performed in batches called Epochs. In machine
learning, an epoch is a complete iteration over a data set during the
training process. During each epoch, the DT processes the entire
data set, making updates to its hyper parameters based on the op-
timisation algorithm used. Each epoch represents that all data is
used by the DT during training with same test to train ratio. In total
200 epochs are used during training for both mentioned approaches.
The training time (optimisation) of the first approach was 13 min-
utes per epoch on average. The second approach with N=50 takes
only 45 seconds per epoch. Therefore, from the time perspective,
the second approach exhibits faster training, even though the num-
ber of output nodes are higher.

Figure 6 presents the actual estimation of in cylinder pressure
for 5 out of 9 cylinders for three operating points. The plots are
zoomed to provide the performance of the two approaches in com-
parison with the respective reference values (dotted lines). The sec-
ond proposed approach with Fourier coefficients pressure estima-
tion provide better accuracy compared to the first approach predic-
tions. The error histograms for the two approaches are presented
in Figure 7. It is evident that the percentage error from the second
approach (blue) has 95% of errors being between ±1%, whilst the
single point based approach f(N,P, α) exhibits errors spread over
wider range. Hence, from the accuracy point of view, the second
approach demonstrates superiority.

Figure 8: Sensitivity of RMSE [Pa] (high error with high brightness) with
the test/train ratio and the harmonic orders number (N) used in the second
ANN model for in-cylinder pressure estimation.

Following the comparison of these two approaches, the sensitiv-
ity study for the second approach is carried out to assess the change
in RMSE with the harmonic order number and the amount of data
used for training. Figure 8 showcases the contour plot of root mean
square error with variation in N and test to train ratio used for train-
ing. It is evident that the harmonic orders number used to define
the in-cylinder pressure curve greatly affects the error. For more
than 45 harmonic orders, reasonable accuracy is exhibited. The test
to train ratio has minimum effect on the error, even if the ratio is
quiet higher than 0.75. Therefore, the DT can be trained with only
25% of the 5000 operating points randomly selected to achieve suf-
ficient accuracy. This reduces the computational effort requited for
the data generation by employing the physical DT (which is more
computational expensive). The data-driven approach substantially
reduces the required computational effort.

CONCLUSIONS

A cost effective data-driven DT was developed for estimating in-
cylinder pressure of a marine engine based on two different ap-
proaches. The first approach uses the engine speed, power and
crank angle to predict the single point pressure value at given crank
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angle degree. The second approach uses only the engine speed and
power as input to predict the in-cylinder pressure diagram for the
whole engine cycle. An extra step is introduced in second approach
to convert the instantaneous pressure curve into discrete Fourier
coefficients corresponding to a specific harmonic order number
(N), reducing the dimensions and thus the required computation
time. The main findings drawn from the comparison of the two
approaches (using ANNs with same hidden layers and neurons) are
as follows.

1. The required ANN training time for the second approach (with
the harmonic order number N=50) was 94% less compared to
the first approach, thus proving its applicability.

2. The second approach exhibited percentage errors (compared to
reference values) in the range of ±2% for in-cylinder pressure
prediction.

3. The sensitivity analysis revealed that, minimum 10% of data
(1000 samples) can be used with the harmonic order number
N=45 to achieve RMSE between 4000-5000 Pa. This corre-
sponds to accuracy (R2) close to 0.99%.

The second modelling approach proves that only 10% simula-
tion data from thermodynamic DT can be used to train data-driven
DT. The developed data-driven DT predictive ability is limited
within the engine operating envelop that was used for training. Ap-
plication of these data-driven DT further simplifies the diagnostics
and prognostics of the marine power plants providing the engine
in-cylinder pressure at healthy conditions.
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