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Abstract—Peer-to-peer interconnection of households having
on-site batteries, multi-port converters and solar panels to form
a multi-port converter-enabled solar DC nano-grid is an emerging
approach for providing affordable energy access in rural areas.
Battery charge and discharge losses, distribution losses and
converter losses are significant problem when operating such
nano-grids. This paper presents a centralized control algorithm
that can help address the power loss problem. The proposed
algorithm uses a new problem formulation where the power
loss problem is formulated as a two-stage convex optimization
problem. The first stage of the optimization problem is an optimal
battery dispatch problem for determining optimal battery charge
and discharge currents. The second stage is an optimal current
flow problem for determining optimal distribution voltages which
corresponds to the optimal battery currents. Simulation results
of the nano-grid show that the proposed algorithm can minimize
the nano-grid power losses while facilitating the power exchange
between the households. The proposed algorithm is suitable for
small nano-grids where privacy of households is not a concern. In
Part II of this paper we propose a distributed control algorithm
that preserves the privacy of the households especially where the
size of the nano-grid is large.

Index Terms—Multi-port converter, solar DC nano-grid, en-
ergy access, power loss, centralized control algorithm.

NOMENCLATURE

Rdc,i Distribution line resistance
rb,i Battery’s internal resistance at time t
vdc,i Distribution voltage at time t
Vdc,i Constant distribution voltage
Vdc,n Nominal distribution voltage
vb,i Battery terminal voltage at time t
vpv,i Solar panel terminal voltage at time t
vL,i Load terminal voltage at time t
vboc,i Battery’s open circuit voltage at time t
vdcmin,i Minimum distribution voltage
vdcmax,i Maximum distribution voltage
V bn,i Nominal battery voltage
Cb,i Battery capacity
idc,i Distribution line current at tme t
ib,i Battery charge/discharge current at time t
Ib,i Referred battery charge/discharge current
Pb,i Battery power output at time t
PL,i Load power at time t
Ppv,i Solar power at time t
P closs,i Converter loss at time t
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Fig. 1. Diagram of a multi-port converter-enabled off-grid solar DC nano-grid.

P−c,i Converter’s minimum power output
P+
c,i Converter’s maximum power output

∆t Battery charge/discharge time step
eλ Convergence factor
SoC0,i Battery’s initial State of Charge (SoC)
SoCi Battery’s SoC at time t
SoCmin,i Battery’s minimum SoC
SoCmax,i Battery’s maximum SoC
λ Lagrange multiplier for equality constraint
µi, σi Lagrange multipliers for inequality constraints
ηchb,i, η

dis
b,i Battery charge and discharge efficiency

αi, βi, γi Power loss coefficients

I. INTRODUCTION

THIS paper aims to develop a centralized control algorithm
that can minimize power losses of solar DC nano-grids

that are designed for energy access.
Concerns of climate change and scattered populations have

made the electrification of rural areas through grid extension
difficult and expensive [1]. One innovative and affordable
solution for providing energy access to rural areas is through
swarm electrification approach [2]. The approach seeks to
electrify rural areas by gradually interconnecting households
that have stand-alone systems such as solar home systems [3]
and rechargeable batteries to form a diverse peer-to-peer grid
(hereafter referred to as a solar DC nano-grid) as shown in
Fig. 1. In this paper, every household and hub uses a multi-
port converter (e.g. Four-Port DC-DC Converter (FPC) [4])
to manage power flow. This is referred to as a multi-port
converter-enabled solar DC nanogrid, shown in Fig. 1. The
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use of multi-port converters offer advantages such as galvanic
isolation and reduced cabling costs compared to single input,
single output converters [5].

Electrification of rural areas through multi-port converter-
enabled solar DC nano-grids supports the bidirectional ex-
change of energy between households and offers advantages
in terms of productive uses of energy, opportunity for en-
ergy trading and increased diversity in power generation
and consumption [6]. However, it also introduces operational
challenges in terms of power losses which include distribution
line losses [7], battery charge and discharge losses [8] and
converter losses [4], which occur during the process of power
distribution. Power losses reduce the energy efficiency of
nano-grids. Studies indicate that a 1.2% improvement in the
global energy efficiency is equivalent to a gain in global
GDP of about US$1.6 trillion [9]. Owing to lack of national
grid connection and the limited generation capacity of nano-
grids, there is need to minimize the power losses through an
appropriate control algorithm to save energy and make the
nano-grids more affordable for energy access.

Developing a control algorithm to address the power loss
problem is a non-trivial task for several reasons. Firstly, lack
of national grid connection and intermittency of solar power
requires a highly accurate control algorithm in order to avoid
power supply-demand imbalance in the nano-grid. Secondly,
the need to keep the battery charge and discharge power and
State of Charge (SoC) within a certain range to enhance the
lifetime of the battery [10] increases the computational time of
the control problem. Lastly, DC power flow on a distribution
line is non-linear and non-convex, making the power loss
problem a computational challenge [11].

Given that the concept of solar DC nano-grids is relatively
new, having officially come to light in 2012 [12], most of the
research focus has been on the feasibility of the concept [13],
design and sizing [3], modelling under droop control [14],
technical benefits [6], and financial benefits [15]. Few studies
have attempted to consider the nano-grid power loss problem.
In [16], a data analysis tool which optimizes the distribution
network topology of the nano-grid is developed with the aim
of achieving an efficient power flow between the households.
A distribution loss analysis is presented in [17] for optimally
planning and designing a DC micro-grid (DCMG) architecture
with minimum distribution losses.

While the aforementioned research focused on optimal
planning and designing of the nano-grids, it is to the best
knowledge of the author that there are no studies that focus
on developing control algorithms that address the power loss
problem of operational solar nano-grids. The few existing
control methods in literature focus on addressing the power
loss problem of interconnected DC clusters [18], conventional
DCMGs [19] and High Voltage Direct Current (HVDC) sys-
tems [20] as follows.

In [18] a decentralized voltage control method is proposed
to efficiently coordinate the power exchange between two au-
tonomous DC clusters. Transmission loss between the two DC
clusters is shown to be reduced. However, how to minimize the
distribution losses, battery losses and converter losses within
each DC cluster is not considered. In [21], a decentralized

voltage control method which works in a perturb and observe
manner is proposed to minimize distribution losses in an
islanded DCMG. Battery and converter losses are however not
considered. An optimal power flow based control scheme is
proposed in [20] to minimize power losses in multi-terminal
HVDC systems for offshore wind power plants. Transmission
losses are considered in the control scheme while battery and
converter losses are ignored. A dynamic optimal power flow
strategy with the objective of minimising the battery losses
and distribution line losses of a DCMG is proposed in [8]. The
strategy first converts the non-convex power loss problem to a
convex problem through linearisation of power flow equations
and then solved using commercial solvers. However, converter
losses are ignored and the linearisation of the power flow equa-
tions can lead to less accurate results and high computational
times. Other control algorithms include greedy algorithms
in [22] and heuristic methods such as genetic algorithms in
[23]. However, greedy algorithms are reported in [22] to be
sub-optimal when there are few participating households. In
addition, greedy algorithms can lead to overuse of batteries in
households which are close together, requiring frequent battery
replacements, which can be expensive. Heuristic methods e.g.
in [23] on the other hand tend to be slow since they involve
exploring the search space in many directions.

In this paper, an iterative solving algorithm is proposed to
minimize the nano-grid power losses while satisfying opera-
tional constraints such as the battery SoC. The contributions
of this paper are as follows:
• A simplified FPC power loss model which is capable

of providing real time FPC power loss estimations is
developed from experimental results.

• A novel and comprehensive mathematical formulation of
the nano-grid power loss problem is developed, taking all
the three types of nano-grid power losses into account.

• The nano-grid power loss problem is decomposed into
two interdependent sub-problems; the Optimal Battery
Dispatch Problem (OBDP) and Optimal Current Flow
Problem (OCFP). Thus, complex linearisation [8] and
relaxation of power flow equations are not required.

• A centralized control algorithm which consists of a Fast
Lambda Iteration Algorithm (FLIA) and a Fast Voltage
Iteration Algorithm (FVIA) is developed to address the
nano-grid power loss problem.

The rest of the paper is organised as follows. Section II
presents a model of the nano-grid. Section III describes the
formulation of the power loss optimization problem. Section
IV presents the proposed control algorithm. Simulation results
that verify the performance of the proposed method are given
in Section V. Section VI concludes the paper.

II. SYSTEM MODEL

Fig. 1 shows the multi-port converter-enabled solar DC
nano-grid considered in this paper. It consists of multiple
households (labelled H1 to Hn) that are connected to a central
hub (H0) in a spoke and hub manner in order to lower
the cost associated with the distribution lines. To lower the
upfront investment costs, only the hub has both mandatory
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Fig. 2. Integration of the (optional) solar panel, battery, DC loads and
distribution line in every household/hub, Hi of the nano-grid using a FPC.

solar panels and batteries while solar panels remain optional
at the households. FPCs are used as multi-port converters to
manage the power flow in the nano-grid by integrating its key
components i.e. batteries, (optional) solar panels, DC loads and
distribution lines in every household and hub, Hi, as shown in
Fig. 2.

Each terminal (port) of the FPC is controlled independently
without affecting operation of devices connected to other
terminals. The load port is controlled to maintain a constant
load voltage (e.g. 12 V), since most DC loads in rural areas
such as light emitting diode bulbs can operate at constant
voltage. The solar port can be independently controlled to
either maintain a net zero power injection (in the case of
households without solar panels) or operate in maximum
power point tracking mode by tracking the appropriate solar
panel voltage (if a household/hub has solar panels). The
battery port is not directly regulated and serves as a slack
terminal, absorbing and supplying any power imbalance in the
network. Power exchange between the hub and households
is achieved by regulating the distribution line voltage. This
implies that to minimize the power losses in the nano-grid,
optimal distribution line voltages should be determined. To
formulate and subsequently solve the nano-grid power loss
problem, the nano-grid must be modelled first as follows.

A. Distribution Line Model

Every distribution line connecting a household to the hub is
modelled by its resistance, Rdc,i. In the hub, these distribution
lines are connected to a common DC bus bar having voltage,
vbus as shown in Fig. 2. The current, idc,i received by Hi from
the distribution line is calculated as

idc,i = (vbus − vdc,i) /Rdc,i i = 1, 2, . . . , n (1)

Applying Kirchhoff’s Current Law (KCL) at the DC bus and
taking Rdc,0 to be zero, idc,0 = −

∑n
i=1 idc,i and vbus is

obtained as

vbus = vdc,0 =

(
n∑
i=1

vdc,i
Rdc,i

− idc,0

)/ n∑
i=1

1

Rdc,i
(2)

B. Solar Panel Model

Solar panels directly convert solar irradiance and tempera-
ture into DC power, Ppv,i and voltage, vpv,i. The solar panel
model presented in [24] is used in this paper.

C. Load Model

Constant-power loads that include motoring loads such as
sewing machines and water pumps, lighting loads such as light
emitting diode lights and electronic loads such as Television
sets, radios and cell phone chargers are the common DC loads
in rural areas that require energy access [25]. Other load
types which include constant-current loads such as welding
machines and constant-impedance loads such as stove tops
and water heaters are not a priority in rural areas needing
energy access and hence not common. For this reason, the
FPC considered in this paper was designed for constant-
power loads only where the load voltage vL,i is regulated to
maintain a constant value. However, it should be noted that the
formulations that are presented in this paper are carried out at
steady-state and applicable to any load type since only the load
power, PL,i is of interest. Performance of the proposed method
for various load types at low-level time scales is beyond the
scope of this paper.

D. Battery Model

Key properties of a battery are its cell open circuit voltage,
vboc,i, cell internal resistance, rb,i and SoC, SoCi. The vboc,i
and rb,i are related to SoCi as given in (3) [8].
vboc,i = a0e

−a1SoCi + a2 + a3SoCi − a4SoC2
i + a5SoC

3
i

rs = b0e
−b1SoCi + b2 + b3SoCi − b4SoC2

i + b5SoC
3
i

rts = c0e
−c1SoCi + c2 , rtl = d0e

−d1SoCi + d2

rb,i = rs + rts + rtl
(3)

where a0, . . . , a5, b0, . . . , b5, c0, . . . , c2 and d0, . . . , d2 are
coefficients (of 860 mAh, 3.7 V Lithium-ion battery cell),
which are given in Table I. The battery cell current, icell,i

TABLE I
BATTERY COEFFICIENTS [8]

a0 -0.852 a1 63.867 a2 3.6297 a3 0.559
a4 0.510 a5 0.508 b0 0.1463 b1 30.27
b2 0.1037 b3 0.0584 b4 0.1747 b5 0.1288
c0 0.1063 c1 62.94 c2 0.0437 d0 -200
d1 -138 d2 300

for a given Pb,i can be obtained as

icell,i = 0.5vboc,i/rb,i−0.5

√(
vboc,i/rb,i

)2 − 4Pb,i/ (NsNprb,i)
(4)

where Ns = V bn,i/3.7 and Np = Cb,i/0.86 are numbers of
equivalent 860 mAh, 3.7 V Lithium-ion battery cells connected
in series and parallel respectively. The SoCi is estimated in
discrete time domain [26] as

SoCi =

{
SoC0,i − ηchb,iPb,i∆t/Cb,i , Pb,i < 0

SoC0,i − Pb,i∆t/
(
ηdisb,i Cb,i

)
, Pb,i ≥ 0

(5)
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(a) (b)

Fig. 3. Variation of FPC loss with load power: (a) experimental FPC loss
curves for four operating modes and (b) average experimental FPC loss and
identified FPC loss curves.

The ηchb,i and ηdisb,i can be calculated as

ηchb,i = vboc,i/vb,i , ηdisb,i = vb,i/v
b
oc,i (6)

where vb,i for a given Pb,i can be calculated as

vb,i = Pb,i/ib,i , (ib,i = Npicell,i) (7)

E. Four-port DC-DC Converter Model

The structure of the considered FPC is shown in Fig. 2. The
key physical phenomenon of the FPC is the power loss which
occurs as currents and voltages are converted from one form
to another. To obtain the FPC loss, four main operating modes
of the FPC were considered:

1) Mode 1: Battery supplying the DC load while power
from the solar panel and distribution line was zero.

2) Mode 2: Battery and distribution line supplying the DC
load while power from the solar panel was zero.

3) Mode 3: Battery and solar panel supplying the DC load
while power from the distribution line was zero.

4) Mode 4: Battery, solar panel and distribution line all
supplying the DC load.

The aforementioned modes are the extreme operating modes
of the FPC. The other operating modes of the FPC are a
combination of the above modes and their resulting FPC loss
were considered to be between those of the aforementioned
operating modes. Increasing the load power from 1 W to
82 W for each of the modes, the FPC loss was obtained as
shown in Fig. 3a. As shown in Fig. 3a, FPC loss for each of
the modes varied as a quadratic function of the load power.
Thus, without loss of generation, it was possible to obtain an
average experimental FPC loss as shown in Fig. 3b, which is
an approximation of the FPC loss for all the FPC operating
modes. Using curve fitting techniques as shown in Fig. 3b, the
identified FPC loss was expressed as a quadratic function of
load power, PL,i as follows

pcloss,i = 17.765 + 0.00175PL,i + 0.000791P 2
L,i (8)

The simplified FPC loss (8) is good enough to be used in
the formulation of a convex power loss optimization problem
compared to the non-linear approach proposed in [4].

Fig. 4. Equivalent circuit model of a FPC-enabled solar DC nano-grid.

F. Solar DC Nano-Grid Model

Since Ppv,i and PL,i are externally determined from atmo-
spheric weather conditions and power consumption respec-
tively, and that pcloss,i is a function of PL,i, these are treated
as constants at every time instant. Denoting the ratio of vdc,i
to vb,i as nb,i in Fig.2, the battery’s vboc,i and rb,i at the FPC
battery port can be moved to the distribution line side of the
FPC to form the nano-grid equivalent circuit model as shown
in Fig. 4. Here, the (referred) battery output current and power
is given as

Ib,i = ib,i/nb,i (9a)
Pb,i = Ib,ivdc,i (9b)

The mismatch current, Im,i is the difference between Ppv,i,
PL,i and pcloss,i as follows

Im,i =
(
Ppv,i − PL,i − pcloss,i

)
/vdc,i (10)

For households without a solar panel, Ppv,i = 0 in (10). The
current, idc,i received by each Hi, i = 0, . . . , n in Fig. 4 must
satisfy the KCL as follows

idc,i = −Im,i − Ib,i (11)

By conservation of current, the algebraic sum of currents, ∆I
in the nano-grid must be equal to zero as follows

∆I =
n∑
i=0

idc,i =
n∑
i=0

(ID,i − Ib,i) = 0 , (ID,i = −Im,i)

(12)

III. OPTIMIZATION PROBLEM FORMULATION

The main objective of this paper is to minimize the total
nano-grid power losses, J . The power losses considered are
battery charge and discharge losses, distribution line losses and
FPC losses. According to Fig. 4, J can be expressed as

J =
n∑
i=0

[
(−Im,i − Ib,i)2Rdc,i + I2b,in

2
b,irb,i + pcloss,i

]
(13)
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Fig. 5. Decomposition of the solar DC nano-grid power loss optimization
problem.

In the considered nano-grid, batteries are the only dispatchable
energy sources and power exchange between the households is
achieved by regulating the distribution voltages. To minimize
the power losses, the batteries must be optimally dispatched
and the distribution voltages must be optimally determined. A
two-stage power loss optimization problem which consists of
two sub-problems, the OBDP and OCFP is proposed. This is
presented as a closed loop control system as shown in Fig.
5. The feedback loop helps to keep errors resulting from the
proposed formulation to a minimum.

The main objective of the OBDP is to find Ib =[
I∗b,0, . . . , I

∗
b,n

]T
, a vector of battery charge and discharge

currents that minimizes J given by (13) while satisfying
some constraints. Using (13) and the expressions developed
in Section II, the OBDP is stated as follows

minimize:
Ib

J =

n∑
i=0

(
αiI

2
b,i + βiIb,i + γi

)
(14a)

subject to:
n∑
i=0

Ib,i =

n∑
i=0

ID,i (14b)

P bmin,i ≤ Pb,i ≤ P bmax,i (14c)

vdcmin,i ≤ vdc,i ≤ vdcmax,i (14d)

where

αi =

(
vdc,i
vb,i

)2

rb,i +Rdc,i (15a)

βi =
2Rdc,i
vdc,i

(
Ppv,i − PL,i − pcloss,i

)
(15b)

γi =
Rdc,i
v2dc,i

(
Ppv,i − PL,i − pcloss,i

)2
+ pcloss,i (15c)

P bmax,i = min

(
P+
c,i,

ηdisb,i Cb,i (SoC0,i − SoCmin,i)
∆t

)
(15d)

P bmin,i = max

(
P−c,i,

Cb,i (SoC0,i − SoCmax,i)
ηchb,i∆t

)
(15e)

Equation (14a) is the objective function of the optimization
problem, which in its current form is non-convex due to the
non-linear relationship that exists between vdc,i, vb,i (which
are used to calculate the power loss coefficients; αi, βi and γi
in (15)) and the decision variables, Ib. To convert (14a) to a
convex function and (14) to a convex optimization problem
thereof, vdc,i and vb,i are treated as constants before each
solution iteration and then they get updated for the next
solution iteration as discussed in Section IV.

Equation (14b) ensures that currents in the nano-grid are
balanced. Inequality (14c) (where Pb,i = Ib,ivdc,i as given
by (9b)) ensures that the battery does not overcharge or over-
discharge, which otherwise shortens the lifetime of the battery
[10]. It ensures that the minimum SoC, SoCmin,i, maximum
SoC, SoCmax,i and converter power limits (i.e. P+

c,i during
battery discharging and P−c,i during battery charging) are
satisfied. The second term on the right hand side of equation
(15d) places an upper power limit on the battery discharge, and
is obtained from (5) for SoCi = SoCmin,i. Similarly, a lower
power limit is placed on the battery charge through the second
term on the right hand side of (15e) for SoCi = SoCmax,i.

Lastly, the voltage limits in (14d) ensures that the vdc,i is
within the acceptable range where vdcmin,i is the lower limit
and vdcmin,i is the upper limit. In this paper, vdc,i = Vdc,i at
every iteration to have a convex optimization problem which
gets updated at the next iteration.

The main objective of the OCFP is to find distribution
voltages, Vdc = [vdc,0, . . . , vdc,n]

T that corresponds to Ib
obtained from the OBDP (14) by simultaneously solving (1),
(2), (10) and (11).

IV. PROPOSED CONTROL ALGORITHM

This section presents the proposed centralized control al-
gorithm(see Algorithm 1), which is based on the framework
in Fig. 5. It consists of the FLIA and the FVIA which are
proposed to solve the OBDP (14) and OCFP at every time
instant respectively. In Part II of this paper the OBDP and
OCFP will be solved in a distributed manner. Note that (14)
can be solved using software packages such as CVXPY [27].
However, software packages usually abstracts (useful) details
which are required for deeper understanding of the solution
and for designing a distributed control algorithm proposed in
Part II of this paper.

A. The Fast Lambda Iteration Algorithm

Since (14) is convex, Karush-Kuhn-Tucker (KKT) optimal-
ity conditions are necessary and sufficient conditions for opti-
mality [28]. Without first considering the inequality constraint
given by (14c) for convenience, the problem (14) can be
converted to an unconstrained optimization problem using the
Lagrangian operator L as follows

L (Ib,i, λ) = J + λ

(
n∑
i=0

ID,i −
n∑
i=0

Ib,i

)
(16)

According to KKT optimality conditions, the operator L is
minimized if its partial derivative with respect to each variable,
Ib,i , i = 0, . . . , n and λ is zero as follows

∂L
/
∂Ib,i = ∂J

/
∂Ib,i − λ = 0 (17a)

∂L
/
∂λ =

n∑
i=0

ID,i −
n∑
i=0

Ib,i = 0 (17b)

That is, in order to minimize the total power losses in the
nano-grid, the necessary condition is to have the incremental
loss rate, ∂J/∂Ib,i of all the batteries in the nano-grid the
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same and equal to λ. From (17a), one can obtain λi for the
i-th battery as follows

λi = 2αiIb,i + βi (18)

Then by substituting (18) in (17b), λ = λi is obtained as

λ =

(
n∑
i=0

βi
2αi

+
n∑
i=0

ID,i

)/ n∑
i=0

(
1

2αi

)
(19)

The optimal charge and discharge current, I∗b,i and power, P ∗b,i
for the i-th battery can be obtained from (9b), (18) and (19)
as

I∗b,i = (λ− βi) /2αi , P ∗b,i = Vdc,iI
∗
b,i (20)

Lastly, taking the constraints given by (14c) into consider-
ation, the optimal P ∗b,i is modified as follows

Pb,i =


P bmax,i , if Vdc,i (λ− βi) /2αi > P bmax,i
P bmin,i , if Vdc,i (λ− βi) /2αi < P bmin,i
Vdc,i (λ− βi) /2αi Otherwise.

(21)

Consequently, I∗b,i which satisfies (14c) can be obtained from
(21) as I∗b,i = Pb,i/Vdc,i. However by including the battery
constraints in (21), the equal incremental loss principle, λ = λi
required to minimize the total power losses may not work
when one battery hits the limits given by (14c). The current
balance constraint (14b) may also be unsatisfied when one
battery hits its operation limits. To guarantee the optimality of
the solution, λ is modified though the proposed FLIA:

P
(k+1)
b,i = Vdc,i

(
λ(k) − βi

)
/2αi

I
(k+1)
b,i = P

(k+1)
b,i /Vdc,i

∆I(k+1) =
n∑
i=0

(
ID,i − I(k+1)

b,i

)
λ(k+1) = λ(k) + eλ∆I(k+1)

v
(k+1)
b,i = P

(k+1)
b,i /ib,i ,

(
ib,i = nb,iI

(k+1)
b,i

)
(22)

where k is the lambda iteration number, λ(k) is the approx-
imated value of λ at iteration k and eλ is a small positive
number that defines the convergence speed of the FLIA.

From (22), if ∆I(k) = 0, it means that all batteries are
‘active’ i.e. operating without hitting their limits and the equal
incremental loss principle applies. However, if ∆I(k) 6= 0, it
means that certain ‘inactive’ batteries have hit their limits and
their output power is either equal to zero or saturated at their
absolute maximum values. To achieve ∆I(k) = 0 in this case,
λ should be increased in the positive and negative direction
respectively in order to compel the ‘active’ batteries to ramp
up their charge/discharge rates more than the ‘inactive’ ones.

B. The Fast Voltage Iteration Algorithm

After Ib is obtained from the FLIA, distribution voltages
Vdc can be obtained through the proposed FVIA:

idc,i = ID,i − Ib,i

v
(q+1)
bus =

(
n∑
i=1

v
(q)
dc,i

Rdc,i
− idc,0

)/ n∑
i=1

1
Rdc,i

v
(q+1)
dc,i = v

(q+1)
bus − idc,iRdc,i , i = 1, 2, . . . , n

(23)

where q is the voltage iteration number and v(q+1)
dc,i is the up-

dated approximation of the distribution voltage of household i
with respect to the previous approximations of the distribution
voltages, v(q)dc,j , j = 0, 1, . . . , n of other households j.

Taking the voltage limits (14d) into consideration, v(q+1)
dc,i

obtained from (23) should satisfy the following voltage limits

v
(q+1)
dc,i =


vdcmax,i , if v(q+1)

bus − idc,iRdc,i > vdcmax,i
vdcmin,i , if v(q+1)

bus − idc,iRdc,i < vdcmin,i
v
(q+1)
bus − idc,iRdc,i Otherwise.

(24)

The FVIA given by (23) eliminates singularities that tend to
be inherent in linear system of equations.

Due to voltage limits given by (24), its clear that ‘new’
distribution currents (25) obtained by voltage values at con-
vergence of FVIA may be either equal (when voltage limits are
not exceeded) or not equal (when voltage limits are exceeded)
to distribution line currents calculated by (11).

ir,i =


(
vq→∞bus − vq→∞dc,i

)
/Rdc,i , if i 6= 0

−
n∑
i=1

(
vq→∞bus − vq→∞dc,i

)
/Rdc,i , Otherwise.

(25)
That is, ir,i given by (25) is equal to idc,i given by (11) if
and only if vbus, vdc,i obtained from (23) are within voltage
limits given by (24). Otherwise, ir,i is less than idc,i and the
excess current, (Inr,i = idc,i − ir,i) must be either discharged
(if idc,i > 0) or charged (if idc,i < 0) by the i-th battery.
However, in the case where battery limits given by (21) are
reached, the excess, inr,i denotes the proportion of ID,i that
should be reduced through solar curtailment or load shedding.

Solar power generation is curtailed if ID,i < 0, idc,i <
0, Pb,i ≥ P bmax,i and inr,i 6= 0. Amount of power curtailed
can be calculated as Pcurtail = inr,ivdc,i. Demand is load
shed (reduced) if ID,i > 0, idc,i ≥ 0, Pb,i ≤ P bmin,i. Actual
implementation of solar curtailment and load shedding is
beyond scope of this paper.

C. Centralized Control Algorithm

The proposed algorithm which consists of the FLIA and
FVIA can be implemented as given by Algorithm 1. Op-
timality proof of the FLIA is given in the Appendix. At
every time step, data which include initial SoC, generation,
demand and distribution line resistance is collected from all
the households via communication links to a central location
where the algorithm is computed. The distribution voltages
are initialised to either values obtained at the previous time
step or are set to the nominal distribution voltage values,
Vdc,n. Using the initialised voltages, the FLIA is computed to
obtain the optimal battery currents and power. With the optimal
battery currents, the FVIA is evaluated to obtain new distribu-
tion voltages. The centralized control algorithm is terminated
when the new distribution voltages are equal to the voltages
obtained at the previous iteration. After convergence, excess
demand/generation is either loadshed or curtailed respectively,
and the battery SoCs are updated. The output of the algorithm
are the final distribution voltages, which can be sent to the
FPCs as control signals.

Power loss minimization of off-grid solar DC nano-grids—part I: centralized control algorithm
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Algorithm 1 Centralized Control Algorithm
Collect data: SoCo,i, Ppv,i, PL,i & Rdc,i ∀i = 0, 1, . . . , n

Initialize V (m)
dc,i = Vdc,n i = 1, 2, . . . , n and done1 = False

while not done1 do
Evaluate (15a), (15b) & (15c) for i = 0, 1, . . . , n
Initialize λ(k) using (19), eλ ∈ (0, 1] and done2 = False
Perform the FLIA algorithm:
while not done2 do

Evaluate the FLIA given by (22) and (21)
if |λ(k+1) − λ(k)| ≤ 0.001 then

done2 = True
else

Update λ(k) ← λ(k+1)

Update eλ ← 0.8eλ (0.8 is a decay factor of eλ)
done2 = False

end if
end while
Set Ib,i ← I

(k+1)
b,i for i = 0, 1, . . . , n

Initialise, v(q)dc,i = V
(m)
dc,i , v(q)b,i = vb,n and done3 = False

Perform the FVIA algorithm:
while not done3 do

Evaluate the FVIA given by (23) and (24)
if |v(q+1)

dc,i − v
(q)
dc,i| ≤ 0.001 then

done3 = True
else

Update v(q)dc,i ← v
(q+1)
dc,i

done3 = False
end if

end while
Set V (m+1)

dc,i ← v
(q+1)
dc,i for i = 0, 1, . . . , n

if |V (m+1)
dc,i − V (m)

dc,i | ≤ 0.001 then
done1 = True

else
Update V (m)

dc,i ← V
(m+1)
dc,i

done1 = False
end if

end while
Calculate ir,i (25) and loadshed/curtail generation
Update battery SoC using (5)

V. SIMULATION RESULTS

The performance of the proposed control algorithm was
fully tested with a nano-grid which consists of four households
(n = 4) and a hub as shown in Fig. 1. Battery and line
parameters of the nano-grid are given in Table II. FPC simu-
lation parameters are listed in [4]. The vdcmin,i and vdcmax,i were
taken as 100 V and 120 V, ∀i = 0, 1, . . . , n respectively. P+

c,i

and P−c,i were taken as -120 W and 120 W, ∀i = 0, 1, . . . , n
respectively. The SoCmin,i and SoCmax,i were 20% and 95%,
∀, i = 0, 1, . . . , n respectively. The batteries in the households
and hub were assumed to have equal initial SoC of 50%. A
2×250 W, 24 V solar panel [29] was used at H0. Two case
studies were investigated in order to verify the performance of
the proposed algorithm. In the first case study, constant values
of power generation and load demand were used. The objective
of this case study was to investigate the convergence of the

TABLE II
BATTERY AND LINE PARAMETERS.

H0 H1 H2 H3 H4
Cb,i (kWh) 0.96 1.32 0.66 1.80 0.80
Rdc,i (Ω) 0.0 3.0 2.0 1.5 3.0
Vdc,n (V) 110 110 110 110 110
V b
n,i (V) 12 12 12 12 12

FLIA and FVIA. In the second case study, time-varying values
of household/hub power generation and load demand were
used. The objective of this study was to verify the effectiveness
of the proposed algorithm for: 1) facilitating power exchange
between the households and hub while strictly satisfying the
operational constraints and 2) minimising the total energy
losses of the nano-grid.

A. CASE STUDY 1: With Constant Demand and Solar Power
In this case study, values of power generation and load

demand were taken as constants, thus representing a specific
operating point of the solar nano-grid. For the purpose of this
case study, constant power generation (at H0) was equal to
500 W and the constant load demand values at H0, H1, H2,
H3 and H4 were set to be 100 W, 50 W, 80 W, 80 W and 80
W respectively. Distribution voltages were considered to have
nominal values (see Table II). Other calculated parameters are
summarised in Table III. In the next subsections, convergence

TABLE III
ADDITIONAL SIMULATION PARAMETERS FOR CASE STUDY 1.

H0 H1 H2 H3 H4
ID,i (A) -3.64 0.45 0.73 0.73 0.73

α 0.52 3.38 2.76 1.78 3.28
β 0 -2.73 -2.91 -2.18 -4.36

rb (mΩ) 6.2 4.5 9.0 3.3 3.3

analysis of the FLIA and FVIA is presented.

Convergence of the Fast Lambda Iteration Algorithm
Fig. 6 showed that convergence of the FLIA was achieved

within six iterations. At convergence, the total mismatch
current in the nano-grid was zero. This showed that the
proposed FLIA converges and achieves the current balance
in the nano-grid. The value of λ at convergence was equal to
−2.77 W/A. The optimal battery charge and discharge currents
corresponding to λ = −2.77 W/A were −1.091 A, −0.007 A,
0.024 A, −0.168 and 0.242 A for H0, H1, H2, H3 and H4
respectively.

Convergence of the Fast Voltage Iteration Algorithm
The distribution line currents for H0, H1, H2, H3 and H4

corresponding to the optimal battery charge and discharge
currents obtained from the FLIA in the previous subsection
were obtained from (11) as −2.545 A, 0.462 A, 0.703 A, 0.895
A and 0.485 A respectively. These values were then used to
determine the convergence of the FVIA as shown in Fig. 6b.
Fig. 6b showed that FVIA converges after one iteration. This
was always the case provided that the distribution line currents
were balanced.

Power loss minimization of off-grid solar DC nano-grids—part I: centralized control algorithm
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(a) (b)

Fig. 6. Convergence speed of (a) FLIA and (b) FVIA.

(a) (b)

Fig. 7. 48 h (a) household load demand profiles and (b) total solar power
generation and total load demand.

B. CASE STUDY 2: With Varying Demand and Solar Power

In this case study, the performance of the proposed cen-
tralized control algorithm (see, Algorithm 1) for time varying
load demand and solar panel output power is presented. The
performance of the proposed algorithm was evaluated for two
case studies, A-and B with different locations of solar panels.
In case study A, only the hub had solar panels and in case
study B, both the hub and H4 had solar panels. It should be
noted that H4 was chosen for simulation purposes only and
any other household could have been chosen to serve the same
purpose without affecting the analysis of the results.

CASE STUDY A: Solar Panels at the Hub Only

The considered load demand profiles [30] for the households
and hub are shown in Fig. 7a. The total load demand and solar
power generation profiles are shown in Fig. 7b. The simulation
results are shown in Fig. 8. Fig. 8a and Fig. 8b showed that the
proposed algorithm can coordinate the charge and discharge
operation of the batteries while keeping the battery output
power within ±120 W and the battery SoC between 20% and
95%. The battery at H0 charged faster than other batteries for
most periods because it was situated near the solar panels. This
was followed by the battery at H2 owing to its relative small
capacity. With reference to Fig. 7b, it can be observed in Fig.
8b that the nano-grid batteries charged the excess and deficit
solar power generation to meet the total load demand. Fig. 8c
and Fig. 8d showed that the proposed algorithm effectively
facilitated the power exchange between the households while
keeping the voltages within their limits.

(a) (b)

(c) (d)

Fig. 8. Power management performance of the proposed centralized control
algorithm with solar panels at the hub only: (a) battery SoC, (b) battery charge
and discharge power, (c) distribution voltages and (d) power exchange.

CASE STUDY B: Solar Panels at Both the Hub and Household

The purpose of this case study was to evaluate the perfor-
mance of the proposed algorithm in a case where a household
in the nano-grid also had solar panels. Here, H4 was con-
sidered to have solar panels with capacity equal to those at
H0. The simulation results in Fig. 9 showed that the proposed
algorithm also works in a case where households have solar
panels installed.

As expected, Fig. 9 showed that by installing solar panels at
the households in addition to the hub increases the amount of
power stored in the batteries. This is shown by battery SoCs
in Fig. 9a, where they reached maximum values.

However, installing solar panels at the households (thus
increasing the solar power generation in the nano-grid) was
observed to increase both battery and distribution line losses
as shown in Table IV. This is because of the increased amount
of power stored in the batteries and additional power exchange
from H4 between the households as shown by comparing Fig.
9d to Fig. 8d. In other words, the nano-grid power loss problem
is largely driven by solar power generation. The higher the
solar power generation, the higher the nano-grid power losses.

TABLE IV
COMPARISON OF NANO-GRID ENERGY LOSS RESULTS.

Solar at H0 Solar at H0 & H4
Battery loss (Wh) 22.74 28.73
Distribution loss (Wh) 99.02 147.77
FPC loss (Wh) 4426.44 4426.44
Total energy loss (Wh) 4548.24 4602.94

Power loss minimization of off-grid solar DC nano-grids—part I: centralized control algorithm
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(a) (b)

(c) (d)

Fig. 9. Power management performance of the proposed centralized control
algorithm with solar panels at both the hub and H4: (a) battery SoC, (b)
battery charge and discharge power, (c) distribution voltages and (d) power
exchange.

C. Power Loss Comparison Between the Proposed Algorithm
and Existing Method

To validate the performance of the proposed algorithm,
the nano-grid energy loss results obtained for case study A
in the previous subsection were compared to those obtained
through an existing method given in [8]. The existing approach
involves formulating the power loss optimization problem of
the nano-grid through linearisation of power flow equations
and then solving the problem using a software package. Table
V compares the total energy loss of the nano-grid obtained
through the proposed algorithm and the existing approach.
As shown in Table V, the proposed algorithm had improved

TABLE V
COMPARISON OF NANO-GRID ENERGY LOSS RESULTS BETWEEN EXISTING

AND THE PROPOSED APPROACH.

Existing Method Proposed Algorithm
Battery loss (Wh) 32.44 22.74
Distribution loss (Wh) 123.75 99.02
FPC loss (Wh) 4426.44 4426.44
Total energy loss (Wh) 4582.63 4548.24
Total execution time (s) 86.49 69.21

energy loss results and execution time compared to the existing
approach. It is further noted from Table V that FPC losses
account for the majority of the energy losses in the nano-grid,
followed by distribution line losses and then the battery losses.
Similar observation can be made in Table IV as well. This
shows that neglecting the FPC loss can significantly affect the
nano-grid operation. The FPC losses are the same for both
methods because same load profiles were used and that the
FPC loss is a function of load power as given in Section II-E.

Apart from being fast and accurate, the main advantage
of the proposed approach compared to the existing method
and other methods like heuristics methods [23] is that it
lays a mathematical foundation on which advanced distributed
control algorithms can be developed. In Part II of this paper,
a distributed control algorithm is proposed which utilises the
mathematical equations and insights developed in this paper.
Moreover, the centralized algorithm proposed in this paper is
more suited for small nano-grids in rural areas where privacy
of households and computational burden of the centralized
controller are not a concern. To take these concerns into
account especially for large-scale nano-grids, a distributed
control algorithm is proposed in Part II.

VI. CONCLUSION

A novel centralized control algorithm is developed in this
paper to minimize power losses of a multi-port converter-
enabled solar DC nano-grid that is designed for energy access.
The algorithm is developed by first formulating the power loss
problem as a two-stage convex optimization problem. The
first stage is the OBDP for determining the optimal battery
charge and discharge currents that minimize the nano-grid
power losses. The second stage is the OCFP for determining
the optimal distribution voltages that correspond to the battery
charge and discharge currents from the OBDP. Then, two iter-
ative algorithms, the FLIA and FVIA which together form the
proposed centralized control algorithm are developed to solve
the OBDP and OCFP respectively. Simulation results verify
the effectiveness of the proposed algorithm for minimising the
nano-grid power losses while satisfying operational constraints
such as the battery SoC limits. FPC losses were found to be
more than 20 times higher than the distribution line losses
and more than 100 times higher than the battery losses. This
suggests that converter losses are the majority in multi-port
converter-enabled solar DC nano-grids. Furthermore, the nano-
grid power loss problem was also found to be largely driven by
solar power generation. The higher the generation, the higher
the power losses. In part II of this paper, a distributed control
algorithm will be proposed to address the privacy concerns of
the proposed algorithm.

APPENDIX A
OPTIMALITY PROOF OF FLIA

The FLIA (22) iteratively solves the optimization problem
stated by (14). Considering inequality constraints given by
(14c), this problem can be converted to an unconstrained
problem using the Lagrangian operator L as

L (Ib,i, λ, µi, σi) = J + λ

(
n∑
i=0

ID,i −
n∑
i=0

Ib,i

)
+

n∑
i=0

µi
(
−Ib,iVdc,i + P bmin,i

)
+

n∑
i=0

σi
(
Ib,iVdc,i − P bmax,i

)
(26)

In this appendix, we show that the convergence value of
the FLIA (22) is optimal. Since (14) is convex, Karush-
Kuhn-Tucker (KKT) optimality conditions are necessary and

Power loss minimization of off-grid solar DC nano-grids—part I: centralized control algorithm
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sufficient conditions for optimality [28]. Thus, it suffices to
show that the convergence value of the FLIA satisfies KKT
conditions, which are:

∂L

∂Ib,i

∣∣∣I∗b,i,λ∗,

µ∗
i ,σ

∗
i

=
∂J

∂Ib,i
− λ∗ − Vdc,i (µ∗i − σ∗i ) = 0 (27a)

∂L

∂λ

∣∣∣I∗b,i,λ∗,

µ∗
i ,σ

∗
i

=
n∑
i=0

ID,i −
n∑
i=0

I∗b,i = 0 (27b)

∂L

∂µi

∣∣∣I∗b,i,λ∗,

µ∗
i ,σ

∗
i

= −I∗b,iVdc,i + P bmin,i = 0 (27c)

∂L

∂σi

∣∣∣I∗b,i,λ∗,

µ∗
i ,σ

∗
i

= I∗b,iVdc,i − P bmax,i = 0 (27d)

Convergence of the FLIA (22) depends on ∆Ik and the con-
vergence factor eλ as discussed in the last paragraph of Section
IV-A. So long as ∆Ik → 0 as k → ∞, λ(k+1) = λ(k) = λ∗

and the FLIA converges. Convergence of (22) can also be
achieved by making eλ = (0, 1] to slowly decay towards zero
at a constant rate as k → ∞. The final value of λ = λ∗

however, depends on the amount of current and power each
battery charges or discharges.

To prove optimality when λ = λ∗, satisfaction of the KKT
conditions in (27) suffices. Clearly, P bmax,i 6= P bmin,i and
(Ib,iVdc,i) cannot equal both P bmax,i and P bmin,i, and equations
(27c) and (27d) cannot both be satisfied. In this case we
proceed by selecting a subset of the constraints, and evaluating
the resulting solutions as follows:

• Constraint 1: P bmin,i <
(
I∗b,iVdc,i

)
< P bmax,i

In this case, setting µi = σi = 0 (i.e. ignoring the
inequality constraints of equation (14)) satisfies the KKT
conditions given in (27a), (27c) and (27d). Here, optimal
λ∗ and I∗b,i are evaluated as given by (19) and (20)
respectively.

• Constraint 2: P bmin,i >
(
I∗b,iVdc,i

)
This is a case where battery’s minimum power constraint
is exceeded and to protect the battery and converter from
damage,

(
I∗b,iVdc,i

)
is taken as

(
I∗b,iVdc,i

)
= P bmin,i.

Setting σi = 0, µi can be obtained from (14a) & (27a)
as

µi =
1

Vdc,i

(
2αi

P bmin,i
Vdc,i

+ βi − λ∗
)
> 0 (28)

which satisfies the KKT conditions in (27a), (27c) and
(27d).

• Constraint 3: P bmax,i <
(
I∗b,iVdc,i

)
In this case, battery’s maximum power limit is exceeded
and to protect the battery and converter from damage,(
I∗b,iVdc,i

)
is taken as

(
I∗b,iVdc,i

)
= P bmax,i. By taking

µi = 0, σi which satisfies the KKT conditions in (27a),
(27c) and (27d) can be obtained from (14a) & (27a) as

σi =
1

Vdc,i

(
λ∗ − 2αi

P bmax,i
Vdc,i

+ βi

)
> 0 (29)

Thus, for any convergence value of FLIA i.e. λ = λ∗, there
exists a set of µi and σi, ∀i = 0, 1 . . . , n which satisfies the

KKT conditions. Since the problem formulation given by (14)
is convex with affine constraints, its solution is therefore a
global optimal [28].

It should be noted that (27b) is satisfied even for Con-
straints 2 and 3 provided that not every battery in the nano-
grid operates at maximum values as explained in Section IV-A.
Otherwise (27b) is not satisfied and excess solar generation
and demand should be curtailed and load-shed respectively.

APPENDIX B
CONVERGENCE ANALYSIS OF FVIA

The convergence analysis and initialization of the FVIA can
be analysed by rewriting (23) in a matrix form as follows

Vdc
(q+1) = WVdc

(q) + c (30)

where Vdc
(q) =

[
v
(q)
dc,i, . . . , v

(q)
dc,n

]T
, W = (wij)n×n, and

c = −

 idc,0
n∑
i=1

Rdc,i

+Rdc,1idc,1, . . . ,
idc,0
n∑
i=1

Rdc,i

+Rdc,nidc,n


T

(31)
The matrix W has the following characteristics:
• wij = 1

Rdc,j

∑n
i=1Rdc,i > 0, ∀i, j = 1, 2, . . . , n,

•
n∑
j=1

wij = 1, ∀i = 1, 2, . . . , n,

• µ1 = 1 is a simple eigenvalue of W and all other
eigenvalues; µ2, . . . , µn are zero,

• 1 = [1, . . . , 1]
T is a right eigenvector of W associated

with µ1 = 1, i.e. W1 = 1,
• πw = [wi1, wi2, . . . , win], i = 1, 2, . . . , n is a left eigen-

vector of W associated with µ1 = 1, i.e. πwW = πw.
The above characteristics verify that W is a row stochastic
matrix and according to Perron-Frobenius theorem [31], the
convergence of W and the convergence of the FVIA algorithm
thereof exists.

Pre-multiplying (30) by πw, the following expression can
be obtained

πwVdc
(q+1) = πwWVdc

(q) + πwc (32)

Noticing that πwW = πw and that πwc =

−
(

n∑
i=0

idc,i

)
/

n∑
i=1

1
Rdc,i

, the expression given by (32)

can be further simplified as follows

πw

[
Vdc

(q+1) −Vdc
(q)
]

= −

n∑
i=0

idc,i

n∑
i=1

1
Rdc,i

(33)

or, equivalently
n∑
i=1

v
(q+1)
dc,i −

n∑
i=1

v
(q)
dc,i = −Rdc,i

n∑
i=0

idc,i (34)

As
n∑
i=0

idc,i = 0 after convergence of the FLIA, taking limits

on both sides of (34) as q →∞ yields the following expression

lim
q→∞

n∑
i=0

v
(q+1)
dc,i = lim

q→∞

n∑
i=0

v
(q)
dc,i (35)
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That is, as q →∞, the difference between v(q+1)
dc,i and v(q)dc,i is

approximately equal to zero and the FVIA converges for any

choice of initial values, Vdc
(0) =

[
v
(0)
dc,1, . . . , v

(0)
dc,n

]T
.

APPENDIX C
OPTIMALITY PROOF OF THE CENTRALIZED CONTROL

ALGORITHM

We analyse the existence of a fixed point to prove the
optimality of the proposed centralized control algorithm. As
(14a) is a strictly convex function of Ib, the optimal value of
Ib is a one-to-one correspondence to the distribution voltage
Vdc calculated through the FVIA (23). That is, Ib is a
function of Vdc: Ib = F (Vdc). Further, according to (23),
the relationship between Ib and Vdc can be expressed as
Vdc = G (Ib). Thus, the whole centralized control algorithm
can be described as Vdc = G (F (Vdc)) = H (Vdc). As
F and G are compact and continuous functions, H is also a
compact and continuous function.

Theorem (Brouwer Fixed-Point Theorem): Let X be
bounded, closed and a non-empty compact convex set in RN

and f be a compact and continuous function mapping X into
itself, i.e. f : X → X . Then f has a fixed point X∗ [32].

As Vdc ∈ D where D =
[
vdcmin,i, v

dc
max,i

]
and H : D → D,

according to the Theorem there exists a fixed point in D for
H (Vdc). Thus, if the algorithm converges to a fixed point
after a finite number of iterations, the distribution voltage Vdc

converges and the obtained solution is optimal. Otherwise, it
is divergent, the optimization problem is unsolvable and the
households still can satisfy their energy demands using the
on-site batteries.
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