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Abstract
Safe operations of marine engines is ensured by appropriate maintenance techniques requiring accurate assessment
of engine’s health status. The use of machine learning methods can considerably enhance the combustion diagnos-
tics and hence facilitate the cost-effective and timely maintenance of marine engines. This study aims at assessing
the potential of Fourier series coefficients (FC) obtained from in cylinder pressure signal and developing an arti-
ficial neural network (ANN) model that can support the engine diagnostics of marine engines. A ferry ship with
two propulsion engines of the four-stroke type was employed as the reference system in this study. Digital twin of
the thermodynamic zero dimensional type, which was calibrated by using the engines shop test measurements, is
employed to generate the required data-sets in the whole engine envelop, whilst considering the most typical en-
gine anomalies, including degradation and faults. The results demonstrate that first 20 harmonics contains required
information to estimate fault severity within 0.016 RMSE range.

Introduction
Engine health diagnosis is important to ensure the

uninterrupted functioning of marine engines. Literature
depicts various efforts taken in the field of engine di-
agnostics. Studies have shown that traditional fault di-
agnosis methods, such as visual inspections and man-
ual testing, are time-consuming and often lead to in-
correct results. In recent years, Artificial Intelligence
(AI) and Machine Learning (ML) algorithms have been
developed to analyse large amounts of data from ma-
rine engines to detect faults in real-time. Xi et al. [12]
developed a classifier to avoid human errors using in-
dependant component analysis (ICA) for vibration data
obtained from the various engine locations. Tsaganos
et al. [6] proposed an ensemble (multi technique) model
to classify the common occurring faults in marine two-
stroke engines. Extreme learning ensemble is developed
by Kowalski et al. [2] to classify around 14 faults in
four stroke diesel engines. In brief, ML is widely used
for performance estimation, diagnosis and prognosis of
combustion engines. The data driven models based on
ML has proven to be cost effective solutions to facilitate
the maintenance process of marine engines.

The change in thermodynamic/mechanical/physical
settings of marine engines are reflected on instantaneous
in-cylinder pressure of marine engines. Moreover, ef-
forts have been taken to extract the combustion infor-
mation from the in-cylinder pressure curve. This signal
is important to sense anomalies within the engine work-
ing envelope. Fourier analysis is widely used to convert
the periodic signals into frequency domain. The har-
monics orders in terms of Fourier coefficients (FC) have
potential to extract relevant information from the pres-
sure signal, and can be further used for diagnosis instead
of the actual pressure signal.

This study aims at assessing the potential of using
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FC obtained from in cylinder pressure signal for fault
diagnosis that can support the engine diagnostics of ma-
rine engines. Fourier analysis is used to convert the
pressure signals into FC corresponding to different har-
monics orders. The impact of faults on these FC are
analysed with variance analysis to select N potential har-
monics carrying appropriate information for fault diag-
nosis. The effect on number of harmonics selected for
diagnosis is also assessed through RMSE on validation
data. Finally, effective model with confirmed harmon-
ics N is tested on test data set and the performance is
quantified on the basis of RMSE and training time.

Methodology
The methodological approach consists of the follow-

ing six steps:
Step 1 Data generation – A validated digital twin of the

investigated marine engine is employed to gener-
ate healthy and faulty data-sets.

Step 2 Fourier analysis – Conversion of in-cylinder pres-
sure signals to discrete FC.

Step 3 Data standardisation and splitting – The data
(input:engine speed, power, FC and output:fault
severity) is standardised by centering to their mean
values. The generated data from Step 1 is split in 3
parts called training, validation and test data sets.

Step 4 Model setup and training – Artificial Neural Net-
works (ANN) are set up based on the selected in-
put and output parameters.

Step 5 Model testing – The trained model is tested on the
test data (separated in step 4).

Data generation
The engine used for this study is the four-stroke

Wärtsilä 9L46C marine engine, which is a nine cylin-
der turbocharged medium speed engine. The specifica-



tions of the engine are described in Table 1. The em-

Maximum Continuous 9,450 kW
Rating point @ 500 RPM

No. of Cylinders 9
Cylinder Bore 460 mm

Clutch-in Speed 300 RPM
Turbocharger ABB TPL 77-A30

Table 1: Investigated marine engine specifications. [11]

ployed digital twin (DT) is of the zero-dimensional type
and uses semi-phenomenological models and widely ac-
knowledged formulae to represent the engine processes.
The detailed description of the employed digital twin is
provided in [7, 8, 10].

The zero-dimensional thermodynamic DT for the in-
vestigated engine is calibrated and validated by con-
sidering the steady state measured parameters from the
engine shop trials (factory acceptance tests). The em-
ployed DT calibration and validation processes for the
investigated marine engine are described in [7–9]. This
DT was further validated against in-cylinder pressure
measurements acquired during the normal ship opera-
tion at five steady state operating points.

Subsequently, the validated DT is employed to gen-
erate the required data sets considering the investigated
engine operation at both healthy and faulty conditions;
the latter are associated with several engine compo-
nents faults and degradation. The four most frequent
faults/degradation are: fuel injection issues, increased
friction losses, blowby, harge Air Cooler (CAC) foul-
ing.

The faults and their severity β f ault range considered
for the simulations are listed in Table 2. It should be
noted that this study considers faults/degradation for one
cylinder of a multi-cylinder engine and can be extended
to other cylinders. The cases of different combination
of faults/degradation on cylinders is out of the scope of
this study.

Table 2: Considered faults/degradation and input parameters
specification in the DT.

Faults/degradation Description Parameter Calculation Range of βi
Injection advance θSOI,healthy(1−βSOI) 0–0.6
Engine friction losses increase f mephealthy(1+βFMEP) 0–0.6
Blowby ABB,healthyβBlowby 0–0.6
Charge Air Cooler (CAC) Fouling ηAC,healthy(1−βCAC) 0–0.6

To facilitate the fault/degradation analysis over the
whole engine operating envelope, 50 operating points
corresponding to steady state conditions were consid-
ered.

Fourier series coefficients (FC)
The number of points from the pressure signal can be

reduced by sampling it with lower sampling rate. How-
ever, the risk of loosing information renders this method

Figure 1: Reconstruction of pressure signal (first 360◦CA)
from N number initial harmonics using 2N+1 FC.

ineffective. Fourier analysis [4] is a method to repre-
sent continuous periodic signals through superposition
of harmonically related sine and cosine signals. Several
efforts to reconstruct the in-cylinder pressure signals us-
ing FC were reported in the pertinent literature [1, 5, 13].
Moreover, FC are proven to be useful to reduce the di-
mensionality in other machine learning applications as
reported in [3]. This method has a potential to repre-
sent a typical pressure signal with less than 100 points
(coefficients).

On the basis of this concept, the derived data sets
of the in-cylinder pressure, which are functions of the
crank angle corresponding to the time domain, as the
crank angle is a function of time (for steady state con-
ditions, φ(◦CA)= 6 N(rpm)t(s)), can be converted to
the frequency domain by the use of discrete coefficients
(C1,C2, ..CN), according to the following equation:

P(φ)⇒ f (C1,C2, ....) (1)

The in-cylinder pressure signal of four stroke engine
cycle has period T equals to 720◦CA, and can be con-
verted into Fourier series using the equations reported
in [13].

The total number of harmonic orders required to ex-
actly represent the pressure signal (resulting in zero er-
ror) tends to infinity. Figure 1 shows the reconstructed
in-cylinder pressure profile considering N numbers of
initial harmonic orders considered from 2N+1 FC. As
N increases, the error in reconstruction of original pres-
sure signal reduces. Higher values of N will be required
to accurately reconstruct the pressure signal. However,
the diagnostic model demands only required amount of
information which is helpful for fault prediction. Typi-
cally the lower harmonic orders convey most of the re-
quired information, thus, the in-cylinder pressure sig-
nals can be represented by using a lower number of
input parameters resulting in dimensions reduction as
required in developing data-driven models. Therefore,
corresponding value of N is selected by variance anal-
ysis presented in results section to provide appropriate
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number of coefficients as input to the diagnostic model.

Data standardisation and splitting
Scaling of parameters allows the ML algorithms

to focus on the relationships between the parameters,
rather than the scale of the values. All numerical at-
tributes (input and output parameters of the developed
models), which include engine performance parame-
ters and FC along with the faults severity parameters
(β f ault ), are standardised by removing their mean and
scaling them to the unit variance.

The populated data from simulations in step 1 is split
in three parts for training, validation and test data sets.
15% of the total data is used for testing, while remaining
dat is used for training purpose. Another split of training
data is carried out by taking 15% of the training data
as validation data to validate the ANN during training
phase.

Model setup and training
The ANN is developed with input [engine speed, en-

gine power, FC (considering N harmonics)] and output
[βCAC,βFMEP,βSOI ,βblowby] using Keras and TensorFlow
package.

MultiLayer Perceptron (MLP) networks are type of
ANN, which are also known as multilayer feed forward
networks, are widely used in practical applications. Fig-
ure 2 showcases the structure of ANN used in this study.
Two hidden layers with 10 nodes for each hidden layer
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Figure 2: Artificial Neural Network with 2 hidden layers esti-
mating fault severity of most frequent faults

of ANN are selected for this study. Considering the non-
linear relationship between inputs and output, an activa-
tion function called Exponential Linear Unit (ELU) is
used at each neuron of hidden layer followed by a linear
activation function at the output layer.

Metric selection is necessary to monitor the perfor-
mance of the model during training as well as valida-
tion on test data. The developed model estimates fault
severity index as a numerical value. The Root Mean
Square Error is selected to monitor the performance of
the model. The training process involves, minimisation
of RMSE between true and predicted value β f ault by the

(a) CAC Fouling

(b) Friction loss

(c) Injection advance

(d) BlowBy

Figure 3: Variance of AN and BN coefficients for N ∈
[1,2, ..,N] for each fault (a,b,c,d) present alone at 462.5 RPM
and full load.

model. The Adam optimiser is used with adapting learn-
ing rate to minimise the monitored RMSE. Early stop-
ping constraint is introduced monitoring consecutive it-
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eration losses to check if the error is stabilised for stop-
ping the training process earlier saving training time.

Model testing
The trained model is further tested on the test data

set separated in step 4. The performance of the model is
always verified on the test data as the model has never
seen this data in training period and makes the evalu-
ation unbiased. The test results are presented in next
section.

(a) AN

(b) BN

Figure 4: Correlation of AN and BN coefficients for N ∈
[1,2, ..,N] with β f ault present alone at 462.5 RPM and full
load.

Results
This section presents the results of assessing FC to

be used for a fault diagnosis.
Every fault with severity (β f ault ) has an impact on

the harmonics of pressure signal calculated from step 2.
To verify this impact, variance of FC (AN and BN) con-
sidering Nth harmonics over the β f ault is plotted for each
fault separately in Figure 3. The impact shows high vari-
ance on initial harmonics (N ≤ 20) for βFMEP,βBlowBy
and βCAC. While, fault due to injection advance re-
flects on higher order harmonics (N ≤ 30). Moreover,
The correlation of AN and BN up to 30th harmonic is
plotted with β f ault for each fault in Figure 4. It shows

all the coefficients are highly correlated with ±1 value.
Therefore, it is evident that, the initial 20 fundamental
harmonics of the pressure signal are crucial information
carriers for fault diagnosis.

The structure of ANN using 20 harmonics (41 FC)
with 2 hidden layers and 4 output nodes for each fault
severity in presented in Table 3.

Layer (type) Output shape Parameters
Input layer (None,43) 0
Hidden layer (Dense) (None,10) 440
Hidden Layer (Dense) (None,10) 110
Output layer (None,4) 44

Table 3: Structure of ANN using N=20 harmonics as input
along with engine speed and power to predict β f ault of four
faults

The RMSE on the validation data (separated in step
4) during training over 200 epochs is presented in Fig-
ure 5. The error reduces as the ANN is trained with in-
creasing number of times (epochs) the data is presented
to the model. The learning rate changes due to Adam
optimiser speeding the training process the reduce the
RMSE.

various ANN architecture with different number of
harmonics (N) are considered to verify above variance
analysis to assess the potential of N number of harmon-
ics to diagnose the faults. The RMSE surely reduces
with higher harmonics however, it gets saturated after
N=20. The RMSE of ANN with 20 harmonics, after
training with 174 epochs is 0.0162. The training time in-
creases with increased number input to ANN with num-
ber of harmonics. Total training time for the model cre-
ated with 20 harmonics is 91.3 seconds. Thus, only ini-
tial 20 harmonics are enough to predict the severity of
the frequent faults with good accuracy and training time.

Figure 5: RMSE on the validation data set during training
phase of the ANN

The trained model is further tested on the test data
separated in the step 4. As this data was kept aside from
the model during training period, the model is not biased
for this data set. The RMSE on this data set to predict
the β f ault for each fault is presented in the Table 4. The
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overall root means square error for the ANN with 20
initial harmonics is 0.016 on the test data.

Fault RMSE
BlowBy leakage 0.012
Friction 0.011
Start of injection 0.0096
Cooler fouling 0.025

Table 4: RMSE to predict the β f ault using the ANN diagnostic
model.

Conclusions
The assessment of FC to predict the faults in marine

engines is carried out successfully, highlighting the po-
tential of initial harmonics for estimating the most fre-
quent fault severity. The corresponding FC (2N+1) for
N harmonics calculated from measured in-cylinder pres-
sure signal are used as inputs to the ANN along with en-
gine speed and power. The fault severity (β f ault ) of four
combustion related faults is estimated by the ANN. The
principle findings of this study are,

1. The impact on FC due to faulty operating condi-
tions, reduces with higher orders of harmonics

2. The variance analysis implies that initial 20 funda-
mental harmonics of the pressure signal are crucial
information carriers for fault diagnosis.

3. The saturating RMSE of ANN considering har-
monics more than 20 confirms that, N=20 is
enough to predict the severity of the frequent faults
with good accuracy and training time (93s).

4. The overall RMSE of the ANN diagnostic model
to predict β f ault , considering 20 initial harmonics
on the test data is 0.016
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