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Abstract—Passive seismics help us understand subsurface pro-
cesses, e.g. landslides, mining, geothermal systems etc. and help
predict and mitigate their effects. Continuous monitoring results
in long seismic records that may contain various sources, which
need to be classified. Manual detection and labeling of recorded
seismic events is not only time consuming but can also be
inconsistent when done manually, even in the case where it is
done by the same expert. Therefore, an automated approach
for classification of continuous microseismic recordings based
on a Convolutional Neural Network (CNN) is proposed, with a
multiclassifier architecture that classifies earthquakes, rockfalls
and low signal to noise ratio quakes. Furthermore, we propose
three CNN architectures that take as input time series data,
Short Time Fourier Transform (STFT) and Continuous Wavelet
Transform (CWT) maps. The suitability of these three networks
is rigorously assessed over five months of continuous seismometer
recordings from the active Super-Sauze landslide in France.
We observe that all three architectures have excellent and very
similar performance. Furthermore, we evaluate transferability to
a geographically distinct seismically active site in Larissa, Greece.
We demonstrate that the proposed network is able to detect all
86 catalogued earthquake events, having only been trained on the
Super-Sauze dataset and shows good agreement with manually
detected events. This is promising as it could replace painstaking
manual labelling of events in large recordings.

Index Terms—Microseismic event classification, Short time
Fourier transform, Continuous wavelet transform

I. INTRODUCTION

Deformation of slow-moving clay-rich landslides can cause
endogenous seismicity [1], [2], [3], including microseismicity,
such as quake, rockfall and tremor-like signals. Quakes are de-
fined as seismic events originating as a result of landslide pro-
cesses, for example, formation of surface fissures. Researching
micro-seismic events leads to improved understanding of sub-
surface processes with applications from predicting landslides
to planning of mining activities and geothermal exploration.
This requires accurate detection of the waveform of micro-
seismic events from traces of seismic recordings. Manually
detecting events and labelling them is time-consuming and a
subjective task, prone to errors and bias. Thus, methods that
automatically detect and classify seismic events are needed.
However, micro-seismic events are of low magnitude and
highly attenuated, which makes the detection and classification
tasks challenging.
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Prior work has focused on application of traditional machine
learning algorithms to classification of (micro-)seismic events,
supported by various signal processing tools for denoising
and detection of events. Most classification approaches have
been based on well-known algorithms, such as Hidden Markov
Models (HMMs), Support Vector Machine (SVM) and Ran-
dom decision Forest (RF) [4], [5], [6], [7]. For example,
Provost et al. [8] propose a classification method using an RF
supervised classifier to classify micro-seismic events on slow-
moving landslides. The method uses the STA/LTA algorithm
for detection, then calculates 71 seismic attributes as features
inputted into a supervised RF to classify each event into one of
four pre-determined classes (earthquake, quake, rockfall and
Natural/Anthropogenic noise). More recently, an end-to-end
automated system is proposed in [9] consisting of signal de-
noising, event detection via statistical Neyman-Pearson based
thresholding, feature selection, and graph-based classification.

In contrast to traditional pipeline-based approaches, e.g.,
[4], [5], [6], [8], [9], deep learning provides an integrated
approach to detection, feature representation and classification,
with competitive performance under the assumption that a
good representative dataset is available for training. Though
there have been many attempts to use various deep learning
architectures for seismic signal detection and classification
(e.g., [10], [11], [12], [13], [14], [15]), classification of micro-
seismic endogenous landslide events based on deep learning is
rarely studied. Moreover, transferability of deep learning clas-
sification models to different monitoring network geometries
is rarely discussed.

In this paper, after providing a detailed literature review,
we formulate the microseismic classification problem as a
multi-class classification task, and propose three convolu-
tional neural network (CNN) models. As in [8], we classify
four types of events, namely earthquakes, rockfalls, seismic
sources related to landslide processes, e.g., fissure formation
(thereafter referred to as quakes) and anthropogenic noise. To
capture a variety of time-domain and frequency features at
different scale, besides using filtered raw time-series wave-
forms as input to the network, we also use Short-time Fourier
Transform (STFT) and Continuous Wavelet Transform (CWT)
coefficients. This leads to three different architectures, each
optimised and designed for one input type. As typical with
time-series data analysis, we slide a fixed length window over
the input to achieve multi-classification on continuous data.

To ensure reproducibility of the work, we train and test
the proposed models on publicly accessible Résif dataset
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[16] that contains 6-channel seismic recordings at sampling
rate of 250Hz over a period of roughly 4 months with over
1000 (micro)seismic events recorded. In addition, we test our
pre-trained model on a geologically-distinct dataset from the
region of Larissa in mainland Greece, using two different
array geometries, to evaluate its transferability. This dataset
was made available to us by the Aristotle University of
Thessaloniki, and is available upon request through [17]. In
summary, our main contributions are:

e Three CNN-based multi-classifier models for three dif-
ferent inputs (time series, STFT maps and CWT maps)
for classification of three different micro-seismicity types
plus anthropogenic noise on continuous recordings.

o Detailed evaluation and analysis of classification perfor-
mance of the three models, including reliability of the
results, and analysis of correctly and incorrectly classified
examples to shed light into the most important features
of the input signal and reasons for mis-classification.

o Evaluation of transferability of the proposed model by
testing the CNN model pre-trained on Résif dataset on a
geographically-distinct dataset and analysis of how dif-
ferent array typologies affect seismic signal classification

o Validation of the classified events via a combination
of known catalogue of earthquakes, as well as manual
and commercial software corroboration for additionally
classified non-catalogued events.

e Release of validated labelled dataset (additional cata-
logue!) on public repository comprising earthquakes,
rockfalls and quake events, as well as three proposed
models for reproducing results.

We present how our work builds upon and goes beyond
the state-of-the-art in Section II, including summary Table I.
Our proposed methodology including the proposed network
structures is presented in Section III, after which the last
three contribution points including transferability and feature
maps visualization are discussed in depth in Section IV, before
concluding in Section V.

II. BACKGROUND

We provide an overview of approaches for seismic signal
classification based on deep learning (DL). Most DL-based
seismic classifiers are binary classifiers (with one class rep-
resenting the event of interest and the other class groups
everything else) usually detecting earthquake events only.
There are some emerging seismic multi-classifiers which out-
put more than two categories. We also include DL approaches
whose end result is classification, although they also perform
detection or phase-picking. It is worth noting that an additional
detection step is not necessary if performing classification
on continuous recordings, parsed into windows. For non-DL
approaches, an up-to-date review can be found in [9].

A. Binary classification
In [12], seismic data are sampled and parsed into time
windows of 20 msec duration, which are then fed into a
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CNN. The CNN model, consisting of one 1-D convolutional
layer, one pooling layer and 3 fully connected (FC) layers,
acts as a binary classifier and classifies the input window
into earthquake event waveform or noise waveform. Perol et
al. [10] propose earthquake detection techniques for multi-
channel 1-D data using CNN with 3 channels and sampling
rate of 100Hz. The raw recordings were split into 10sec
seismic waveform windows that are fed into a trained network
consisting of eight 1-D convolutional layers to extract features
for earthquake detection, followed by a FC layer to perform
the earthquake/noise classification and location estimation by
features outputted by convolutional layers.

Besides feeding raw signals, various methods are proposed
that take as inputs spectrograms [18], [19]. For example,
Dokht et al. [20] propose a CNN model to classify the input
spectrogram into earthquake or noise. The authors use 3-
component spectrograms of 10sec seismic data as input to
a CNN architecture consisting of 4 convolutional and 2 FC
layers. Each convolutional layer is followed by a max-pooling
layer. The final output layer is a two-neuron FC layer with
softmax activation which outputs the probability distribution
of 2 classes (earthquake and noise). Liao et al. [18] use the
method of transfer learning to detect whether the CWT map
contains first break of earthquake. In particular, the authors use
pre-trained CNNs used for image classification tasks, namely,
GoogLeNet, AlexNet and SqueezeNet, to perform transfer
learning from image data to seismic signals and classify the
CWT output into first-break waveform and not first-break
waveform. Linville et al. [21] use long-short-term memory
(LSTM) and CNN models to classify seismic events as either
quarry blasts or earthquakes. The LSTM model routes input
spectrograms to output classes (0 or 1) which represents quarry
blasts or earthquakes through 4 bidirectional layers as a many-
to-one learning scenario which takes input from many time
steps to make one binary classification output. The CNN
architecture with 4 convolutional, 4 max-pooling and 2 FC
layers outperforms RF, SVM and residual neural network.

Mousavi et al. [22] propose a sequence-to-sequence learning
model, ‘EQ-transformer’, for phase picking and earthquake
classification using a multi-task structure, that outputs 3 se-
quences of probabilities, representing presence of earthquake,
P-phase picking and S-phase picking. The deep network struc-
ture consists of an encoder that converts the raw input signal
into features through 1-D convolution, max-pooling, residual
convolution, and LSTM layers, and 3 separate decoders. In
[23], the authors propose a vision transformer (ViT)-based
system for earthquake detection and its magnitude prediction.
The system consists of two separate ViT networks: the first
one detects earthquake events from the picked P-wave; the
second network predicts the magnitude of the detected earth-
quakes. In [13], spectrograms of 30 seconds 3-component
seismograms are used as input to a CNN-RNN Earthquake
Detector (CRED), that consists of convolutional, recurrent
and dense layers, in a residual structure. A 2D convolution
layer extracts features from the input spectrograms. Then, bi-
directional LSTM performs sequence learning. Finally, dense
layers classify the extracted features and output a sequence of
predicted probabilities, for classification of earthquakes and
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noise. [24] perform a 7-level CWT on 3-component 30s-long
time window with 100Hz sampling frequency to construct
a CWT map as input to an encoder-decoder network with
residual learning to classify earthquake signals using 2 classes
- earthquake signal or not.

B. Classification of more than one event type

A CNN is proposed in [11] to classify seismic events into 3
categories - tectonic earthquakes, mining-induced events, and
mining blasts, based on 90sec long spectrograms as input. The
model consists of 4 2-D convolutional and a 3-node softmax
activated dense layer. A ‘deepquake’ CNN architecture is pro-
posed in [25] that classifies 3-component 20sec input data into
earthquake, other events and noise. Two CNNs are built for
two different input types: time series and spectrograms. The
two architectures consist of 6 convolution layers for feature
extraction and one dense layer for classification. An attention-
based CNN architecture is proposed in [15] using multi-task
learning. This architecture first acts as a binary classifier and
classifies the seismic waveform into earthquake or noise; then
as a multi-class classifier, it classifies the seismic waveform
into micro-earthquake, macro-earthquake or noise. The input
data is a 10-sec raw seismic waveform with 100Hz sampling
rate. 8 1-D convolutional layers (with Relu activation) with an
attention module to extract features, and 2 task-specific layers
with 2 FC layers (softmax activation) classify the features.

A 3D-CNN/RNN-based architecture is proposed in [26]
to classify earthquake magnitudes. Each segment of 60-sec
waveform is split into 6 x 10 sec clips, which are then
processed and transformed into a 2-D Log-Mel map. Thus, the
input data of the model is the 3-D matrix of 6 Log-Mel maps
stack that is first inputted to a 3-D CNN and then to RNN.
FC layer is used to classify the extracted features into five
categories (greater than or equal to 0.0, 1.0, 2.0, 3.0 and 4.0
on Richter scale). In [27], a CNN is used to detect and classify
seismic events into microseismic event, single-phase event,
and ambient noise events. The model’s input is a 22 x 2000
seismogram image obtained from 22 seisometer channels with
2000 sampling points. The proposed architecture consists of 6
convolutional, 6 pooling, and 2 FC layers. The models are first
trained and tested on synthetic data and then used to detect
microseismic events from a field data set. It is showed that
training on synthetic data and testing on the field data leads to
poor performance. The results are then improved by labelling
the field data and using it for training the model and testing.

C. Summary

Table I summarises the state-of-the-art in DL-based ap-
proaches whose end result is classification, as per the aim
of this paper. In the table, ‘transfer learning’ denotes using
a trained model to test on an unseen dataset collected at a
different location. In [11], [21], [26], [15], [27], [35], only one
type of feature is used as input without any feature selection
study. It can be seen that most proposed architectures are based
on CNN, and mainly use temporal or spectral features with 1
to 6 channels. The CNN model of [25] reports classification
results that are among the best in the literature, without
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complex feature engineering. Although using more complex
input features and network structures, such as [26], [13], [22],
[24], [23], can lead to high performance, the complex pre-
processing steps and deep models are computationally de-
manding. In addition, sequence-to-sequence learning requires
clearly labelled start and end times of each event. Limited
by the absence of such a dataset for rockfall and quakes, as
is usually the case in practice, we adopt a sequence-to-point
classification architecture.

The uniqueness of our approach lies in its ability to classify
three important types of landslide micro-seismisity, which
has not been addressed in prior work on DL, as well as
anthropogenic noise. Moreover, our architecture demonstrates
successful transfer learning for endogenous landslide seismic-
ity from one seismic dataset to another collected at a different
location, showing that differences in structural terrain do not
necessarily affect attributes that the model learned during
training. Finally, this paper offers three types of architectures
to effectively exploit both temporal and frequency features and
analyses how these features affect detection and classification
performance. It is worth noting that the proposed approach
does not require a P-wave picking or detection step (manually
or via an algorithm) since it performs classification on con-
tinuous recordings, as sliding windows, fed directly into the
network.

III. METHODOLOGY

We perform pre-processing on the recordings, namely fil-
tering and segmenting the filtered raw signal into windows,
before performing multi-classification.

A. Denoising

A detailed review of various denoising methods is reported
in [9]. In this paper, we use band-pass filtering to remove high
frequency measurement noise and low frequency noise origi-
nating from humans, vehicles, rain, and animals. Specifically,
having in mind the frequency range of events of interest, the
raw recordings are filtered by a 3-order 5-60Hz Butterworth
band-pass filter.

B. Data Processing

We use 3 different model inputs: raw temporal data, STFT
and CWT maps. Figure 1 shows examples of three classes
of seismic events (earthquake, quake and rockfall). For time-
series raw signals, we use 10 seconds window as input. Given
the sampling frequency of 250 Hz, the length of the input
window is thus 2500 samples, which is usually sufficient to
capture the entire seismic event, and short enough to ensure
manageable complexity. Thus, for 6-channel recordings, the
input time series signal is of dimension 2500 x 6. To perform
STFT, we use Hann window with heuristically set length of
128 samples with 75% overlap, generating output of dimension
of 65 x 75 x 6. For CWT, as in [24], as mother wavelet, we
use the Morlet wavelet with 8 cycles. We construct scalograms
using 80 scales spanning frequency range between 5SHz and
60Hz. Thus, CWT model’s input dimension is 80 x 2500 x 6.
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TABLE I: Summary of prior work on using deep learning models for seismic signal classification. UUSS stands for University
of Utah Seismic Stations, UUEB for Unconstrained Utah Event Bulletin, NCEDC stands Northern California Earthquake Data
Center. NECIS stands for National Earthquake Comprehensive Information System, IRIC for Incorporated Research Institutions
for Seismology, STEAD for Stanford Earthquake Dataset and KNMI for Royal Netherlands Meteorological Institute.

Paper Year Aim Best Architecture Input data Dataset & Transf. learning
seismic classification Spectrograms

(21] 2019 (quarry blasts and earthquakes) CNN & LSTM (three channels) uuss

seismic classification Spectrograms
[11] 2019 (tectonic earthquakes, CNN pectrogrars UUSS & UUEB [28]
L . (three channels)
mining-inducedevents, mining)
residual structure
[13] 2019 seismic detection with convolutional, Spectrograms North California [29]
(earthquakes and noise) recurrent, (three channels) transfer learning to Arkansas [30]
and dense
seismic detection
(earthquake and noise) and classification attention-based Time series
[15] 2020 (microearthquake, macroearthquake CNN (three channels) NECIS [31] & IRIS [32]
and noise)
seismic detection Time series STEAD [33]

[22] 2020 and phase picking multi-task structure (three c};annéls) transf learning to
(earthquake, P-phase and S-phase) aftershock region of Tottori
earthquake magnitude classification

26] 2021 (greater than or equal to 3D-CNN RNN Log-Mel spectrogram STEAD

0.0, 1.0, 2.0, 3.0 a (one channel)
and 4.0 on Richter scale)
Northern California
Seismic detection CWT map transfer learning to
(24] 2021 (earthquake and noise) U-NET (3 channels) Arkansas,Texas [34],
Japan and Egypt
microseismic classification seismoeram an undereround
[27] 2021 (Dyke-roadway, Longwall, CNN ) Ah & | | &
Low-frequency and noise) (6 channels) coal mine
Microseismic event classification seismogram synthetic data; unsuccessful
[35] 2021 . (microseismic evenF, . CNN (22 channels) transfer learning to field data
single-phase event, and ambient noise)
seismic detection Time serics

[23] 2022 (P-wave and noise) Vision Transformer h he s STEAD

and magnitude estimation (three channels)
seismic classification T1m§ series
[25] 2022 . CNN and seismogram KNMI [36]
(earthquake, other events and noise)
(three channels)
microseismic classification gl"lr"nF?TstLlli)ss’ Résif [16]
This paper | 2022 (r?)acrlz}fl;]llllaeﬁ(i ?11(1)?5]?)’ CNN and CWT maps Transfer learning to Larissa [17]
(6 channels)

C. Network Architecture

The architectures of the proposed three networks, one for
each type of signal input, are inspired by VGGNet [37] and
adapted to the sampling rate, the size of the input seismic sig-
nal and its feature map. These are deep networks composed of
convolutional layers (for feature representation and extraction),
max pooling layers (for downsampling the extracted features
to obtain the feature map of a small size) and FC layers
(for classification). That is, after multiple convolutional layers,
where the number of convolutional kernels increases with the
layer number, and max-pooling layers, the input signals are
compressed into small feature maps, that are then classified
through 3 FC layers. The output layers have 4-node softmax
classifiers, providing the probability distribution of 4 classes
of events. The three architectures are shown in Figure 2.

Note that for the time waveform case, since the input 1-D
time series contains positive and negative values, the activation
functions of the first two convolutional layers are set to Linear,
to ensure that a large number of neurons are not killed (go
to zero) with ReLU, which would reduce the efficiency of
learning.

The parameters for STFT and CWT models, were set to

match the complexity to that of time-series case, trading off
complexity and performance. All convolutional layers are 2-
D convolutions due to STFT/CWT feature maps being 2-D
image signals. In contrast to STFT, in the CWT model, due
to the fact that one dimension of the input CWT map is
much larger than the other (80 x 2500 input), we set the
stride of some convolutional layers to 1 x 2, to allow the
longer dimension to compress faster. Moreover, the size of
some convolution kernels is set to (3, 9) to obtain a larger
temporal field of view. Many deployed monitoring network
configurations contain less than 6 channels. For such systems,
we design single-channel models that take one channel at a
time as inputs. The parameters of the single-channel model are
the same as in the multi-channel model except that the input
shape is changed. To classify single-channel data, the input
size is 2500 x 1 for time series, 65 x 75 x 1 for STFT maps
and 80 x 2500 x 1 for CWT maps . When these single-channel
models are used with n-channel data, it will output n softmax
vectors for each event. Then, to make a decision, we calculate
the mean of each class for these n vectors.
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Fig. 1: Examples of seismic signals for 3 classes (earthquake, quake and rockfall) with 3 different input formats (temporal

waveform, STFT and CWT maps) in Résif dataset.
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Fig. 2: The network structure for three different inputs.

IV. EXPERIMENTAL FINDINGS

A. Dataset

The dataset used to train all the models is openly accessible
from the Résif Seismological Data Portal, acquired by the
French Landslide Observatory OMIV (Observatoire Multi-
disciplinaire des Instabilités de Versants) [16]. The data is
acquired by MT network, specifically, Super-Sauze C (SZC)
stations which are installed at the east and west sides of
the Super-Sauze landslide in Southeast France, (Latitude:
44.34787, Longitude: 6.67805). See [38] for more details
about the sensors used and the terrain. The signals were
recorded over 3 periods, namely, from 11 Oct. to 19 Nov. 2013;

from 10 to 30 Nov. 2014; and from 9 June to 15 Aug. 2015.
The seismometers consist of one three-component sensor and
three vertical one-component sensors (organized as equilateral
triangle); thus, the seismometers provide a 6-channel seismic
signal, each at a sampling rate of 250Hz.

The raw seismic data is accompanied by a catalogue of
labelled events. There are four different types of seismic
events in this dataset: earthquakes, quakes, rockfalls and nat-
ural/anthropogenic (N/A) noise signals [8]. The total number
of events is shown in Table II, as well as the number of events
used for testing. Rockfalls mainly occur at the main scarp of
the landslide, where the rigid block falls from the steep slope
(height > 100m). The quake is likely to be triggered by mate-
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rial damage, surface cracks and openings. The earthquakes rep-
resent regional seismic events in this area and the teleseisms.
N/A noise events include all anthropogenic and environmental
noise, due to, e.g., transportation, pedestrian walking, heavy
rain, animals, strong wind, etc. For more details about the
endogenous seismicity at Super-Sauze landslide, readers are
referred to [39], [40], and [2]. In Figure 3, we show examples
of seismic signals, namely, earthquakes, quakes and rockfalls,
with high, medium and low SNR illustrating a variety of noisy
events present in the dataset.

To validate our classifiers, first we use only labelled events,
that is, we removed all sections in the dataset that were
not catalogued. We note that the catalogue includes natu-
ral/anthropogenic noise segments, hence the classifiers are
trained to distinguish this type of noise as well as the other
three micro-seismic events. We split the dataset of labelled
events into training (60%), validation (10%), and testing (30%)
sets according to the time of the event (earliest to latest).
To increase learning efficiency, we standardise the dataset by
subtracting the mean and dividing by the standard deviation
after denoising. Since the original dataset is very unbalanced
(see Table II), the training set was balanced to avoid training
bias, by generating new events by shifting the seismic events
in the window as well as adding background noise from non-
catalogued eventless waveforms to the catalogued events. After
data augmentation, each class of events has about 600 training
samples in the training set. We did not balance the test set,
each event in the test set is unique.

TABLE II: The number of labelled events in Résif catalogue.

Class Total No. events | No. of events for testing
Earthquake 388 116
Quake 234 70
Rockfall 401 120
Noise 351 105

B. Classification Results

To evaluate classification performance, we use standard
classification performance measures, i.e., precision, recall and
F1 score as in [9]. All networks are implemented using the
framework of Keras, and trained over 100 epochs. We used
ADAM as the optimiser and cross-entropy as the loss function.
The initial learning rate was set to 0.0007 and decreased by
10% with every five epochs.

The classification performance results for the three models
are shown and compared in Table III. Each model was trained
and tested 5 times using the same training and testing sets
to ensure repeatability. The results are presented in the form
of “mean=standard deviation” where the mean and standard
deviation are calculated using the results obtained after 5
trainings and tests.

It can be seen from the table, that all three models provide
highly accurate and similar classification performance, with
the Fl-score ranging from 0.85 for quakes to 0.98 for earth-
quakes. The CWT model has marginally better classification
accuracy (averaged over all classes) of 90.82%, followed
closely by the STFT model with 90.62%, and the time series
model with 89.97%. However, the relatively lower overhead of
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the time-series model over the others makes it more desirable
in practice.

The results using the proposed single-channel models when
only one channel is available are shown in Table IV. Compar-
ing with the multi-channel models, the single-channel models
performs slightly worse for all classes of events. This can be
explained by the fact that the channels with very poor SNR
affect the output due to averaging, which is not the case with
the multi-channel model.

Our results are aligned with [8], where an RF classifier is
used on a subset of randomly chosen events from the same
dataset, and correctly classified 94% of earthquakes (vs. 98%
with the proposed method in Table III), 94% of rockfalls (vs.
92% in Table III), 92% of noise (vs. 86% in Table III) and
93% of quakes (vs. 89% in Table III).

The corresponding confusion matrices are shown in Ta-
ble V, for time waveform, STFT, and CWT models, respec-
tively. From the confusion matrices, we can see that few
quake events are misclassified, due to much shorter duration
(<5seconds), smaller SNR and the fact that quakes are usually
localised events and hence not detected by all channels, which
is not the case with earthquakes. Quake classification results
are better for STFT and CWT than time series inputs, with
fewer misclassified events, since CWT and STFT features take
into account both frequency and time duration. However, the
recall (sensitivity) of quake is still slightly inferior to the 93%
reported by [8]. We think there are three reasons for this. First,
Provost et al. [8] use 71 constructed features including nine
network geometry attributes (such as mean and std correlation
lag between the stations; stations with max/min amplitudes,
etc.), that assume knowledge of positions of the deployed
sensors. After removing these features, the performance of
[8] was reduced to 90% in average over all classes, ranging
between 86% and 94%. Secondly, the number of labelled
quake events is much smaller than the number of other events.
For example, there are 401 labeled rockfalls and only 234
quakes, and this has negative impact on the generalisation
ability of the networks. Thirdly, in [8] the channel with the
highest SNR is chosen for feature extraction. In our models,
all 6 channels’ data were inputted, and some channels with
low SNR may impact classification results.

C. Interpretation of Misclassified Events

As can be seen from the confusion matrices, the main cause
of a drop in recall is quake events being misclassified as noise,
which is not surprising given their low SNRs. Therefore, we
looked closely at cases when the quake events are misclassified
as noise (10 events in total across all three multi-class models).
Out of these 10 misclassified quake events, 4 events were
misclassified by 2 or 3 models. We focus on these events and
show a representative example for the time-series model in
Figure 4. From the figure, it can be seen the main reason for
the wrong classification is that the energy of the seismic signal
is too weak compared to background noise. Indeed, in Figure 4
(left column), the wave peak of the correctly classified quake
event reaches roughly 1 x 10~%m/s while the wave peak of the
missed quake event (right column) is only around 8 x 10~8m/s,
that is, two magnitudes lower.
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Fig. 3: Examples of seismic events: (a) Earthquake (b) Quake (c) Rockfall. Three different events are shown for each class,
including high, medium and low SNR cases. In all cases, we show three waveforms, representing, respectively, the East, North
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TABLE III: The classification performance results for the three six-channel models.

Input: Time series Input: STFT maps Input: CWT maps
precision recall F1-score precision recall F1-score precision recall F1-score
Earthquake | 0.96£0.016 | 0.974+0.009 | 0.96+0.008 | 0.96+0.019 | 0.98+0.004 | 0.97+0.011 | 0.97+0.017 | 0.98+0.008 | 0.9840.007
Rockfall 0.91£0.023 | 0.90+0.011 | 0.90£0.010 | 0.88+0.009 | 0.92+0.012 | 0.90£0.007 | 0.91£0.004 | 0.91£0.005 | 0.9140.005
Quake 0.86+0.032 | 0.844+0.015 | 0.85+£0.013 | 0.90+0.039 | 0.87+0.019 | 0.88+0.023 | 0.90£0.023 | 0.88+0.015 | 0.8940.011
Noise 0.85+£0.011 | 0.86+0.013 | 0.86+0.004 | 0.89+0.008 | 0.85+0.013 | 0.86+0.009 | 0.86+0.015 | 0.86+0.017 | 0.86+0.013
TABLE IV: The classification performance results for the three single-channel models.
Input: Time series Input: STFT maps Input: CWT maps
precision recall F1-score precision recall F1-score precision recall F1-score
Earthquake | 0.95+0.010 | 0.93+0.026 | 0.95+0.016 | 0.96+0.007 | 0.97+0.007 | 0.96+0.005 | 0.96+0.004 | 0.97+0.012 | 0.9640.005
Rockfall 0.86+0.018 | 0.83+0.013 | 0.85+0.014 | 0.89+0.012 | 0.884+0.009 | 0.89+0.008 | 0.914+0.009 | 0.81+0.016 | 0.8640.002
Quake 0.85+0.012 | 0.83+0.018 | 0.84+0.016 | 0.90+0.021 | 0.8440.024 | 0.86+0.020 | 0.874+0.015 | 0.87+0.013 | 0.8740.002
Noise 0.80+0.027 | 0.84+0.011 | 0.82+0.013 | 0.84+0.014 | 0.854+0.009 | 0.84+0.014 | 0.814+0.011 | 0.88+0.017 | 0.8440.006
TABLE V: The confusion matrix for the three six-channel models.
Input: Time series Input: STFT maps Input: CWT maps
Earthquake | Rockfall | Quake | Noise | Earthquake | Rockfall | Quake | Noise | Earthquake | Rockfall | Quake | Noise
Earthquake 112 1 0 3 113 2 0 1 115 0 0 1
Rockfall 0 110 4 6 3 110 0 7 1 109 2 8
Quake 4 1 58 7 2 3 61 4 1 3 62 4
Noise 3 5 7 90 2 13 5 85 1 8 11 85
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In general, quake events are of low amplitude and short
duration. Due to the energy of seismic activity and the distance
between the event location and the monitoring station, a small
number of these events have extremely low amplitude, and
the duration of seismic events is often also very short. This
makes the model prone to misclassifying such events as noise,
as out-of-distribution samples.

D. Comparison with state of the art DL-based methods

In addition to benchmarking against traditional machine
learning methods [8], we compare the performance against
the state-of-the-art CNN-based ‘deepquake’ network [25] that
was shown to outperform similar DL architectures [25]. The
‘deepquake’ network has two models, one for time series input
and another for STFT map, namely ‘arch-time’ and ‘arch-
spect’, respectively. The network uses 20 seconds windows
with 100Hz sampling frequency as input. Thus, we first down-
sample our data to 100Hz (from 250Hz), use the same pro-
posed pre-processing method to normalise data and extract 20
seconds of event waveforms as input window. The ‘deepquake’
model classifies inputs into three classes: earthquakes, other
events and noise. Thus, we re-label both quakes and rockfalls
as ‘other events’. We use ‘deepquake’ pre-trained models as
initial weights of each layers. Then, we re-train these two
models using the Résif dataset for an additional 80 epochs.
The results are shown in Table VI. From the confusion matrix,
it can be seen that ‘arch-spect’ has better performance than
‘arch-time’ on Résif data, which is expected and in accordance
with our results, i.e., the STFT map input model outperforms
the time series input model.

Comparing these results with Table V, we can see that
our time series-based CNN model outperforms ‘arch-time’
for all classes. Indeed, 104 earthquake events are correctly
classified by ‘arch-time’ while 112 earthquake were correctly
classified by our time series-based CNN. 22 other events
(rockfalls and quakes) are misclassifed as noise by ‘arch-time’
while 6 rockfalls and 7 quakes (13 in total) are misclassfied
as noise by our model. For STFT maps as input, we can
see that ‘arch-spect’ performs worse than our STFT-based
CNN. Both models correctly classify 113 earthquakes. 14
other events are misclassified as noise by ‘arch-spect’ while
7 rockfalls and 4 quakes (11 in total) are misclassified as
noise by our STFT-based model. This shows that our proposed
model is in line with the state-of-the-art, with the advantage
of additionally distinguishing endogenous landslide seismicity,
including rockfalls and quakes.

E. Continuous detection results

To demonstrate applicability of our aforementioned trained
time-series model on a continuous data feed, we test on
an unseen period (25-28 Nov 2014) in the Résif dataset,
during which 18 quakes, 23 earthquakes, 65 rockfalls were
catalogued. Since the input of the model is a time window,
and the output is a 4-class probability vector, we slide the
input window on the continuous data to achieve a continuous
series of probabilities, as in [41], [42], [43]. The input window
is set, as before, to 10 sec. The input time window was slid
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with 90% overlap, that is, the classification result is output
each second. We set the decision threshold to 0.7: that is,
a class probability greater than 0.7 will be considered as an
event class of this time window. If there is no class with
output probability greater than 0.7 in the output probability
vector, this time window will be considered as noise. Our
network correctly detected and classified 91% of earthquakes,
83% of quakes and 94% of rockfalls (TP). These results are
similar to the time series-based model’s recall (sensitivity)
in Tables III and V, and therefore we conclude that the
network is robust to continuous detection and classification.
In Figure 5, we show 2 and a half minutes (i.e., 150 sec) of
the continuous waveform of an earthquake event that occurred
at 4:05:39 on November 28, 2014. It can be seen from the
figure that the model correctly detects the start of the signal.
In addition, our network detected many other events that have
not been catalogued, namely, 174 earthquakes, 260 quakes and
32 rockfalls.

F. Transferability to geologically distinct site with different
monitoring network geometry

Using the same sliding window of continuous time series
recordings as above, we evaluate transferability of our trained
time series input model. The models described above, trained
on the Résif dataset, are used to detect events on a microseis-
mic dataset from Larissa region in Greece [44], [17]. There are
inherent differences between the two sites. The Résif dataset
was collected from the Sauze catchment basin in the Alps,
characterized by limestone formations and black marl [38].
The region around Larissa in Greece is a seismically active
area, characterized by gneiss and schists [45]. The two sites
are geologically different, with different monitoring networks:
different number of sensors and deployment geometries, sam-
pling at different rates (250Hz Résif vs. 100Hz Larissa). Such
differences, especially the different geological background,
alter the characteristics (amplitude, frequency content) of the
signals, therefore making the transferability problem very
challenging.

To transfer the model from the 6-channel Résif dataset,
we selected six channels from the Larissa dataset from HT
network as the array: all three components (North, East,
vertical) of station TYRI, vertical (Z) components of TYR3,
TYRG6 and TYRN [17]. The choice of these particular stations,
referred in the following as Array 1 (Al), was based on their
location and quality of recordings. The four chosen stations
form an almost equilateral triangular array, with three stations
at the three vertices and one inside the triangle - see Fig. 6.
This is a commonly used geometry in microseismic monitoring
surveys to maximise detection of microseismic events.

To assess the sensitivity of the results to sensor array
deployment geometry, we perform the same analysis as above
on another set of stations forming a more random geometry,
referred to as Array 2 (A2): all 3 components of TYRI, Z-
components of TYR2, TYR3 and TYR4. Compared to the
previous array geometry, the sensors in this array are located
further apart - see Fig. 6 - and hence, waveforms from the
same event are likely to look different in the recordings of the
different stations.
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Fig. 4: Waveforms of two quake events in all six channels. The quake event which was correctly detected and classified (first
column) and the quake event which was misclassified as noise (second column) with the same ordinate axis ranges from
—1.5 x 107 %m/s to 1.5 x 10~%m/s. The misclassified quake event with the scaled zoomed (third column), its ordinate axis
ranges from —1.5 x 10~ "m/s to 1.5 x 10~ m/s.

TABLE VI: The confusion matrix for the two ’deepquake’ models [25].

“arch-time’ network “arch-spect’ network
Earthquake | Other | Noise | Earthquake | Other | Noise
Earthquake 104 9 3 113 2 1
Other 6 162 22 1 175 14
Noise 3 23 79 1 19 85
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Fig. 5: Continuous detection results for an earthquake event.

Since the sampling rate of two datasets is different, we
up-sampled the data from Larissa using linear interpolation
to 250Hz and denoised the signal as described in Subsec-
tion III-A. The dataset from Larissa contains 86 catalogued
earthquakes during the entire day of 17th March 2021, from
0:00 to 24:00. The catalogue we used can be downloaded
from the Institute of Geodynamics, National Observatory of
Athens [44] using as search area a circle with radius of
218km and centre at longitude 22.1777 degrees and latitude
39.6460 degrees. Our proposed models correctly classified all
catalogued earthquakes, demonstrating good transferability.

Additional (to the aforementioned earthquake catalogued
events) earthquake, quake and rockfall events were classified

. iz
Fig. 6: Six selected monitoring stations in Larissa, Greece. Al
configuration, based on an almost equilateral triangular array,
comprises TRY1, TRY3, TRY6, and TRYN. A2 configuration,
random geometry, is based on stations TRY1, TRY2, TRY3,
and TRY4 that are further apart.

via our proposed approach. These findings are verified via
manual detection, as well as the commercial InSite software
v3.15. We randomly chose one hour within 17th March 2021,
from 18:53 to 19:53 and manually searched the recordings
of the same six channels to detect seismic events via visual
observation. The data were filtered using a 5-100Hz band-
pass filter (as per Subsection III-A). An event is valid if it
was visually observed on at least 2 channels (at different
stations). Note that manual detection of the events was blind,



DRAFT

i.e., without using the output of the proposed CNN model
as guide. The start time is set as the time of the earliest
arrival at any of the four stations of the array and duration
is based on that station’s channel. We fed the same 1 hour
of continuous bandpass filtered data from Larissa to InSite
software, where an amplitude threshold value of 6.6e-7m/s
was used for detection of events.

An additional catalogue of all events detected and classified
via the proposed CNN, manual detection and InSite software
is produced as supplementary material for further analysis by
the research community. This catalogue, which we refer to
as comprehensive catalogue from now, also includes the type
or class of event and its the duration. Al and A2 refer to
the events classified by the proposed CNN multi-classifier
for the first (equilateral triangular) array and second array
configurations, respectively. Similarly, M1 and M2 refer to
events identified via manual detection on array 1 and 2,
respectively, whilst I1 and I2 denote events identified by the
InSite software.

The proposed CNN multi-classification model is designed
for waveform pattern recognition (not P-wave picking as in
[22]), therefore it does not estimate the start time and duration
precisely because the model locates the event on a subset of
the 6 input channels using a 10-sec window. After manual
verification of traces, we observed that there are a number of
occasions where the CNN model estimated multiple adjacent
earthquakes as either one event or vice versa. For distant events
from the station locations, the different signal phases (e.g., P
wave, S wave etc.) arrive with a distinct time difference. This
results in later phases, e.g., P wave reflections, being detected
by the CNN model as separate earthquake events, instead of a
single event. To mitigate this effect, we perform processing as
follows. In the network’s last FC layer, we set a bias towards
classifying segments as non-events. In particular, we set as a
decision threshold softmax value of 0.7 (instead of the default
value of 0.5), which means that only when the softmax value
greater than 0.7 is reached, the candidate window will be
classified as an event. Next, as a post-processing step, we
merge all events that start within 5-sec time interval, into one
to prevent classifying different wave reflections into multiple
events. Furthermore, for events that originated far away from
the monitoring stations, the time interval between P-phase and
S-phase will be large (>10 sec), and hence in this case, an
earthquake event will appear as two separate events.

Referring to the proposed comprehensive catalogue, we
compare events detected between time-series based on (1)
CNN model with post-processing, (2) manual event detection
and (3) automatic detection using the InSite software. It can
be seen that the results of the proposed model and manual
detection are very aligned. Indeed, only 8 earthquake events
are detected manually by M1 and missed by Al, 4 of which
were detected by A2. Similarly, 13 earthquakes detected by
M2 are missed by A2, but 6 of these events were picked up
by Al. These were more distant or more localised events,
respectively. Each array configuration detected 62 earthquakes.
15 events were detected by Al and missed by A2, or vice
versa. InSite detected 32 and 38 of these earthquakes for
Al and A2, respectively, 22 of which are common for all 6
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detection methods (2 arrays with manual, automatic detection
and InSite). 9 (11) and 21 (8) rockfall (quake) events were
detected by Al and A2, respectively. Out of these, 7 and 4
rockfall events were detected by I1 and 12, respectively, 2 of
which are common for all 6 detection methods.

Tables VII and VIII summarise the 3 types of events
detected by the proposed approach (Al and A2), that were
manually corroborated (referred to as TP), missed by the
proposed approach (FN) and not confirmed manually (FP). We
observe that no quake and rockfall events detected by the pro-
posed CNN were missed. Fewer earthquakes were missed by
Al than A2, since the A2 configuration includes stations that
are spread further apart. Most earthquake events are detected
by both Al and A2 configurations, with some events of distant
origin picked by A2 only, and localised events by Al only.
Details of the 3 distinct events and their time of occurrence,
that were detected manually, via Insite Software and proposed
CNN are provided in the comprehensive catalogue?.

TABLE VII: Larissa results from proposed CNN on one hour
data using readings from TYR 1, 3, 6, and N stations (Al):
Comparison between automatic and manual detection.

No. of manuall No. of events No. of events
: y only observed by | only observed by
Class corroborated events .

(TP) manual detection CNN

(FN) (FP)
earthquake 40 13 8
quake 10 0 3
rockfall 7 0 2

TABLE VIII: Larissa results from proposed CNN on one hour
data using readings from TYR 1, 2, 3 and 4 stations (A2):
Comparison between automatic and manual detection.

No. of events No. of events
No. of manually
only observed by | only observed by
Class corroborated events .

(TP) manual detection CNN

(FN) (FP)
earthquake 16 19 11
quake 2 0 2
rockfall 19 0 29

G. Explainability of internal workings of proposed architec-
ture via feature maps vizualization

We visualize the feature maps at the output of different
convolutional layers in our proposed network designs and
visualize the features at the output of the second FC layer
(which is the input to the output layer). The feature maps
are the result of applying the filters to the input of convolu-
tion layers. Visualizing feature maps can be used to explain
which input features are extracted in convolutional layers
and analyse the influence of time, frequency, wavelet domain
representation on the interior of the network. A visualization
example is shown in Figure 7. The same earthquake event
forms an input to all three proposed CNNs. The figure shows
the first 9 feature maps output by the first, the second, and the
fourth convolutional layer after max-pooling, for each of the
three proposed models. For time series, we can see the input
signal being transformed into many earthquake-like signals by
the first convolution layer. Then in the second convolution

3https://doi.org/10.15129/589f7af3-26b3-4293-b042-fbc8100£c977.



DRAFT

Microseismic event classification with time, frequency and wavelet domain convolutional neural networks

Input Feature maps
Time series First convolution layer Second convolution layer Fourth convolution layer
STFT map

CWT map

Fig. 7: Feature maps of the first, second, and fourth convolutional layer of the three CNNs with seismic events as input.
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layer, the feature map extracts more detailed features from the
input signals. The key features in earthquake signals (i.e., P-
waves and S-waves) are preserved and enhanced in the fourth
convolutional layer, where we can see clearly extracted peaks
of events to be classified. In the STFT network, the first
convolutional layer highlights the frequency band and the time
step where the event occurred. From the second convolutional
layer, it can be seen that the STFT-based model has learned
the frequency features of the event, as the feature maps
highlight the high-frequency and low-frequency range of the
event. The fourth convolutional layer transforms these feature
maps of different highlighted frequencies into more abstract
representations. The CWT-based model works similarly to the
STFT-based model. In the first convolutional layer, the feature
maps highlight where, in time and scale, the event occurs.
Compared with the feature maps of the first layer, the feature
maps of the second layer have larger highlighted areas of
the event, as the model is extracting more detailed wavelet
features. Then, the fourth convolutional layers transform the
features into abstract representations. In summary, through the
visualization of feature maps, we explain the internal process
of CNN in classifying seismic signals. The first convolutional
layer is often used to find the position of the event in the input
window. Then, CNN starts to extract more detailed features
of the event. With the deepening of the convolutional layers,
the extracted features are gradually transformed into abstract
representations for subsequent classification. After the feature
maps output by the convolutional layers are flattened, these
one-dimensional features are classified by the FC layers. There
are 256 nodes in the second FC, so there are 256 features.
Figure 8 shows the features extracted by the second FC layer
(which is the input of the last layer) for the four classes by
three different models. For earthquake, the max value of the
feature tends to be large (greater than 20), while quake and
rockfall events have relatively small max features (between
10 and 20), and the max features of noise are the smallest
(less than 10). As deep learning is a black-box algorithm,
it is difficult to determine what attributes of the event these
252 features represent. However, we can see that different
events have different feature distributions, and seismic events
(earthquakes, quakes and rockfalls) have larger feature values
than noise. This means that the CNN can extract different
features for the seismic event waveforms, but does not extract
many features from noise signals.

H. Complexity Analysis

Table IX shows the execution time needed to process one
input window of 10 sec with 6 channels (equivalent to 15000
samples), including denoising, transform and each CNN model
testing. CNN models were designed and tested using Python
3 and the Keras framework. The denoising and transform
steps are also programmed in Python 3. All experiments were
performed on an i5-10310U CPU. The time series-based model
has the lowest complexity requiring 24ms to output result
for a 10-sec window, followed by the STFT-based (37ms),
and CWT-based model (808ms). This is expected since the
time series- and STFT-based models have 5,684,036 trainable
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parameters, while the CWT-based model has 6,035,012 param-
eters. Note that the time series-based and STFT-based models
require much less than the lsec window time shift applied
on continuous data traces, and hence these two models can
process the data in real time.

TABLE IX: The execution time for each model in ms.

10 seconds input
Fs=250Hz, 6 channels Approach Time (ms)
15000 samples
Denoising band-pass filter 2
Transform STFT 7
CWT 625
Time series-based 22
CNN models STFT-based 28
CWT-based 181

V. CONCLUSIONS

The paper proposes microseismic classification on contin-
uous recordings (no additional detection step needed) via a
CNN, exploiting the inherent feature engineering ability of
deep learning. Three CNN models were developed for three
types of data inputs: temporal waveform, STFT and CWT
maps. These proposed models were trained on the labelled
Résif dataset, in order to detect/classify three types of events,
namely earthquakes, quakes and rockfalls. During testing on
an unseen portion of the Résif dataset, the time-series-, STFT-
and CWT-based models all had similar performance for the
three microseismic events and anthropogenic noise classes.
Additionally, the time series-based model was observed to
be the fastest during complexity analysis, demonstrating near
real-time performance. The ability of our proposed pre-trained
(on the Résif dataset) model to classify events from continuous
recordings in a geologically distinct site was demonstrated via
transferability to a 24hr dataset from the region of Larissa,
Greece. All 86 catalogued earthquakes made available to us
during that time period were correctly detected and classified
despite major differences in monitoring layout used at the two
sites and geological terrain. Using a less favourable deploy-
ment geometry, results where still within a satisfactory range.
Additional (not catalogued previously) earthquake events, as
well as rockfalls and quakes, were detected and classified by
the proposed approach. These were corroborated via manual
detection and detection via the commercial InSite software.
The resulting catalogue of additional events is made available
to the research community as supplementary material for
further analysis. The implication of this study is that the time-
consuming effort in manually labelling/cataloguing events is
now automated on large unseen datasets, and weaker-signal
events, such as quakes that are not always visible to the naked
eye during manual observation, can be labelled automatically.
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