
Variational Quantum Algorithms for Computational
Fluid Dynamics

Dieter Jaksch∗

Universität Hamburg, Luruper Chaussee 149, Gebäude 69, D-22761 Hamburg, Germany
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK

Peyman Givi †

University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Andrew J. Daley ‡

University of Strathclyde, Glasgow, Scotland G4 0NG, United Kingdom

Thomas Rung §

Hamburg University of Technology, Am Schwarzenberg-Campus 4, D-21073 Hamburg, Germany

Quantum computing uses the physical principles of very small systems to develop computing

platforms which can solve problems that are intractable on conventional supercomputers.

There are challenges not only in building the required hardware, but also in identifying the

most promising application areas and developing the corresponding quantum algorithms. The

availability of intermediate-scale noisy quantum computers is now propelling the developments

of novel algorithms, with applications across a variety of domains, including in aeroscience.

Variational quantum algorithms are particularly promising since they are comparatively noise

tolerant and aim to achieve a quantum advantage with only a few hundred qubits. Furthermore,

they are applicable to a wide range of optimization problems arising throughout the natural

sciences and industry. To demonstrate the possibilities for the aeroscience community, we

give a perspective on how variational quantum algorithms can be utilized in computational

fluid dynamics. We discuss how classical problems are translated into quantum algorithms

and their logarithmic scaling with problem size. As an explicit example we apply this method

to Burgers’ Equation in one spatial dimension. We argue that a quantum advantage over

classical computing methods could be achieved by the end of this decade if quantum hardware

progresses as currently envisaged and emphasize the importance of joining up development of

quantum algorithms with application-specific expertise to achieve real-world impact.
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I. Introduction

A. Quantum Computing

Progress in quantum computing is driven by its potential to revolutionize our ability to solve challenging computational

problems that are otherwise intractable. We expect quantum processors to soon be integrated into existing high

performance computing (HPC) infrastructure, much as Graphics Processing Units (GPUs) are today. Because the

underlying quantum physical principles are entirely different from conventional computers, this is not business-as-usual

for the development of applications and algorithms, which must be built from the ground up. It is a challenging process,

which requires knowledge of quantum computing and expertise in the problem itself. Seminal, but niche, quantum

algorithms requiring high-quality hardware e.g. for factoring numbers [1] and searching unstructured databases [2]

have existed for decades. More recently, discoveries have been made that may yield quantum advantage in solving a

wide range of numerical problems, including numerous industrially relevant ones [3]. Quantum algorithms have the

potential to outperform classical computation in simulation and optimization targeting several industries including

pharmacology, chemistry, energy, financial, aeroscience, insurance and logistics. A nascent quantum technologies

market has been developed on this basis [4]. For instance, a variety of applications are envisaged for aeroscience and

engineering specifically, and there has been substantial work on the potential impact of quantum computing in this

sector (see Ref. [5] for a review). A quantum advantage over classical algorithms has been found for problems designed

to test the quantum hardware [6], and special-purpose quantum simulators are already having an impact on quantum

science [7]. However, current technology is still limited to comparatively small and noisy systems characterizing the

noisy intermediate-scale quantum (NISQ) era. In this era, quantum algorithms that are forgiving to errors and may give

a quantum advantage over conventional computing using only hundreds of qubits are sought.

In this article, we illustrate the opportunities for aeroscience and engineering, focusing on variational algorithms, and

specifically on applications in computational fluid dynamics. This is a good example of how we can connect the very

different approaches to computational challenges implied by quantum computers to a specific problem of practical

interest in the aeroscience community. We describe the background of the algorithm and details of possible applications,

before coming back to a broader perspective on the future of these approaches.

B. Variational Quantum Algorithms (VQAs)

The power of quantum computing arises from the possibility of the system to be in a superposition of multiple states

simultaneously. Where in a conventional classical computer information is stored as bits, which can be 0 or 1, in a

quantum computer we instead have qubits, which can take any superposition of 0 and 1, with complex coefficients. To

describe the state of 𝑁 bits in a classical computer, we need to specify values of 0 or 1 for each of the bits. In contrast,

describing the wave function of 𝑁 qubits requires 2𝑁 − 1 complex coefficients. This gives an exponentially growing

capacity to store information, but does not immediately mean that we can run existing algorithms faster. The essential
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challenge is that whenever we measure a quantum state, we only obtain 𝑁 bits of information – so we do not have direct

access to the information stored in the whole state. As a result, we need to find new ways to perform calculations that

make use of this large state space, but only require restricted numbers of input and output parameters. This can e.g. be

achieved by hybrid algorithms that use classical high performance computing in tandem with quantum computing for

specific subroutines.

A promising hybrid quantum-classical algorithm [8] was invented in 2014. This algorithm distributes the tasks of

solving an optimization problem between a quantum computer that takes as its inputs classical variational parameters 𝝀

and calculates a cost function as its output, and a conventional classical computer taking cost function values as its input

to update the variational parameters. The two parts work together iteratively to optimize the cost function, which e.g.

represents the residuals of partial differential equations (PDE). The resulting variational parameters 𝝀opt comprise a

classical description of the optimal trial solution. Note that this trial solution can usually only be worked out and be

analyzed efficiently on the quantum device, making use of the exponentially large state-space, but we only need a set of

classical input parameters, and an output that is not the state itself, but only the measured value of a cost function – thus

making use of the large state space, but not needing to read it out.

This approach to quantum computing has been rapidly developed over the past years, and has several beneficial properties

for NISQ era devices [9]. First, no quantum memory is required for storing the solution, since its description is contained

in the classical parameters 𝝀. Second, cost function values can often be read out via a single qubit (other schemes

are possible) thus requiring only measurements on a single qubit. Third, several error mitigation strategies have been

developed (for early examples see [10]) for digital simulation algorithms that are suitable for NISQ devices. Fourth,

variational quantum algorithms can be applied to a wide range of linear optimization problems with relevance extending

far beyond the natural sciences. An extension of variational quantum algorithms to nonlinear variational problems has

been proposed [11]. At its heart, this scheme contains a quantum nonlinear processing unit (QNPU) that evaluates

cost functions that are polynomials of individual trial functions and can thus be applied to a wide range of nonlinear

problems including nonlinear PDEs.

C. Applications of Variational Quantum Algorithms in computational fluid dynamics (CFD)

Because of their demonstrated capabilities, VQAs are expected to have a major influence in aeroscience and engineering

research. With their success in approaching non-linear differential equations comes the opportunity to apply these

algorithms to solve a wide class of problems in transport phenomena – in particular fluid dynamics, which is the primary

focus of this article. CFD is widely regarded as one of the major constituents of aerospace research, with applications in a

large variety of other disciplines. For diagnostic purposes, i.e. for analyzing existing flow configurations, powerful CFD

tools are widely available. These tools typically use approximate physical models to represent unresolved phenomena

and employ scale reducing simplifications and constraints to increase the realizability of the computations. Difficulties
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in identifying broadly applicable physical models and approximations severely limit the usage and general reliability of

CFD methods for predictive and design purposes.

For aeroscience and engineering applications, the strengths and weaknesses of CFD are most clearly evident in turbulent

flow modeling and simulation. Dealing with the wide range of spatial and temporal scales in such flows remains a

grand CFD challenge. The complexity is substantially escalated in high speed and/or reactive flows as occurring in

aero & propulsion systems. In these flows, the coupling of turbulence with compressibility and chemistry makes

CFD implementations significantly more difficult. The NASA CFD vision 2030 [12, 13] concludes that present CFD

capabilities must undergo a revolutionary change to meet future needs of academia and industry.

Turbulent flow simulations can be classified into two categories[14]: (i) direct, and (ii) modeled. In the first, typically

termed direct numerical simulation (DNS), the fundamental transport equations are solved in a brute force manner with

an attempt to resolve all of the flow scales explicitly. In the second, these equations are “averaged” in some fashion to

decrease the range of the scales for a more affordable computation. Reynolds averaged Navier-Stokes (RANS) [15] and

large eddy simulation (LES) [16] are examples of such simulations. In RANS, the equations are ensemble-averaged

at all spatial scales. In LES, the averaging is conducted by pre-filtering of the equations with a certain spatial filter.

The resulting modelled simulations are generally conduced in a deterministic or probabilistic manner. In the former,

finite moments of the unresolved fields are modeled via algebraic or differential equations. In the latter, these fields are

described stochastically, effectively by a Fokker-Planck equation. The probabilistic closures in RANS and LES are

referred to as the probability density function (PDF) [17] and the filtered density function (FDF) [18], respectively.

The fidelity of modeled simulations is directly hinged upon the success of its constituent closures constructed to capture

the essential physics. The ultimate fidelity, achievable only via DNS, can be realized in simplistic applications of

transport with low to moderate Reynolds numbers. This is particularly the case for multi-physics applications such

as conjugate heat transfer, compressible and chemically reacting flows, where the added physical complexity further

compounds the problem. Using DNS for analyzing and optimizing technical flows is the holy grail of CFD research and

would enable reliable design of much more energy efficient products and infrastructure.

Quantum CFD (QCFD) promises to fundamentally change this paradigm by stripping away the need for limits,

simplification and specialization, through the direct resolution of all relevant physical scales and phenomena by encoding

flow fields in an exponentially large Hilbert space. More importantly, it promises to do so for a small fraction of the

computational cost required by classical methods. The impact of such a technology on the field of CFD, in particular,

and product design, in general, would be nothing short of revolutionary. More generally, it would massively strengthen

numerical simulations and data sciences as the third pillar of today’s scientific enterprise next to theory and physical

experiments.

Various approaches to CFD on quantum computers have recently been put forward by the research community. These

have mostly concentrated on efficient methods for calculating the dynamical evolution of flows. For instance, proposal
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[19] is based on the derivation of the nonlinear Schrödinger equation from the linear Schrödinger equation for quantum

many-body systems, i.e. constitutes a mean-field approximation, which is accurate in the limit of weak interactions.

The approach [20] uses the technique of Carleman linearization to map a specific set of weakly nonlinear ordinary

differential equations with dissipation to a higher-dimensional linear problem. Both methods then solve linear problems

using the quantum linear systems algorithm [21]. This allows them to be efficient in the number of time steps and leads

to mathematically rigorous convergence guarantees for weak nonlinearities. Furthermore, machine learning approaches

towards solving nonlinear partial differential equations have also been proposed for use in CFD [22].

In this perspective we focus our discussion on utilizing the QNPU extension [11] of the widely used standard VQA [8]

for solving nonlinear partial differential equations. The QNPU approach uses multigrid renormalization [23] to encode

trial functions in coordinate space described by 𝑀 = 2𝑁 discrete values into 𝑁 qubits. The size of the required quantum

registers thus scales logarithmically with the discrete size of the spatial grid and hence the range of length scales that

can to be covered in the CFD problem. Quantum networks implementing problem specific cost function evaluations

inside the QNPU are programmed using Matrix Product Operator methods [24] as a high-level quantum programming

paradigm [11]. This method shares with [19, 22] that it requires a number of qubits that scales logarithmically with the

number of spatial grid points but is not limited to small nonlinearities. QCFD algorithms based on this logarithmic

encoding can still only gain a quantum advantage if shallow variational networks creating a subset of trial functions are

sufficiently expressive to yield accurate approximations to the actual solution.

Because of this restricted set of trial functions, VQA can be viewed as a structure resolving scheme and be classified as

a reduced order model (ROM), in which only a part of Hilbert space is needed to capture the essential flow physics.

In this aspect, the methodology portrays some similarity to, albeit being fundamentally different from, the currently

popular CFD-ROM strategies [25, 26]. Most current ROMs are data-driven, whereas VQA is a fully physics based

methodology. The multi-grid encoding of turbulence structures through scale correlations into entangled quantum

states of qubits yields shallow quantum variational networks defined by a small number of variational parameters. In

Ref. [27, 28] it is shown that such VQA simulations outperform under-resolved DNS (or LES with no sub-grid scale

closure) of the flow with the same number of computational degrees of freedom.

As shown in [27] and discussed in this article, this enables variational QCFD (VQCFD) algorithms to scale at

least polynomially better with the Reynolds number Re than corresponding classical Navier-Stokes simulations for

paradigmatic flow examples in two and three spatial dimensions (an exponential quantum speedup may also be possible

but has not been proven). Here, Re describes the ratio between the largest and smallest length scales that need to be

resolved by the simulation. VQCFD algorithms thus gain quantum advantages in the number of required qubits and

algorithm scaling.

We note that the connection between VQCFD algorithms, matrix product operators and matrix product states (MPS)

[24] may inspire novel classical numerical tools for solving CFD problems [27, 28]. Recent progress in highly efficient
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numerical tensor manipulations on classical tensor-processing-units [29] demonstrates the potential of classical tensor

network methods to compete with NISQ devices and more traditional high-performance classical computing approaches.

A detailed discussion of such quantum inspired approaches to CFD is beyond the scope of the current perspective.

II. The VQCFD Methodology
Intrinsically, the QNPU approach is an optimization method where cost functions are calculated from parameterized

trial solutions to non-linear PDEs on a quantum processor. Boundary and design conditions are encoded in the specific

form of the PDEs. Optimization proceeds by iteratively improving the parameters of the trial solutions using classical

optimization methods and quantum mechanically evaluating the updated cost function. Application of this approach

to steady and unsteady CFD problems requires rewriting PDEs in terms of optimization problems. Importantly, this

allows treating physical constraints on the flow properties and design constraints at the same level and optimizing both

simultaneously.

The hybrid quantum-classical method for non-linear optimization that forms the basis of VQCFD algorithms was

introduced by Lubasch et al. in [11] and is described in the remainder of this section. The quantum part of the generic

algorithm is displayed in Figure 1. It proceeds by encoding trial solutions, generically labeled 𝑓 (𝑖) here, representing

flow fields and also flow design parameters into quantum states | 𝑓 (𝑖)〉 created by variational quantum networks, (cf. Sec.

II.A). The network gates are controlled by a set of classical variational parameters denoted by the vector 𝝀, as described

in Sec. II.B. The problem specific non-linear cost function is evaluated from these trial quantum states in the QNPU,

see Sec. II.C. A unique feature of the QNPU architecture is that it makes use of multiple copies of a variational state

| 𝑓 (𝑖)〉 = | 𝑓 ( 𝑗)〉 for 𝑖 ≠ 𝑗 to create powers of a trial solution and hence to realize nonlinear terms in the cost function.

The QNPU architecture is therefore not limited to solving only weakly nonlinear problems, which is deemed to be a

major advantage. The general form of functions 𝐹 that can efficiently be generated in this way is given by

𝐹 = 𝑓 (1)∗Π𝑟𝑗=1 (𝑂 𝑗 𝑓
( 𝑗) ). (1)

Here, 𝑂 𝑗 are linear differential operators acting on 𝑓 ( 𝑗) . These operators are problem specific and implemented in the

QNPU. The operators 𝑂 𝑗 are programmed utilizing Matrix-Operator methods as a high-level programming paradigm

[11]. The cost function, measured via an ancilla qubit shown in Figure 1, is then given by the sum over the real parts of

function values of 𝐹, i.e. C =
∑
𝑘 R{𝐹𝑘 }, as addressed in Sec. II.D. Based on the measured cost function values, the

variational parameters 𝝀 are iteratively updated on classical computing hardware until the minimum of the cost function

is found using well-established VQA optimization methods [8]. Importantly, this setup does not require difficult to

realize long-term quantum memory, all relevant problem parameters are stored classically in 𝝀.
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Fig. 1 The QNPU architecture for four trial states | 𝑓 ( 𝑗)〉 on four 𝑁 qubit quantum registers initialized to
|0〉 = |00 . . . 0〉. The red parts of the network create variational trial states. The green QNPU part implements
the problem specific linear operators 𝑂 𝑗 . Its operation is controlled by port CP, trial functions enter through
input ports IPx, and outputs are labelled OPx. The blue ancilla network is used to evaluate the cost function
(figure reproduced from [11]).

A. Trial function encoding

The trial functions typically represent spatially varying properties of flows or design constraints on a discrete mesh. In

QCFD algorithms a function defined by 2𝑁 (complex) values is stored as the probability amplitudes of an 𝑁 qubit

register so that quantum register requirements only grow logarithmically with the discrete size of the CFD problem.

Moving to increasingly fine meshes is thus far less memory demanding than in standard CFD computations. The

drawback of this encoding is that, in general, the complexity of the variational quantum network (defined by classical

parameters 𝝀) required to create sufficiently expressive trial functions is not known. Large amounts of entanglement and

deep variational quantum networks might be required thus limiting the possible quantum advantage. For structured

meshes a hierarchical multigrid encoding of trial functions has been developed that makes it possible to exploit the

scale locality of fluid flows to limit the depth of the required variational quantum networks [23]. The basic idea is to

iteratively divide the mesh into a series of sub-meshes describing increasingly local features of the flow and illustrated

in Figure 2 for a two-dimensional 2𝑁 ′ × 2𝑁 ′ grid with points 𝒓𝑖 𝑗 , where 𝑁 = 2𝑁 ′.

The 2𝑁 normalized function values are encoded as the probability amplitudes of the wave function of 𝑁 qubits. The

decomposition starts by dividing the grid into four sub-grids of size 2(𝑁 ′−1) × 2(𝑁 ′−1) . Using a Schmidt decomposition,

one correspondingly writes the function values 𝑓 (𝒓𝑖 𝑗 ) as a sum

𝑓 (𝑟𝑖 𝑗 ) =
4∑︁
𝛼=1

𝜆𝛼𝑅𝛼 (𝑿𝑘𝑙) 𝑓𝛼 (𝒙𝑚𝑛) (2)

where 𝒓𝑖 𝑗 = 𝑿𝑘𝑙 + 𝒙𝑚𝑛 with 𝑿𝑘𝑙 (0 ≤ 𝑘 , 𝑙 < 2) a point on a coarse 2 × 2 grid and 𝒙𝑚𝑛 (0 ≤ 𝑚, 𝑛 < 2𝑁 ′−1) a point on
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the fine 2𝑁 ′−1 × 2𝑁 ′−1 grid (cf. Figure 2). The Schmidt decomposition gives orthogonal functions 𝑅𝛼 and 𝑓𝛼 fulfilling

∑︁
𝑘𝑙

𝑅𝛼 (𝑿𝑘𝑙)𝑅𝛽 (𝑿𝑘𝑙) =
∑︁
𝑚𝑛

𝑓𝛼 (𝒙𝑚𝑛) 𝑓𝛽 (𝒙𝑚𝑛) = 𝛿𝛼𝛽 (3)

and real positive values 𝜆𝛼 that that obey
∑
𝛼 𝜆𝛼 = 1. The Schmidt values are ordered as 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆4 ≥ 0 and

provide a measure of the weight of the corresponding term in the sum. Note that at most four terms are required in the

sum to represent all possible functions since the decomposition splits off four grid points 𝑿𝑘𝑙 . Truncating the sum by

dropping terms 𝑙 with small 𝜆𝑙 will still give a good approximation to the originally encoded function.

𝑿𝑿00 𝑿𝑿01

𝑿𝑿11𝑿𝑿10

𝑿𝑿11 + 𝒀𝒀10

Fig. 2 A cartesian two dimensional 25 × 25 grid illustrating the hierarchical multigrid decomposition. Red
circles show the points 𝑿𝑘𝑙 of the coarsest 2×2 grid. One of the four 24×24 sub-grids is indicated by a red-shaded
square. The green circle shows a grid point on one of the 24 × 24 sub-grids and the green-shaded square covers
one of the 16 sub-grids of size 23 × 23.

The four function values 𝑅𝛼 (𝑿𝑘𝑙) are written into the first two qubits of the quantum register and represent the coarsest

features of the function 𝑓 . The qubit wave function encoding 𝑓 is thus written as

|𝜓〉 =
∑︁
𝛼

𝜆𝛼 |𝑅𝛼〉 | 𝑓𝛼〉 (4)

where |𝑅𝛼〉 =
∑
𝑘𝑙 𝑅𝛼 (𝑿𝑘𝑙) |𝑘𝑙〉 and similarly for | 𝑓𝛼〉. Here |𝑘𝑙〉 ∈ {|00〉, |01〉, |10〉, |11〉} are the computational basis

states of the first two qubits. The decomposition of the functions 𝑓𝛼 proceeds by dividing the 2𝑁 ′−1 × 2𝑁 ′−1 grids into

four grids of size 2𝑁 ′−2 × 2𝑁 ′−2 each. The next iteration of the decomposition then reads

𝑓 (𝑟𝑖 𝑗 ) =
4∑︁
𝛼=1

𝜆𝛼𝑅𝛼 (𝑿𝑘𝑙)
4∑︁
𝛽=1

𝜆𝛼𝛽𝑅𝛼𝛽 (𝒀 𝑘𝑙) 𝑓𝛼𝛽 (𝒚𝑜𝑝) (5)

with 𝒙𝑚𝑛 = 𝒀 𝑘𝑙 + 𝒚𝑜𝑝 where 𝒀 𝑘𝑙 (0 ≤ 𝑘, 𝑙 < 2) and 𝒚𝑜𝑝 (0 ≤ 𝑚, 𝑛 < 2𝑁 ′−2) are points on coarse and fine grids,
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respectively. As in the previous step, one again writes the corresponding wave function as

|𝜓〉 =
∑︁
𝛼

𝜆𝛼 |𝑅𝛼〉
∑︁
𝛽

𝜆𝛼𝛽 |𝑅𝛼𝛽〉 | 𝑓𝛼𝛽〉 (6)

with the coarse features of 𝑓𝛼 encoded in the second and third qubits of the register |𝑅𝛼𝛽〉 =
∑
𝑘𝑙 𝑅𝛼𝛽 (𝒀 𝑘𝑙) |𝑘𝑙〉. This

procedure is repeated until the fine grid is of size 2 × 2.

This is identical to the MPS decomposition of a many-body wave function in one spatial dimension frequently used

when simulating many-body quantum systems [24]. However, neighboring sites of the quantum many-body lattice

system are here replaced by by neighboring length scales of the mesh [27].

This mapping possesses several features that are important for simulating fluid flow configurations. First, the significance

of the qubits in the quantum register corresponds to the length scales of the flow features that they describe. The most

significant bits store information about the largest features of the flow while the least significant qubits represent the

finest features appearing in the flow. Tracing out more and more of the least significant qubits yields an increasingly

coarse representation of the original function with the fine details being averaged out. The number of qubits required to

cover the range of all relevant length scales from the largest size of the energy containing eddies 𝑙, down to the smallest

ones, known as the Kolmogorov microscale 𝜂 increases only logarithmically with the ratio 𝑙/𝜂. Specifically, in 𝐾 spatial

dimensions it is given by 𝑁 = 𝐾 log2 𝑙/𝜂 in contrast to standard grid based CFD methods where memory resources

tend to scale like 𝑙/𝜂. The separation between these length scales often goes like 𝑙/𝜂 = Re3/4 in each spatial dimension

giving an estimate for the number of qubits required to hold a scalar function 𝑓 in 𝐾 dimensions as

𝑁 =
3𝐾
4

log2 Re . (7)

Second, the entanglement between qubits describes correlations of flow features present at different length scales, and

not correlations between different regions of the flow. If no correlations exist between length scales the trial functions

f are described by a product state. Only in cases where strong correlations exist between all length scales will the

maximum amount of entanglement between qubits be required to get an accurate description of a function 𝑓 . For a grid

that resolves space down to the microscale 𝜂 the entanglement entropy between the first Kn and the last 𝐾 (𝑁 − 𝑛) qubits

is a measure for the interscale correlations between length scales larger and smaller than 2𝑁−𝑛𝜂. The multigrid encoding

is thus highly suited to exploiting the scale locality of flow physics, which we will here discuss for the turbulent energy

cascade [30–33]. This structure implies that significant correlations only exist between nearby length scales, while very

little correlation is expected between the largest and the smallest length scales of a flow. A quantitative analysis of flow

examples in [27] reveals that this lack of correlations between far separated length scales translates into small amounts

of entanglement, i.e. only a small number of terms in the above multigrid encoding are significant, while most can be
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Fig. 3 The Schmidt number 𝜒99, which is a measure of the matrix size required in a 99% accurate MPS
representation of a flow field, as a function of Re. The blue diamonds refer to a decaying Taylor-Green vortex
(TGV) in 3D where 𝜒99 ∝ Re0.71 for sufficiently large Re. The green dots arise from a 2D temporally developing
jet (TDJ) simulation, where 𝜒99 ∝ Re0, i.e. the Schmidt number decouples from the Reynolds number for
sufficiently large Re. Figure taken from [27].

neglected. This was shown in [27, 28] by decomposing numerically exact solutions to paradigm fluid flows into MPS

and investigating the loss of fidelity when truncating the number of terms 𝜒 – also known as the Schmidt number or

bond dimension of a MPS – allowed in the sums representing |𝜓〉. The results of this analysis are reproduced in Figure

3 which shows that 𝜒99, required for a truncated MPS state being 99% accurate, to only grow polynomially with the

Reynolds number for a temporally developing jet (TDJ) in 2D and a decaying Taylor-Green vortex (TGV) in 3D. As

discussed next, variational quantum trial functions can thus be created in shallow quantum networks.

B. Creating variational trial states

The states |𝜓〉 encoding trial functions 𝑓 in the multigrid encoding are created from product states initialized into

|0〉 = |000 . . . 0〉 in quantum networks shown in red in Figure 1. The parameters defining the gates in these networks,

like entanglement phase, qubit rotation axes and angles, are controlled by classical control parameters 𝝀 with an example

network shown in Figure 4. The network implements an overall unitary transformation𝑈 (𝝀), i.e. |𝜓〉 = 𝑈 (𝝀) |000 . . . 0〉.

The achievable quantum advantage of QCFD algorithms is significantly influenced by the depth 𝑑 of the networks

required for𝑈 (𝝀) to be sufficiently expressive to create trial solutions |𝜓〉 accurately representing the actual solutions.

In general, requirements on the depth of variational circuits are not fully understood. However, because of the limited

interscale correlations in CFD problems, little entanglement is needed in the trial states |𝜓〉 thus limiting the required

depth.

Specifically, the depth of a quantum network for generating MPS states scales with the squared bond dimension 𝜒2.

Thus, for the paradigmatic incompressible flow examples TDJ in 2D and TGV 3D discussed above, the depth of

variational quantum networks representing numerically exact solutions with fidelities better than 99 % scales with the

Reynolds number like Re𝛾 where 𝛾 ≈ 0 for the 2D and 𝛾 ≈ 1.42 for the 3D flow example. This result implies that
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Fig. 4 Quantum ansatz of depth 𝑑 = 5. The network 𝑈 (𝝀) encodes 2𝑁 function values using 𝑁 = 6 qubits.
The variational parameters 𝝀 = {𝜆1, 𝜆2, . . . } determine the form of the two-qubit gates indicated by boxes
(reproduced from [11]).

QCFD algorithms scale more favorably than direct numerical simulations that typically go like Re3𝐾/4 log Re where 𝐾

is the number of spatial dimensions of the flow. For the 2D example the scaling advantage is exponential while for the

3D example it is polynomial. Furthermore, this consideration only considered matrix-product variational trial states

and thus provides a lower bound on the potentially achievable scaling advantage. Further, perhaps even exponential,

improvements are possible when going beyond quantum networks that are restricted to generating MPS.

C. Programming the QNPU

The linear operators 𝑂 𝑗 acting on the trial wave functions will in general be non-unitary and can thus not directly

be represented as a unitary quantum network. However, they can always be decomposed into a sum 𝑂 𝑗 ∝
∑𝜉

𝛼=1𝑈𝛼

of unitary operators 𝑈𝛼. For many of the standard operators appearing in partial differential equations, efficient

decompositions with small 𝜉 and easily implementable𝑈𝛼 are known and have been discussed in detail in the literature

(see e.g. [11] and Section III). For non-standard operators, for instance those describing boundaries or design conditions,

matrix-product operator methods can be used to create QNPU quantum networks. Because the Pauli operators form

an orthogonal basis of the operator space, the operators 𝑂 𝑗 can always be written as Pauli strings. The resulting

representation of 𝑂 𝑗 will usually possess non-optimal 𝜉 and would thus lead to quantum networks larger than necessary

but can be compressed using well-known tensor-network compression techniques [24] to reduce the required number of

terms 𝜉. Similarly, operators representing spatially varying potentials or boundary values of flow fields can be translated

into MPS making use of tensor-network tools described e.g. in [24].

D. Measuring cost functions and observables

Measuring the expectation value of the ancilla qubit in the computational basis evaluates the cost function given by

C =
∑
𝑘 R{𝐹𝑘 }, where 𝑘 runs over all discrete values of the function 𝐹 and R denotes the real part [11]. When carrying
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out the computations on quantum hardware, the expectation value is built up by averaging M individual outcomes of

projective measurements on the ancilla qubit. Sampling errors scale like 1/
√
M with a proportionality constant that is

typically only on the order of tens to hundreds so that high accuracies can be reached with current hardware capabilities.

We note that more advanced adaptive measurement schemes are being investigated and may lead to more accurate

results from fewer quantum runs [34]. Furthermore, derivatives of the cost function, as required by some minimization

algorithms [23], can be evaluated by combining the ideas presented here with the quantum circuits discussed in [35, 36].

The optimized variational parameters 𝝀opt form a compact classical representation of the variational solution with

exponentially more discrete function values that, in general, will not be computable classically from 𝝀opt. Hence, the

strategy for evaluating desired physical quantities will be to encode them in the QNPU architecture for fixed 𝝀opt as a

function 𝐴 of the general functional form given in Eq. (1). Measuring the ancilla qubit will give the sum
∑
𝑘 𝐴𝑘 . For

accessing individual function values 𝐴𝑘 or averages of functions over some regions of the mesh, e.g. those defined by the

least significant qubits, the QNPU network needs to be augmented by controlled single qubit rotations before measuring

the ancilla qubit [37, 38]. The ability to tailor the read-out in this way and focusing measurements on specific relevant

quantities is important for exploiting the quantum advantage gained during the computations when analyzing the results.

E. Iterative Classical Optimization

VQA is a highly active field of research with numerous classical optimization methods being introduced and constantly

refined for quantum optimization. For instance, the quantum natural gradient method offers an improvement over

simple gradient descent by calculating metrics of the cost function landscape at each optimization step [39, 40]. Using

information sharing across multiple optimizers using Bayesian optimization, different related cost functions can be

optimized in parallel and information can be shared between each optimization step to speed up convergence [41].

Different widely used VQA optimization methods have been compared and studied with respect to their ability to avoid

getting trapped in local minima [42].

Simulation driven design optimization is a key development in computational aeroscience and engineering where

VQA technologies naturally meet with industrial demands. Being characterized by many degrees of freedom, few

cost functions and expensive design evaluations, the ideal optimizer quickly reveals a complete sensitivity map for

the many parameters and advances the design. A gradient-based design optimization, that simultaneously solves the

coupled primal/adjoint PDE system – potentially considering additional state or geometry constraints – in a piggy-back

approach could be passed to the QNPU framework. This way the QNPU naturally addresses the optimization problem

at hand. Moreover, the enormous computational power expected from quantum computing could help covering

uncertainties inherent to industrial manufacturing processes using stochastic gradient approaches to identify robust

design opportunities.
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III. The Burgers’ Equation
In this section we describe how the VQCFD method can be applied to evolve the one-dimensional Burgers’ equation in

time following [11]. We restrict our considerations to performing an explicit, first-order Euler time integration and note

that the approach can straightforwardly be extended to more advanced time-stepping methods. The nonlinear Burgers’

equation for the velocity 𝑓 (𝑥, 𝑡) as a function of space 𝑥 and time 𝑡 reads

𝜕 𝑓

𝜕𝑡
= 𝜈

𝜕2 𝑓

𝜕𝑥2 − 𝑓
𝜕 𝑓

𝜕𝑥
. (8)

Here, 𝜈 is the kinematic viscosity and turbulence arises when 1/𝜈 or the Reynolds number become large [43]. We

discretize the spatial coordinate into equidistantly spaced discrete grid points 𝑥𝑘 and use a one-dimensional version

of the multigrid method discussed in Sec. II.A to encode the discrete function values 𝑓 (𝑥𝑘 , 𝑡) into a quantum state

| 𝑓 (𝑡)〉 = 𝜆0 |𝜓(𝑡)〉. The Burgers’ equation then takes on the form

𝜕 | 𝑓 (𝑡)〉
𝜕𝑡

= 𝜈Δ| 𝑓 (𝑡)〉 − 𝐷 𝑓 ∇| 𝑓 (𝑡)〉 , (9)

where Δ and ∇ denote discretized versions of the Laplace and Nabla operators, appropriately adapted for the multi-grid

encoding, respectively. The operator 𝐷 𝑓 is diagonal in coordinate space with the functions values of 𝑓 on its diagonal.

Since the Burgers’ equation does not conserve the norm of the trial function 𝑓 (𝑥, 𝑡), we have introduced 𝜆0 as an

additional variational parameter to overcome the restriction that the physical quantum state |𝜓(𝑡)〉 must always be

normalized. Note that this parameter is not contained in the quantum variational network but entirely taken care of in

the classical feedback loop.

The exemplary employed explicit Euler method uses the solution at time 𝑡 given by | 𝑓 (𝑡)〉 to compute the time-evolved

solution after time step 𝜏 as | 𝑓 (𝑡 + 𝜏)〉 =
(
1 + 𝜏 𝑂 (𝑡)

)
| 𝑓 (𝑡)〉, where 𝑂 (𝑡) = 𝜈Δ − 𝐷 𝑓 ∇ summarizes the discrete spatial

operations. To this end we define the cost function by the square of the residual, viz.

𝐶 ( | 𝑓 (𝑡 + 𝜏)〉 ) =
������ | 𝑓 (𝑡 + 𝜏)〉 − (

1 + 𝜏 𝑂 (𝑡)
)
| 𝑓 (𝑡)〉

������2 , (10)

and minimize it via varying 𝜆0 and the parameters 𝝀 of the quantum network 𝑈 (𝝀) creating | 𝑓 (𝑡 + 𝜏)〉 = 𝜆0𝑈 (𝝀) |0〉.

The state of the previous time step is written as | 𝑓 (𝑡)〉 = 𝜆̃0 |𝜓̃〉 = 𝜆̃0𝑈̃ |0〉 where the parameters 𝜆̃0 and 𝝀̃ determining

𝑈̃ = 𝑈 (𝝀̃) have already been fixed during the previous step. The cost function is then rewritten as a function of the

variational parameters given as

𝐶 (𝜆0, 𝝀) = |𝜆0 |2 − 2R
{
𝜆0𝜆̃

∗
0 〈0|𝑈̃†

(
𝐼 + 𝜏

(
𝜈Δ𝜆̃0𝐷 𝜓̃∇

))
𝑈 (𝝀) |0〉

}
. (11)
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Here, R{·} denotes taking the real part, ∗ the complex conjugate, † the hermitian conjugate, and 𝐼 is the identity operator.

Fig. 5 Quantum networks required inside the QNPU to evaluate the cost function of the Burgers’ equation
𝐶 (𝜆0, 𝝀) on four qubit registers. Network a) evaluates the expectation value 〈𝜓̃ |𝜓〉 = 〈0|𝑈̃†𝑈 (𝝀) |0〉, b) gives
〈𝜓̃ |A|𝜓〉 and c) determines the quantity 〈𝜓̃ |A𝐷 𝜓̃ |𝜓〉. The operator A shifts the function values bitwise to
calculate expectation values of derivative operators and has been adapted from the adder network [44].

Figure 5 shows quantum circuits that are required for the computation of this cost function. Note that in this case only

one QNPU input is utilized and we use the second controlled input IP2, i.e. | 𝑓 〉 = | 𝑓 (2)〉. Furthermore, the QNPU

needs to be modified after every time step, as 𝑈̃ and hence also |𝜓̃〉 change with time. As shown in Figure 5 the depth of

the required quantum networks scales polynomially with the number of qubits and thus logarithmically with the size of

the spatial grid. The quantum algorithm will thus be efficient if high quality variational trial functions can be created

with circuits of low depths as indicated above already.

For the spatially 1D Burgers’ equation one can explicitly estimate this depth. To this end one considers the initial

condition 𝑓 (𝑥, 𝑡 = 0) = 𝑍𝛿(𝑥 − 𝑥0) with 𝑍 and 𝑥0 constants determining the height and position of an initial velocity

hump and its evolution under the Burgers’ equation [27, 28]. For large viscosities the solution is given by

𝑓 (𝑥, 𝑡) = 𝑍

2
√
𝜋𝜈𝑡

𝑒−
(𝑥−𝑥0 )2

4𝜈𝑡 . (12)

When the viscosity vanishes the solution becomes triangular. For intermediate values of 𝜈 the full solution remains

holomorphic in 𝑥. It can then be shown that all of these solutions have efficient MPS representations i.e. are accurately

approximated by products of small matrices [24, 27, 45]. Since the depth of a variational quantum network to create

an MPS scales with the size of its matrices, one thus always obtains a polynomial upper bound on the depth of the

variational network required for generating high-quality trial solutions [27].

When attention is directed to design optimization, VQCFD could readily be employed for gradient-based, PDE-constraint
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optimization. Decoupling the optimization effort from the number of design variables usually motivates using adjoint

approaches [46], which require solving PDEs for a set of adjoint variables that supplement the governing (primal)

variables and guide the design change. As regards the Burgers’ equation (9), the analogous adjoint PDE for an adjoint

velocity 𝑓 (𝑥, 𝑡) reads (
𝜕 𝑓

𝜕𝑡
+ 𝑓

𝜕 𝑓

𝜕𝑥
+ 𝜈 𝜕

2 𝑓

𝑥2

)
+ 𝑆 = 0 , (13)

where 𝑆 refers to a source term that represents objective functional influences. Eqn. (13) can be solved along a route

outlined in Eqns. (9-10). Primal and adjoint PDEs, e.g. (8) and (13), are usually closely linked and it is assumed that

this duality also refers to the respective trial functions. For steady state problems, one could use a piggy-bag approach

[47] to iterate both the primal and the adjoint fields. Since the VQCFD inheres features of reduced order models

(ROMs), it is deemed to provide an efficient Ansatz space. To this end, an interesting aspect concerns the reversal of the

adjoint transport processes. As regards the Burgers’ problem, this either requires a complete storage of 𝑓 to compute

𝑓 , a smart check-pointing strategy which involves recomputing 𝑓 from a previous checkpoint [48], or an appropriate

interpolation strategy. All options are afflicted with overhead or accuracy issues and have motivated attempts to involve

improved compact descriptions of 𝑓 . Incremental proper orthogonal decomposition (POD) methods [49] are shown to

reduce the computational cost for transient optimizations [50] and might be suitable starting point to employ VQCFD or

classical MPS methods.

IV. VQA for Fluid Dynamics: Opportunities and Challenges
As already alluded to in the introductory section I.C, VQCFD can be viewed as a structure resolving ROM in which only

a small portion of the potential grid space (and hence the Hilbert space for the quantum algorithm) is needed to capture

the essential flow physics. Unlike the majority of current ROMs, VQCFD is not data-driven but a fully physics-based

approach. The many-body physics view of turbulence structures as portrayed by their scale correlations allows the use

of data compression (measured by the parameter 𝜒) to provide an accurate picture of the overall flow structures. In Ref.

[27, 28] it is shown that classical simulation based on this insight with relatively low 𝜒 values outperform under-resolved

DNS (or LES with no sub-grid scale closure) of the flow with the same computational degrees of freedom. With

continuing developments of more efficient computational tensor networking routines on classical computers facilitating

very high high values of 𝜒 (currently 𝜒 = O(65, 000) [29]), comes the opportunity to simulate flows at higher Reynolds

numbers.

However, it is to be determined when VQCFD methods will be capable of competing with, or succeeding, classical

CFD that currently employs up to order O(8, 0003) grid points [51]. To simulate high Reynolds number flows with a

pre-specified magnitude of 𝜒, limited e.g. by the achievable depth of the quantum variational network, one may have to

develop sub-structure models similar to the sub-grid scale closures in LES [16], or sub-POD/PCA models [52].
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In non-reacting and incompressible VQCFD with small to moderate 𝜒 values, the resulting effective truncation at high

wave numbers does not substantially influence the overall accuracy at large scales. Future work is needed to assess the

performance of VQCFD in more complex scenarios. In reactive flows, the effects of chemistry are dominant at very

small scales, and become more significant at higher Damköhler numbers. In compressible flows, shock capturing at

high Mach numbers is challenging in all discretization schemes. The same is true for resolving the fine-scale structures

near solid boundaries in turbulent boundary layers. Future work is also recommended for VQCFD implementation for

probabilistic simulations. VQCFD is then capable of tackling very high dimensional PDEs and would thus be suitable

for solving the Fokker-Planck equation in RANS/PDF and LES/FDF [53].

In summary, novel CFD approaches and methods are required to meet the future needs in academia and industry that

aim for applications beyond mere design verification. VQCFD provides a radical departure from standard ways of

evolving CFD capabilities by bringing quantum computing methods into the field. Its outcomes have the potential

to broadly impact the CFD community in a variety of significant ways. It is important, however, to note that there

are also challenges, especially in the development of quantum hardware to implement these algorithms. Although we

know that a future fault-tolerant digital quantum computer would offer scaling speedups, there is a lot to be done on

testing of these variational algorithms on NISQ machines to identify regimes of genuine quantum speedup over classical

computing in the presence of noise. Again, this will require the combination of expertise in state-of-the art classical

methods, further adaption of the algorithms to specific applications, and further input on verification and benchmarking

of NISQ quantum hardware. It is thus important to continue the development of the software at pace, in order to better

understand where the earliest transformative applications will occur, and on what timescale quantum hardware will be

ready to enable these applications.

V. Development of Quantum Hardware and QCFD
Proof of principle simulations of the QNPU approach on IBM quantum hardware were published in 2020 [11]. In this

work, the authors calculated the ground state of the nonlinear Schrödinger equation describing a quantum fluid and

demonstrated the method’s feasibility for small and large nonlinearities. Still, those calculations were limited to small

grid sizes by the available quantum hardware. The rate of improvement of quantum computing hardware is thus of

paramount importance for VQCFD – and other VQA approaches - to be able to compete with CFD on conventional

computing hardware.

Quantum hardware development is being pursued in numerous national and international research programmes. Venture

capital through start-up companies and well-established large corporations like IBM and Google are also heavily invested

in building quantum hardware. Using superconducting qubits, IBM promises a 1121 qubit quantum computer that would

be able to hold a small number of error-corrected qubits by 2023 [54]. Ion trap experiments have already demonstrated

fault-tolerant control of an error-corrected qubit in small-scale devices [55]. In addition, there are numerous hardware
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and software start-up companies that collaborate and/or compete with these efforts and add unique innovative and

transformational aspects to the field. For instance, alternative all-optical quantum computing platforms are pursued by

Xanadu [56] and PsiQuantum, who aim to build fully scalable and error corrected quantum computers [57]. There is

similarly a great deal of excitement about the potential for neutral atom quantum computing [58, 59].

If only one of the current hardware efforts succeeds and meets their targets, then a quantum advantage will be achievable

in industrially relevant problems, with VQCFD being a particularly promising early application, this decade already.

In order to realize this, though, it will be important to prepare for the availability of this new generation of quantum

hardware now, and further develop VQCFD and other algorithms for tackling engineering simulations in the real world,

as noted in the previous section.

VI. Discussion and Outlook
In this article we have focused on the example of VQCFD to convey the type of approach that needs to be taken to

utilizing quantum computing for applications in aeroscience. There are several ways in which this is representative of

the general opportunities and challenges in applying quantum computing to real-world applications.

Firstly, we need to take an approach that is different from conventional algorithms. In the case of VQCFD, the core

of how we use the quantum hardware (storing a variational state that we cannot directly access) is very different to

conventional CFD algorithms, and needs to be in order to take advantage of quantum hardware. Quantum hardware can

usually not directly be used to implement conventional algorithms with any speedup at all, and so finding the right new

approach for a specific problem will be the critical step in opening new application areas.

Secondly, because we need to find new approaches, it is vital to bring together experts in quantum algorithms with

experts in classical CFD, in order to understand the breadth of opportunities to write the relevant problems in different

mathematical language, and to understand what needs to be done to create algorithms that usefully go beyond the

capabilities of existing classical algorithms for the given application area. For VQCFD there is already a strong

connection between engineers working on CFD and experts in quantum computing. This will become only more

important as we extend the example calculations for VQCFD to real-world problems, and begin to understand where it

will demonstrate clear advantages over existing techniques.

In addition, although our main focus is on producing algorithms for rapidly developing quantum hardware, there are

already positive spin-offs from the developments here in the form of quantum-inspired classical algorithms. Because

approaching problems on a quantum computer requires finding new approaches that generally have not previously been

attempted on a classical computer, there is the possibility that we find algorithms that beat existing classical techniques.

Quantum inspired computing has already become important in the development of optimization tools. Here, by using

tensor network approaches, VQCFD techniques have been mapped onto new CFD algorithms on classical computers,

which may provide advantages in solving certain classes of problems even while the appropriate quantum hardware is
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still under development.

Quantum computing has the potential to make a large impact on aeroscience and engineering. But there are challenges

in developing applications, and these are best addressed by strong interdisciplinary engagement. We hope to see

applications in the coming decade, but it is important already now to work on algorithms that can be tailored to specific

computational problems and to specific developing hardware platforms. This will allow the joined-up communities to

identify the most promising future applications, and the timescales on which the hardware will reach the required scale

and level of precision to realize these in real-world applications.
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