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Abstract 
This study presents an analytical solution for free 

vibration analysis of functionally graded (FG) core 

integrated with piezoelectric layers and resting on 

elastic foundation. The four-variable refined plate 

theory is utilized which predicts parabolic variation of 

transverse shear stresses across the plate thickness, 

satisfies the zero traction on the plate surfaces and does 

not need the shear correction factor. Using both 

Hamilton's principle and Maxwell equation, the 

Equations of motions for simply supported rectangular 

plates resting on elastic foundation are obtained and the 

Navier method is adopted for solution of equations. 

Natural frequencies for different examples are obtained 

and they are compared with other common plate 

theories. It can be concluded that besides the simplicity 

of the presented formulation, this theory which does not 

need for shear correction factor, is very accurate in 

analysis of plates integrated with piezoelectric layers 

resting on elastic foundation and is comparable to other 

theories (the first order shear deformation theory 

(FSDT) and third order shear deformation theory). Also 

effects of power law index, thickness ratio and 

foundation parameter, on the natural frequency of plates 

have been investigated. 

 

Keywords: piezoelectric layer; FG plate; four-variable 

theory; free vibration; elastic foundation. 

 
Introduction  

Functionally graded materials (FGMs) are a kind of 

composite, which their material properties change very 

smoothly and continuously from one surface to another. 

One of the most important FGMs is metal-ceramic 

combination which gains superior properties than each 

constituent. Functionally graded structures Due to their 

effective properties, are widely used in many industries 

such as light weight structures for aircrafts and space 

industries, high efficiency engine components, 

shipbuilding industries, medical instruments, 

biomechanics and automotive industries. Also 

piezoelectric materials due to their intrinsic coupled 

electromechanical properties are widely used in smart 

structures.  

Plates rested on elastic foundations are very usual in 

structures. There exist a lot of various models of elastic 

foundations, and the simplest one is proposed by Winkler 

[1]. Many investigators have proposed various higher 

order shear deformation theories (HSDTs). A very 

recently developed HSDT is two-variable refined plate 

theory that contains only two unknown parameters, 

predict the parabolic transverse shear stresses across the 

thickness and satisfies zero traction conditions on free 

surfaces. Shimpi [2] developed this theory for isotropic 

plates and then extended to orthotropic plates by Shimpi 

and Patel [3] and Thai and Kim [4]. In two-variable 

refined plate theory the plate middle surface was 

assumed to be unstrained and therefore only the bending 

effects are considered. The four-variable refined plate 

theory was introduced by adding two other parameters 

regarding the in-plane displacements of plate middle 

surface. Benachour et al [5] presented analytical 

solution for free vibration of FG plates using this theory. 

There are various investigations on analyses of FGMs 

with embedded or surface bonded piezoelectric layers, 

acting as sensors and actuators.  Askari Farsangi et al 

[6] and Askari Farsangi and Saidi [7] used Mindlin plate 

theory and derived an analytical solution for free 

vibration of hybrid piezoelectric laminated and FG 

plates. Mitchell and Reddy [8] presented a higher order 

shear deformation theory for composite laminates with 

piezoelectric layer. Hasani Baferani et al [9] proposed 

accurate solution for free vibration analysis of FG plates 

resting on elastic foundation. Thai and Choi [10] 

developed a refined shear deformation theory for free 

vibration of FG plates on elastic foundation, they 

investigated effects of boundary conditions and 

foundation parameters.  

 

Theory and Formulations 

Consider a simply supported rectangular plate of 

length a, width b and total thickness ht with two bonded 

piezoelectric layer at top and bottom, resting on elastic 

foundation as shown in Figure 1. The thickness of elastic 

core is h and thickness of each piezoelectric layer is hp. 

The right-handed Cartesian coordinate system is located 

at corner of the middle plane of plate. The four variable 

refined plate theories are employed for analysis of free 

vibration of the plate. 

 
Figure 1. Geometry of FG plate resting on elastic foundation 
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According to assumptions of refined plate theory the 

displacement field (u in x-direction, v in y-direction and 

w in z-direction) is introduced as below [4]: 

 

(1) 

where u0 and v0 are the in-plane displacement of mid-

plane in the x and y direction and wb and ws are bending 

and shear component of transverse displacement, 

respectively. The strain-displacement relationships are 

given by: 

 

(2) 

where 
 

(3) 

 

 

The effective material properties of FG plates which 

change very smoothly and continuously from one 

surface to another can be expressed by following 

relation: 
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where n is power law index and subscripts m and c 

denote the property of metal and ceramic constituents, 

respectively. Linear constitutive equations for 

piezoelectric layer which couples the elastic and electric 

fields are given as below: 

       

        
t

σ = Q ε - e E

D = e ε + E
 (5) 

where Q is the stress-reduced stiffness, e is the 

piezoelectric constants matrix, ,  is the dielectric 

constant matrix, E is the electric field intensity vector 

and (σ, ε) are stress and strain tensors. The coefficients 

Qij for a FG plate can be written as:                                                                        
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The electric field E is derivable from an electrostatic 

potential ϕ as following equation: 

, 1,2,3i iE i    (6) 

where electrostatic potential through the thickness of the 

piezoelectric layer is defined as [11]: 
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 (7) 

The governing equations will be obtained using the 

principle of minimum potential energy: 

( ) 0U V T     (8) 

The equations of motion can be obtained by minimizing 

the total potential energy with respect to u0, v0, wb and 

ws: 

(9) 
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The parameters Kw and Ks are the Winkler and Pasternak 

parameters for elastic foundation. The stress resultants 

N, M and Q are as bellow: 

(10) 
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the mass moments of inertia are defined as: 

(11) 
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The electric potential in piezoelectric layer satisfies 

Maxwell's equation in the following integral form: 

(12) 
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Substituting Eq. (5b) in Eq. (16) yields: 
(13) 2 2 2

1 2 3 4 0s bw w             

where 
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Analytical solution 
Consider a simply supported FG rectangular plat with 

piezoelectric layers bonded to its surface. The Navier 

method is adopted for solution of obtained governing 

equations. The boundary conditions for simply 

supported plate are taken as below: 

(14) 

At edges x=0 and x=a: v0=0,wb=0,ws=0, M
b
x=0, 

M
s
x=0, Nx=0, ϕ=0. 

At edges y=0 and y=b:  u0=0,wb=0,ws=0, M
b

y=0, 

M
s
y=0, Ny=0, ϕ =0. 

Using following infinite Fourier series for independent 

variables: 

(15) 
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also the electrostatic potential can be approximated as 

following double Fourier expansions: 

(16) 
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where   is natural frequency. Substituting Eqs. (15) 

and (16) into Eq. (9), natural frequency can be obtained 

from the below Eigen-value equations: 

(17) 
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Setting the determinant of the coefficient matrix equal 

to zero, the natural frequencies of the plate with 

piezoelectric layer resting on elastic foundation can be 

obtained. 

 

Numerical results and discussion 

To verifying accuracy of present theory, several 

numerical examples are solved and results are compared 

with other theories, Also effects of piezoelectric 

thickness and elastic parameters are investigated. 

Material properties used in examples are listed in Table 

1. 
Table 1. Material property 

Property 

 Core plate  

Ti - 6Al - 4V  
Aluminum 

oxide 
Al  alumina 

(GPa)E  105.7 320.24 70 380  

  0.2981 0.260 0.3 0.3  
3(kgm )   4429 3750 2707 3800  

Property 
 Piezoelectric layer 

G -1195 N  PZT - 4  

(GPa)E   63.0 - 

   0.3 - 

11(GPa)C   - 132 

12(GPa)C   - 71 

33(GPa)C   - 115 

13(GPa)C   - 73 

55(GPa)C   - 26 
2

31(cm )e    44.37 -4.1 
2

33(cm )e    50.18 14.1 
2

15(cm )e    14.13 10.5 
1

11(nFm )   15.30 7.124 
1

33(nFm )   15.00 5.841 
3(kgm )    7600 7500 

 

Table 2 presented non dimensional natural frequencies 

of square Al/Al2O3 FG (aluminum as metal and alumina 

as ceramic) plate with different piezoelectric (PZT-4) 

thickness and rested on elastic foundation 

(
w sK K =100). As it is seen in Table 2, the obtained 

results are in good agreement with third order shear 

deformation plate theory with five unknown functions. 

It is clear that as piezoelectric thickness goes to zero, 

the frequency of the hybrid plate approaches that of the 

homogeneous plate. 
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Table 2. Non-dimensional natural frequencies ( )  of square 
FG plate with piezoelectric layers. (h/a=0.05) 

Power law index 
theory hp/h 

5 2 1 0.5 0 

0.0328 0.0329 0.0333 0.0341 0.0360 Present 10
-1 

0.0376 0.0373 0.0377 0.0385 0.0404 Present 10
-2 

0.0383 0.0381 0.0384 0.0392 0.0411 present 10
-4 

0.0383 0.0381 0.0384 0.0392 0.0411 present 0 

0.0388 0.0386 0.0388 0.0395 0.0411 Ref [9] 0 

 

Effects of elastic parameters on natural frequencies of a 

simply supported square FG plate attached with G-

1195N piezoelectric layers are investigated in Tables 3 

and 4. Ti-6Al-4V and aluminum oxide are selected as 

the metal and ceramic parts of the FG core. The side 
and thickness of core plate are 400 and 5mm and 
the thickness of each piezoelectric layer is 0.1mm. 
Increasing value of foundation parameters tend to 

increase the natural frequency. 

Table 3. Natural frequencies (Hz) of square FG plate with 
piezoelectric layers.  

Power law index 
Theory sK  

100 5 1 0.5 0 

1881.2 1853.6 1802.1 1778.1 1731.6 present 10
3 

644.72 626.38 600.74 589.33 564.44 Present 10
2 

321.44 296.65 268.72 256.67 224.99 Present 10 

261.95 232.77 200.34 186.03 144.39 Present 0 

262.68 233.04 200.57 186.26 145.35 Ref [7] 0 

259.35 230.46 198.92 185.45 144.25 Ref [12] 0 

 

Table 4. Natural frequencies (Hz) of square FG plate with 
piezoelectric layers. 

Power law index 
Theory wK  

100 5 1 0.5 0 

494.40 474.87 450.14 439.35 414.35 Present 10
3 

293.59 267.04 237.45 224.61 189.56 Present 10
2 

265.28 236.42 204.35 190.25 149.52 Present 10 

261.95 232.77 200.34 186.04 144.39 Present 0 

262.68 233.04 200.57 186.26 145.35 Ref [7] 0 

259.35 230.46 198.92 185.45 144.25 Ref [12] 0 

 

Conclusions 

In this study employing the four-variable refined plate 

theory, analytical solutions for free vibration of FG 

plate integrated with piezoelectric layers and rested on 

elastic foundation were presented. The equations of 

motion were obtained using Hamilton's principle and in 

order to solve these equations, the Naveir solution was 

adopted. To verify the accuracy of the present theory, 

some comparisons between obtained results and already 

published ones were made. It was observed that in 

comparison to other theories, the present formulation 

gave more accurate results in predicting natural 

frequencies of FG plate integrated with piezoelectric 

layers and rested on elastic foundation. It should be 

noted that the present theory involves only four 

unknown functions and also does not need the shear 

correction factor. Also effects of piezoelectric thickness 

and foundation parameters were investigated. It 

observed that increasing value of foundation parameters 

tend to increase the natural frequency. 
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