
Received 28 February 2023, accepted 12 March 2023, date of publication 15 March 2023, date of current version 21 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3257724

The Design of a Python Library for the Automatic
Definition and Simulation of Transient Ionization
Fronts
TIMOTHY WONG , (Graduate Student Member, IEEE),
IGOR TIMOSHKIN , (Senior Member, IEEE), SCOTT MACGREGOR , (Senior Member, IEEE),
MARK WILSON , (Member, IEEE), AND MARTIN GIVEN , (Senior Member, IEEE)
Department of Electronic and Electrical Engineering, High Voltage Technologies Research Group, University of Strathclyde, G1 1XW Glasgow, U.K.

Corresponding author: Timothy Wong (timothy.wong@strath.ac.uk)

The work of Timothy Wong was supported in part by the Engineering and Physical Science Research Council (EPSRC) under Grant
EP/T517938/1.

ABSTRACT In recent years, the interest in nonthermal plasma dynamics has grown significantly, within both
industry and research. This has been driven by the development of several novel cold plasma technologies
across a wide range of different fields, for example, for plasma medicine, chemical processing, pollution
control, and surface treatment. The optimization of these technologies relies heavily upon the understanding
of gas discharge plasmas: their generation, electrical characteristics, and interaction with their surroundings.
Moreover, the manifestation of nonthermal plasmas in the form of streamers is of high relevance and
critical importance to high voltage insulation technology, and has further significance to geophysical
research concerning atmospheric discharges. The present work describes the development of the StrAFE
(Streamers on Adaptive Finite Elements) package, a dedicated Python library built atop the popular
open-source FEniCS finite element software, designed with the objective to simplify and to automate the
solution of ionization front models. The library features support for mesh adaptivity, distributed memory
parallelism, and an intuitive programming interface, while providing an exceptionally high level of user
configurability. This article presents the software implementation, describes its features, and presents several
code verification studies performed within simple and complex domains. It is concluded that the numerical
results gained from this open-source framework are comparable to other well-established software in terms of
accuracy. Therefore, it further demonstrates the great potential for open-source software to make significant
contributions to technologies involving nonthermal plasmas, ionization fronts, and gas discharges.

INDEX TERMS Nonthermal plasma, gas discharge plasma, finite element analysis, open-source software,
streamer discharge, high voltage phenomena, transient ionization fronts.

NOMENCLATURE
A. FINITE ELEMENT METHOD
u Arbitrary unknown function.
uh Approximation of the arbitrary function u.
Ui Coefficient to finite-element basis functions.
φi Finite-element basis function
L Arbitrary differential operator.

The associate editor coordinating the review of this manuscript and

approving it for publication was Agustin Leobardo Herrera-May .

f Arbitrary known coefficient.
v Finite-element test functions.
� Finite-element domain.
A Finite-element system matrix.
U Vector of unknown coefficients.
b Vector of known coefficients.

B. IONIZATION FRONT MODEL
N Set of chemical species in a model.
ni Concentration of species i.
t Time.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 26577

https://orcid.org/0000-0001-6525-814X
https://orcid.org/0000-0002-0380-9003
https://orcid.org/0000-0002-0808-585X
https://orcid.org/0000-0003-3088-8541
https://orcid.org/0000-0002-6354-2486
https://orcid.org/0000-0002-7373-9258

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

0⃗i Total flux of species i.
Si Total sources and sinks of species i.
qi Electric charge of species i.
µi Charge mobility of species i.
Di Diffusion coefficient of species i.
µε Electron energy mobility.
Dε Electron energy diffusion coefficient.
ε Dielectric permittivity.
ϕ Scalar electric potential.
E Electric field magnitude.
ρ Net charge density.
ᾱ Effective ionization coefficient.
α Ionization coefficient.
η Attachment coefficient.
hj Sign for loss or gain source for j-th reaction.
kj Reaction rate for the j-th reaction.
R Set of chemical reactions in a model.
Sph Photoelectron source term.
Sion Total ionizing reaction source term.
p Gas pressure.
pq Collisional quenching pressure.
pO2 Partial pressure of oxygen.
νu Impact ionization frequency for level u.
νi Ionization frequency.
ξ Photoionization efficiency.
Aj, λj Helmholtz fitting parameters
nε Electron energy density.
ē Elementary charge.
γ Secondary emission (SE) coefficient.
n̂ Unit normal.
kb Boltzmann constant.
ε̄γ Mean energy of SE electrons.
vth,i Thermal velocity of species i.
ri Reflection coefficient of species i.
mi Mass of species i.
Ti Temperature of species i.
σs Surface charge density.

C. WEAK FORMULATION
u Vector of unknown functions.
v Vector of test functions.
uj j-th component of u.
vj j-th component of v.
d� External boundary of �.
ωj j-th boundary segment of d�.

D. COMPUTATIONAL ASPECTS
1t Time integration step size.
Mb The base computational mesh.
M0 The initial computational mesh.
Mt A temporary computational mesh.
F Set of refinement functions.
R Set of refinement growth radii.
K Set of refinement tolerances.
θ Theta time-integration scheme parameter.

E. OTHER
x, y Cartesian geometric dimensions.
r , z Cylindrical geometric dimensions.
U0 Applied voltage.
N0 Peak density of initial charge distribution.
Emax Maximum electric field strength in the domain.
εr Relative dielectric constant.
s Deviation parameter for gaussian seed.

I. INTRODUCTION
Nonthermal plasmas belong to a class of non-equilibrium
(non-Maxwellian) gas discharge plasma, where the electron
temperature is far higher than that of the ion temperature.
Such plasmas may be produced under the application of
sufficiently intense electric fields to gaseous media. Also
known as cold- or low-temperature plasmas, their properties
have led to their application to various novel technologies,
found across many different areas of engineering and science.
For example, for surface processing [1], [2], air cleaning [3],
[4], [5], plasma medicine [6], or chemical processing [7].
However, many aspects of nonthermal plasmas remains to be
fully understood, and a deeper understanding of the related
processes is crucial for the successful advancement and opti-
mization of these developing technologies. Equally, the study
of fast ionization fronts is also critical to the prevention of
electrical failure in high-voltage equipment, as the initial
development of streamers in high-field regions may result
in partial (or complete) discharges across insulation, com-
promising system integrity. Streamer discharges are similarly
important for the understanding of geophysical phenom-
ena occurring in the upper atmosphere [8], and for certain
plasma flow and propulsion applications [9]. These transient,
filamentary-type discharges are multiscale in nature [10],
rendering them highly difficult to characterize solely through
experimental means.

In recent times, advances in computational power, and the
growing accessibility to high performance computing (HPC),
has facilitated complexmultiphysics modelling, allowing it to
become more widely available. For example, time-dependent
simulations of streamer discharges have been successfully
demonstrated on standard consumer grade hardware, using
commercially available software [11], [12]. Specialized
schemes using custom codes, employing techniques which
are particularly effective for multiscale modelling have also
been developed, and demonstrate major advances in compu-
tational efficiency and speed [13], [14]. The popularity of
these methods has grown rapidly, with models that incorpo-
rate aspects such as complex plasma chemistry [15], nonuni-
form electric fields [16], and solid dielectric boundaries [17],
[18], becoming increasingly prevalent. Currently, the soft-
ware developed must typically strike a balance between
issues such as computational speed, resource usage, accessi-
bility, adaptability, accuracy, and model fidelity. Further dif-
ficulty comes with the sheer number of necessary parameters
involved within plasma simulations, much of which must be

26578 VOLUME 11, 2023

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

manually entered into simulation software, a process which
is highly susceptible to human error [19]. Generally, custom
modifications to complex, often low-level, code are required
when setting up new problems, which can be time consuming,
and, in many cases, require some degree of computational
expertise.

In this work, the development and design of StrAFE
(Streamers on Adaptive Finite Elements), a convenient and
user-friendly Python library, for the automation and solu-
tion of transient ionization front problems, is described. The
StrAFE system was built atop the open-source FEniCS finite
element (FE) framework [20], [21], [22], which provides an
already convenient yet highly flexible set of software tools
for general-purpose finite element modelling. The design
philosophy behind StrAFE follows directly in the footsteps of
FEniCS: the rapid translation of physical models to efficient
FE code; reduction in the setup time necessary to generate
new models, by reducing the need for computational exper-
tise; and to allow maximum user control and configurability.

StrAFE was developed using the now legacy (2019.1.0)
version of FEniCS. Development is now focused on a
next-generation version known as FEniCSx, and documen-
tation for both versions of this platform may be found at
docs.fenicsproject.org. In this article, the technical imple-
mentation of StrAFE using FEniCS is described, while also
discussing the many benefits which can be gained by employ-
ing open-source code. Results from several code verification
and comparison studies are then presented. It should be noted
that the StrAFE library itself has not been made openly avail-
able. Rather, the focus of this article is to demonstrate how
software like StrAFE can be achieved using FEniCS, which
itself is open-source and fully available. Consequently, this
article acts as a guide for interested parties to develop similar
software, and encourages the use of open-source frameworks
such as FEniCS for simulating transient ionization fronts
developed in gases.

II. PLATFORM AND METHOD
A. THE FINITE ELEMENT METHOD
When using the hydrodynamic description of plasmas, solv-
ing the set of hyperbolic conservation laws which arise (see
section III-A) generally benefits from numerical methods
that guarantee exact local conservation, e.g., finite volume
methods (FVM) as used in [13], [14], and [23]. However,
this work is instead based on the continuous Galerkin finite
element method (CG-FEM), to take advantage of some FEM-
specific features. Despite only maintaining global conserva-
tion, FEM offers greater flexibility in terms of the order of
spatial discretization, the type of finite element, and can han-
dle complex boundaries with relative ease, without the need
for any specialized numerical schemes. CG-FEM is mature,
versatile, and has been frequently applied in many areas of
science and engineering. Thus, a detailed review of FEMwill
not be conducted here, for which the reader is referred to [21],
[24], and [25], and references therein. Instead, only a brief

outline of necessary aspects is provided, to act as support for
later discussion within this article.

To begin, let u denote the exact solution of an unknown
function, and uh be its approximation. FEM is defined when
uh is sought as a linear combination of basis functions, φi,
such that:

u ≈ uh =
∑
i

Uiφi, (1)

whereUi are coefficients to φi which approximate u. Suppose
that u satisfies the differential equation:

L(u) = f , (2)

in a bounded domain �, where L is a differential operator;
then the weighted residual reads:

r =
∫

�

vL(u)−
∫

�

fv, (3)

for weight function (or test function) v. In the standard
Galerkin method, weight functions v are chosen to belong to
the same function space as the approximating basis functions
φi, then the Galerkin FEM problem is solved by requiring that
the weighted residual be driven to zero, i.e.,

r =
∫

�

vL

(∑
i

Uiφi

)
−

∫
�

fv = 0, (4)

where the integration over� is over each finite element which
spatially discretizes the domain. Application of (4) over each
element results in the linear system:

AU = b (5)

where A is a matrix, b is a vector, and U is the vector of
unknown coefficients to be obtained. The system (5) can then
be solved using any preferred linear algebra solution method.
In physical problems, the differential operator L often has
order two, which due to (4) imposes the condition that φimust
be at least twice-differentiable (i.e., elements with a linear
basis cannot be used, which are preferred for their lower
computational cost). To lift this constraint, Green’s identity
can be applied to the integral (4), which reduces second-order
derivative terms to two derivatives of order one, yielding the
weak or variational formulation of (4). This is illustrated
further in section III-G for the specific case of coupled drift-
diffusion-reaction-Poisson equations.

B. THE FEniCS PROJECT
The FEniCS Project [20], [21], [22] is an open-source col-
lection of software components, designed with the aim to
automate and simplify general FE problem generation and
solution. Licensed under LPGL-v3, the original platform was
developed using C++, and features several core components
under the main user interface named DOLFIN. Fig. 1 outlines
the corresponding system architecture; using corresponding
labels:
(i) FEniCS Form Compiler (FFC) [21], [26], [27] – Han-

dles just-in-time (JIT) compilation and generation of

VOLUME 11, 2023 26579

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

FIGURE 1. Block diagram depicting the architecture of FEniCS, adapted
from [48].

finite element variational forms in high-speed C++
code.

(ii) Unified Form Assembly Code (UFC) [28] – An interface
for finite element assembly from provided variational
forms.

(iii) Unified Form Language (UFL) [20], [28] – A language
developed for the discretization of partial-differential
equations (PDE), in a form that closely resembles the
original mathematical expressions.

(iv) Finite Element Automatic Tabulator (FIAT) [29] – Han-
dles the generation of finite element basis functions and
elements of arbitrary order.

The components listed above work alongside the system
assembler (v) to form the system matrix, to then be passed
to the solver. FEniCS can additionally be programmed using
Python, which significantly lowers the entry barrier to per-
forming efficient FEM simulations. Furthermore, there is
native support for distributed memory parallelization through
MPI (vi), with built-in mesh partitioning and load balancing,
performed using the PT-SCOTCH [30] or ParMETIS [31]
libraries (vii). FEniCS can also be compiled with a selec-
tion of popular open-source linear algebra backends (viii),
which provides efficient computation, e.g., PETSc [32], [33],
uBLAS [34], or Epetra [35]. Direct programming through
Python also facilitates the automated processing of data
outputs, since scripts for data analysis can be constructed
using any available third-party Python library (ix), and can
directly communicate with FEniCS. The platform has proved
highly capable in numerous studies across a range of disci-
plines [36], [37], [38], and has shown to adapt well to HPC
settings with over 24,000 processes [22], [39]. StrAFE is pri-
marily an automation tool built on top of FEniCS through its
Python interface, but additionally implements crucial features
such as adaptive mesh refinement for efficient multiscale
modelling.

III. MATHEMATICAL MODELLING
A. HYDRODYNAMIC DESCRIPTION OF NONTHERMAL
PLASMAS
The hydrodynamic (or fluid) approximation of plasma arises
from the zero-order moment of the Boltzmann equation [40],
and becomes valid when charge concentrations are suffi-
ciently high, or if the Knudsen number is within the bounds of
validity [40]. Consider a plasma comprised of a set, N , of dif-
ferent charged species, interacting under the presence of an
electric field. According to the hydrodynamic approximation,
the spatial and temporal evolution of their concentrations can
be modelled following a set of advection-diffusion-reaction
equations, given by:

∂ni
∂t
+∇ · 0⃗i = Si, (6)

for i ∈ N , where the term Si describes the sources and sinks
of species i, and the flux 0⃗i is given by the sum of advective
and diffusive components,

0⃗i = −sgn (qi) niµi∇ϕ − Di∇ni, (7)

where qi, ni, µi, andDi are the electric charge, concentration,
(positive) mobility, and diffusion coefficient of species i,
respectively. ϕ is the potential, coupled to the charge concen-
trations through the Poisson equation,

−∇ · (ε∇ϕ) = ρ =
∑
j∈N

qjnj, (8)

where ε is the permittivity. The self-consistent solution of
(6) and (8) with appropriate boundary conditions, initial con-
ditions, and charge sources, forms the basic hydrodynamic
description of plasmas. The types of initial and boundary
conditions which are supported in StrAFE are described in
the following sections, as are several additional functions,
which have been developed to improve modelling fidelity.
Sections III-A to III-G firstly focuses on the mathematical
formulation, while details regarding the usage and syntactical
implementation of the software can be found in section IV.

B. USING TOWNSEND COEFFICIENTS
Abasic description of plasma can be gained using aminimum
of two species – electrons, and generic positive ions. Using a
minimal model, the Townsend ionisation coefficient can be
used to define an ionisation source term of the form:

Si = ᾱneµe|∇ϕ|, (9)

where ᾱ is the effective ionisation coefficient, and the sub-
script e refers to electrons. Alternatively, ᾱ can be split into
ᾱ = α − η, where α, η are the ionization and attachment
coefficients, respectively, and the set N includes negative
ions, with the source term:

S− = ηneµe|∇ϕ|. (10)

For advanced models using individual reaction rate coeffi-
cients, and considers specific plasma chemistry, section III-C
applies.

26580 VOLUME 11, 2023

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

C. PLASMA CHEMISTRY
For detailed studies which concern plasma composition, and
which involve numerous active ionic species, source terms
are computed following:

Si =
n∑
j=1

(
hjkj

∏
m∈R

nm

)
, (11)

where kj is the reaction rate for reaction j, n is the total
number of reactions which involve species i, and R is the set
of reactants involved in reaction j. Symbol hj is either +1
or –1 for sources and sinks, respectively. Examples which
employ the plasma chemistry module of StrAFE have been
demonstrated in section V.

D. PHOTOIONIZATION
In some gases (e.g., atmospheric air), photoionization
induced by emitted photons from radiative de-excitation pro-
cesses, are thought to be a major contributor of free electrons
to sustained discharges such as positive streamers [41], [42],
[43]. To account for this, Zheleznyak’s model [41] has been
implemented with a photoelectron source term given by:

Sph =
pq

p+ pq
ξ
νu

νi

∑
j=1

p2O2
Aj

∫∫∫
V ′

Sione−λpO2 |r−r
′
|

4π |r − r ′|
dV ′.

(12)

The photoelectron source can be efficiently obtained
by using the Helmholtz approximation as described by
Bourdon et al. [44]:

∇
2Sph,j −

(
pO2λj

)2 Sph,j = −(Ajp2O2

pq
p+ pq

ξ
νu

νi

)
Sion,

Sph =
∑
j

Sph,j, (13)

for j = 1, 2, 3. Symbols p, pq, and pO2 are the total gas pres-
sure, collisional quenching pressure of nitrogen (accounting
for non-radiative de-excitation), and the partial pressure of
oxygen, respectively. νu is the impact ionisation frequency for
level u, νi is the ionisation frequency, ξ is the photoionization
efficiency [44], and Sion is the summed source term over all
contributing ionizing reactions. Lastly, Aj and λj are fitting
parameters for the j-th equation, and the values which are
used throughout the examples within section V follow those
computed in [44].

E. LOCAL FIELD AND LOCAL MEAN ENERGY
APPROXIMATIONS
Inmany previous studies, the local field approximation (LFA)
has been used for simplicity, which assumes that transport and
rate coefficients are dependent only on the local magnitude
of the electric field, which becomes immediately available
from the solution of (8), and then applying E⃗ = −∇ϕ. The
range of validity of the LFA has been shown to be limited, and
may become inaccurate for high- or spatially-inhomogeneous
field conditions [45], [46]. In StrAFE, the LFA is the default

option, however, there also exist the option to use the local
mean energy approximation (LMEA), which attempts to
include (to some extent) non-local electron transport pro-
cesses, thereby extending the range of validity to beyond that
of the LFA. Under the LMEA, transport and rate coefficients
are dependent on the local value of the electron energy, which
is dynamically computed by appending an additional balance
equation to the model, given by:

∂nε

∂t
+∇ · 0⃗ε = ē0⃗e · ∇ϕ −

n∑
j=1

(
1Ejkj

∏
m∈R

nm

)
, (14)

where the electron density flux 0⃗ε is

0⃗ε = nεµε∇ϕ − Dε∇nε. (15)

Here, nε is the electron energy density, ē is the elementary
charge, 0⃗e is the electron flux, and 1Ej is the energy loss or
gain during reaction j. µε and Dε are the energy mobility and
energy diffusion coefficient, respectively; these can either be
user defined, or optionally, be approximated from the electron
transport parameters [40] as:

µε =
5
3
µe, Dε =

5
3
De. (16)

F. BOUNDARY CONDITIONS
For electrode boundaries, Dirichlet boundary condi-
tions are prescribed for the electrostatic potential, while
Neumann-zero conditions are applied at axes of symmetry.
For studies involving subdomains (e.g., solid barriers, elec-
trodes, walls), the accurate reflection of physical behavior
requires appropriate boundary conditions for the normal
charge fluxes to be prescribed at interfaces. In StrAFE, the
option exists to have either aNeumann-zero condition, or wall
conditions following Hagelaar et al. [47]. Using similar
notation to Jovanovic et al. [19], these are given by:

0⃗e · n̂ =
1− re
1+ re

(
|neµe∇ϕ · n̂| +

1
2
nevth,e

)
−

2
1+ re

γ
∑
j∈N
j̸=e

max
(
0⃗j · n̂, 0

)
(17)

for electrons,

0⃗i · n̂ =
1− ri
1+ ri

(
|niµi∇ϕ · n̂| +

1
2
nivth,i

)
(18)

for heavy species, and

0⃗ε · n̂ =
1− re
1+ re

(
|nεµε∇ϕ · n̂| +

1
2
nεvth,ε

)
−

2
1+ re

ε̄γ γ
∑
j∈N
j̸=e

max
(
0⃗j · n̂, 0

)
(19)

for the electron energy density. The parameter r is the reflec-
tion coefficient of the species at the boundary, γ is the sec-
ondary emission coefficient, and ε̄γ is the mean energy of

VOLUME 11, 2023 26581

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

secondary electrons. vth is the thermal velocity of the species
identified by the subscript, given by:

vth,i =

√
8kbTi
πmi

, (20)

where kB is the Boltzmann constant, Ti is the species tempera-
ture, andmi is the species mass. For the electron temperature,
Te is calculated from the energy following:

Te =
2nε

3kbne
, (21)

and for the electron energy velocity, equation (22) holds:

vth,ε = 2kbTevth,e. (22)

Across interfacial boundaries with differing permittivity,
a discontinuity in the electric displacement is induced by the
accumulation of surface charge, σs, from incoming fluxes
(volume conduction is currently not considered). To incor-
porate this, internal subdomain boundaries require that:

ε∇ϕ · n̂ = σs, (23)

where the surface charge is computed based on the sum of
boundary-directed fluxes, following:

∂σs

∂t
= ē

∑
j∈N

sgn (qi) 0⃗j · n̂+ ēγ
∑
j∈N
j̸=e

0⃗j · n̂. (24)

G. WEAK FORMULATION
As described in section II-A, the application of the Galerkin
method requires the reformulation of equations (6)–(24) to
hold weakly with respect to an appropriate set of test func-
tions. The weak formulation of the governing equations is
fundamental to the implementation of StrAFE, which uses
the UFL syntax to directly input math-like form expressions,
which are passed to the system assembler. See [20] and [21]
for a detailed description of UFL and of the FEniCS form
compiler. In the interests of repeatability, the remainder of this
section focuses on providing the mathematical definition of
the variational problem. To maintain consistency with index-
ing in Python, u is hereby defined as a vector function with
components u =

[
u0, u1, u2, . . . , up

]
, with index starting

at zero, each of which represents a scalar field in a domain
�, and where p varies depending on the problem type (i.e.,
the number of species considered, whether LFA or LMEA is
used, etc.). The rules for the construction of this vector are as
follows:
• Index 0 is always the potential field, ϕ.
• Index 1 is always the electron density, ne.
• Index 2 to N stores the densities of all other species
under consideration, e.g., (n+, n−, . . .).

• Index N + 1 to N + 3 stores the three components of
the photoionization source term, Sph,1, Sph,2, and Sph,3,
if enabled.

• Index N + 4 stores the surface charge σs, defined only
on element facets, and only if there are subdomains.

• The last index of the vector (in Python, index−1) stores
the electron energy density, nε, if LMEA is enabled.

In summary, the mapping of vector u can be expressed as:

u =



u0
u1
u2
u3
...

uN
uN+1
uN+2
uN+3
uN+4
u−1



≡



ϕ

ne
n2
n3
...

nN
Sph,1
Sph,2
Sph,3
σs
nε



(25)

Correspondingly, a vector of test functions, v =[
v0, v1, v2, . . . , vp

]
, is stored for the construction of varia-

tional forms, with each function vj acting as the test function
for the corresponding index in u.

Consider firstly the Poisson equation (8), from which one
may construct the weak form following section II-A to be:∫

�

v0∇ε · ∇u0 d�+

∫
�

v0
∑
j∈N

qjnj d�

−

∫
�

∇ (v0ε) · ∇u0 d�+

∫
∂�

v0ε
(
∇u0 · n̂

)
dS = 0

(26)

where ∂� denotes the external boundary of domain�, arising
from Green’s identity. The last integral includes the term
ε
(
∇u0 · n̂

)
whichmay be chosen to enforce Neumann bound-

ary conditions such as (23), or, if a Neumann-zero condition is
present, this integral vanishes. Different Neumann conditions
can also be prescribed to disjoint sections of ∂�, simply by
splitting this integral into boundary segments such that:⋃

j

ωj = ∂�, (27)

where ω is a boundary segment, and separate integrations are
performed over each segment j, respectively. For advection-
diffusion-reaction equations (6), the weak form becomes:∫

�

∂ui
∂t
vi d�− sgn(qi)

[∫
�

vi∇ (uiµi) · ∇ϕ d�

−

∫
�

∇ (viuiµi) · ∇ϕ d�

]
+

∫
�

∇ (viDi) · ∇ui d�

−

∫
�

vi∇Di · ∇ui d�

−

∫
�

Sivi d�+

∫
∂�

vi
(
0⃗i · n̂

)
dS = 0 (28)

for i ∈ N , and similarly for the energy balance equation
(14), but with the right-hand-side replacing Si in (28). The

26582 VOLUME 11, 2023

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

FIGURE 2. Block diagram of the architecture of the StrAFE library, and its
connections to the core FEniCS library as shown in Fig. 1.

Helmholtz weak form for photoionization (13) is obtained in
the same way, yielding:∫

�

∇vi · ∇ui d�+

∫
�

vi
(
pO2λj

)2 ui d�

−

∫
�

vi

(
Ajp2O2

pq
p+ pq

ξ
νu

νi

)
Sion d�

−

∫
∂�

vi
(
∇ui · n̂

)
dS = 0, (29)

for i = N + 1, N + 2, N + 3.

IV. StrAFE
Fig. 2 shows the architecture of the StrAFE library, and
describes its interconnections to the core FEniCS system as
laid out in [48] and in Fig. 1. StrAFE was developed with
a strong emphasis on usability and flexibility, in-line with
the original design philosophy for FEniCS. Classes provided
through StrAFE have been designed to be intuitive, and to
require only basic knowledge of the Python programming
language. Sections IV-A to IV-E gives a broad overview of
the components of StrAFE, providing details regarding their
implementation and usage.

A. BASIC USAGE AND CLASSES
In this section, classes which are central to StrAFE’s func-
tionality are described, to highlight how the combination of
FEniCS and Python has been used to significantly simplify
the process of configuring simulation models.

At the core of any simulation is the computational mesh.
The inheritance of StrAFE from FEniCS therefore permits
that any mesh format supported by FEniCS as listed in [21],
is also supported by StrAFE. This includes internally gen-

erated meshes using native FEniCS functions, and external
meshes from any other software. Both 2D and 3D unstruc-
tured meshes are supported, and are compatible with mesh
routines as described in section IV-B. A simulation can then
be configured using a number of dedicated StrAFE classes,
the most important of which are described in brief below:

• DriftDiffusionProblem() - The main prob-
lem class, where all simulation settings can be
accessed and changed. Uses intuitive .set syntax, such
as set_base_mesh(mesh) to provide a meshed
domain objectmesh to the solver. All settings pertaining
to the problem can be set similarly, including the choice
of LFA or LMEA, the species under consideration, AMR
schemes, time-stepping, etc.

• ChargedSpecies() - Defines a single instance of
a charged species to be tracked within the simulation.
This class stores the species properties, such as its name,
mass, charge, and transport parameters (can be provided
as Python functions or tabulated data, such as those com-
puted using BOLSIG+ [49]). Initial conditions are also
stored in this class, where several popular initial charge
distributions can be chosen from, e.g., a gaussian [50],
capsule [17], or uniform distribution.

• Electrode() - Defines nodes on the mesh which are
to be marked as electrodes. Doing so allows the applica-
tion of potential boundary conditions. This is also a child
class of the more general DirichletCondition(),
which can be used for the prescription of arbitrary
Dirichlet conditions, and is not limited to the potential
field.

• Wall() - Defines nodes on the mesh which are to be
marked as a wall. Doing so allows the application of
the wall conditions according to (17)–(19). This class
stores the attributes of the wall, such as reflection and
secondary emission properties. This is also a child class
of the more general NeumannCondition(), which
can be used for the prescription of arbitrary Neumann
conditions, and is not limited to the charge fluxes.

A subsequent call to the .solve() method launches the
system assembler, which automatically constructs the UFL
forms of equations (26)–(29), based on the provided settings.
This is subsequently passed to the solver environment, and
the time-stepping loop is invoked. In this way, simulation
problems can be configured using minimal lines of highly-
readable code. This facilitates the rapid development and
refinement of computational models, and has strong support
for integration with external, Python-developed code. This is
particularly useful for performing batch parametric studies,
or to conduct automatic post-processing tasks on the simula-
tion outputs using other Python-based programs.

B. ADAPTIVE MESH REFINEMENT (AMR)
A part of the motivation to develop StrAFE, was the want of
a flexible and transparent framework to study fast-transient
ionisation waves, such as streamer discharges, with emphasis

VOLUME 11, 2023 26583

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

FIGURE 3. Flowchart of the adaptive mesh refinement algorithm
implemented in StrAFE.

on divergent field and time-varying field conditions. As men-
tioned, streamer discharges are multiscale phenomena [10],
and often exhibit sharp features and steep spatial gradients,
particularly within their electric field and ionic density distri-
butions. This imparts considerable computational difficulty
for mesh-based methods like FEM, where the accuracy is
highly dependent on mesh resolution, but where computa-
tional resources are often limited. Therefore, adaptive mesh-
ing techniques have essentially become a necessity for sim-
ulating streamers in complex domains, or for longer time
periods. These methods automatically adapt the mesh ele-
ments in time and space to suit the evolving dynamics of the
simulation.Most commonly, this requires refinement of mesh
cells in regions of fast-moving or high-gradient behavior,
and subsequent de-refinement of cells where the solution is
once again slow-varying (also known as h-type adaptivity,
as opposed to p-type adaptivity which locally adapts the
order of the approximating basis functions). The criterion
for refinement is typically based upon an error estimate,
or alternatively, can simply be based upon some combination
of cell or nodal values of themost recently computed solution.

At the time of development of StrAFE, FEniCS did not
include native support for time-dependent adaptive meshing
schemes that allowed for per-cell de-refinement, and was
limited to refinement only. To include this feature, StrAFE
implements several refinement routines for the purpose of
achieving dynamic meshes in time and in space. This is
done through periodic domain remeshing at a user-defined
frequency. Fig. 3 shows a flowchart of the AMR algorithm
which has been employed, and which is also described in
further detail by the following algorithm:

1) At the beginning of the simulation, store a base coarse
mesh Mb, and a fine mesh M0 to solve for initial
conditions.

2) If it is the first iteration, project initial conditions onto
M0, solve once for u0, and store a temporary copy ur ←

u0. If not, assign the current solution ur ← uk . In either
case, set a temporary meshMt ←Mb.

3) Construct a set of functions F (or combination of func-
tions) from those stored in ur , which are chosen by the
user, to be evaluated against the refinement criteria.

4) For all functions f ∈ F , mark cells ofMt for refinement
if f ≥ κℓ, where κℓ is a tolerance defined by a set of
tolerances in the simulation settings, κℓ ∈ K.

5) (Optional) grow the region of refinement markers by
marking all cells within a distance R from all marked
cells inMt .

6) RefineMt based on these markers gℓ times, then reas-
signMt ←Mt .

7) For the number of total required refinement levels, ℓ,
increment ℓ and repeat from step 4.

8) Return the fully refined meshMt .
9) If it is the first iteration, re-project initial conditions onto
Mt and re-solve before continuing.

10) Project the current solution onto Mt and re-assemble
the variational problem.

The refinement functions F , tolerances K, refinement mul-
tipliers gℓ, refinement levels ℓ, and radial growth distance
R, can all be user-defined as Python functions and passed
to the problem environment, using similar .set syntax as
described in section IV-A. The AMR routine also supports
time as an input argument, which allows the refinement cri-
teria to be adjusted automatically over the course of the sim-
ulation. Moreover, marker functions can be provided, which
allows the refinement region to be limited to a user-specified
sub-domain of the mesh. Additional routines which permit
the static refinement of the base mesh Mb around a point,
a line, or a user provided region have also been developed.
These are particularly useful for simulations involving static
features, like dielectric boundaries or particles, which may
require a denser mesh near its interfacial region, to ensure
good numerical convergence. AMR would then refine on top
of the already refined base mesh. Using this scheme, granular
control of the mesh is provided to the user, as there exists
many different methods to refine the mesh precisely where
required over the course of the simulation. It is remarked
that the AMR algorithm operates in parallel with MPI, and
has been designed to minimize inter-process communication
where possible. An example of an adaptively refined mesh
using this scheme is shown in Appendix A.

C. TIME INTEGRATION
For time-stepping, StrAFE currently employs the θ -scheme,
such that the time derivative of the function u as featured in
(25)–(29) is discretized as:

∂u
∂t
≈

uk+1 − uk
1t

= θ fk+1 [t,uk+1]+ (1− θ)fk [t,uk] .

(30)

Setting the parameter θ = 0 or θ = 1 results in the first-order
explicit and implicit Euler schemes, respectively, while the
default θ = 1/2 recovers the Crank-Nicolson scheme, giving

26584 VOLUME 11, 2023

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

second order accuracy in time. Currently, StrAFE also has
some initial support for adaptive time stepping, which when
enabled, returns an estimate of the local truncation error, from
which the user may implement custom timestep controllers,
to update 1t for the next step based on their own specified
tolerances. In future, the implementation of higher order
schemes would be highly beneficial, to increase solution
accuracy and numerical convergence.

D. SUBDOMAIN SUPPORT
In practice, many engineering systems are composite in
nature, such that interfaces between materials (e.g., between
gas and solid dielectrics) may exist inside the domain of
interest, and may not necessarily be positioned at the external
boundaries. In such cases, equations (23), (17)–(19) must be
applied for internal nodes of the computational mesh. StrAFE
currently supports subdomains for modelling solid dielectric
material with different relative permittivity values.

To create subdomains in StrAFE, the user must first
ensure that the attached mesh has nodes that align with
the internal boundaries, which can be achieved with ease
using available mesh generation software, e.g., gmsh [51].
Boundary and subdomain markers should also be gener-
ated from external software, unless the boundary interface
conforms to simple shapes which can be described analyti-
cally, in which case, they can be marked using native FEn-
iCS tools [21]. A subdomain is defined by passing the cell
marker function, the boundary marker function, and the value
of permittivity, reflection, secondary emission, etc., to the
.set_solid_subdomain() method. If this subdomain
boundary function is used, conditions given by (17)–(19)
are automatically applied, and do not need to be manually
provided by setting Neumann conditions. If not, the boundary
defaults to a Neumann-zero condition.

An arbitrary number of solid subdomains can be defined,
which are internally stored as a list of markers. These are
automatically regenerated on each new mesh if AMR is
enabled. The markers instruct the assembler to split the
meshed domain � into two sets, � = �s ∪ �g, for solid
and gas, respectively, where the drift-diffusion equations (6)
are solved in �g only, while Poisson’s equation (8) is defined
over the full domain �. It is remarked that, although StrAFE
currently does not provide a convenient interface to define
additional physics within subdomains, this could theoreti-
cally be done in future, by simply appending the correspond-
ing variational forms before passing to the solver. Thismay be
useful for studies involving simultaneous charge transport in
solid media, or subdomains which contain liquid dielectrics
and fluid flow.

E. PROBLEM GENERATION AND PLASMA CHEMISTRY
INPUT
In section IV-A, the ChargedSpecies() class was
described, which is used to define and include a sin-
gle charged species. However, in many nonthermal plasma
applications, e.g., [7] and [15], knowledge of the plasma

composition, and of the exact combination of charged
species developed during a discharge, is of critical impor-
tance. Manual definition of each individual species using
ChargedSpecies() would be tedious and error-prone.
For this, StrAFE features automated generation of the
species list from a plaintext file, containing a list of
ionic species, neutral species, table of chemical reactions,
rate coefficients, and energy loss coefficients. Using the
TabulatedSpecies() class, this user provided file can
be read, and the list of species is automatically generated
and attached to the problem environment. Parameters can be
provided within the text file as constants, plaintext functions,
or a file path pointing toward tabulated data. The chemistry
data is independent of the mesh data, therefore allowing
studies in different gases to be achieved with ease, simply by
switching to a different chemistry file.

F. SOLVER AND OTHER MISCELLANEOUS OPTIONS
On default settings, StrAFE solves the linear system using the
solvers provided by the PETSc [33] backend through FEniCS.
Newton’s method is used for the outer iteration, whilst the
generalized minimum residual method (GMRES), precon-
ditioned using the Hypre [52] algebraic multigrid (AMG)
method is used as the inner linear solver. However, the solver
interface is fully exposed, and can be configured to meet the
user’s requirements. Other options include biconjugate gradi-
ent methods, various relaxation methods, and popular direct
solvers such as MUMPS [53]. For a full list of supported
linear algebra solvers and settings, the reader is referred
to [21].

The versatility which StrAFE has inherited from FEniCS
further enables other options to be readily changed, for exam-
ple, the use of higher-order spatial discretization, or differ-
ent element types. Moreover, it is possible to override or
modify the variational form, which is assembled only when
.solve() is called. This allows the implementation of
additional physics, stabilization schemes, or other, to suit the
exact application.

V. SIMULATION EXAMPLES
Since StrAFE relies upon FEniCS for system assembly and
for its solver routines, it is unnecessary for this article to
concern itself with the detailed benchmarking and validation
of the numerical assembly and solver components. Instead,
the objective is to demonstrate the accuracy and capabili-
ties of the StrAFE interface, specifically for streamer and
plasma modelling, which has been subsequently developed.
At the time of writing, there exists no standardized ‘bench-
mark’ problems for nonthermal plasma simulations, though
this may change as the interest in such numerical codes
increase, with studies like [50]. Instead, the present sec-
tion demonstrates several examples of streamer discharge
simulations, in multiple configurations which have been
reported in past literature, and were conducted by multiple
other research groups. For each case, the simulation domain,
boundary conditions, and relevant model settings have been

VOLUME 11, 2023 26585

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

FIGURE 4. Time evolution of an axisymmetric positive streamers’ electric
field and electron density, at times t = 3, 9, and 15 ns, generated using
StrAFE. Original study from [50]. Equipotential lines are spaced by 2 kV.
This simulation completed in approximately 3-4 hours.

briefly provided before the results are presented. Where pos-
sible, direct comparisons to original studies have been made,
though this was not always possible, as it was dependent
on data availability. Unless otherwise specified, all simula-
tions were performed using triangular linear Lagrange ele-
ments with StrAFE running inside a Docker container [54],
on either 16-core (AMD Ryzen 9 5950X) or 18-core (Intel
Xeon W-2295) workstation computers with 64GB memory.
It is remarked that while all the necessary components for
3D simulations have been implemented, only 2D (or 2D-
axisymmetric) simulations have thus far been conducted.
This is primarily due to the need for code verification and
comparison, for which there is a far greater number of doc-
umented 2D studies. Since full 3D simulations have only
become possible recently [13], [14], it would be difficult to
evaluate the accuracy of the implementation based on limited
data. However, it would be of high interest to conduct 3D
simulations in the future, especially to evaluate StrAFE under
HPC settings.

A. AXISYMMETRIC POSITIVE STREAMER
For the hydrodynamic approximation used in StrAFE, [50]
provides the most recent and comprehensive comparison of
different codes used by different groups for the simulation of
streamer discharges. At the time ofwriting, it is essentially the
only study which has been conducted purely for the purposes
of verification and comparison. As such, evaluating results
attained using StrAFE against the multiple available datasets
from [50] was prioritized.

Focus was placed on the ‘case 3’ simulation of [50],
to allow for the implementation of the Helmholtz photoion-
ization model to also be evaluated. The domain consisted
of a 2D square box with dimensions (r, z) = [1.25, 1.25]
cm, and was rotationally symmetric around r = 0. Dirichlet
conditions of U0 = 18.75 kV and 0 kV were prescribed at
z = 1.25 cm and z = 0 cm, respectively, and Neumann-zero
conditions were present on all four sides for all charge fluxes
and photoionization source terms. Only electrons and generic
positive ions were considered, and transport parameters were
supplied as empirically fitted expressions given in [50], using
the local field approximation. Initial conditions consisted
of a gaussian-distributed positive charge density placed at
(r0, z0) = (0, 1.0) cm following the expression:

n+(t = 0) = N0 exp

[
−

(r − r0)2 + (z− z0)2

s2

]
, (31)

where N0 = 5 × 1018 m-3 and s = 0.4 mm. A uniform back-
ground density for both electrons and positive ions was set to
109 m–3, and photoionizationwas enabledwith the three-term
exponential fitting parameters as provided in [50]. An adap-
tive timestep between 1 and 3 pswas used, with AMR enabled
to perform remeshing every 30 iterations based on the value
of the electric field normalized by the maximum field, and of
themagnitude of the net space charge. The use of 30 iterations
was determined from initial trial-and-error testing, and was
found to provide a good balance between solution accuracy
and total required computational time (frequent remeshing
can be become detrimental to computational speed, but may
not necessarily increase the solution accuracy). There cur-
rently exist no automated method to determine the optimal
number of iterations between AMR, though this would be of
interest to develop in the future.

The panels of Fig. 4 are split down the axis of symmetry,
where the left and right color plots correspond to the electric
field magnitude, and electron density, respectively. Three
timesteps of the positive streamer evolution have been shown,
at 3, 9, and 15 ns. The streamer length over time, and the max-
imum field strength over the length of the streamer, has been
additionally compared in Fig. 5 to the data from five other
groups who participated in [50]. Results from StrAFE com-
pare well to all other codes, and is well within the expected
margin of error considering the many potential differences in
implementation [50]. The results from StrAFE were found
to resemble most closely those from group DE, whose com-
putation was performed using the commercially available
COMSOL Multiphysics [19] software. With a run-time of
around three to four hours for the present code, and consid-
ering imperfect parallel scaling (see Appendix B), StrAFE
compares well with this widely-used commercial option.

B. DOUBLE-HEADED COUNTERPROPAGATING
STREAMERS
Demonstrated in several studies, e.g., [55], [56], and [57],
is the initiation of streamers from an initially charged seed,

26586 VOLUME 11, 2023

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

FIGURE 5. Comparison of (top) streamer length over time, where
v = 0.06 cm ns–1, (bottom) maximum field strength over streamer length
with other group data from [50]. The identifying labels for each group
correspond to the country or institution of the original authors: CWI =
Centrum Wiskunde Informatica, FR = France, CN = China, ES = Spain, DE =
Germany. Full details are provided in [50].

which evolves into one positive and one negative streamer
propagating in opposite directions, away from the location of
the source. Themorphology of negative streamers is known to
differ significantly from their positive counterparts, as the dif-
ferences in their sources of electrons have been suggested to
result in vastly different characteristics, such as the maximum
electric field, streamer radius, and propagation velocity [55].
When both are simultaneously present in a single simulation
domain, it can be challenging to find a single set of AMR
criteria which is equally effective for both streamers, because
in general, the refinement criteria and tolerances require to
be adjusted on a case-by-case basis. In these simulations,
StrAFE is used with a partitioned-AMR scheme such that two
different refinement criteria are used for the top half (z ≥
7.5 mm), and bottom half (z < 7.5 mm), of the domain,
ensuring that sufficiently fine meshes are provided for both
streamers. This demonstrates a useful feature which can
significantly aid convergence for some simulations, where
there exists some prior knowledge of how the discharge will
evolve in space. To avoid over-refinement in the early stages
of the simulation, the AMR scheme was also configured to
be time-dependent. The usage of E/Emax is effective as a
refinement threshold, but not during the initial stages where
E/Emax ≈ 1 everywhere in the domain, due to the presence
of a neutral seed. Therefore, this criterion is only introduced
once t ≥ 4 ns.

FIGURE 6. Electric field magnitude at t = 2, 4, and 6 ns of a
double-headed streamer developed in a homogeneous background
electric field.

FIGURE 7. Electron density at t = 2, 4, and 6 ns of a double-headed
streamer developed in a homogeneous background electric field.

The domain in this case was once again axisymmetric,
forming a cylinder of dimensions (r, z) = [4], [15] mm, with
a constant voltage of 65 kV applied at z = 15 mm, and
0 kV at z = 0 mm. In this study, a simplified set of plasma
chemical reactions for air was used, reaction rates following
Pancheshnyi and Starikovskii [58], while electron transport
parameters were obtained using BOLSIG+ [49] with Phelps’
cross-sectional data [59], [60], [61]. These can be found
tabulated together in Appendix C. Equal densities of N0 =

5× 1018 m–3 electrons and N+2 ions were placed at the center
of the domain, again following the gaussian form of (31), but
with s = 0.2 mm. A background ionisation level of 109 m–3

was again used, as was photoionization. Fig. 6 shows the elec-
tric field distribution at 2, 4, and 6 ns, while Fig. 7 shows the
corresponding electron density. The double-headed streamer
was successfully resolved, and the propagating characteris-
tics of both positive and negative streamers are in agreement
with past studies [55].

C. COUNTERPROPAGATING STREAMERS TOWARD EACH
OTHER FROM NEEDLE ELECTRODES UNDER FAST-RISING
RAMP VOLTAGE
In practical electrical systems, such as HV power and pulsed
power equipment, electrical pre-breakdown and breakdown

VOLUME 11, 2023 26587

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

phenomena are seldom initiated in regions of homogeneous
electric fields. In most cases, highly nonuniform and diver-
gent field conditions, induced by high aspect ratio geometry,
field redistribution at triple-junctions, or accumulated space-
charge, typically form the most pressing problems in HV
insulating system design.

Here, StrAFE’s handling of curved geometries in the
form of sharp needle electrodes is demonstrated, alongside
a time-varying Dirichlet condition representing a fast-rising
applied voltage. The simulation in question was initially per-
formed in [62], between two needle electrodes with a curva-
ture radius of 25 µm, and with an interelectrode gap distance
of 1.2 mm. Once again, the domain is axisymmetric around
r = 0. In the original study, a waveform generated using the
CST studio suite [63] from their experimental configuration
was also used for simulation, but was not made openly avail-
able. However, since the simulation was performed only over
the initial stages of the discharge, and during the rising edge,
an alternative waveform was used in this study, which closely
approximates the rising-edge of the original signal, using a
linearly increasing ramp voltage of the form:

U0(t) =
dU
dt
t, (32)

where the rate of voltage rise dU/dt was chosen to be
75 kV/ns, to roughly align with the slope of the original wave-
form from [62]. The plasma chemistry model of Appendix C
and photoionization was once again used, with initial back-
ground densities of 109m–3 for electrons andN+2 ions. No ini-
tial seed was necessary in this simulation, as the streamers
would initiate directly from the electrode tips, where the elec-
tric field was maximally enhanced. The LMEAwas addition-
ally used in this simulation, with energy-dependent electron
transport data computed using BOLSIG+ [49] with Phelps’
cross-sectional data [59], [60], [61]. Results are presented in
the same format as in [62] to facilitate direct comparison.
These include Fig. 8(a) and 8(b), which show streak plots
of the electric field magnitude and electron density along
the axis of symmetry, respectively; and Fig. 9, which plots
the electric field strength along the same axis, at timesteps
between t = 160 and 260 ps.

Overall, excellent agreement with the results from [62] was
found, including the time of streamer inception, the delayed
propagation of the negative streamer, the electron density
distribution, and propagation velocities. Minor differences
are observed in the maximum electric field strength at the
negative streamer head and in the position where the stream-
ers collide. As indicated by the difference between the black
markers of Fig. 9 and the obtained data, the positive streamer
field agrees closely with [62], but there exists a larger dis-
crepancy for peak field values with the negative streamer.
However, the difference is within expectation considering the
many possible differences in numerical implementation. The
discrepencies are believed to be attributed to the differences in
the waveform, the numerical implementation, or possible dif-

FIGURE 8. Streak images of (a) electric field magnitude, (b) electron
density, of counterpropagating streamers developed between
needle-needle electrodes of 25 µm radius, generated using StrAFE. This
figure corresponds to Fig. 8(a) and 8(b) of [62].

FIGURE 9. Electric field magnitude down the axis of symmetry for various
timesteps, during the development of counterpropagating streamers,
generated using StrAFE. This figure corresponds to Fig. 9(a) of [62]. Solid
black markers indicate the position of the peaks from the simulations
conducted in [62].

ferences in the boundary conditions applied at the electrodes,
as these were not specified in [62].

D. POSITIVE STREAMER WITH SOLID DIELECTRIC
Equally prevalent in, and important to, practical HV systems,
are the interactions between nonthermal plasma discharges
and dielectric surfaces. Knowledge of these processes would
be hugely beneficial to the development of novel plasma
technologies, e.g., surface treatment technologies [2], or any
other apparatus involving dielectric barrier discharges [7].

Using the described subdomain support in section IV-D,
simulations from [17] have been recreated, showing the elec-
trostatic attraction of streamers toward solid dielectric sur-
faces, and their subsequent propagation across these surfaces.
Briefly, the domain consisted of a square geometry with
(x, y) = [40, 40] mm. A solid dielectric subdomain was
defined where 0 ≤ x ≤ 10 mm, and with relative permit-
tivity εr = 2, while a neutral seed composed of electrons
and positive ions initiated the discharge (plasma chemistry

26588 VOLUME 11, 2023

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

was not used in this simulation, following the original. Only
electrons, generic positive ions, and generic negative ions
were included). The seed followed the capsule definition
as in [17], placed with its center 0.5 mm away from the
solid surface, and near the anode that was set to 100 kV.
Townsend coefficients were computed using BOLSIG+ [49]
as before. The base mesh was refined along the gas-solid
interface, while AMR was enabled to perform a remesh
every 30 iterations - this value was once again determined
from manual testing. No significant difference in the solution
was observed when only 20 iterations per AMR was used,
but signs of numerical nonconvergence near the fast-moving
streamer head at 40 iterations per AMR were observed.
30 was therefore chosen to reduce computational time and
to provide good convergence, yet have minimal effect on the
computed solution.

Fig. 10 shows the time evolution of the streamer electron
density at t = 10, 12.5, 15, and 20 ns. The streamer initiates
from the charged seed due to the field enhancement at the
bottom of the seed, as electrons drift upward. The streamer
then begins to propagate before 10 ns, and is drawn toward
the solid dielectric surface, before evolving into a surface
streamer. Here, the streamer is observed to gain velocity, and
accelerates down the surface, as in [17] and [18]. StrAFE
was also shown capable of resolving the thin sheath region
between the positive streamer and the surface, as described
in [17]. The maximum electric field strength at the streamer
head was found to be very similar to that of [17], as was
the propagation velocity during the gas-stage and surface
streamer stage. The electron density was similarly compara-
ble, with the channel density stabilizing at around 1021 m–3.
Additional studies on the effects of increasing the solid per-
mittivity were also conducted, results which recreated char-
acteristics as observed in [17], such as the thinner surface
streamer with increased εr , and a far more rapid surface
attachment speed.

VI. CONCLUSION
In summary, the present article has introduced and described
the StrAFE (Streamers onAdaptive Finite Elements) Python
library, a powerful automation tool for the study of transient
ionization fronts, using the hydrodynamic approximation.
Based on the open-source FEniCS framework, this article
has presented the design and development of the library,
showing how FEniCS and Python can be used to develop
an effective platform for the simulation of nonthermal gas
discharge plasmas, with emphasis on configurability, ease-
of-use, and a high degree of flexibility.

StrAFE was developed in Python, known for its acces-
sibility, due to its English-like syntax. The implementation
of a number of dedicated classes allows the substantial
simplification of generating transient ionization-FE prob-
lems, while also streamlining the process of passing the
problem to FEniCS for efficient solving, using its high-
speed C++ backend. StrAFE employs the hydrodynamic
approach of coupled drift-diffusion-reaction-Poisson equa-

FIGURE 10. Positive streamer attaching to a solid dielectric surface (solid
red line), and forming a surface streamer at timesteps t = 10, 12.5, 15,
and 20 ns, generated using StrAFE. Equipotential lines are spaced by 5 kV.
Originally studied in [17].

tions for nonthermal plasmas, and further includes crucial
features necessary for multiscale modelling. These include:
user-configurable adaptive mesh refinement and adaptive
timestep controllers, support for problem generation from
a single plasma chemistry file; support for both local field
approximations and local mean energy approximations, and
support for subdomains, e.g., solid dielectric materials. Since
StrAFE inherits from FEniCS, it additionally offers full sup-
port for distributed memory parallelism through the message
passing interface (MPI), and the same desktop-developed
prototype code can be executed in HPC settings with little
to no change.

This article has importantly showed how it can be used
to significantly simplify the process of simulating streamer
discharges. Several simulation examples have been pre-
sented in various domains, and were of varying complex-
ity, which demonstrated the capabilities of StrAFE through
comparison with existing work. It was found that the use
of FEniCS compares very well to a range of existing and
well-established codes, both commercial and custom-made.
Yet, its open-source nature offers far greater flexibility and
code transparency, and can be used to develop user-friendly
software with a very low entry barrier. Such innovations are
exceptionally well-suited for interested parties who may be
new, or unfamiliar, with the field of gas discharge modelling,
and thus possesses immense educational value. From this
study, it can be concluded that open-source frameworks such

VOLUME 11, 2023 26589

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

FIGURE 11. (a) Load balanced mesh, each color demarcates nodes which
are owned by a unique computational process, (b) adaptive mesh around
an initially gaussianly-distributed charge seed, (c) example of the
dynamic AMR scheme tracking a streamer head, overlaid on top of the
electric field color map.

FIGURE 12. Data from a basic parallel scaling test. Red circles are
measured data, dashed black line is a best fit curve, and the solid black
line represents ideal scaling.

as FEniCS, have great potential to make significant contri-
butions to the study of nonthermal plasmas, ionization fronts,
and gas discharges; and can help to further increase the acces-
sibility of computational modelling of complex phenomena
in engineering and science.

In future, StrAFE will be used to explore nonthermal
plasma dynamics in practical topologies of interest. The flex-
ibility offered by the library further facilitates experimen-
tation with different numerical schemes, the exploration of
higher-order discretization, the possibility to use discontin-
uous Galerkin methods (DG-FEM), additional physics, and
more. It is also of high interest to conduct three-dimensional
simulations in the future, and to further evaluate StrAFE in

TABLE 1. Plasma chemical reactions used in example simulations for
80/20 air. Notation f (ε̄) means that the reaction rate was a function of
the local electron energy. Chemical symbol M represents O2 or N2.

HPC settings – 3D features have theoretically been imple-
mented, but not yet thoroughly tested.

APPENDIX A
EXAMPLE OF AMR AND LOAD BALANCING
Fig. 11(a) shows a visualization of the load-balanced mesh
generated by FEniCS, around the initial seed of the exam-
ple from section V-A. Fig. 11(b) shows the corresponding
mesh around the initial seed region. Mesh cells belonging to
the same color group are owned by the same MPI process.
Fig. 11(c) additionally shows the adaptive mesh overlaid on
half of the domain at t = 8 ns, showing the finemesh tracking
the streamer head.

APPENDIX B
PARALLEL SCALING
Fig. 12 shows the results of a basic parallel scaling test, up to
16 MPI processes, conducted by varying the number of pro-
cesses the program ran with, when simulating example V-A.
Note that only physical cores were used here, the use of
virtual cores was disabled, since it did not appear to offer any
additional computational speedup.

APPENDIX C
PLASMA CHEMISTRY FOR AIR
Table 1 encloses the plasma chemical reactions for air, which
were included in several of the simulations presented in sec-
tion V.

REFERENCES
[1] L. Bárdos and H. Baránková, ‘‘Cold atmospheric plasma: Sources,

processes, and applications,’’ Thin Solid Films, vol. 518, no. 23,
pp. 6705–6713, Sep. 2010.

[2] Z. Fang, X. Qiu, Y. Qiu, and E. Kuffel, ‘‘Dielectric barrier discharge in
atmospheric air for glass-surface treatment to enhance hydrophobicity,’’
IEEE Trans. Plasma Sci., vol. 34, no. 4, pp. 1216–1222, Aug. 2006.

26590 VOLUME 11, 2023

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

[3] H.-H. Kim, ‘‘Nonthermal plasma processing for air-pollution control:
A historical review, current issues, and future prospects,’’ Plasma Process.
Polym., vol. 1, no. 2, pp. 91–110, 2004.

[4] K. Urashima and J.-S. Chang, ‘‘Removal of volatile organic compounds
from air streams and industrial flue gases by non-thermal plasma tech-
nology,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 7, no. 5, pp. 602–614,
Oct. 2000.

[5] M. Rong, J. Liu, X. Wang, and X. Yuan, ‘‘Research on air purification
efficiency by nonthermal plasma along with the application of magnetic
field,’’ IEEE Trans. Plasma Sci., vol. 34, no. 4, pp. 1345–1350, Aug. 2006.

[6] M. Laroussi, S. Bekeschus, M. Keidar, A. Bogaerts, A. Fridman, X. Lu,
K. Ostrikov, M. Hori, K. Stapelmann, V. Miller, S. Reuter, C. Laux,
A. Mesbah, J. Walsh, C. Jiang, S. M. Thagard, H. Tanaka, D. Liu, D. Yan,
and M. Yusupov, ‘‘Low-temperature plasma for biology, hygiene, and
medicine: Perspective and roadmap,’’ IEEE Trans. Radiat. Plasma Med.
Sci., vol. 6, no. 2, pp. 127–157, Feb. 2022.

[7] R. Aerts, W. Somers, and A. Bogaerts, ‘‘Carbon dioxide splitting in a
dielectric barrier discharge plasma: A combined experimental and com-
putational study,’’ ChemSusChem, vol. 8, no. 4, pp. 702–716, 2015.

[8] Y. P. Raizer, G. M. Milikh, M. N. Shneider, and S. V. Novakovski, ‘‘Long
streamers in the upper atmosphere above thundercloud,’’ J. Phys. D, Appl.
Phys., vol. 31, no. 22, pp. 3255–3264, Nov. 1998.

[9] S. B. Leonov, I. V. Adamovich, and V. R. Soloviev, ‘‘Dynamics of
near-surface electric discharges and mechanisms of their interaction with
the airflow,’’ Plasma Sources Sci. Technol., vol. 25, no. 6, Nov. 2016,
Art. no. 063001.

[10] U. Ebert, ‘‘The multiscale nature of streamers,’’ Plasma Sources Sci.
Technol., vol. 15, no. 2, pp. 118–129, Apr. 2006.

[11] F. Boakye-Mensah, N. Bonifaci, R. Hanna, I. Niyonzima, and I. Timoshkin,
‘‘Modelling of positive streamers in SF6 gas under non-uniform electric
field conditions: Effect of electronegativity on streamer discharges,’’
J, vol. 5, no. 2, pp. 255–276, May 2022.

[12] Z. Zhao, X. Wei, S. Song, L. Cui, Z. Zhang, and K. Yang, ‘‘A two-
dimensional air discharge modified model under unipolar square pulse
voltage at low temperature and sub-atmospheric pressure,’’ IEEE Access,
vol. 9, pp. 51896–51909, 2021.

[13] J. Teunissen and U. Ebert, ‘‘Simulating streamer discharges in 3D with
the parallel adaptive Afivo framework,’’ J. Phys. D, Appl. Phys., vol. 50,
no. 47, Oct. 2017, Art. no. 474001.

[14] R. Marskar, ‘‘Adaptive multiscale methods for 3D streamer discharges in
air,’’ Plasma Res. Exp., vol. 1, no. 1, Jan. 2019, Art. no. 015011.

[15] C. Xu, N. Huret, M. Garnung, and S. Celestin, ‘‘A new detailed plasma-
chemistry model for the potential impact of blue jet streamers on atmo-
spheric chemistry,’’ J. Geophys. Res., Atmos., vol. 125, no. 6, Mar. 2020,
Art. no. e2019JD031789.

[16] L. Zhao, Y. Zang, W. Liu, Y. Qian, and X. Zhou, ‘‘Two-dimensional
simulation of transition from primary to secondary streamer discharge in
air,’’ AIP Adv., vol. 9, no. 9, Sep. 2019, Art. no. 095028.

[17] X. Li, A. Sun, G. Zhang, and J. Teunissen, ‘‘A computational study
of positive streamers interacting with dielectrics,’’ Plasma Sources Sci.
Technol., vol. 29, no. 6, Jun. 2020, Art. no. 065004.

[18] X. Li, A. Sun, and J. Teunissen, ‘‘A computational study of negative surface
discharges: Characteristics of surface streamers and surface charges,’’
IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 4, pp. 1178–1186,
Aug. 2020.

[19] A. P. Jovanovic, M. N. Stankov, D. Loffhagen, and M. M. Becker, ‘‘Auto-
mated fluid model generation and numerical analysis of dielectric barrier
discharges using comsol,’’ IEEE Trans. Plasma Sci., vol. 49, no. 11,
pp. 3710–3718, Nov. 2021.

[20] M. Alnaes, ‘‘The FEniCS project version 1.5,’’ Arch. Numer. Softw., vol. 3,
no. 100, pp. 1–15, Dec. 2015.

[21] A. Logg, Automated Solution of Differential Equations by the Finite Ele-
ment Method. Cham, Switzerland: Springer, 2012.

[22] The FEniCS Project. Accessed: Oct. 31, 2022. [Online]. Available: fenic-
sproject.org

[23] O. Ducasse, O. Eichwald, andM. Yousfi, ‘‘Finite vol. method, for streamer
and gas dynamics modelling in air discharges at atmospheric pressure,’’ in
Finite VolumeMethod PowerMeans of EngineeringDesign. London, U.K.:
IntechOpen, 2012.

[24] G. Dhatt, G. Touzot, and E. Lefrancois, Finite Element Method. Hoboken,
NJ, USA: Wiley, 2012.

[25] S. S. Rao, The Finite Element Method in Engineering. Amsterdam, The
Netherlands: Elsevier, 2018.

[26] K. B. Ølgaard and G. N. Wells, ‘‘Optimizations for quadrature representa-
tions of finite element tensors through automated code generation,’’ ACM
Trans. Math. Softw., vol. 37, no. 1, pp. 1–23, Jan. 2010.

[27] R. C. Kirby and A. Logg, ‘‘A compiler for variational forms,’’ ACM Trans.
Math. Softw., vol. 32, no. 3, pp. 417–444, Sep. 2006.

[28] M. S. Alnaes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells,
‘‘Unified form language: A domain-specific language for weak formula-
tions of partial differential equations,’’ ACM Trans. Math. Softw., vol. 40,
no. 2, pp. 1–37, Feb. 2014.

[29] R. C. Kirby, ‘‘Algorithm 839: Fiat, a new paradigm for computing finite
element basis functions,’’ ACM Trans. Math. Softw., vol. 30, no. 4,
pp. 502–516, 2004.

[30] C. Chevalier and F. Pellegrini, ‘‘PT-scotch: A tool for efficient paral-
lel graph ordering,’’ Parallel Comput., vol. 34, nos. 6–8, pp. 318–331,
Jul. 2008.

[31] G. Karypis and K. Schoegel, ‘‘ParMETIS: Parallel graph partitioning and
sparsematrix ordering library, version 4.0,’’ Dept. Comput. Sci. Eng., Univ.
Minnesota, Minneapolis, MN, USA, Mar. 2013.

[32] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, ‘‘Efficient man-
agement of parallelism in object oriented numerical software libraries,’’
in Modern Software Tools in Scientific Computing. Boston, MA, USA:
Birkhauser, 1997.

[33] S. Balay. (2022). PETSc Web Page. Accessed: Oct. 31, 2022. [Online].
Available: https://petsc.org

[34] J. Walter, M. Koch, G. Winkler and D. Bellot. (2000). uBLAS Web-
page. Accessed: Oct. 31, 2022. [Online]. Available: https://www.boost.org/
doc/libs/1_80_0/libs/numeric/ublas/doc/index.html

[35] (2022). Epetra Web Page. Accessed: Oct. 31, 2022. [Online]. Available:
https://trilinos.github.io/epetra.html

[36] L. Vynnytska, M. E. Rognes, and S. R. Clark, ‘‘Benchmarking FEniCS
for mantle convection simulations,’’ Comput. Geosci., vol. 50, pp. 95–105,
Jan. 2013.

[37] M.A. Rodriguez, C.M.Augustin, and S. C. Shadden, ‘‘FEniCSmechanics:
A package for continuum mechanics simulations,’’ SoftwareX, vol. 9,
pp. 107–111, Jan. 2019.

[38] S. Natarajan and R. K. Annabattula, ‘‘A FEniCS implementation of the
phase field method for quasi-static brittle fracture,’’ Frontiers Struct. Civil
Eng., vol. 13, no. 2, pp. 380–396, Apr. 2019.

[39] J. Hoffman, J. Jansson, and N. Jansson, ‘‘FEniCS-HPC: Automated pre-
dictive high-performance finite element computing with applications in
aerodynamics,’’ in Parallel Processing and Applied Mathematics. Cham,
Switzerland: Springer, 2016.

[40] I. Rafatov andA. Kudryavtsev, Introduction to SimulationMethods for Gas
Discharge Plasmas. Bristol, U.K.: IOP Publishing, 2020.

[41] M. Zheleznyak and S. Sizykh, ‘‘Photo-ionization of nitrogen and oxy-
gen mixtures by radiation from a gas-discharge,’’ High Temp., vol. 20,
pp. 357–362, Nov. 1982.

[42] A. A. Kulikovsky, ‘‘The role of photoionization in positive streamer
dynamics,’’ J. Phys. D, Appl. Phys., vol. 33, no. 12, p. 1514, 2000.

[43] G. Wormeester, S. Pancheshnyi, A. Luque, S. Nijdam, and U. Ebert,
‘‘Probing photo-ionization: Simulations of positive streamers in varying
n2: O2-mixtures,’’ J. Phys. D, Appl. Phys., vol. 43, no. 50, Dec. 2010,
Art. no. 505201.

[44] A. Bourdon, ‘‘Efficient models for photoionization produced by non-
thermal gas discharges in air based on radiative transfer and the Helmholtz
equations,’’ Plasma Sources Sci. Technol., vol. 16, p. 656, Aug. 2007.

[45] G. K. Grubert, M. M. Becker, and D. Loffhagen, ‘‘Reasons for the
usage of the local-mean-energy approximation instead of the local-field-
approximation,’’ in Proc. 19th Intl. Symp. Plasma Chem., Bochum, Ger-
many, Jul. 2009, pp. 1–4.

[46] G. K. Grubert, M. M. Becker, and D. Loffhagen, ‘‘Why the local-
mean-energy approximation should be used in hydrodynamic plasma
descriptions instead of the local-field approximation,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 80, no. 3, Sep. 2009,
Art. no. 036405.

[47] G. J. M. Hagelaar, F. J. De Hoog, and G. M. W. Kroesen, ‘‘Boundary
conditions in fluid models of gas discharges,’’ Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 62, no. 1, p. 1452, 2000.

[48] A. Logg and G. N. Wells, ‘‘DOLFIN: Automated finite element comput-
ing,’’ ACM Trans. Math. Softw., vol. 37, no. 2, pp. 1–28, Apr. 2010.

[49] G. J. M. Hagelaar and L. C. Pitchford, ‘‘Solving the Boltzmann equation
to obtain electron transport coefficients and rate coefficients for fluid
models,’’ Plasma Sources Sci. Technol., vol. 14, no. 4, p. 722, Oct. 2005.

VOLUME 11, 2023 26591

T. Wong et al.: Design of a Python Library for the Automatic Definition and Simulation of Transient Ionization Fronts

[50] B. Bagheri, J. Teunissen, U. Ebert, M. M. Becker, S. Chen, O. Ducasse,
O. Eichwald, D. Loffhagen, A. Luque, D. Mihailova, J. M. Plewa,
J. van Dijk, and M. Yousfi, ‘‘Comparison of six simulation codes for
positive streamers in air,’’ Plasma Sources Sci. Technol., vol. 27, no. 9,
Sep. 2018, Art. no. 095002.

[51] C. Geuzaine and J.-F. Remacle, ‘‘Gmsh: A 3-D finite element mesh genera-
tor with built-in pre- and post-processing facilities,’’ Int. J. Numer. Methods
Eng., vol. 79, no. 11, pp. 1309–1331, Sep. 2009.

[52] R. D. Falgout and U. M. Yang, ‘‘Hypre: A library of high performance
preconditioners,’’ in Proc. Int. Conf. Comput. Sci., 2002, pp. 632–641.

[53] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, ‘‘A fully
asynchronous multifrontal solver using distributed dynamic scheduling,’’
SIAM J. Matrix Anal. Appl., vol. 23, no. 1, pp. 15–41, 2001.

[54] D. Merkel, ‘‘Docker: Lightweight Linux containers for consistent devel-
opment and deployment,’’ Linux J., vol. 239, p. 2, Mar. 2014.

[55] A. Luque, V. Ratushnaya, andU. Ebert, ‘‘Positive and negative streamers in
ambient air: Modelling evolution and velocities,’’ J. Phys. D, Appl. Phys.,
vol. 41, no. 23, Nov. 2008, Art. no. 234005.

[56] J. Qin, S. Celestin, and V. P. Pasko, ‘‘Formation of single and double-
headed streamers in sprite-halo events,’’Geophys. Res. Lett., vol. 39, no. 5,
Mar. 2012, Art. no. L05810.

[57] M. B. Garnung, S. Celestin, and T. Farges, ‘‘HF-VHF electromagnetic
emissions from collisions of sprite streamers,’’ J. Geophys. Res., Space
Phys., vol. 126, no. 6, Jun. 2021, Art. no. e2020JA028824.

[58] S. V. Pancheshnyi and A. Y. Starikovskii, ‘‘Two-dimensional numerical
modelling of the cathode-directed streamer development in a long gap at
high voltage,’’ J. Phys. D, Appl. Phys., vol. 36, no. 21, p. 2683, 2003.

[59] Phelps Database. Lxcat. Accessed: Oct. 31, 2022. [Online]. Available:
www.lxcat.net/Phelps

[60] A. V. Phelps and L. C. Pitchford, ‘‘Anisotropic scattering of electrons byN2
and its effect on electron transport,’’ Phys. Rev. A, vol. 31, no. 5, p. 2932,
May 1985.

[61] S. A. Lawton and A. V. Phelps, ‘‘Excitation of the b16+G state of O2 by
low energy electrons,’’ J. Chem. Phys., vol. 69, no. 3, p. 1055, 1978.

[62] H. Höft, M. M. Becker, J. F. Kolb, and T. Huiskamp, ‘‘Double-propagation
mode in short-gap spark discharges driven by HV pulses with sub-ns
rise time,’’ Plasma Sources Sci. Technol., vol. 29, no. 8, Aug. 2020,
Art. no. 085002.

[63] CST Studio Suite Electromagnetic Field Simulation Software, Simulia,
Dassault Systémes, Johnston, RI, USA, 2022.

TIMOTHY WONG (Graduate Student Member,
IEEE) received the M.Eng. degree in electrical
and mechanical engineering with international
study from the University of Strathclyde, Glasgow,
U.K., in 2020, where he is currently pursuing the
Ph.D. degree in electronic and electrical engineer-
ing with the High Voltage Technologies research
group. His current research interests include the
pulsed breakdown of solid–solid dielectric inter-
faces, solid–gas interfaces, computational model-

ing of fast ionization fronts and streamer discharges in gas and gas–solid
topologies, and pulsed power insulation systems. He is currently a Graduate
Member of the Dielectrics and Electrical Insulation Society (DEIS) and the
Nuclear and Plasma Sciences Society (NPSS). He was a recipient of the
IMechE Student Award, in 2020.

IGOR TIMOSHKIN (Senior Member, IEEE)
received the degree in physics from Moscow State
University, Moscow, Russia, in 1992, and the
Ph.D. degree from the Imperial College of Science,
Technology, and Medicine (ICSTM), London,
U.K., in 2001. He was a Researcher with Moscow
State Agro Engineering University, Moscow, and
the Institute for High Temperatures of Russian
Academy of Sciences, Moscow. In 1997, he joined
ICSTM. He joined the Department of Electronic

and Electrical Engineering, University of Strathclyde, Glasgow, U.K.,

in 2001, where he became a Reader, in 2016. His research interests include
dielectric materials, pulsed power, transient spark discharges, and environ-
mental applications of non-thermal plasma discharges. He was a Voting
Member of the Pulsed Power Science and Technology Committee of the
IEEE Nuclear and Plasma Science Society (2017–2021). He is currently a
member of the International Advisory Committee of the IEEE Conference
on Dielectric Liquids, a member of the International Scientific Committee of
the Gas Discharges and Their Applications Conference, a Subject Editor of
IETNanodielectrics, and amember of the Editorial Board ofMDPI Energies.

SCOTT MACGREGOR (Senior Member, IEEE)
received the B.Sc. and Ph.D. degrees from the Uni-
versity of Strathclyde, Glasgow, U.K., in 1982 and
1986, respectively. He was a fellow of pulsed-
power research, in 1986, and a Lecturer in pulsed-
power technology, in 1989. In 1994, he became a
Senior Lecturer, with a promotion to Reader and a
Professor of high voltage engineering, in 1999 and
2001, respectively. In 2006 and 2010, he became
theHead of theDepartment of Electronic and Elec-

trical Engineering and the Executive Dean of the Faculty of Engineering.
He has been the Vice-Principal with the University of Strathclyde, since
2014. His current research interests include high-voltage pulse generation,
high-frequency diagnostics, high-power repetitive switching, high-speed
switching, electronic methods for food pasteurization and sterilization, the
generation of high-power ultrasound (HPU), plasma channel drilling, pulsed-
plasma cleaning of pipes, and the stimulation of oil wells with HPU. He was
a recipient of the 2013 IEEE Peter Haas Award. He was an Associate Editor
of the IEEE TRANSACTIONSONDIELECTRICSANDELECTRICAL INSULATION, in 2015.

MARK WILSON (Member, IEEE) was born in
Stranraer, Scotland, in 1982. He received the
B.Eng. (Hons.),M.Phil., and Ph.D. degrees in elec-
tronic and electrical engineering from the Uni-
versity of Strathclyde, Glasgow, U.K., in 2004,
2007, and 2011, respectively. He is currently with
the High Voltage Technologies research group,
University of Strathclyde. His research inter-
ests include interfacial surface flashover, nan-
odielectrics, practical applications of high-power

ultrasound, corona discharges, and pulsed electric fields. He is a member of
the IEEE Nuclear and Plasma Science Society, IEEE Dielectrics and Elec-
trical Insulation Society, and the IET. He received the Graduate Scholarship
Award from the IEEE Nuclear and Plasma Science Society, in 2011.

MARTIN GIVEN (SeniorMember, IEEE) received
the B.Sc. degree in physics from the University
of Sussex, Brighton, U.K., in 1981, and the Ph.D.
degree in electronic and electrical engineering
from the University of Strathclyde, Glasgow, U.K.,
in 1996. He is currently a Senior Lecturer with the
Department of Electronic and Electrical Engineer-
ing, University of Strathclyde. His current research
interests include aging processes and condition
monitoring in solid and liquid insulation systems,

high-speed switching, and pulsed power.

26592 VOLUME 11, 2023

