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Abstract— In this paper, a novel method for crawler positioning is 
presented utilizing an onboard depth-sensing camera which can 
operate in semi-structured, self-similar environments, using only 
measurements of the sample under inspection to navigate. Non-
destructive evaluation at manufacture is a vital aspect of assuring 
the fitness for purpose of high-value marine assets, moreover, it 
is almost always a regulatory requirement to ensure build quality 
standards have been met. Traditionally these inspections were 
deployed manually by a trained operator in a laborious and time-
consuming manner. More recently, robotic crawler-based 
solutions have become available on the marketplace, however, 
these solutions are limited in their capabilities and still require 
significant manual intervention and set-up for each application. 
Additionally, GPS or prior knowledge of their surroundings which 
are critical to their operation are often unavailable in an active work environment. An autonomous, self-localizing 
system would provide significant benefits in these situations, but certain challenges arise from limited situational 
awareness and poor positional accuracy. The accuracy and robustness of the novel method were assessed and 
experimentally validated through ground truth readings from a Vicon motion capture system. The localization 
algorithm’s ability to function on different materials and under various lighting conditions was also explored. Using 
the example of the receipt inspection of steel plate under 240 lux lighting, the system proved capable of positioning 
the crawler at the desired position within 5.7mm. 
 

Index Terms— NDE, Edge Detection, Point Cloud, Robotic Crawler, Robot Localization 
 

 

I. Introduction 
ON-DESTRUCTIVE EVALUATION (NDE) is a method 

of assessing both the internal and external integrity of 

engineering components without the need to physically alter the 

material. The use of NDE techniques is prevalent in the 

manufacturing sector as a means of establishing a baseline 

standard of quality for final products. 

 This is of particular importance within UK defense for the 

manufacture of marine assets where reassurance of a structure’s 

condition is critical in prolonging their working life and in 

assuring the safety of personnel aboard said assets [1]. 

 In its current form, the hand acquisition of this data is time-

consuming and laborious. To support NDE inspectors, the use 

of robotic crawlers can be implemented to aid in a number of 

aspects including providing access to unreachable or enclosed 

areas, assisting in probe alignment, decreasing the inspection 

time, and generally improving the health & safety aspects 

associated with conducting inspections [2]. These are often 

specialized robotic systems and are typically suited towards 

well-defined geometries [3] but are limited by a high degree of 

manual intervention, lack a general-purpose design, and 

implement unnecessary bulk data acquisition. 

This is also reflected within commercial products such as the 

Scorpion 2 and Stingray [4], [5], which are limited to a single 

application, corrosion mapping, and are manually controlled 

maintaining the time investment of operators to carry out the 

inspection. Other products like the Navic, SAW Bug, and the 

Fast UT system [6]–[8] offer semi-autonomous positioning and 

alignment for the inspection of welds. Relying, however, on 

specific features e.g. the presence of a weld cap, to track the 

area of interest, limiting its scope. 

 A general-purpose solution implies that there is a wide range 

of operational working environments, hence requiring robust 

and accurate robot positioning, especially when considering 

autonomous inspection. The challenge of robot localization is 

well explored with ongoing research of techniques such as 

Simultaneous Localization and Mapping (SLAM) [9] and 3D 

Scan Matching [10]. Both are powerful tools achieving precise 

localization within a lab setting [11], [12], however, this does 

not always transpire into real-world accuracy. Within an 

industrial setting crawler positional errors have been observed 

to reach 0.38 m [13] and elements that can aid in performance 
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such as GPS or prior knowledge of surroundings are often 

unavailable. In addition, industrial settings tend to be active 

working environments with various pieces of machinery and 

personnel operating within its confines, hampering the 

performance of both SLAM and Scan Matching. This active 

environment provides a challenge where crawler localization is 

limited to features associated to the component or structure 

being investigated. 

 Novel techniques of localized crawler positioning are 

available with the challenge simplified through priori 

knowledge of the industrial asset [14], [15], achieving 

accuracies of 5-10 mm from the desired position. These setups 

also benefit from using small on-board sensors which offer 

flexible functionality at a low cost when compared to high 

accuracy, external alternatives such as photogrammetry [16] 

and laser based systems [17]. 

An issue arises within UK defense where prior knowledge of 

both the setting and parts under inspection are restricted for 

confidentiality. Thus, requiring a complete standalone system 

capable of navigation and strong positional awareness from a 

zero-assumption starting position. An example of Occupancy 

Grid Mapping was utilized for a similar application where 

guided waves were propagated through steel plate using 

Electromagnetic Acoustic Transducers (EMATs) [18]. Despite 

the success of this method the type of generated wave depends 

upon the thickness of the propagating material. For applications 

such as the receipt inspection of steel plate, a requirement in the 

early stages of maritime manufacture, which is performed on a 

range of plates varying in size and thickness. Hence, an array of 

EMATs would be required to cover the spectrum of geometry 

and lengthy preparation would be required by the inspector. 

 The receipt inspection of steel plate is governed by defense 

and British standards which detail a specific area of coverage 

requiring manual measurements taken with an ultrasonic 

thickness probe.  The inspection is not a full volumetric scan of 

the material, but rather, only 10% of the plates surface is 

investigated. The raw material is measured manually to find the 

gauge thickness of the plate and to search for indications of 

laminations and inclusions which can form during fabrication 

of the plate [19]. The pattern is defined as a grid of linear scans 

separated by a ratio of the plate’s width, similar to Fig. 1. The 

main disadvantage with this process is the time investment 

made by an inspector to prepare the plate and in taking manual 

readings across the span of their large area. Resulting in an 

inefficient use of a skilled operator’s time. The implementation 

of a robotic system would also increase the repeatability of the 

measurement acquisition, ensuring a consistent path is followed 

for every inspection without the risk of dropping quality due to 

operator fatigue. This application is of particular interest as it 

parallels situations that can be recognized in many other 

settings. The surface is planar and semi-structured with the 

added complexity of showing self-similarity when focusing 

solely on the plate. 

 

 
Fig. 1.  Scan Pattern required for the receipt inspection. The red crosses 
indicate points for individual gauge thickness measurement and the 
orange shaded regions represent scan paths for laminations and 
inclusions. 

This paper therefore presents a novel method of autonomous 

crawler localization for such environments, implementing an 

on-board RGB-Depth camera to monitor the oncoming 

geometry of the plate as a crawler crosses it surface. Through 

post-processing the crawler’s position relative to the edge of it’s 

traversable universe can be monitored, requiring minimal prior 

knowledge of the raw material to do so. The goal being to 

maintain a 200 mm distance from the crawler’s center to the 

plates edge. A performance study of the Intel RealSense D435i 

RGBD camera is also conducted, specifically, its ability to 

guide a 4-wheeled differential drive crawler during the receipt 

inspection described previously. Practical considerations are 

taken into account including the light level of the environment 

as industrial storage often takes the form of large open ended 

hangers. Resulting in a light gradient from the exposed entrance 

to the sheltered rear end of the building which can affect 

measurements taken by the camera [13], [20], [21]. The plate 

investigated for the receipt inspection is structural steel, 

however, the camera’s ability to operate with different materials 

is explored to better understand the extent of its capabilities and 

to gain an insight into other potential applications. 

In section II the crawler hardware is listed along with 

information regarding the experimental setup and procedure for 

testing. Section III introduces the novel method of crawler 

localization and details the process of capturing raw point cloud 

data to monitor the crawler position while running. Section IV 

then explains the results and ultimately the performance of the 

system for both static and dynamic testing before conclusions 

and future work are drawn in section V. 

The contributions of this paper are: 

• The post-processing of RGBD camera data to extract 

the edges of plate using depth data. 

• Development of a novel robotic localization technique 

capable of autonomous navigation using only generic 

features of the inspection material. 

• Evaluation of post processing and localization 

algorithms under different working conditions. 

 
II.  SETUP 

A. Equipment Configuration 
The D435i is a stereo vision camera and was selected due to 

its form factor, global shutter for simultaneous exposure 

between all pixels, wide field of view to capture maximum 
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environmental information, high frame rate, and low cost, Table 

1 [22]. Studies have also been caried out assessing the the noise 

related to the camera and the distance dependant depth error 

which was limited to ≤ 35 mm up to a range of 2.0 m  [23]. The 

D435i itself and the wider Realsense series of Intel cameras are 

also tried and tested in the field of robotic navigation. They have 

been used in agriculture based object detection and path 

planning [13], indoor visual SLAM [24], [25], and in-field 

robotics [20]. The camera compliments two wheel encoders 

aboard a 4-wheeled differential drive crawler, Fig. 2. The pair 

of wheel encoders provide information regarding the crawler’s 

displacement but are primarily responsible for regulating the 

wheel speeds. The crawler origin is defined as the mid-point of 

the center line between the encoder pair which is the point used 

for positional tracking throughout the research. The D435i is 

fixed above the crawler and pitched down to focus on a region 

0.1 < 𝑥 < 1.8 m in front of the crawler. This region is selected 

to reflect the size of sample used for testing, a 2 x 1 m carbon 

steel plate which was the maximum size possible within the 

laboratory. It is aligned so that camera’s y-axis is parallel to the 

crawler’s y-axis while variations in the camera’s pitch are 

accounted for through an automated correction procedure 

carried out for every reading. For the investigation of other 

surfaces the materials were sized to cover the capture region. A 

full list of experimental hardware is displayed in Table 2. 

 
Table 1 

Intel RealSense D435i Specification 

Sensor Technology Global Shutter 
Depth FoV (H x V) 87° x 58° 
Depth resolution Up to 1280 x 720 

Depth Accuracy < 2 % at 2 m 

Depth Frame Rate Up to 90 fps 

 

 

 
Fig. 2.  Crawler configuration, a 4-wheel differential drive crawler is 
combined with twin wheel encoders and Intel RealSense D435i depth 
camera. 
 
 
 
 

Table 2 
Hardware used during study. 

Experimental Hardware 

Intel RealSense D435i Depth Sensing Camera 

Kubler Rotary wheel Encoder (x2) (8.3700.1322.1024) 
Eddyfi Scorpion 2 Crawler Base 

Standard Carbon Steel Plate (2 x 1 m) 

Standard Polished Aluminum Plate (2 x 1 m) 

High Grade White Paper (2 x 1 m) 

 

B. Experimental Procedure 
Two types of testing were undertaken during the assessment 

of the system. Static tests were carried out to understand how 

reliably the edge detection performed across a number of 

measurements whilst the crawler remained motionless. 

Dynamic tests were then conducted where the localization 

algorithm was engaged allowing the crawler to traverse the 

plate.  

For both experiments point cloud images were captured and 

processed identically as described in section III. For static 

testing the crawler was placed 200 mm from the parallel edge 

and 1400 mm from the perpendicular edge as seen in Fig. 3. 

MATLAB was used to capture individual depth frames from 

the camera and process the point cloud to produce a positional 

estimate for the crawler relative to the plates edge. Translational 

and rotational information of both the plate and crawler were 

also recorded simultaneously within a global reference frame 

using a Vicon motion capture system. This method is used due 

the high level of accuracy achieved with a fully calibrated rig, 

with system errors noted at below 1 mm [16]. 

Twenty individual readings were taken with the crawler 

being lifted and realigned between each measurement. The 

Vicon data was taken as the ground truth of the crawlers 

distance from the edge and was used to evaluate the perceived 

distance from the edge calculated using the D435i’s point 

cloud. 

This process was repeated for multiple different scenarios 

including altered light levels and different material surface 

finishes. The altered light levels were carried out to simulate 

light gradients measured within a typical on-site store which 

ranged 294 to 1390 lux. To cover this range, measurements 

were taken at low, medium, and high light levels – 240, 886, 

and 1708 lux – as well as extreme low light conditions – 2 lux. 

The surface finish of the plate was then altered to better 

understand the capabilities of the camera and to explore how it 

would perform on materials other than matt steel. Paper was 

used to cover the plate and simulate materials with a higher 

reflectivity and remove any surface variation. A polished 

Aluminum plate was also assessed to test the D435i’s 

performance on mirror-like reflective surfaces. 

 
Wheel Encoder 

𝑥 

𝑦 𝑧 

Crawler Origin 

D435i Camera 

Camera Origin 
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Fig. 3.  Experimental Setup. The crawler is placed 0.2 m from the parallel 
edge and 1.4 m from the perpendicular edge. This is also the starting 
point for dynamic testing. 

Each test configuration is equated by the root mean square 

error (RMSE) for several parameters including the planar 

surface consistency of the plate, the estimated distance from the 

plates edge for all points, and the calculated distance and skew 

of the crawler relative to the edge. RMSE being a measure of 

how well estimated/predicted data matches the observed/true 

data, for the procedure depicted, it acts as a measure of 

performance between the different configurations [26], [27]. 

In addition to static testing of the camera, dynamic analysis 

was conducted by recording the crawler origin (Fig. 3), as it 

traversed the plate. The Vicon system was utilized to record the 

true position of the crawler which is compared to the estimated 

distance from the edge. This was done to highlight any 

inconsistencies of the differential drive algorithm and to find 

differences in error between dynamic and static testing. A 

dynamic measurement also provides a better indication of the  

ability of the system to replicate the desired path consistently. 

 

III. EDGE DETECTION AND LOCALIZATION ALGORITHM 

A. Data Capture & Manipulation 
Point cloud images are used to assess the environment around 

the crawler. Working with other elements of the system images 

are captured at a rate of 10 Hz. A disadvantage of point clouds 
are their large memory occupancy and inherently longer 

processing time. To counter this the cloud is cropped on two 

separate occasions to minimize the number of  points which do 

not contribute to the localization of the system, Fig. 4 (a)-(d). 

Due to the pitch of the camera the raw point cloud is not 

aligned with the world frame. 3D rotational matrices are applied 

to align the point cloud into a processable state [28]. Initially 

two points from the cloud, one from the plate itself, Fig. 4 (b)(i) 

and another simulated from the desired final position which is 

equivalent to the true planar position of the real-world plate, 

Fig. 4 (b)(ii). The angle between these points is calculated and 

implemented within the matrices. This is first applied to correct 

around the y-axis, then repeated around the x-axis, Fig. 4 (b)-

(d). The camera origin is also misaligned from the crawler 

origin so during this process the cloud is translated to account 

for this. 

 
Fig. 4. (a) Raw point cloud image (b) First crop and angle for y-axis 
rotation (c) Rotated point cloud (d) Second crop resulting in final point 
cloud. 

B. Edge Processing 
Upon matching the point cloud to the world frame, it is 

possible to pull the edge of the plate from the data. An algorithm 

was developed to extract points along the edge in a raster 

pattern as described below.  

 
Algorithm Edge Processing 

Result: Distance and relative skew angle from crawler origin to 
parallel and perpendicular plate edge 

 Initialization: 

1 Capture point cloud. 

2 Crop and reorient cloud to match the crawler reference frame. 

 Parallel Edge Processing: 

3 For m = 1:100 

4 Take mth segment for processing starting from x = 0.27 

 For n = 1:10 

5 Take nth section of segment starting from y = 0 

6 Parse sections applying the following conditions 
1) Find maximum y-coordinate 

2) Check no points occupy the following section 

 End For 

7 Store individual parallel point for averaging. 

 End For 

8 Split points from step 7 into two equal sections 

9 Average 1st and 2nd section to find start and end point of projection 

line. 

10 Create projection line using averaged points from step 9. 
11 Find estimated parallel edge from the projection line and calculate 

parallel distance and skew angle. 

 Perpendicular Edge Processing 

12 Recall previous distance to perpendicular edge 

 For m = 1:100 
13 Take mth segment for processing starting from y = -0.1 

15 Find maximum x-coordinate from x = previous est. ± 0.1. 

16 Store individual perpendicular point for averaging. 

 End For 

17 Average 100 perpendicular points taken from step 16. 
18 Use averaged points from step 17 to calculate perpendicular 

distance. 
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Table 3 
Parameter values for edge processing. 

Variable Name Value (m) 

Parallel Edge Start 0.27 
Parallel Edge Segment Width 0.06 
Section Width 0.05 
Perpendicular Edge Start -0.1 
Perpendicular Edge Segment Width 0.02 
Perpendicular Estimate Previous prediction 
Perpendicular Edge Range 0.1 

 

For the application, variables and values given in Table 3 

were selected. The parallel edge detection starts at 0.27 m as a 

shadow is created by the front end of the crawler. 6 mm wide 

segments are then selected implying over 100 measurements 

and 600 mm of plate edge is stored for further processing. For 

each segment a 5 mm section is checked for the highest y-

coordinate point, when the following section is empty, this 

point is saved as shown in Fig. 5 (a). 

Due to the position and orientation of the camera it cannot 

directly see the parallel edge of the plate in-line with the origin 

of the crawler. The true distance from the crawler to the plate 

edge must therefore be estimated through projecting the edge, 

Fig. 5. This is done by splitting the points into two sections by 

half and creating two points from the average of each section. 

These two points create a projection line as shown in Fig. 5 (b)  

The projected edge is at the intersection of this line and the y-

axis, as depicted in Fig. 5 (b). This averaging also allows for the 

calculation of the relative skew angle between the central plane 

of the crawler along its local x-axis and the edge of the plate. In 

Fig. 5 (c) an example of the actual point cloud data is displayed 

with relevant features from Fig. 5 (b) and Fig. 5 (c) highlighted 

for clarity. This projected edge and skew angle are then used to 

calculate the crawler’s wheel speeds.  

A similar edge processing method is applied for the 

perpendicular edge but instead of running from the central plane 

of the crawler, Fig. 5 (a), the previous estimate of the 

perpendicular edge is used as a base with the maximum x-

coordinate stored from over a range about the previous estimate 

± 0.1 m. The resultant values from the edge processing 

algorithm are the distances of crawler origin to both parallel and 

perpendicular edge and the relative skew angle of the crawler 

in relation to the parallel edge as Fig. 5 (c). 

 

 
Fig. 5.  Diagrams depicting the raster pattern from which segments are 
selected for processing. (a) Segments are taken positively in the x-
direction and negatively in the y-direction. (b) Details of forming the 
projection line from two sections of averaged points. (c) Actual point 
cloud data captured during testing, a cluster of 6 mm segments are also 
highlighted. 

C. Crawler Locomotion 
To position and orient the crawler proportional feedback 

control (P-control) is utilized to update the differential drive of 

the crawler. To ensure its safety the algorithm was set to run the 

crawler 200 mm from the edge of the plate starting 0.2 m from 

the parallel edge and 1.4 m from the perpendicular edge, a 

position seen in Fig. 3. A target system is implemented as seen 

in Fig. 6. 

 

 

 

 

(a) 

𝑥 
𝑦 

𝑧 
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Projected Edge 
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Crawler 
Origin 

6mm segments (c) 
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Where: 

• 𝑇𝑥 and 𝑇𝑦 are the target coordinates relative to the 

plates edge (𝑇𝑥 = 150 𝑚𝑚, 𝑇𝑦 = 200 𝑚𝑚). 

• 𝐶𝑥 and 𝐶𝑦 is the current crawler position (𝐶𝑥 =

0 𝑚𝑚, 𝐶𝑦 is equal to the projected edge). 

• 𝑇𝜃 is the target skew of the crawler such that the 

crawler would be directly approaching the target if 

𝑇𝜃 = 𝐶𝜃. 

• 𝐶𝜃 is the current crawler skew calculated using the 

averaged parallel edge read by the D435i. 

 

Using a target system based upon the desired angle of the 

crawler aids in limiting any position related instability. 

Specifically, it reduces the overshoot that would be expected if 

making a direct comparison between the target and projected 

edge, 𝑇𝑦 and 𝐶𝑦. 

 

 
Fig. 6.  Diagram of the target system implemented to calculate and 
update the differential wheel speeds of the crawler. 

 The target skew is calculated using the four-quadrant inverse 

tangent shown in equation (1) which is carried forward into the 

P-control equations (2)-(4). 
 

 𝑇𝜃 = 𝐴 𝑡𝑎𝑛2(𝑇𝑦 − 𝐶𝑦,    𝑇𝑥) (1) 

 𝜃𝑒𝑟𝑟𝑜𝑟 = 𝑇𝜃 − 𝐶𝜃 (2) 

 𝑣𝑙𝑤 = 𝑣𝑠 − (𝐾𝑝 × 𝜃𝑒𝑟𝑟𝑜𝑟) (3) 

 𝑣𝑟𝑤 = 𝑣𝑠 + (𝐾𝑝 × 𝜃𝑒𝑟𝑟𝑜𝑟) (4) 

 

Where: 

• 𝜃𝑒𝑟𝑟𝑜𝑟 is the difference between the crawler’s actual 

skew and the target skew. 

• 𝑣𝑙𝑤 and 𝑣𝑟𝑤 is the left and right wheel velocities. 

• 𝑣𝑠 is the set wheel velocity (𝑣𝑠 = 40 𝑚𝑚/𝑠). 

• 𝐾𝑃 is the proportional gain (𝐾𝑝 = 15). 

 

The set wheel velocity of 40 mm/s is the standard velocity of 

the crawler if running unaltered by the localization algorithm. 

 

IV. RESULTS & DISCUSSION 

A. Static Testing 
The results for all static testing can be found within Table 4. 

The first parameter evaluated was the surface deviation 

associated with measurements taken from the point cloud of a 

plate which is known to be flat to a degree lesser than the 

camera resolution. To ensure the camera captures a consistent 

reading of the plate, a comparison was made between the 

ground truth height of the camera above the surface, and the z-

values of the plate as read by the camera. This was to highlight 

any early implications of noise between scenarios which could 

be detrimental to readings, see Fig. 7. The error values indicate 

that D435i’s ability to see and detect the surface of the plate is 

consistent across all test scenarios. Displaying the camera’s 

competence to see bulk objects within a test environment. 

Minimal noise between frames also reduces the risk of 

presenting false artefacts which could have an adverse effect on 

the edge detection algorithm. 

 

 
Fig. 7.  Point cloud segment used to process the noise associated with 
the z-axis of the plate. 

The second parameter evaluated was the noise linked with 

the various points extracted from the edge during the segmented 

raster with respect to the y-axis, Fig. 5 highlighted in blue. This 

provides a better understanding of the D435i’s ability to find 

the edge of the plate consistently and accurately and identify 

any test which has the presence of anomalous points. 

The noise associated with detecting the edge of the plate is 

consistent across the tests with a notable increase for the 

aluminum sample indicating an inability to properly see the true 

edge. Through closer inspection of the raw point cloud the 

source is found to be measurements taken from the far edge of 

the plate (0.5 < 𝑥 < 0.8 m) where the angle of reflection is 

higher, thus resulting in gaps of data occurring within the point 

cloud that reduce the number of samples within a given capture. 

 A similar trend seen for noise associated to the plates edge 

along the y-axis is apparent in the RMSE for the predicted skew 

of the crawler. With the aluminum providing the camera’s 

lowest performance for the same reason stated but to an 

acceptable degree made possible by the averaging of the points. 

The same cannot be said for the projected edge RMSE on 

aluminum, rendering the localization system inoperable. 

Stronger results can be seen for the remaining tests with the 

lowest performance noted for the extreme low light condition 

𝑥 
𝑦 

𝑧 
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where the edge is harder to distinguish from the background, 

and for paper where the higher reflectivity of its surface caused 

some inconsistencies. 

Overall, the RMSE values across the simulated light gradient 

for the standard steel plate are of a high standard where the edge 

can be seen reliably, as a result, an accurate projection can be 

calculated for the crawler’s distance to the edge and skew. 

B. Dynamic Testing 
To properly understand the implications of these RMS errors 

on practical results a dynamic test was run under low light 

conditions. The same static testing algorithm was implemented 

with proportional control as described in Section III.C which is 

set to maintain the crawler 200 mm from the plate edge. The 

crawler’s true position was recorded during this time using the 

Vicon system and both the target and true parameters were then 

compared against the estimated distance from the edge across 1 

m of travel. 

Taking the true and estimated distance, the mean error 

between the two readings was 3.9 mm with a standard deviation 

of ± 2.5 mm. The RMSE related to the data collected over this 

test for edge estimation was 4.6 mm and for skew estimation 

was 0.49 ° which correlates with the performance of the static 

testing, 3.7 mm and 0.10 °, respectively. 

The true position of the crawler varies due to it constantly 

correcting its trajectory, resulting in average distance from the 

edge of 194.3 mm and therefore a mean error of 5.7 mm with a 

standard deviation of ± 5.0 mm. The RMSE associated with the 

target vs estimated distance from the plate edge is 4.6 mm.  

A systematic error was present which is made apparent by 

the difference between the estimated edge error and the target 

position error. This can be attributed to a number of factors such 

as initial camera orientation, structural vibrations, wheel slip, 

and inconsistencies between the differential drive motor 

velocities. However, even with the error present, the resulting 

positional accuracy is still within that expected from an NDE 

inspector carrying out the procedure. 

An example of the stored edge during a full traversal of the 

steel plate is shown in Fig. 8, constructed from data taken in 

low light conditions (240 lux).  

The figure is constructed from points taken at every instance 
a point cloud was processed. The crawler position indicated by 
the points in black are taken by the Vicon system while the blue 
points represent the projected edge estimated for the given 
location. The consistent trajectory of the crawler indicates the 
promise of the system with gradual adjustments being made to 
correct any drift that occurred while running. The estimated 
edge is also consistent during this time with only four points 
occurring outside ± 2 standard deviations.  

 

 
Fig. 8.  Plot of crawler position and estimated edge during a full, 
clockwise traversal of the steel plate. 

V. CONCLUSION 
Given the application of the receipt inspection of steel plate 

a novel method of robotic localization has been presented which 

utilizes a 4-wheel differential drive crawler with an onboard 

Intel RealSense D435i camera. This particular inspection can 

be laborious, and time consuming for the inspector and can 

profit from the addition of robotic crawler support. 

A method for crawler localization is detailed involving the 

capture of point cloud images followed by post-processing of 

the data to detect the edges of the plate, which in turn are used 

to determine the orientation of the crawler. 

A major benefit of such a system is the lack of external 

factors required to track and position the crawler, relying solely 

on generic features of the inspection material to navigate across 

the plate. The receipt inspection of steel plate also exhibits 

characteristics which imply the localization system developed 

here can be applied to a wide range of scenarios. The surface is 

planar and semi-structured while also showing self-similarity in 

a feature-sparse environment. 

Experiments were conducted to better understand the 
capabilities of the D435i camera which were validated through 

the Vicon motion capture system. This included assessing the 

edge detection algorithm on different surface types and 

importantly, simulated the various light levels present within 

the area of inspection. During static testing, for a standard steel 

plate located in a 240 lux environment, the distance and relative 

skew between the crawler and plate edge was calculated with a 

root mean square error of 3.7 mm and 0.10 °. This translates to 

a physical positional accuracy measured during dynamic testing 

of 5.7 ± 5.0 mm with an estimated edge RMSE of 4.6 mm and 

Table 4 
Collection of RMSE data for noise about the z and y axes along with the estimated edge and relative skew 

between the crawler and the plate edge. 

Test Configuration Z-Noise RMSE (mm) Y-Noise RMSE (mm) 
Estimated Edge  

RMSE (mm) 
Skew RMSE (°) 

Steel Very Low Light (2 lux) 0.2 5.5 8.0 0.1 
Steel Low light (240 lux) 0.4 4.2 3.7 0.1 
Steel Medium light (886 lux) 0.4 5.9 2.5 0.3 
Steel High Light (1708 lux) 0.7 4.3 2.8 0.1 
Paper Low Light (210 lux) 0.8 5.5 6.5 0.3 
Aluminum Low Light (218 lux) 1.1 80.7 202.9 2.9 

Crawler Start 
Position 

Travel Direction 



2  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

estimated skew RMSE of 0.49 °. Referring to the accuracy 

attained by systems with prior knowledge of the inspection 

component, examples were shown to be capable of positioning 

the crawler within 5-10 mm of the desired position, the 

accuracy attained using the method described in this paper is 

comparable and advantageous considering that minimal 

assumptions are required to process the data. 

To reduce the systematic error and increase the general 

accuracy of the system, a redesign of the crawler platform is 

planned which would reduce mechanical factors contributing to 

the error with a more robust locomotion base and optimized 

camera placement and support. The system is also to be tested 

in other semi-structured self-similar environments to explore its 

performance in a range of settings. 
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