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ABSTRACT
Reducing skin friction has a key role in the efficiency of rail, high-
way, and airway transport vehicles or naval systems such as ships
and underwater vehicles. In recent years, there is a growing interest
in investigating turbulent drag-reducing capabilities of dimpled sur-
faces, which have great potential as a passive solution, while there
still exists highly conflicting views and drag reduction rates reported
in the literature as well as a lack of information about the drag reduc-
tion mechanism. In this study, large-eddy simulations (LES) were
performed to investigate the characteristics andphysicalmechanism
of the fluid flow over dimpled surfaces in a fully developed chan-
nel flow. The Reynolds number based on the channel height and the
mean bulk velocity was nearly 5600 for all cases examined. Within
the framework of the study, various dimple depth to diameter ratios
as well as different dimple arrangements and geometries were con-
sidered. The detailed mean and instantaneous flow fields, turbulent
kinetic energy budget and spectral characteristics of the flow are
presented. The study revealed the potential of the dimpled surface
in reducing skin friction and provided critical information about the
flow features affecting the performance of the dimples.
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1. Introduction

Skin friction is the main component of the overall drag force for most fluid flows. Both
restrictive legislation as a result of environmental measures and economic reasons have
made the energy efficiency issue very important [1]. Reducing skin friction has a key role
in the efficiency of rail, highway and airway transport vehicles or naval systems such as
ships and underwater vehicles.

In different studies, aiming at drag reduction using polymer additives [2] or application
of wall oscillation methods [3], which overwhelmingly indicate drag reduction of more
than 40%, it is mentioned that the drag-reducing mechanism is interpreted as shifts on
velocity profiles, velocity fluctuations and Reynolds stress profiles, increase in spanwise
vorticity generations.

In recent years, there is a growing interest in investigating turbulent skin friction reduc-
ing capabilities of dimpled surfaces [4–7], which is previously known for its positive effects
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layer, extensive computational flow simulations become necessary. Computational meth-
ods and high-performance computers allow researchers to evaluate detailed flow fields and
increase their knowledge of the physics of flow behaviours over different surface structures.

The above review highlights that dimple patterns have great potential as a passive drag-
reducing solution while there still exist highly conflicting views and drag reduction rates
reported in the literature as well as a lack of information about the frictional drag reduction
mechanism. Besides, most of the studies indicate the weaknesses of the numerical simula-
tions in their ability to demonstrate drag reduction by using dimple geometries. In order
to shed light on the aforementioned ambiguity and to provide data to the related litera-
ture, this study presents an extensive computational investigation by means of large eddy
simulations on the characteristics and physical mechanism of the fluid flow over dimpled
surfaces in a fully developed channel flow. Within the framework of the study, which is
part of the postgraduate study of the first author, various dimple depth to diameter ratios
as well as different dimple arrangements and geometries with coverage ratios higher than
85% were considered. In addition to the presentation of the detailed mean and instanta-
neous flow properties, a turbulent kinetic energy budget calculation and a spectral analysis
using the Empirical Mode Decomposition (EMD) technique of Huang et al. [25] were also
performed. Since strong evidence of the drag-reducing effect of the dimples has generally
been provided by the experimental studies so far, this study focused on the skin friction
reduction mechanism and provides extensive views and discussions of the near-wall flow
fields and wall shear stress distribution which are not easy to explore in an experimental
study.

2. Model geometries andmesh structure

As mentioned previously, in order to investigate the effect of the dimples, a fully turbulent
channel flow was considered. Channel flow is defined as a flow between two infinite par-
allel plates driven by a constant mean pressure gradient or mass flow rate. This provides
a homogeneous flow in streamwise, x, and spanwise, z, directions for smooth walls. From
the computational framework, this structure allows the application of periodic boundary
conditions in both directions. The computational domain and coordinate system used in
the study are presented in Figure 1.

As far as the studies involving dimpled surfaces in the literature are concerned (e.g.
[7,10,17,19,26,27]), it can be clearly observed that the depth to diameter ratio, d/D, which
is one of the fundamental parameters defining the dimples, is nearly concentrated on 0.015,
0.05, and 0.08. According to the information gained from the literature, four different
depth to diameter ratios of 0.015, 0.03, 0.04 and 0.08 were selected for the examination.
The diameters of the dimples, on the other hand, were determined by taking the physical

Figure 1. Computational domain and coordinate system of the fully turbulent channel flow.
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Table 1. The cases investigated.

Case Lx/δ Lz/δ D [mm] d [mm] d/D d/δ CR [%] ReD Red Total Cells �+
x �+

z

FP – – – – – – – 3.50M
D454sg 13.86 4.00 45 1.800 0.040 0.04 91 11199 448 3.50M 11 11
D458 12.67 7.31 45 3.600 0.080 0.08 90 11196 896 5.84M
D454 12.67 7.31 45 1.800 0.040 0.04 90 11199 448 5.84M
D451.5 12.67 7.31 45 0.675 0.015 0.02 90 11200 168 5.84M
D608 17.07 9.85 60 4.800 0.080 0.11 88 14927 1194 10.60M
D603 17.07 9.85 60 1.800 0.030 0.04 88 14933 448 10.60M
D603d 13.86 4.00 60 1.800 0.030 0.04 89 14933 448 9.07M
D601.5 17.07 9.85 60 0.900 0.015 0.02 88 15146 227 5.80M

Figure 2. The side profiles (top) and top views (bottom) of the dimple geometries.

the Reynolds numbers based on D and d, respectively. The profile and top views of the
dimpled cases are shown in Figure 2.

The dimensions of the computational domain involving solely flat surfaces were non-
dimensionally defined as a cuboid with length (Lx), width (Lz) and channel height (H) of
4.41πδ, 1.27πδ and 2δ, respectively, which corresponds to a rectangular domain size of
156mm × 45mm × 22.5mm. The size of the computational domain was defined by con-
sidering the dimple dimensions. For each case, three and two dimples were placed in the
streamwise and spanwise directions, respectively. Consequently, the dimension of the com-
putational domain varied according to the dimple arrangements as presented in Table 1.
The top wall was specified as a flat surface and the dimples were placed on the bottomwall.
Circular dimples were described by the following depth function, h [29].

h(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 , x2 ≥ D2

4
D2 − 4d2

8d
−

√(
4d2 + D2

8d

)2

− x2 , x2 <
D2

4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2)

In the above equation, x is the longitudinal location, and d and D are the dimple’s depth
and print diameter, respectively.

A structured mesh type was used for all computational cases. The grid spacing was kept
constant in the streamwise and spanwise directions. In the vertical direction, a slowly grow-
ingmesh size up to a height level of δ was adopted whilst the y+ value of the first grid in the

Wall nonnal direction 

- - ---- --L- ----- ----- ----

D458 D608 D451.5 D22.54 D601.s 
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double-precision solver was chosen for the computations. Convergence is achieved when
the residuals of the equations reach a predetermined value. In each case, the inner iterations
were run until the scaled residuals dropped to 10−5. In addition, after each iteration, the
variation of the flowvariables at various locations close to the bottomwall was checked. The
iterations were continued until negligible differences were obtained between the results
of two consecutive iterations. The simulations were carried out by using a widely known
commercial code Star-CCM+ .

A fixed mass flow rate was used for the streamwise periodicity at the inlet and outlet
boundaries, and it was adjusted according to the changing cross-sectional areas between
different cases to keep Ub fixed for each case. Considering the constant mass flux in the
channel ReH can be specified for the simulation.

To trigger the small-scale fluctuations and to achieve a faster convergence in the com-
putations, a synthetic turbulence field was specified inside the computational domain by
using the turbulence intensity and length scale as the initial condition. In addition to the
streamwise periodicity, the spanwise periodicity, which allows for avoiding the effects of
the secondary flow near the channel corners and reduces the computational requirements,
was also implemented at the side boundaries. No-slip boundary conditions were used at
the flat top and dimpled bottom walls. The computational domain consisted of a cut-out
of the channel according to the dimple diameter and alignment as sketched in Figure 4.

The collection of the node, surface and volume data was performed with different sam-
pling rates due to the enormous memory and disk space requirements of the simulations.
Eight straight lines were defined in streamwise and spanwise directions at four different
heights. Each line allowed the collection of time-varying data for each cell along the lines.
Two vertical line probes were located at the dimple centre and the dimple edge in the span-
wise direction. The instantaneous wall shear stress values were collected at four different
nodes, in the spanwise direction. The node datawere recordedwith a frequency of 1666Hz.
Likewise, the surface averaged drag and wall shear stress signals were gathered at the same
frequency for the bottomwall. Four planes at different heights of 80y+ = 2, 17, 86were also
defined parallel to the bottom wall to collect data with a sampling rate of 166Hz including
the bottom wall. Both node and surface data were recorded for 20 s. The data of the whole
flow volume, on the other hand, were saved at a low sampling rate of 1/50 for 3 s. The

Figure 4. Flow-aligned configuration of dimples (left), the staggered configuration of dimples (right).

Flow D1rect1on 
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Figure 5. Data collection locations: Longitudinal (x) and transverse (z) beams represent the location of
the data collection positions at different heights of y+ = 2, 17, 86 and 180. 1, 2 and 3 represent the data
collection points in the longitudinal direction at x/D∗ = 0.25, 0.5 and 0.75, respectively.

locations where the data were collected can be seen in Figure 5. Considering the different
geometry of the diamond-shaped case, an effective length, D∗, is used to define the longi-
tudinal dimension of the dimples which is equal to D for the circular dimples and equal to
2D for the diamond-shaped dimpled case.

4. Verification and validation

4.1. Flat plate cases

For verification and validation purposes, a series of fully turbulent channel flow simulations
with different grid resolutions were performed. As the reference work, the DNS dataset of
Moser et al. [24] was selected. The domain size and mesh resolution of the fully turbulent
channel used in the mentioned DNS work are presented in Table 2.

In the table,N andΔ+ represents the number of cells and non-dimensional cell dimen-
sions in the x, y and z directions, respectively. �+

yc is the cell height at the centreline of the
channel in wall units. In line with the work of Moser et al. [24], the grid convergence study
was carried out at Reτ ≈ 180.

The grid dependency analysis was completed in two stages. In the first stage, the effect
of the number of cells in the streamwise and spanwise directions on the results was investi-
gated while keeping the total number of cells in the wall-normal direction constant. After

Table 2. Domain size and mesh resolution of DNS dataset [24].

Reτ ReH Lx Lz Nx Ny Nz Δ+
x Δ+

z Δ+
yc

180 5600 4πδ 4πδ/3 128 129 128 17.7 5.9 4.4



JOURNAL OF TURBULENCE 9

Table 3. Resolutions used in the first stage of the verification study.

Case �+
x �+

z �+
yc �y+w Nx Nz Ny Cell count τ̄w [Pa]

FP1 50 50 79 0.2 58 17 128 0.13 × 106 0.156
FP2 30 30 79 0.2 97 28 128 0.35 × 106 0.191
FP3 18 18 79 0.2 162 47 128 0.97 × 106 0.230
FP4 14 14 79 0.2 208 60 128 1.61 × 106 0.241
FP5 11 11 79 0.2 265 77 128 2.60 × 106 0.248
FP6 9 9 79 0.2 324 94 128 3.89 × 106 0.251
FP7 7 7 79 0.2 417 120 128 6.42 × 106 0.253

Figure 6. Comparison of the results of the different grid resolutions for the non-dimensional velocity
(left), turbulent kinetic energy (mid) and shear stress (right) profiles.

the determination of the adequate resolution in the x and z directions, in the second stage,
the mesh resolution was solely varied in the y direction. The time step used in the grid
dependency analysis was �+

t ≈ 0.15 which is non-dimensionalised by the uτ and kine-
matic viscosity, ν. The grid configurations used in the first stage of the verification study
are listed in Table 3 along with the surface-averaged mean streamwise wall shear stress
values, τ̄w, obtained for each computational case. The comparison of the velocity, turbu-
lent kinetic energy and shear stress profiles with those of the DNS work of Moser et al.
[24] are also presented in Figure 6 for the three selected cases. It can be seen that for the
resolution levels that are coarser than �+

x = �+
z = 11 the value of τw is highly variable.

Consequently, by also taking the required simulation times and available computational
resources into consideration, the resolution of the mesh configuration FP5 was found to
be suitable and was selected for the rest of the simulations. It is concluded that the grid
resolution of �+

x = �+
z = 11 is sufficient to obtain grid-independent Reynolds stresses

based on the discussions of Piomelli et al. [39].
As mentioned previously, in the second stage of the verification study, the subsequent

simulations proceeded by varying the grid spacing in the y direction. The resolution in the
other directions remained unchanged. The configurations applied for the second stage of
the grid dependency analysis for each case are shown in Table 4. As is seen, the value of τ̄w
did not display any variation with the application of the incremental grid resolution. How-
ever, further examinations showed that FP5f provides better accuracy in terms of velocity,
u+, turbulent kinetic energy, k+, and shear stress, uv+, profiles displaying closer results to
the finest grid structure FP7 as can be seen in the comparative plots presented in Figure 6.
The plots particularly indicate that FP5f is capable of better capturing the peak level of k+
and uv+. Accordingly, it was decided to proceedwith FP5f for the subsequent analyses. The
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Table 4. Configurations for the Y grid spacing.

Case �+
x �+

z �+
yc �y+w Nx Nz Ny Cell count τ̄w [Pa]

FP5 11 11 79 0.2 265 77 128 2.60 × 106 0.248
FP5f 11 11 56 0.2 265 77 172 3.50 × 106 0.248
FP5c 11 11 112 0.2 265 77 94 1.91 × 106 0.247

Figure 7. Comparison of the FP case with the DNS results.

grid includes 9 points below y+ = 5 and 18 points below y+ = 10, satisfying the require-
ment of having at least 10 grid points within the first 9 wall units for accurate resolution of
near-wall flow physics [40].

Furthermore, to capture the effect of the time step on the results additional simula-
tions with smaller time steps were also conducted. The application of the non-dimensional
time steps of 0.07 and 0.28 showed no appreciable variations in the results, however,
substantially increased the computational time. Consequently, the rest of the simulations
proceeded with �+

t ≈ 0.15.
In Figure 7, the profiles of the streamwise mean velocity, fluctuating RMS velocity com-

ponents, shear stress and turbulent kinetic energy, TKE, obtained from the present LES
study are comparatively presented along with those of the DNS work of Moser et al. [24].
All values are non dimensionalised by using uτ . A good agreement was generally found in
all profiles. Particularly, the streamwise mean and RMS velocity profiles closely follow the
DNS data. The transverse and vertical components of the RMS velocities slightly underes-
timate the DNS values; however, the trend of the profiles indicates a good correlation, and
the results were found satisfactory. Likewise, the agreement of the shear stress and turbu-
lent kinetic energy profiles is good. Considering the compatibility with DNS data, it was
decided that the grid resolution selected would be appropriate to be used in the present
study.

4.2. Dimpled cases

The same systematic approach was followed for the verification of the grid structures gen-
erated for the dimpled cases. The exact grid resolutions were applied to the dimpled case
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Table 5. Resolutions used in the first stage of the verification study for the dim-
pled cases

Case �+
x �+

z �+
yc �y+w Nx Nz Ny Cell count τ̄w [Pa]

D1 45 45 79 0.2 65 19 128 0.16 × 106 0.193
D2 30 30 79 0.2 97 28 128 0.35 × 106 0.227
D3 18 18 79 0.2 162 47 128 0.97 × 106 0.258
D4 14 14 79 0.2 208 60 128 1.61 × 106 0.269
D5 11 11 79 0.2 265 77 128 2.60 × 106 0.278
D6 9 9 79 0.2 324 94 128 3.89 × 106 0.279
D7 7 7 79 0.2 417 120 128 6.42 × 106 0.280

Table 6. Configurations for the Y grid spacing for the dimpled cases.

Case �+
x �+

z �+
yc �y+w Nx Nz Ny Cell count τ̄w [Pa]

D5 11 11 79 0.2 265 77 128 2.60 × 106 0.278
D5f 11 11 56 0.2 265 77 172 3.50 × 106 0.276
D5c 11 11 112 0.25 265 77 94 1.91 × 106 0.275

Figure 8. Comparison of the results of the different grid resolutions for the non-dimensional velocity
(left), turbulent kinetic energy (mid) and shear stress (right) profiles.

D454sg , which was selected for this grid convergence study. The configurations used in the
first stage of the verification study are presented in Table 5 along with the τ̄w value obtained
for each computational case. A good convergence can be detected following D5 which has
a resolution of �+

x = �+
z = 11. Consequently, for the second stage of the grid conver-

gence study, D5 was selected. The configurations applied for the second stage of the grid
dependency analysis for each case can be observed in Table 6. The comparative profiles of
velocity, turbulent kinetic energy and shear stress are also presented in Figure 8. The results
showed that the application of D5f significantly increases the accuracy of the profiles and
was selected to be used for the rest of the dimpled simulations.

5. Results and discussion

5.1. Drag characteristics

The left plot in Figure 9 shows the reduction obtained in the frictional component of the
total drag force acting on the dimpled surfaces, which is related to the streamwise compo-
nent of the wall shear stress. At this point, it should be recalled that the potential positive
effect of the dimples is related to the skin friction component of the total drag force. How-
ever, they naturally generate a form drag component, which represents the streamwise
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Figure 9. Friction and total drag reduction percentages for each computational case (The percentages
were calculated with respect to the reference value of 0.248 Pa obtained for FP. The negative values
indicate an increase in the drag component).

component of the viscous pressure force that can be calculated by the difference between
the total drag and skin friction force.When the amount of the gain in the skin friction com-
ponent exceeds the amount of the loss in the form drag component as form drag increases,
the total drag force can be reduced. It is seen that most of the dimpled surfaces positively
affected the skin friction and effectively reduced it with respect to that of FP. The larger
dimpled cases with a diameter of 60mm generally displayed better performance in terms
of friction, probably due to the higher Reynolds number seen by the flow inside the dimples
with the exception of D608. This case along with D454sg , which was organised with a stag-
gered arrangement, increased the surface friction. The plot points out that, taking solely
the frictional performance into account, the optimal dimpled depth is around 3-4%, which
resulted in the maximum friction reduction of 2% and 4% for both dimple diameters (of
45 and 60mm) considered, respectively. The tests with larger or smaller dimpled depths
gave lower reduction rates. The diamond-shaped D603d, on the other hand, exhibited a
successful skin friction performance with a significant reduction rate of 4.9%.

The right plot in Figure 9 displays the total drag force reduction rates obtained from
the dimpled cases. As is seen, no case achieved a reduction in drag force due to the addi-
tional form drag component that is generated by the dimples. Most of the dimpled cases
substantially increased the total drag acting on the bottom surface. However, the two
most shallower cases (D451.5 andD601.5) along withD603d produced an encouraging out-
come displaying almost no increase in drag, indicating that further studies with a slight
optimisation in the dimple geometry will likely result in a considerable drag reduction.

The ratio of the contribution of the form drag component to the total drag force is given
in Figure 10 for different cases. It is clear that the application of deeper dimples should be
avoided due to their enormous profile drag. The plot shows that the depth of the dimples
should be at most 3%, while, in fact, this configuration also displays a considerable form
drag rate of 10%.The implementation of larger depths substantially increases the additional
contribution of the form drag. The staggered arrangement also resulted in a very high rate
of above 20%. On the other hand, although a depth of 3% was applied to the diamond
shaped dimples, the form drag rate of this arrangement was not found to be higher than
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Figure 10. Percentages of the contribution of the form drag to the total drag for each computational
case.

that of the shallower dimpled case D601.5. The study reveals, then, the great potential of
this configuration which exhibited a significant skin friction reduction and a relatively low
form drag rate.

5.2. Time-averaged and fluctuating flow fields

In the following sections, the comparative flow fields of the selected cases are presented
for brevity. The cases with a d/D rate of 0.08 are avoided since they presented an entirely
different flow structure with significant flow separation. The staggered arrangement was
also not decided as the general focus of the study is on flow-aligned arrangements. To
provide a clearer representation of the differenceswith respect to the skin friction reduction
performance the two best performing computational cases, D603 and D603d, and the case
with the lowest reduction rate amongst the rest,D454 alongside FPwere selected for further
investigation.

The mean (time-averaged) flow fields were obtained from the temporally averaged
velocity and stress distributions for all cases. Themean streamwisewall shear stress, τ̄w, dis-
tributions non-dimensionalised by the surface-averaged τ̄w of the FP, τ̄ FPw , on the bottom
wall along with the limiting streamline traces can be examined in Figure 11. As expected,
FP displays a nearly homogenous stress distribution throughout the surface while the stress
values were found to be around 1.02. The circular dimpled cases present rounded contour
shapes around the entrance of the dimples with a large gradient along with them. Due to its
highest streamline curvatures, the largest gradient in the wall shear stress was observed in
D454 where very low-stress values of below 0.041 were computed around the leading edge
of the dimples. Flow separation and reattachment within the dimple can be observed for
D454. A closer observation in z = 0 cross-sectional plane, which is not presented here for
brevity, indicated that the separation is limited to a zone in the immediate vicinity of the
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Figure 11. τ̄w/τ̄FPw distributions and limiting streamlines on the bottom wall (FP,D454,D603,D603d,
from left to right, respectively. The flow is from bottom to top.).

wall. The recirculation further helps decrease the streamwise wall shear stress around this
zone. One can see from the plots that the introduction of the dimples generates substantial
transverse flowmotion. Due to the existence of the separation zone, the flow largely moves
towards the outer edges of the dimple and the streamline traces becomes sparse following
the separation for D454. The zig-zag nature of the flow can also be seen in D603d where
a smoother distribution of the stream traces covers the dimpled wall. One can see that
the structure of the streamlines is rather different from that of the circular dimpled cases.
The sudden deflection of the streamline following the boundaries of the dimples is strik-
ing. Near the leading edge, the strong convergence of the streamlines can be also observed
while they diverge towards the trailing edges. The stress values progressively raised along
with the dimples up to the trailing edges where the largest stress values of over 2.03 were
obtained. An identical stress structure was predicted for D603 where the maximum and
minimum values were computed as 0.16 and 2.85, respectively. The flat zones remaining
between the dimples exhibited stress values generally larger than those of FP. The case that
displayed the best skin friction performance, D603d, on the other hand, presented a more
uniform stress distribution through the surface, where the values on a large portion were
found to be below those of FP. The largest values of around 1.63, which are higher than
those of FP but are rather lower than those of the other two cases presented, occurred in a
confined space near the trailing edges of the dimples.

The velocity vectors and the non-dimensional profiles of τ̄w along the longitudinal
centre plane of the bottom surface are shown in Figure 12 for the computational cases con-
sidered. As can be seen and expected, in the near wall region, inside a dimple, the gradients
of the tangential velocities in the vertical direction and the streamwise component of wall
shear stresses are related to each other. The incompressible flow in the channel exhibits
a diffusion and contraction-like behaviour in the vertical direction as it passes through a
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Figure 13. Pressure Coefficient distributions on mid dimple centred area on surface (FP, D454, D603,
D603d , from left to right, respectively. The flow is from bottom to top.).

dimple. The large wall shear stress gradient exhibited by the two circular dimpled cases
particularly around the last quarter of the dimples is immediately striking in the figure.
As can be observed, when a portion of the flow near the bottom wall moves towards the
dimple, the boundary layer becomes somewhat stretched while the displacement thickness
remains almost constant. In this way, the expansion area provided by the dimple causes
the fluid flow to slow down and the velocity gradients to decrease, leading to a reduction
in the streamwise wall shear stresses. This fluid flow also increases the local pressure due
to the reduced velocity magnitude. Figure 13, which shows the pressure distribution on
the bottom wall, can be examined along with Figure 12. For the circular dimpled cases, it
can be seen that approximately after the first quarter of the dimple, the velocity gradients
begin to rise while the fluid flow remains inward. The change in the direction of the flow
severely increases the wall shear stress levels approaching to the trailing edge of the dim-
ples due to the contraction trend of the surface geometry where the velocity levels increase
and pressure levels drop. However, the pressure drop rate around the second half of the
circular dimples appears to be shifted towards the trailing edge of the dimples and the
pressure distribution displays an asymmetrical structure with respect to the spanwise axis
of the dimple. This is due to the high velocity flow around the outer region of the boundary
layer which is barely directed inward as the flow reaches the centre of the dimple, where
the dimple geometry starts to get shallower. As the fluid continues to flow forward, the
geometry of the surface forces the flow to change its direction and to move upward, lead-
ing to a stagnation pressure and an increase in the velocity level in the near wall region.
This also explains the sudden increase in wall shear stresses at that zone. Additionally,
the high-pressure region on the dimple wall shifts towards the trailing edge, contribut-
ing to the pressure-induced drag. As mentioned previously, an asymmetrical nature of the
flow can be examined for the circular dimpled case in Figure 12 in terms of the vertical
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Figure 14. Sectional area variations for dimpled cases.

velocities. The accelerated upward flow near the trailing edge of the dimples enhances the
tangential velocity on the surface and hence the friction force in that area. As seen in the
figure the tangential velocities and the velocity gradient become relatively large towards
the trailing edge of the dimple for the two circular dimpled cases. From this perspective,
it could be argued that increasing the length of the dimple without changing the depth
and width would decrease the harsh slope at the leading and trailing edges and potentially
reduce the vorticity, pressure difference, and therefore the form and frictional drag. This
may explain the reason for the lower drag components predicted for the diamond-shaped
dimpled case which presents an almost symmetrical flow structure around the spanwise
axis of the dimple and slowly rising walls shear stress levels. This is simply related to the
geometric specifications of the dimpledwalls. The circular dimples have a parabolic change
in their sectional area with a rapid increase and rapid decrease at the leading and trailing
edges, respectively. However, the diamond-shaped dimple exhibits a more linear variation.
The sectional area variation rates normalised by the projection area of the dimples for the
cases considered are shown in Figure 14. The variation of the sectional area at the edges is
highest for theD454 case and lowest for theD603d case, due to its wedge-like shape, which
reflects the performance of the surfaces in the skin frictional reduction. A comparison of
Figure 11 and Figure 14 reveals an inverse relationship between sectional area variation
rates and wall shear stresses. Indeed, there should be an optimal dimple length depend-
ing on the bulk velocity, boundary layer thickness, etc. Obviously, an infinitely long dimple
would not be effective on the drag reduction. However, an excessively shorter length would
increase the frictional and form drag due to the arguments explained above.

The vertical non-dimensional mean velocity fields are presented in Figure 15. As
explained previously, due to the bottom surface geometry the flow is forced to display a
diffusion and contraction-like behaviour, which indeed generates vertical velocity com-
ponents. The vertical velocities tend to increase or decrease parallel to the ascending or
descending surface profiles. However, they display an asymmetrical structure with respect
to the spanwise axis of the dimples, which does not reflect the exact geometry of the dim-
ple surfaces. An interesting resemblance of the vertical velocity distributions to those of
the streamwise wall shear stress fields is remarkable. This particularly enhances the pre-
viously explained physical mechanism involving the relationship between the structure of
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Figure 15. Vertical non-dimensionalmeanvelocity (V/Ub) distributions at y∗/H = 0.05 (FP,D454,D603,
D603d , from left to right, respectively. The flow is from bottom to top.).

the flow, skin friction, and wall pressure levels. FP displays a nearly zero vertical velocity
level through the flow field as expected whilstD454 presents the largest velocity gradient in
the streamwise direction due to the stronger curvature of the dimple profiles as indicated
previously. A much smoother contour structure can be observed in the diamond-shaped
dimpled case. The figure highlights the relationship between the smoother surface profiles
and the frictional resistance. A slight variation in the surface depth is enough to create
the vertical motion and substantially modify the boundary layer and the velocity gradi-
ents. This encourages the optimisation studies to take the variation of the sectional area
of the dimples into consideration to create substantial friction reduction without largely
increasing the form drag component.

The streamwise non-dimensional mean velocity distributions at a height of y∗/H =
0.05 are presented in Figure 16 for different computational cases. The velocity values were
normalised by the associated bulk velocities. Here, y∗ represents the distance from the flat
sections of the bottom surface where zero depth is defined. It should be noted that the y+
values are not constant through that plane due to the changing distance from the bottom
surface of the dimples and varying local wall shear stress values. At y∗/H = 0.05, the y+
values are around 17 on the zones corresponding to the areas between the dimple geome-
tries and the sides of the dimple structure. The y+ values are rising to 45 along the front
half of the dimple geometry and fall to 1 along the aft half for D454. The maximum value
tends to stay around 45 while the minimum value increases with the increasing wall shear
stress up to 17 for the D603d.

Concerning Figure 16, it is seen that FP has a uniform distribution as expected. The
dimpled cases present a nearly symmetrical structure about the dimple centreline. The two
circular dimpled cases displayed high and low-velocity streaks on either side of the cen-
treline. Due to the large velocity gradient found in the spanwise direction, it is expected
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Figure 16. Streamwise non-dimensional mean velocity (U/Ub) distributions at y∗/H = 0.05 (FP, D454,
D603, D603d , from left to right, respectively. The flow is from bottom to top.).

to have counter-rotating pairs of streamwise vortices along the surface depending on the
direction of the spanwise velocity component. The enhancing effect of the dimples on the
vortex structures is also indicated by many research studies found in the related litera-
ture [5,14,15]. It can be seen that the relatively deeper dimpled case, D454, displays the
largest peak velocity values and hence a larger velocity gradient highlighting the effect of
d/D on the flow field. For both circular dimpled cases, the highest streamwise velocity
occurred between the consecutive dimple structures. Towards the side edges of the dim-
ples, the lowest velocity levels were detected. The non-dimensional averaged velocity value
for both cases was predicted as 0.83 and 0.85 respectively. For the diamond-shaped case,
D603d, no continuous velocity streaks were observed about the centreline due to the tighter
arrangement of the dimples. This dimpled case presented the highest velocity distribution
among the cases investigatedwith a non-dimensional average velocity value of 0.87.Within
a dimple structure, two high-velocity zones took place on either side of the centrelinewhich
were then followed by small low-velocity areas where the values were around those of FP.
The occurrence of counter-rotating pairs of streamwise vortices seems to be likewise highly
likely in that computational case, weaker vortices are nevertheless expected. The correla-
tion between the streamwise velocity levels and the skin friction values of the different cases
was found to be remarkable at this stage.

As far as the non-dimensional spanwise velocity distribution are concerned, in
Figure 17, FP presents almost no spanwise component which is quite expected. However,
it can be clearly seen that the dimple structures induce significant spanwise components to
themean flow field as indicated, for instance, by Tay et al. [7], vanNesselrooij et al. [10] and
Wang et al. [29]. The topology is largely dominated by the alternating spanwise flow. For
the two circular dimpled cases, the peak values occurred in a relatively large zone between
three adjacent dimple structures near the diagonal edges of the dimples due to the curvature
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Figure 17. Transverse non-dimensional mean velocity (W/Ub) distributions at y∗/H = 0.05 (FP, D454,
D603, D603d , from left to right, respectively. The flow is from bottom to top.).

of the streamline associated with the rounded shape of the dimples while the central zone
of the dimples showed almost no spanwise component. The diamond-shaped dimples yet
created strong spanwise components in a relatively more confined diagonal zone along the
dimple edges. The peak values also occurred nearly on these edges. The information gained
from the two velocity components investigated so far suggests an alternating arrangement
of counter-rotating streamwise vortex pairs.

Investigating the flow topology given in Figures 16 and 17 in common, it can be deduced
that another effect thatmay influence the highwall shear stress 1levelsmay be partly related
to the spanwise motion of the flow. As seen in the figures, the spanwise component of the
motion does not affect the whole surface area of the dimples. This flow structure is strongly
related to the geometric arrangement of the dimples. In the flow-aligned arrangement, for
the two circular dimpled cases, since a flow portion that leaves one dimple in the diago-
nal direction enters the adjacent one in the same direction, a zig-zag nature of the flow is
generated around the edges of the dimples which are diagonally positioned. This flow por-
tion cannot reach the middle of the dimples. Around the streamwise axis of the dimples,
on the other hand, the flow displays higher velocity levels since the bottom wall surface
is located at a deeper level. This flow gains a substantial acceleration passing through the
area between two consecutive dimples in the streamwise direction. In this way, around this
zone, high momentum levels are added to the inner part of the boundary layer and the
shear stresses present a significant increase. This can be also observed in Figure 11 where
the mean streamwise wall shear stress distributions are presented. The diamond shaped
dimpled case, on the other hand, provides a somewhat stronger spanwise flow component
which can affect the regions towards the middle of the dimple which relatively avoids the
high-velocity streaks in the middle part of the dimple. This partly contributes to the lower
wall shear stress values predicted around the trailing edges of the dimples.
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The examination of the time-averaged flow fields so far basically reveals that the main
effective influence on the surface friction originated from the mean flow. Based on the
current research and existing literature, two physical mechanisms that are effective on the
frictional drag reduction in the streamwise direction may be identified. The first one is the
amount of gradient of the tangential velocities in the inner part of the boundary layer at
the immediate vicinity of the bottom wall. This is directly related to the geometrical char-
acteristics, particularly the sectional area variation rates of the bottom wall. Indeed, lower
gradient values will decrease the overall amount of wall shear stresses. The second physi-
cal property, which is relatively effective on the frictional resistance, is the flow direction
in high-speed regions close to the wall. If a high-momentum flow portion can be orien-
tated to the spanwise direction, even if high shear stress levels exist on the fluid adjacent
to the wall, a part of them will be transferred to the spanwise flow component, which is
insignificant in terms of the skin friction resistance.

Shown in Figure 18 are the streamwise vorticity, ω̄x, distributions non-dimensionalised
by Ub and H on the plane y∗/H = 0.05. In the open literature, there is a quite solid
belief that the dimple structures create strong streamwise vortices and there is a corre-
lation between the relative depth of the dimples and the level of the vorticity or the size
of the instantaneous vortices [7,15,41]. In addition, the related literature states that there
exists a relationship between the size and/or level of these streamwise vortices and the skin
friction reduction degree of the related dimple arrangement. Bearing these recommenda-
tions in mind, one can see in Figure 18 that FP exhibits almost no streamwise vorticity
with an occasional low level of positive component probably due to the need for a fur-
ther long time-averaging period. However, with the introduction of the dimples, strong
counter-rotating pairs of alternating streamwise vortex zones can be observed along the
two corridors between the dimples for the two circular dimpled cases. The inner part of the

Figure 18. Streamwise non-dimensional mean vorticity (ω̄x × H/Ub) distributions at y∗/H = 0.05 (FP,
D454, D603, D603d , from left to right, respectively. The flow is from bottom to top.).
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dimples also displays a sparse zone of high-level vorticity. The level of the vorticity and the
size of the affected area is the largest for D454 which has a relatively deeper dimple struc-
ture but the lowest skin friction reduction performance. D603d, presented a similar flow
structure in terms of streamwise vorticity with quasi organised vortices along the edges
of the dimples. The level of the vorticity and the size of the affected area were predicted
to be lower than those of the two other dimpled cases whilst the best skin friction perfor-
mance was found for this computational case. This suggests that the physical mechanism
that lies behind the skin friction reduction performance of the dimples is not directly pro-
portional to the introduction of the streamwise vortex structures at least without taking
the generation of the spanwise vortices into account.

The mean distribution of the non-dimensional spanwise vorticity (ω̄z × H/Ub) at the
vertical plane, z/H = 0, passing through the longitudinal centre of the dimples can be seen
in Figure 19. The figure indicates that FP has a tendency for clockwise rotational motion
around the spanwise axis due to the interaction between the streamwise and wall-normal
fluctuations. The figure implies that the size of the high-level vorticity zones significantly
increases with the introduction of circular dimples. It should be recalled that, at the zones
where the spanwise vorticities are strong, the velocity gradients in the vertical and stream-
wise directions should present high levels. At these zones, hence, the instability of the flow
should also be high. High levels of spanwise vorticity that are close to the wall would cause
an increase in the frictional resistance about these zones. In the figure, it can be seen that
for the two circular dimpled cases, the clockwise high-vorticity bands are slenderised in
the zones between the dimples and near the trailing edges, but their intensity is increased.
The figure shows that, around the leading edge of the dimple, the fluid with high-vorticity
flows away from the bottom surface without affecting the wall shear stresses. The related
zones correspond to those which display a substantial decrease in the skin friction pointed
out previously. The diamond-shaped dimpled case, on the other hand, displays a much
smoother flow structure.Around the leading edge, the relatively strong band remains closer
to the wall without, however, presenting significantly high levels. The zones between the

Figure 19. Spanwise non-dimensional mean vorticity distributions (ω̄z × H/Ub) at z/H = 0 (FP, D454,
D603, D603d , from top to bottom, respectively. The flow is from left to right.).
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Figure 20. Instantaneous spanwise non-dimensional vorticity (ωz × H/Ub) at centre plane (z/H = 0)
for different cases, t0 = 4.0s (top) and�t = 0.03s. The flow is from left to right.

Shown in Figure 21 are the instantaneous Q criterion [42] iso surfaces at different
instants for the four computational cases examined.Q values of 1000 were selected to pro-
vide a readable graphical view. The top and bottomplots represent the iso surfaces coloured
by streamwise and spanwise vorticity levels, respectively. It should be recalled that a vortex
structure and vorticity have different physical meanings. For instance, a longitudinal struc-
ture does not necessarily contain solely streamwise vorticity or a spanwise structure can
have both streamwise and spanwise vorticity components. The figures offer a clearer rep-
resentation of the vortex structures near the bottom surface throughout the flow field. The
figures indicate that FP has discrete structures randomly spread in particularly streamwise
directions. However, by close examination of the colours, one can foresee that the flow is
mainly dominated by the spanwise vorticities. The left and right plots also demonstrate the
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Figure 21. Instantaneous Q criterion iso surfaces (Q = 1000s−2) for FP, D454, D603, D603d , from top to
bottom, respectively. Coloured by streamwise vorticity, t0 = 4.00s (left) and t1 = 4.03s (right).

motion of the structures over the period. The interaction of the structures with each other
appears to be relatively low. The number of vortex structures significantly rises with the
application of the dimples. In the two circular dimpled cases, the vortex structures spread
in both streamwise and spanwise directions. However, they are once again under the influ-
ence of spanwise vorticities. The trailing edges of the dimples appear to be typically covered
by spanwise structures. The discrete vortex formation mainly occurs inside the dimple
close to the central location. The interaction between the discrete structures appears to be

--50-10 0 

·' --:.tr .i'_ 
,,c-,,, 

.. 
• ~ ,-1; 

. J ~- J1 

• r.. , ---::.~11 , 
- , 

,: ; , 

.,..,, 



26
Y.K.İLTER

ET
A
L.

augm
ented

particularly
around

thedim
plecentre.Thediam

ond-shaped
dim

plesshow
rel-

atively
sim

ilarbehaviourto
thatofFP

producing
m
uch

few
ervortex

structurescom
pared

to
the

other
tw
o
dim

pled
surfaces.A

m
ore

uniform
distribution

over
the

surface
can

be
observed

throughoutthesurface.W
hilstthenum

berofthesm
all-scalestructuresishigher

than
thatofFP,they

are
generally

in
the

stream
w
ise

direction.A
tthispoint,itshould

be
noted

thatthe
criticalaspectisthe

directionalposition
ofthe

sm
all-scale

structuresrather
than

their
quantity

ofrate
ofoccurrence.Stream

w
ise

structures
m
ay

notbe
significantly

effective
on

the
fictionalresistance.H

ow
ever,spanw

ise
structureslocated

close
to

the
w
all

surfaceshavea
m
uch

m
orenegativeinfluenceon

theskin
friction

perform
ance,w

hich
are

seen
intensively

around
trailing

edgesofcirculardim
ples.

5.3.
Turbulentkinetic

energy
budgetand

spectralcharacteristics

In
this

section,w
e
exam

ine
the

turbulentkinetic
energy

budgetand
the

spectralcontent
ofthe

velocity
signals

collected
from

differentcom
putationalcases

to
revealthe

effectof
the

dim
pleson

the
fluctuating

energy
levelsofthe

tim
e-dependentdata

and
the

turbulent
kineticenergy

(TK
E)transport.Thesam

ecom
putationalcases,w

hich
w
ereinvestigated

in
the

previoussections,w
ere

considered.
In

fluid
dynam

ics,the
term

‘turbulentkinetic
energy

budget’refers
to

the
balance

of
energy

in
a
turbulentflow.In

a
turbulentflow,TK

E
is
constantly

being
transferred

from
the

large-scale
m
otion

ofthe
fluid

to
the

sm
aller-scale

eddies
and

vortices
thatm

ake
up

the
turbulentflow.This

transfer
ofenergy

is
a
criticalfactor

in
determ

ining
the

overall
behaviourofthe

turbulentflow.Forthe
presentchannelflow,the

turbulentkinetic
energy

transportequation
can

be
w
ritten

in
C
artesian

tensornotation
as:

−
u
i u

j ∂u
i

∂xj −
ν
∂u

i

∂xj
∂u

i

∂xj +
ν
d
2

dy 2 (
12 uu )

−
ddy
12 vuu−

1ρ

ddy vp ′=
0

(5)

w
here

the
overbarsindicate

tim
e
averaging.Thisequation

im
pliesthe

balance
ofproduc-

tion
(P),dissipation

(ε),viscous
diffusion

(V
D
),turbulenttransport(T

T
),and

pressure
gradient(PG

),respectively
[43].Figure22

presentsacom
parison

oftheTK
E
budgetterm

s
for

dim
pled

and
flatchannelflow

sobtained
by

the
currentLES

study.The
profilesatthe

dim
ple

centre
(x

/D
=

0)are
plotted

againsty +
on

the
horizontalaxis,w

hich
isthe

non-
dim

ensionalised
distancefrom

thew
all.Theshearstressvalueused

to
estim

atey +
in

these
plotsisthe

stream
w
ise

com
ponentofthe

m
ean

w
allshearstressofthe

bottom
w
all.

In
Figure22,itisclearthattheintroduction

ofthedim
plessignificantlyaffectstheturbu-

lentkinetic
energy

transportphenom
enon.A

n
increase

in
the

turbulence
production

can
be

observed
for

the
dim

pled
cases

w
ithin

the
range

covering
the

viscous
sublayer,buffer

and
logarithm

iclayercom
pared

to
thatofFP.Thepeak

oftheproduction
term

issubstan-
tially

am
plified

for
the

tw
o
circular

dim
pled

cases,particularly
for

D
454 .Supporting

the
previousinvestigationspresented

here,the
location

ofthe
peak

indicating
the

zone
w
here

theturbulenceisintensively
created

isobserved
to

beshifted
aw

ay
from

thew
alldueto

the
som

ew
hatstretched

structureoftheboundary
layer.Thesm

oothersectionalareavariation
rate

ofD
603d

providesa
sim

ilarproduction
behaviourto

thatofFP.The
stretching

ofthe
boundary

layer
also

affects
the

dissipation
profiles.The

decrease
ofthe

verticalgradient
ofthe

tangentialvelocitiesw
ithin

the
viscoussublayergenerally

intensifiesthe
am

ountof

® 

I 

I I 

I 

I 

I 
I 

I 



JOURNAL OF TURBULENCE 27

Figure 22. Comparative TKE budget profiles for the centre of the dimple.

dissipation in this area. For the same reason, the viscous diffusion in the viscous sublayer
is significantly increased for the dimpled cases. D603 and D603d display a similar trend
for the turbulent transport term slightly increasing the small-scale structures in the vis-
cous sublayer and logarithmic layer. The anomalous trend shown by D454 most probably
originated from the wake of the small fluid zone displaying flow separation and reattach-
ment within the first quarter of the dimple. The pressure gradient term for FP exhibits
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Figure 23. Empirical mode decomposition components of the streamwise fluctuating velocity (u′)
signal collected from the location x/D∗ = 0.5, z/D = 0.5 for D454.
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Figure 24. Energy levels of different IMFs for u′ (top left), v′ (top right) and w′ (bottom) (y+FP =
17,D454 = 25,D603 = 28,D603d = 28y+FP = 17,D454 = 25,D603 = 28,D603d = 28).

Figure 25. The original and reconstructed streamwise fluctuating velocity (u′) signals for different com-
putational cases. A closer look at the reconstructed andoriginal signals is given in the third column, black:
original, red: reconstructed fluctuating velocity signal.

@ 

40 

• FP 
0.8 • D454 

& D603 
30 

■ 
0.6 

., D603" 

• 20 ■ 

0.4 ■ 

■ & • & • ., 10 
0.2 ., 

& 
A & 

& ■ • ■ 
., ., 

• • ' 'If . ' .. 0 6 7 0 
2 3 4 5 2 3 4 5 6 7 

IMF Number IMF Number 

5 
■ 

4 ■ 

3 

2 A & 

ii' 

"' 
■ 

• • 0 
2 3 4 5 6 7 

IMF Number 

Q.u._ 0.01 ~ 0.01 ~ 
.tl,RMS = 5.0% 

-0.1~-~--~--~-----~-----~--~--~-~ -0.1 
10 5.2 5.4 

-o'°~0.01~ 0.01a 
-. 6 RMS : 8.7% 

-0.1~-~--~--~-----~-----~--~--~-~ -0.1 
10 5.2 5.4 

0~M0·0
1

~ 
0

·0
1B 

-0.1 ~-~--~--~-----~-----~--~--~-~ -0. 1 
10 5.2 5.4 

o~,lo.01~
0

-0
1B 

-0.1 '---'---'----'----'----'----'---.,__---'----'---' -0.1 
5 

Time (s) 
10 5.2 5.4 

Time (s) 

ll,RMS = 7.2% 

6 RMS = 5.3% 



JO
U
RN

A
L
O
F
TU

RBU
LEN

C
E

31

the
differencesbetw

een
the

energy
levelsofthe

stream
w
ise

velocitiesm
ay

seem
to

be
less

pronounced.Thisissince
the

three-dim
ensionalstructure

ofthe
dim

plesm
ainly

induces
transverse

and
verticalflow

com
ponents.By

focusing
on

the
energy

levelsofthe
different

IM
Fsseparately,itcan

beseen
thatFP

displaysa
significantrisein

IM
F
3.Thism

ay
bedue

to
the

flow
phenom

enon
sim

ilar
to

vortex
shedding

captured
in

the
instantaneous

shots
presented

in
Figure

19.Since
the

introduction
ofthe

dim
ples

breaks
this

flow
structure,

the
am

plitude
ofIM

F
3
isdam

ped
forthe

dim
pled

cases.The
inform

ation
gained

partic-
ularly

from
the

investigation
ofthe

Q
criterion

contours
suggests

thatthe
energy

levels
ofthe

first3
or4

IM
Fsshould

presentan
increase

representing
the

creation
ofthe

sm
all-

scale
structures.H

ow
ever,itcan

be
seen

thatD
603d

show
sequalorlow

eram
plitudesthan

those
ofFP

in
IM

Fs
1
to

3
for

the
stream

w
ise

fluctuations.This
is
partly

in
agreem

ent
w
ith

ourpreviousfinding
thatthesm

all-scalestructuresthatem
erged

in
D
603d

arem
ostly

stream
w
iseoriented

w
hich

inducevelocitiesm
ainly

in
y
and

z
directions.C

onsidering
the

spanw
ise

and
verticalcom

ponentsofthe
fluctuationsin

Figure
25,itm

ay
be

seen
thatthe

orderofthe
rise

in
the

am
plitudesassociated

w
ith

differentcom
putationalcasesisin

line
w
ith

the
am

ountofthe
sm

all-scale
structures

observed
previously

atdifferentcases
and

the
frictionalperform

ance
ofthe

surfaces.O
ne

rem
arkable

feature
ofthe

graphic
is
that

the
energies

ofthe
high-frequency

fluctuations
ofthe

verticalvelocities
are

found
to

be
significantly

higherthan
those

ofthe
spanw

ise
velocities.Forinstance,concerning

IM
F
1,

theincrem
entratio

in
theam

plitude
oftheverticalfluctuationsisabout34

w
ith

respectto
thatofFP

forD
454 ,w

hile
the

energy
ofthe

spanw
ise

fluctuationsshow
sa

4.4
tim

esrise.
Thisim

pliestherelativestrength
oftheverticalfluctuations.Thisissinceboth

stream
w
ise

and
spanw

ise
structures

include
verticalflow

com
ponents

thatsignificantly
am

plify
the

energy
levelsofthe

verticalfluctuations.
H
ence

a
new

velocity
signalw

asgenerated
by

calculating
the

sum
ofthe

firstfourIM
Fs

for
allsignals

thatw
ere

selected
for

spectralinvestigation.For
instance,the

regenerated
stream

w
ise

velocity
signalsfordifferentcasesatx

/D
∗=

0.5,z/D
=

0.5
are

com
paratively

presented
in

Figure
25.Thisisalso

a
rationalapproach

asthe
spectralcontentofan

IM
F

significantly
reducesasthe

num
berofthe

IM
F
risesand

the
investigation

ofthe
very

low
-

frequency
partofthedataby

using
asignalw

ith
alength

of20
sm

ay
resultin

an
inaccurate

representation
ofthespectrum

.O
necan

also
definethem

arginalspectrum
w
hich

contains
the

w
hole

am
ountofenergy

ofthe
signaland

can
be

com
puted

by
an

integration
ofthe

H
ilbertspectrum

overtim
e
asfollow

s:

Sh (f)= ∫
T0
SH

(f,t)dt
(9)

TheH
ilbert-H

uang
m
arginalspectrum

oftheregenerated
signalsofeach

fluctuatingveloc-
ity

com
ponent,w

hich
w
erecom

puted
according

to
theprocedureexplained

above,forthe
location

x
/D

=
0
can

be
seen

in
Figure

26.Itshould
be

noted
here

thatthe
existence

of
energy

ata
frequency

im
pliesthe

likelihood
forsuch

a
w
ave

to
have

appeared
locally.This

isdifferentfrom
Fourierrepresentation

w
heretheenergy

levelata
frequency

indicatesthe
persistence

ofsine
orcosine

w
avesthrough

a
tim

e
span

ofthe
data.

C
oncerning

the
stream

w
ise

velocity
fluctuations,the

existence
ofthe

dim
plesseem

sto
energise

nearly
w
hole

fluctuations
in

the
range

off
>∼

5H
z.FP

displays
clear

peaks
at

around∼
35−

55H
zon

thecentreofthedim
plew

hich
appearsto

beshifted
to

higherfre-
quenciesdue

to
the

dim
ples.The

spectra
ofthe

dim
pled

casespresentan
alm

ostsm
ooth

® 



32 Y. K. İLTER ET AL.

Figure 26. The marginal spectrum of the fluctuating velocity components. (from top to bottom,
u′, v′,w′, respectively) (17 ≤ y+ ≤ 28).

structure up to∼ 35Hz. However, the amplitudes are still higher than that of FP. The plots
also indicate that the energies at very low frequencies decrease to some degree. This indi-
cates a transfer of energy from the large, coherent structures to the smaller ones. This
conflicts with the finding of e.g. Tay et al. [7] who mentioned that the energy was retained
at the larger scales and a greater streamwise coherence was obtained with the application
of the dimples. Consequently, they observed a shift of the power spectra of the streamwise
fluctuations to the lower frequencies. The current study demonstrates that although the
dimples introduce streamwise vorticity and strong spanwise flow components they do not
stabilise the flow, on the contrary, they create smaller flow scales that are more prone to
viscous dissipation. According to the three velocity spectra obtained from the locations on
the dimpled surface, the likelihood of higher frequency waves greatly increases particu-
larly for the location corresponding to the centre of the dimple. From the mean wall shear
stress distributions, we know that the friction significantly reduces around the entrance of
the dimple and gradually rises towards the trailing edges. The streamwise velocity spec-
tra presented do not display significant variations with respect to the signal location. This
prevents comments on the effect of the instantaneous interaction of the boundary layer
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• The flow direction in high-speed regions close to the wall is also a relatively effective
physical property on the frictional resistance. If a high-momentum flow portion can
be orientated to the spanwise direction, even if high shear stress levels exist on the
fluid adjacent to the wall, a part of them will be transferred to the spanwise flow
component, which will help decrease the skin friction in the streamwise direction.

• For the Reynolds number examined in the study, the dimples did not reduce the
high-frequency content of the flow and did not provide a more stable flow topol-
ogy, contrary to what is pointed out in the open literature. The instantaneous flow
topologies as well as the spectral investigations exposed a substantial increase in the
high-frequency small-scale structure production, and a large rise in the fluctuation
almost throughout the spectral span was recorded.

• Investigation of the time-averaged and instantaneous spanwise vorticities revealed an
inverse relationship between the skin friction reduction performance and the level
of the spanwise vorticity as well as the quantity of the smaller-scale structures in the
vicinity of the wall. The flow was least disturbed by the diamond-shaped dimples,
which resulted in the best skin friction reduction obtained.

• With the introduction of the dimples, strong counter-rotating pairs of alternating
streamwise vortex zones were generated. However, contrary to the information given
in the associated literature, the increase in the level of streamwise vorticities did not
enhance skin friction reduction.

• The results suggest that future optimisation studies should consider the sectional
area variation of the dimpled surface as the primary parameter by taking also the
freestream velocity into account. An asymmetrical surface geometry in the xz plane
may also be desirable to avoid the excessive wall shear stress increment towards the
trailing edge as far as possible, which was also investigated by Ng et al. [19]. The side
edges should be optimised such that a sufficient spanwise flow component that affects
the middle zone of the dimple is ensured.

The authors believe the present study offers essential information to understand the
physics of the boundary layer flow phenomenon on the dimpled surfaces to assist the opti-
misation studies for reducing skin friction by means of dimples and provides a critical
contribution to the literature with extensive computational simulations. Future works will
involve experimental pressure measurement and flow visualisation studies in a fully turbu-
lent flow channel facility of the University of Strathclyde with the exact physical conditions
considered in this study. The experimental studies with large dimpled plates, on the other
hand, will be conducted in the cavitation tunnel (ITUKAT) of Istanbul Technical Univer-
sity with high flow speeds to further examine the effect of the Reynolds number on drag
reduction. In this way, the highly likely effect of the boundary layer thickness, which was
constant in the present study due to the fixed height of the channel considered, on the flow
field will also be investigated by varying the thicknesses with the use of sandpapers at the
inflow.
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