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ABSTRACT

A new algorithm based on the convolution finite element method (CFEM) is proposed for the nonlinear 
wave propagation in elastic media. The formulation is developed in the context of the total Lagrangian 
framework, encompassing contributions due to both geometrical and material nonlinearities. As a 
basis, a counterpart of equations of motion–namely, the alternative field equations– is first established. 
The satisfaction of the alternative field equations is then realized in a weak sense. Next, the Newton- 
Raphson procedure and the consistent tangential matrix are applied to the weak formulation, where 
the CFEM is used as the linear solver in each iteration. Finally, several examples are carried out to 
examine the theoretical aspects and the feasibility of the proposed algorithm. In particular, problems 
of free vibration of Neo-Hookean and Saint Venant-Kirchhoff plates are explored. Also, a cantilever 
beam of the Neo-Hookean material is simulated for the case of forced vibrations. Conspicuously, the 
new solution procedure is a higher-order method in the sense that, in contrast to the existing time step 
methods, the accurate solution is obtained when the time-step size is increased. 

Keywords convolution finite element method, initial boundary value problems, nonlinear elastodynamics, conservation 
of energy, conservation of angular momentum 

1 Introduction 

It is well-understood that, in general, the Newmark family of algorithms falls short of satisfying the energy identity and 
conservation of angular momentum in the nonlinear elastodynamics and nonlinear dynamics of rigid bodies. In more 
detail, as demonstrated in [1], when there is a negligible error in the Newton Raphson method, the energy at each step 
varies in the following form (colored lines) [1]: 
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Figure 1: Failure of the average acceleration method in conserving energy of free vibration of nonlinear elastodynamics
problems [1].

The algorithms addressing this non-conserving behavior belong to one of three categories [2]: 1) algorithmic damping20

methods 2) approaches through which conservation laws are imposed as additional restrictions to the solution procedure21

3) algorithmic energy-momentum conserving approaches.22

Algorithmic damping approaches have been employed to solve nonlinear problems since they cut off the contribution of23

higher modes by introducing controllable algorithmic damping in the linear regime. This desirable property excludes24

the spurious part of the solution, which may improve the stability of the method in the nonlinear analysis. However, as25

pointed out in [2], in such scenarios, the energy dissipation is not ensured for all parameters in the nonlinear regime.26

The conservation laws are enforced as additional restrictions in the second category. The central methodology to27

achieve this goal is the use of the method of Lagrange multipliers. This method was introduced as an energy-conserving28

algorithm (i.e., the discrete form of the energy identity is satisfied) in [3]. Nevertheless, [4], based on numerical29

observations, concluded:" constraint conservation of energy alone does not guarantee a stable time integration in30

nonlinear dynamics." Consequently, with the help of Langrage-multipliers, the authors of that study generalized the31

method by enforcing the conservation of linear and angular momentum in addition to the energy conservation. Although,32

as demonstrated numerically, the algorithm works suitably, the process is accompanied by high computational cost.33

In the third class, often through variational integrators, the conservation of energy and momentums is achieved34

algorithmically. Variational integrators are a category of numerical integration used in the Hamiltonian mechanics35

that may conserve characteristics (constants) of the motion (see [5]). According to a statement in [6], symplectic36

algorithms—a category of variational integrators that conserves two-form in the phase space— with constant time step37

fails to exactly conserve the energy. Although for some computational purposes, the energy at each time step in the38

symplectic methods may be satisfactory, this is not the case in general [7]. Hence, a two-steps finite difference approach39

has been proposed in [7]. In the first step, by applying the midpoint rule, a symplectic integrator, exact conservation of40

angular and linear momentum is satisfied. On the other hand, the energy conservation is met by solving a nonlinear41

equation by which stress at the midpoint is written in terms of initial and end times (second step). It has been shown42

that the equation has an exact solution for Saint Venant-Kirchhoff materials, giving the stress of midpoint as the average43

values of the initial and the endpoint at each time-step.44

However, it would be advantageous to develop a method that conserves constants of motion in which there is no45

need to solve an extra equation. With this goal in mind, [8] introduced a discrete-time derivative, proposing a similar46

second-order accurate approach that satisfies invariants of motion for general hyperelastic materials. The main idea47

behind the energy-conserving methods is defining a consistent discrete form of stress where it precisely resembles48

the time rate of change of potential energy. Also, as reported in [9], the technique developed initially in [7] neglects49

the coupling of the weak form and the above-mentioned nonlinear equations. This fact may result in divergence of50

the method [9]. Hence, in [9], the original algorithm has been improved by considering the coupling effect. Another51

progress in that vein, similar to linear elastodynamics, is developing algorithms damping out the spurious part of the52

solution in the nonlinear regimes. The noticeable studies in this regard can be found in the comprehensive works53

[10, 11], where the exclusion of high frequencies has been achieved by introducing dissipative terms in the original54

energy-momentum conserving algorithms in [12, 13] and [8]. It should be mentioned that, in effect, there is a family of55

energy-momentum conserving algorithms since the definition of the new form of stress used in this category is not56

unique. This fact has been shown in [14], concluding that" there are indeed infinite ways of obtaining second order57

accurate, energy and momentum preserving methods." In addition to these studies, in [15], a combined two-step finite58

difference method has been unutilized for conservation of energy and momenta.59

The above-mentioned methods are based on finite difference methods. On the other hand, [16] developed an energy-60

momentum conserving space-time FEM based on Hamiltonian’s principle. In particular, the dynamical system resulting61

from the spatial discretization of elastodynamics problems has been written as a system of first-order ODEs, where62

a time finite element approach has been introduced to solve these equations. While the time finite element method63
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conserves energy theoretically, special attention is required for numerical implementation since the formulation involves64

integrals that cannot be evaluated exactly. Accordingly, they supplemented the method with a criterion fulfilling the65

conservation of energy. Also, for the linear shape functions, the preservation of angular momentum further imposes66

a stronger restriction in the choice of numerical quadrature. In continuation of [16], the authors have shown that a67

higher-order accuracy could be obtained through their method [17].68

Overall, in most of the aforementioned studies, it has been attempted to propose new methods recovering unconditional69

stability and higher-order accuracy present in nonlinear problems. The use of the finite difference methods leads to70

define either new parameters or a new definition of stress in the discrete format. For example, in the third category, the71

key point is to define a new form of stress to secure satisfaction of the energy and angular momentum, leading to a72

new set of nonlinear equations compared to when using conventional time integration methods such as the trapezoidal73

method. For instance, in contrast to the Newmark method, as we shall see in the numerical section, special attention74

should be paid to the energy-momentum conservation methods when the denominator of the corresponding equations75

goes to zero. Hence, it is desirable to introduce a method that preserves the aforementioned constants while following76

simple steps similar to those encountered when using traditional time integration methods.77

Furthermore, although the conservation of energy and angular momentum are sufficient criteria in developing a stable78

method, accuracy is yet another crucial factor to be considered. As mentioned in [14], the family of energy-momentum79

conserving methods consisting of the discrete derivative combined with the mid-point rule is at most second-order80

accurate. Hence, analogous to the linear problems, developing methods capable of capturing the solution when larger81

time steps are used is of great importance in the nonlinear regime. Accordingly, it is advantageous to enrich the literature82

by introducing a method containing the following attributes:83

a. The form of resulting nonlinear equations is similar to those obtained by applying standard time integration84

methods.85

b. The conservation of the invariants of motion is achievable provided that the nonlinear solver converges.86

c. Higher accuracy is systematically achievable provided that the nonlinear solver converges.87

d. The computational cost of the method is comparable with that of the existing methods.88

In this contribution, we aim to establish a new approach that satisfies the above items. The method is based on an89

alternative formulation and the corresponding integral form introduced in [18]. This framework has received less90

attention than other methods since, at first glance, it seems to be a more complicated formulation than original equations91

of motion. However, in [19], by introducing the convolution finite element method (CFEM), it has been shown that this92

framework inherits some numerical features that cannot be found in the classical numerical methods:93

1 Although it stems from space-time coupled variational form, its implementation is similar to classical time94

integration methods.95

2 Higher accuracy for any given time interval is achievable.96

3 Provided that a sufficient number of terms is considered, it uniformly converges to the exact solution in any97

given time interval.98

4 Time-space discretization to increase the accuracy is not required.99

5 Algorithm’s computational cost is justifiable if compared to the classical methods.100

Also, it has been demonstrated in a number of works that the framework can be developed for various types of physical101

processes (see [20, 21, 22, 23], among others). Recently, based on the alternative form and similar approach established102

in [19], a nonlinear solver has been developed for nonlinear dynamical systems in [24]. These desired characteristics103

motivated us to develop a dynamic nonlinear finite element scheme for nonlinear elastodynamics involving geometrical104

and material nonlinearities. The present study is organized as follows. First, alternative field equations pertaining to the105

nonlinear governing equations of motion in the material coordinate system is obtained. The satisfaction of the governing106

equations is assured through weak formulation in terms of convolution product. Subsequently, the Newton-Raphson107

method equipped with the CFEM are applied as the linear solver is employed to solve the nonlinear integral forms. As a108

result, in each step of the iteration, the algorithm inherits the characteristics 1-5 mentioned earlier. Next, the properties109

of the method are investigated in section 5. In particular, we show that the method preserves constants of motion in110

an adaptive manner. That is, by increasing the number of time-wise terms, the satisfaction of those identities is met111

regardless of the number of time steps. Finally, to show the plausibility of the method, we shall consider two examples112

in section 6: 1. free vibration of Neo-Hookean and Saint Venant–Kirchhoff plates to manifest how the new method113

conserves energy and obtains accurate solution when an adequate number of time-wise terms is assumed; 2. forced114

vibration of Neo-Hookean cantilever beam undergoing large deformation.115
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2 Problem Statement116

In this study, we develop a theory based on the total Lagrangian formulation. Furthermore, material and spatial117

coordinate systems are shown by uppercase and lowercase letters, respectively. Also, the superscript zero is used to118

distinguish the reference configurations from the current one. For instance, the domain of the problem is denoted by B0119

and B in the reference and current configurations, respectively. The domain B is assumed to be an open and Lipschitz120

subset of 3D Euclidean space with the boundary ∂B. Let ∂B0
ui

and ∂B0
ti denote open subsets of ∂B0 (i = 1,2,3) with121

∂B0
ui
∩ ∂B0

ti = /0 and ∂B0
ui
∪ ∂B0

ti = ∂B. Also, B, ∂B0
ui

, and ∂B0
ti denote, respectively, closure of B, ∂B0

ui
, and122

∂B0
ti . Then, the motion of the nonlinear hyperelastic body is governed by the following field equations and the initial123

and boundary conditions:124

1. Equations of Motion:125

126

ρ0üi(X, t) = PiJ,J(X, t)+ρ0bi(X, t), PiJFjJ = PjJFiJ on B0× (0,T total). (2.1)127

2. Kinematic Equations:128

129

EIJ =
1
2
(CIJ− IIJ) =

1
2
(FiIFiJ− IIJ) = on B0× (0,T total). (2.2)130

3. Constitutive Equations:131

132

SIJ = 2ρ0
∂ψ(C)

∂CIJ
on B0× (0,T total). (2.3)133

4. Boundary Conditions:134

135

ui = Gi(X, t) on ∂B0
ui
× (0,T total),

PiJNJ = Hi(X, t) on ∂B0
ti × (0,T total).

(2.4)136

5. Initial Conditions:137

138

ui(X,0) = u0
i (X) on B0,

u̇i(X,0) = u̇0
i (X) on B0.

(2.5)139

in which140

FiJ = uiJ(X, t)+δiJ ,J = det F, ρ0 = J ρ,PiJ = J σi jF−1
J j , SIJ = F−1

I j PjJ , (2.6)141

where the superimpostion of material and spatial coordinate systems has been assumed; P, σσσ , ρ are nominal stress,142

Cauchy stress tensor, and mass density, respectively (for more details, see [25, 26]).143

Next, we define the ‘strong solution’ of the initial boundary value problem. In doing so, we have the following regularity144

conditions:145

Definition 1. An ordered array [u,E,P] is called an admissible process on B0× (0,T total) if146

ui(X, t) ∈C1,2,EIJ(X, t) ∈C0,0,PiJ(X, t) ∈C1,0, (2.7)147

where smoothness of a tensor function f is expressed by CM,N: f ∈CM,N , in which f is a function of position and time148

defined on B0× (0,T ), if and only if the function f and all spatial and temporal derivatives up to, respectively, orders149

M and N exist and are continuous.150

Definition 2. An admissible process [u,E,P] is called a strong solution of the initial boundary value problem (IBVP) if151

(2.1), (2.2), (2.3), (2.4), and (2.5) hold.152

By using the Laplace transform, it can be shown that the following equations are equivalent to the equations of motion153

and the initial conditions:154

ρ0ui(X, t) = [t ∗ (PiJ,J +ρ0bi)] (X, t)+ρ0u0
i (X)+ tρ0u̇0

i (X), PiJFjJ = PjJFiJ on B0× (0,T total), (2.8)155

in which the symbol [h∗g] (X, t), for given functions h(X, t) and g(X, t), denotes the convolution product in the sense156

of157

[ f ∗g](X, t) =
t∫

0

f (X, t− τ)g(X,τ)dτ. (2.9)158
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Also, the following notation is used in the sequel:159

[ f ∗g∗h](X, t) =
t∫

0

 λ∫
0

f (X,λ − τ)g(X,τ)dτ

h(X, t−λ )dλ . (2.10)160

Hence, one can conclude:161

Theorem 1. An ordered array [u,E,P] is a strong solution of the IBVP if and only if (2.2), (2.3), (2.4) , and (2.8) hold.162

Since the alternative governing equations (2.8) consists of geometrical and materials nonlineariy, a nonlinear solver has163

to be employed to deal with the problem. Thus, the modified Newton-Raphson procedure is implemented. To this end,164

we partition the total time T total into 0 = T0 < T1 < ... < TNs = T total = Ns(1−γ)T , and solve the problem consecutively,165

0 < γ < 1 is a parameter to circumvent non-convergence issue stemming from the spatial-temporal shape functions used166

in the sequel, and Ns denotes the number of time-steps. Now, to obtain the solution for t = Tpa+1, pa = 0, ...Ns−1, the167

following terminologies are utilized:168

upa
i (X, t) = upa

i (X, t +Tpa), Ipa
i (X, t) = ui(X,Tpa)+ tu̇i(X,Tpa), bPa

i (X, t) = bi(X, t +Tpa),

G pa
i (X, t) = Gi(X, t +Tpa), H pa

i (X, t) = Hi(X, t +Tpa), 06 t 6 T
(2.11)169

where uTpa
i (X) and u̇Tpa(X) denote the solutions of the previous step which are used as the initial data for the current170

step. It should be emphasized that the time-step ∆t utilized in time integration methods is ∆t = (1− γ)T in the new171

approach. In what follows, without loss of generality, we develop the formulation to obtain the solution at t = Tpa+1.172

3 Convolution Weak Formulation173

The procedure of obtaining a weak solution is elaborated in this section. For completeness, we reiterate some statements174

from [19]:175

Definition 3. Denote L2(0,T ;H1(B0)) as a Hilbert space with inner product176

T∫
0

(u(t),v(t))dt, (3.1)177

whose elements are in the Hilbert space H1(B0) for 0≤ t ≤ T and178

T∫
0

‖u(t)‖2dt < ∞. (3.2)179

Additionally, in (3.1) and (3.2), (,) and ‖‖ represent the inner product and norm of H(B0), respectively.180

Now, we have the following statement:181

Lemma 1. [19] Let ϑ be an element of L2(0,T ;H1(B0)), and the following holds182

∫
B0

ω(X)dV
T∫

0

ϑ(X,T − τ)cos(
jπτ

T
)dτ = 0, j = 0, ...,∞, (3.3)183

for every ω ∈ H1(B0). Then184

ϑ = 0 on B0× [0,T ], (3.4)185

in the sense of186 ∫
B0

T∫
0

ϑ
2(X, t)dtdB = 0. (3.5)187

The statement in Lemma 1 can be written in terms of all weight functions w ∈ L2(0,T ;H1(B0)):188
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Remark 1. [19] Let ϑ ∈ L2(0,T ;H1(B0)) such that189 ∫
B0

[ϑ ∗w](X,T )dB = 0, (3.6)190

for every w ∈ L2(0,T ;H1(B0)). Then ϑ = 0 in the sense of (3.5).191

It is worth noting that conceptually one can define a weak formulation corresponding to (2.8) where either the classical192

dot product or convolution product in time is utilized. However, for the case of spatial-temporal shape functions utilized193

in what follows, there is no difference between two products.194

Next, let us define the solution and variation spaces:195

Definition 4. Si and Vi stand for, respectively, the solution space and the variation space whose elements have the196

following properties:197

Si = {upa
i ∈ L2(0,T ;H1(B0))| upa

i (X, t) = G pa
i (X, t) on ∂B0

ui
× (0,T )}, (3.7)198

199

Vi = {wi ∈ L2(0,T ;H1(B0))|wi = 0 on ∂B0
ui
× (0,T )}, i = 1,2,3. (3.8)200

Now, considering the above statements, applying the divergence theorem, one can obtain the following integral form201

from (2.8):202 ∫
B0

ρ0
[
upa

i ∗wi
]
(X,T )dB+

∫
B0

[t ∗FiQ(X+upa)SQJ(X+upa)∗wi,J ] (X,T )dB =

3

∑
i=1

∫
∂B0

ti

[
t ∗H pa

i ∗wi
]
(X,T )dΓ+

∫
B0

[
t ∗ρ0bpa

i ∗wi
]
(X,T )dB+

∫
B0

ρ0

[(
uTpa

i + tu̇Tpa
i

)
∗wi

]
(X,T )dB,

(3.9)203

in which wi, an element of Vi, represents weighting functions. It is noted that the convolution in time is associative, and204

therefore there is no need to indicate the order of time convolutions under the space integrals. In view of the Remark205

1, satisfaction of (3.9) for all weight functions wi ∈ Vi results in satisfaction of alternative governing equations in the206

sense of (3.5). Hence, we define:207

Definition 5. ui(X, t), and element of Si, is called a weak solution corresponding to the strong solution if (3.9) is true208

for all wi ∈ Vi.209

As can be seen, in contrast to classical methods, the velocity and acceleration fields are no longer present in the210

formulation. Moreover, initial conditions need no special attention since they are satisfied as forcing terms.211

3.1 Spatial and Temporal Expansions212

Now, to obtain the solution of (3.9), we employ the convolution formulation introduced in [19]. To this end, we seek the213

solution of (3.9) in the finite solution space (i.e., Sh,N) with the corresponding finite variation space (i.e., Vh,N) defined214

as [19]:215

Sh,N
i = Sh,X

i ⊗Fh,t
N ,

Vh,N = Vh,X
i ⊗Fh,t

N , (X, t) ∈B0× (0,T )
(3.10)216

where Sh,X
i and Vh,X

i denote the following finite dimensional subsets of H1(B0):217

Sh,X
i = { f (X)| f (X) ∈ H1(B0)},

Vh,X
i = {g(X)|g(X) ∈ H1(B0), g(X) = 0 on ∂B0

ui
},

(3.11)218

and219

Fh,t
N =

{
1, cos

πt
T
, ...,cos

(N−1)πt
T

}
. (3.12)220

Now, to establish a Galerkin formulation, we consider the solution as:221

upah

i (X, t) = V pah

i (X, t)+Gi
pah

(X, t)+ Ipa
i (X, t), (3.13)222
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where223

Gi
pah

(X, t) = G pa
i (X, t)− Ipa

i (X, t), on ∂B0
ui
× (0,T ),

Gi
pah

(X,0) = Ġi
pah

(X,0) = 0 on B0.

(3.14)224

Additionally, to shorten equations, we define:225

X pah

i (X, t) = Xi + G i
pah

(X, t)+ Ipa
i (X, t) (3.15)226

Thus, the equation (3.9) can be alternatively written as:227 ∫
B0

ρ0

[
V pah

i ∗wi

]
(X,T )dB+

∫
B0

ρ0

[
G

pah

i ∗wi

]
(X,T )dB

+
∫

B0

[
t ∗FiQ(XXX

pah
+VVV pah

)SQJ(XXX pah
+VVV pah

)∗wi,J

]
(X,T )dB

−
3

∑
i=1

∫
∂B0

ti

[
t ∗H pa

i ∗wi
]
(X,T )dΓ−

∫
B0

[
t ∗ρbpa

i ∗wi
]
(X,T )dB = 0,

(3.16)228

with229

V pah

i (X, t) = 0 on ∂B0
ui
× (0,T ),

V pah

i (X,0) = V̇ pah

i (X,0) = 0 on B0.
(3.17)230

To obtain the solution for (3.16), we write:231

VVV pah
(X, t) =

N−1

∑
P=0

ndo f

∑
j=1

∑
λ∈η−ηg j

cPiλ ψλ (X)cos(
Pπt
T

)e j, (3.18)232

in which η = {1,2, ...,nnp} stands for the set of all nodal points defining geometry of the problem; ηg j indicates the set233

of all nodal points on the boundary ∂B0
u j

; ndo f represents number of degrees of freedom which could be 1, 2, or 3; ψλ ’s234

show Lagrangian shape functions; ei, denotes unit vectors of Cartesian coordinate system in the current configuration,235

and cP jλ ’s are unknown constant that are determined by satisfaction of (3.16). Analogous to the basis function utilized236

in (3.18), the test function w(X, t) is set as:237

w(X, t) =
N−1

∑
Q=0

ndo f

∑
i=1

∑
β∈η−ηgi

dQiβ ψβ (X)cos(
Qπt
T

)ei, (3.19)238

where diQβ ’s are arbitrary constants.239

4 Newton-Raphson Procedure240

To proceed, the modified Newton-Raphson procedure is implemented in this section. In doing so, we define:241

VVV pah(m+1)(x, t) =VVV pah(m)(x, t)+∆VVV pah(m)(x, t), m = 0, ...,L −1,

VVV pah(0)(x, t) = 0,
(4.1)242

in that243

VVV pah(m)(X, t) =
N−1

∑
P=0

ndo f

∑
j=1

∑
λ∈η−ηg j

c(m)
P jλ ψλ (X)cos(

Pπt
T

)e j,

c(0)P jλ = 0,

(4.2)244

and245

∆VVV pah(m)(x, t) =
N−1

∑
P=0

ndo f

∑
j=1

∑
λ∈η−ηg j

∆c(m)
P jλ ψλ (X)cos(

Pπt
T

)e j. (4.3)246
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∆VVV pah(m), m = 0, ...,L − 1, denotes the mth displacement increment added to the mth iteration, VVV pah(m). Also, L247

indicates the total number of iterations in each time-step. Now, by performing a linearization, after some manipulations,248

one can write for mth iteration:249 ∫
B0

ρ0

[
∆V

pah(m)
i ∗wi

]
(X,T )dB

+
∫

B0

[
t ∗D(m)FiQ(XXX

pah
(X,T ))SQJ(XXX

pah
(X,T ))∗wi,J

]
(X,T )dB

+
∫

B0

[
t ∗FiQ(XXX

pah
(X,T ))D(m)SQJ(XXX

pah
(X,T ))∗wi,J

]
(X,T )dB

+ R pa(m)(w(X, t))
∣∣∣
t=T

= 0,

(4.4)250

where251

R pa(m)(w(x, t))
∣∣∣
t=T

=
∫

B0

ρ0

[
V

pah(m)
i ∗wi

]
(X,T )dB

∫
B0

[
t ∗FiI(XXX

pah
+VVV pah(m)

)SIJ(XXX
pah

+VVV pah(m)
)∗wi,J

]
(X,T )dB

−
∫

∂B0
ti

[
t ∗H pa

i ∗wi
]
(X,T )dΓ−

∫
B0

[
t ∗ρbpa

i ∗wi
]
(X,T )dB,

D(m)�αβ (XXX
pah

(X,T )) =
d�αβ (ε∆VVV (m)+XXX pah

(X,T ))
dε

∣∣∣∣∣
ε=0

,

(4.5)252

�αβ (α,β = 1,2,3) denotes the components of a second-order tensor. It should be mentioned that while t = T has253

been utilized in (4.5)2 for XXX pah
, any time in the range of 0 6 t 6 T may be used provided that the corresponding254

Newton-Raphson procedure converges. Clearly, the above equation is a linear integral form in terms of ∆VVV pah(m). In255

particular, a classical practice shows that equation (4.4) can be simplified as:256 ∫
B0

ρ0

[
∆V

(m)
i ∗wi

]
(X,T )dB+

∫
B0

[
t ∗∆V

(m)
i,Q SQJ(XXX

pah
(X,T ))∗wi,J

]
(X,T )dB

+2
∫

B0

[
t ∗FiI(XXX

pah
(X,T ))DIJKL∆V

(m)
j,K FjL(XXX

pah
(X,T ))∗wi,J

]
(X,T )dB

+ R pa(m)(w(X, t))
∣∣∣
t=T

= 0,

(4.6)257

with258

DIJKL =
∂SIJ

∂CKL

∣∣∣∣
C=FT (XXX pah

(X,T ))F(XXX pah
(X,T ))

, (4.7)259

and the fourth-order tensor DIJKL has both minor and major symmetries. Now, employing (4.3) and (3.19) in (4.6),260

after some manipulations, we can write:261

N−1

∑
P=0

ndo f

∑
j=1

∑
λ∈η−ηg j

FPQ∆c(m)
P jλ (ρ0ψλ (X)e j,ψβ (X)ei)B +

N−1

∑
P=0

ndo f

∑
j=1

∑
λ∈η−ηg j

APQ∆c(m)
P jλ a(ψλ e j,ψβ (X)ei)S

+
N−1

∑
P=0

ndo f

∑
j=1

∑
λ∈η−ηg j

2APQ∆c(m)
P jλ a(ψλ e j,ψβ ei)D + R pa(m)(w(X, t))

∣∣∣
t=T

= 0,

(i = 1, ..,ndo f ),(Q = 0, ...,N−1), (β ∈ η−ηgi),

(4.8)262

where the following notations were used:263

(u,v)B =
∫

B0

ρ0uividB, a(u,v)S =
∫

B0

ui,I ŜIJvi,JdB, a(u,v)D =
∫

B0

F̂iIui,JDIJKLF̂jKv j,LdB,

F̂ = F(XXX pah
(X,T )), Ŝ = S(XXX pah

(X,T )),

(4.9)264
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265

APQ = t ∗ cos(
Pπt

T
)∗ cos(

Qπt
T

)

∣∣∣∣
t=T

=



T 3

P2π2 P 6= 0,Q = 0
T 3

Q2π2 P = 0, Q 6= 0
(−1)P+1 T 3

2P2π2 P = Q 6= 0
T 3

6 P = Q = 0
0 otherwise

,

FPQ = cos(
Pπt

T
)∗ cos(

Qπt
T

)

∣∣∣∣
t=T

=

 (−1)P T
2 P = Q 6= 0

T P = Q = 0
0 otherwise

.

266

Having solved (4.8), one can obtain VVV pah(m+1)(x, t) from (4.1)1.267

5 Properties of Solution Procedure268

The convolution solver inherits the desirable characteristics of time-space decoupled and coupled finite element methods.269

In other words, as explained in [19], this solver follows the same straightforward steps relevant to time integration270

methods while stemming from a coupled space-time integral. Herein by saying the same ‘step,’ we mean in the271

convolution solver, analogous to the time integration methods, the spatial discretization can be initially done and272

then the associated nonlinear ODEs are solved. To explain properties of the new method, we first explain some facts273

regarding semi-discrete equations of motion obtained from (2.1). The formulation is represented only for one time274

sub-interval which should be applied consecutively with updated initial data and external force to find the solution for275

any desired time interval. In doing so, after spatial discretization, one obtains the following evolutionary nonlinear276

ODEs and initial conditions:277

[M]
[
Ü(t)

]
+[K([U(t)])] = [f(t)] , 06 t 6 T

[U(0)] = [U0] ,
[
U̇(0)

]
=
[
U̇0
]
,

(5.1)278

5.1 New Method279

Considering (5.1), the corresponding alternative governing equations read:280

[M] [V(t)]+ t ∗
[
K([V(t)]+ [U0]+ t

[
U̇0
]
)
]
− t ∗ [f(t)] = [0] , 06 t 6 T (5.2)281

where282

[V(t)] = [U(t)]− [U0]− t
[
U̇0
]
. (5.3)283

The set of nonlinear ODEs (5.2) is equivalent to:284 (
[M] [V(t)]+ t ∗

[
K([V(t)]+ [U0]+ t

[
U̇0
]
)
]
− t ∗ [f(t)]

)
∗ cos(

Qπt
T

)

∣∣∣∣
t=T

= [0] , Q = 0, ...,∞, (5.4)285

in the sense that the following norm is vanished:∣∣[M] [V(t)]+ t ∗
[
K([V(t)]+ [U0]+ t

[
U̇0
]
)
]
− t ∗ [f(t)]

∣∣2 = 0. (5.5)

In the numerical implementations, the notion of inifinity in the above equation is realized by considering a large number,286

say N− 1. Now, following the similar manupulations represented in [24], one can find the mth iteration, which is287

equivalent to (4.4), as follows:288

[M]

[
N−1

∑
P=0

(
∆[c](m)

P

)
cos
(

Pπt
T

)]
∗ cos

(
Qπt
T

)∣∣∣∣∣
t=T

+ t ∗ [DK] ·

[
N−1

∑
P=0

(
∆[c](m)

P

)
cos
(

Pπt
T

)]
∗ cos

(
Qπt
T

) ∣∣∣∣∣
t=T

+

[R](m,Q) = [0] , Q = 0, ...,N−1.
(5.6)289

with:290

[R](m,Q) =
(
[M] [V(t)](m)+ t ∗

[
K([V(t)](m)+[U0]+ t

[
U̇0
]
)
]
− t ∗ [f(t)]

)
∗ cos

(
Qπt
T

)∣∣∣∣
t=T

, (5.7)291
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in which [DK] represents the consistent tangent matrix. The above equations can be written in the matrix form as:292


F00[M]+A00[DK] A01[DK] · · ·

A01[DK] F11[M]+A11[DK] 0 · · ·
...

...
. . .

...
A0r[DK] 0 · · · Frr[M]+Arr[DK] 0

...
...

...
. . .

· · ·

A0N [DK]
0
...
0





[∆c](m)
0

[∆c](m)
1

...
[∆c](m)

r
...


=−



[R](m,0)

[R](m,1)

...
[R](m,r)

...


,

(5.8)293

where the left hand side is an arrowhead block matrix. This matrix form paves the way for considering an arbitrary294

number of time-wise terms while maintaining the computational cost affordable. More specifically, to obtain the inverse295

of the large matrix given in (5.8), one can write [∆c](m)
r ,r = 1, ...N−1, in terms of [∆c](m)

0 , calculating [∆c](m)
0 from the296

first set of equations. Then, the other [∆c](m)
r ,r = 1, ...N−1, can be computed by knowing [∆c](m)

0 . Apparently, this297

procedure is suitbale for paralell programming as most of the calculations are performed indepentenly. Moreover, based298

on previous explanations, the linear solver is similar to time integration methods while, as analyzed in [19], achieving299

accurate solution for any time span.300

The new solution procedure has three parameters: 1) number of time-wise terms, N 2) number of time-steps, Ns 3) the301

parameter, γ , 0 < γ < 1. As mentioned earlier, the time-step in this method is ∆t = (1− γ)T . Hence, in this method302

u(x,s∆t), u̇(x,s∆t) (s = 0, ...,Ns−1) are used as initial values for (s+1)th step. It is observed that for the same ∆t the303

larger T , the lesser γ needs to be selected. It should be mentioned that it is required to define γ in this method since,304

regardless of the choice of N, the resulting solution does not converge to the exact values at t = T ( see [19]). The main305

steps of the new solution procedure have been represented in the algorithms 1 & 2. In these algorithms u0
FEM , v0

FEM ,306

ub
FEM , tttb

FEM , and fFEM , respectively, denote the contribution due to initial displacement, initial velocity, displacement307

boundary conditions, traction boundary conditions, and body forces.308

The evaluation of residuals is a significant step in this method. As can be seen, contrary to classical forms, the residuals309

in this approach involve both spatial and temporal integrals. In this respect, quadrature methods, e.g., Gauss-Legendre,310

can be employed to deal with such integrals. However, given that the Newton-Raphson approach converges, for large311

values of time step T , evaluating the integrals with quadrature methods could be an uphill task. But, this problem can be312

efficiently alleviated by the method initially introduced in [27]. The temporal integrals of the residuals has the following313

form:314

T∫
0

f (t)cos(ωt)dt. (5.9)315

This type of integrals can be approximated by using [28]:316

1∫
−1

f (t)eiωtdt ≈
(

π

2ω

)1/2
1∫
−1

f (x)
r

∑
κ=1

(2κ +1)iκ J
κ+ 1

2
(ω)Pκ(t)dt, (5.10)317

or318

1∫
−1

f (t)cos(ωt)dt =
(

π

2ω

)1/2
1∫
−1

f (t)

[r/2]
∑

κ=1
(2κ +1)(−1)κ J2κ+ 1

2
(ω)P2κ(t)dt, (5.11)319

in which Jα and Pα denote Bessel functions of the first kind of order α and Legendre functions of order α , respectively.320

Now, the right-hand-side of (5.10) and (5.11) can be calculated by applying r-points Gaussian quadrature rule, where it321

is exact when f (t) is a polynomial of order r [28]. The merit of (5.10) (or (5.11)) is that the major part of computation322

for this category of problems is performed and saved once for all computations, reducing the amount of calculations323

considerably. As another approach, one can also approximate the Fourier cosine expansion of the corresponding324

integrand with the Fast Fourier Transform (FFT) algorithm. Having found the Fourier cosine expansion, one can325

straightforwardly evaluate such integrals with the aid of (4.9)3. It should be noticed that the larger T , the more sample326

points for FFT algorithm are required.327
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328

Algorithm 1: Nonlinear Dynamic Finite Element Scheme

Define N, Ns, γ , tolerance, and T total ;
T ← T total

Ns(1−γ) ;
Calculate [AAA ] , [FFF ] from (4.9)3−4;
Define appropriate spatial shape functions;
Assign initial and boundary conditions and body forces in the matrix form based on the spatial-temporal shape

functions: u0
FEM , v0

FEM , ub
FEM , tttb

FEM , fFEM;
Calculate [M];
for l = 1 : Ns do

Calculate [DK]
CNRS ([M], [DK], u0

FEM , v0
FEM , ub

FEM , tttb
FEM , fFEM , [AAA ] , [FFF ], N, T ,γ , l, tolerance)

return [U],
[
U̇
]
;

[U]l ← [U], u0
FEM ← [U];[

U̇
]

l ←
[
U̇
]
, v0

FEM ←
[
U̇
]
;

end

329

Algorithm 2: Convolution-Newton-Raphson Solver (CNRS) ([M], [DK], u0
FEM , v0

FEM , ub
FEM , tttb

FEM , fFEM ,
[AAA ] , [FFF ],T , N, γ , l, tolerance)

[c](0)r ← [0], r = 0, ...,N−1;
id=tolerance+1;
m← 0;
while id > tolerance do

compute [R](m,r), r = 0, ...,N−1, based on u0
FEM , v0

FEM , ub
FEM , tttb

FEM , and fFEM for t = T and l;

Obtain [∆c](m)
0 from (5.8) ;

[∆c](m)
r ← (Frr [M]+Arr [DK])−1([R](m,r)−A0r[DK] [∆c](m)

0 ), r = 0, ...,N−1;
[c](m+1)

r ← [c](m)
r +[∆c](m)

r , r = 0, ...,N−1;

[R](m+1)←
[
[R](m+1,1)T

, ..., [R](m+1,N−1)T ]T
;

id = [R](m+1)[R]T (m+1);
m← m+1;

end
return [U((1− γ)T )] = [V((1− γ)T )](m−1)+

[
u0
]
+(1− γ)T

[
v0
]
;

return
[
U̇((1− γ)T )

]
=
[
V̇((1− γ)T )

](m−1)
+
[
v0
]

;

330

6 Numerical Results331

6.1 Free Vibration332

In this part, several aspects of the new approach are considered. To highlight the characteristics of the new method, in333

some figures, we also show the same results corresponding to the average acceleration method. For the Nemwark method,334

we follow the formulation given in [1]: in this method, (5.1) is satisfied at discrete time instances t1 = ∆t, ..., tn = n∆t335

with ∆t, representing the time-step. Denoting [U(tn)] ≈ [Un],
[
U̇(tn)

]
≈
[
U̇n
]
, and

[
Ü(tn)

]
≈
[
Ün
]
, one solves the336

following equations with Newton-Raphson method [1]:337

4
∆t2 [M] [Un+1]+ [K(Un+1)] = [fn+1]+ [Gn+1] (6.1)338
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with339

[Gn+1] =
4

∆t2 [M] [Un]+
4
∆t

[M]
[
U̇n
]
+[M]

[
Ün
]

[
U̇n+1

]
=

2
∆t

( [Un+1] - [Un] ) -
[
U̇n
]
,[

Ün+1
]
=

2
∆t

(
[
U̇n+1

]
-
[
U̇n
]

) -
[
Ün
]
,
[
Ü0
]
= [M]−1([f0]− [K(U0)]),

(6.2)340

where the initial values are considered for the case n = 0.341

First, the free vibration of an elastic plate under initial displacement and velocity is considered. Two constitutive models342

are utilized: Neo-Hookean and Saint Venant–Kirchhoff models. The potential energy function for the Neo-Hookean343

model is:344

W (C) =
λ

2
log2

(√
detC

)
+

µ

2
(tr(C)−3)−µ log

(√
detC

)
, (6.3)345

while the potential energy function relevant to the Saint Venant-Kirchhoff model, which is the extension of linear346

Hook’s Law that incorporates geometrical nonlinearity, is:347

W (C) =
λ

2

(
tr
(

C− I
2

))2

+µ tr
(

C− I
2

)2

. (6.4)348

The geometry of the plate is shown in Fig. 2a, with a = 1.0m and h = 1.0m. In the simulations, µ = 1.2× 108 N
m2 ,349

λ = 1.2×108 N
m2 and ρ0 = 770 Kg

m3 is considered. Linear Lagrange shape functions are used with uniform quadrilateral350

elements. For most cases, the geometry of the problem is approximated in terms of 10×10 uniform mesh. However,351

other mesh arrangements (e.g., 5× 5 uniform mesh) are employed to calculate other quantities such as the error352

estimation. The following initial conditions are exerted, respectively, on the Saint Venant-Kirchhoff and the Neo-353

Hookean plates:354

u1(X1,X2,0) = 0, u2(X1,X2,0) =
{

0 X1 = 0
0.1X2 X1 6= 0 ,

u̇1(X1,X2,0) =
{

0 X1 = 0
100X1 X1 6= 0 , u̇2(X1,X2,0) = 0.

(6.5)355

u1(X1,X2,0) = 0, u2(X1,X2,0) =
{

0 X1 = 0
0.2X2 X1 6= 0 ,

u̇1(X1,X2,0) =
{

0 X1 = 0
200X1 X1 6= 0 , u̇2(X1,X2,0) = 0.

(6.6)356

The top right corner of the plate with coordinate Xre f = (L,L) is selected as the reference point for producing the357

numerical results. Also, the reference solution in this study is mainly the one resulting from the trapezoidal rule358

with a small time-step (for most cases, we considered ∆t = T total/
3,000). Also, to highlight the capability of the new359

algorithm, the data resulting from the average acceleration method with the same time-step size employed for the360

present study is reported. Since the Newton-Raphson method is used to deal with the nonlinear problem, the time-step361

version of the CFEM is applied (see [19]). In particular, the total time interval is divided into smaller sub-intervals362

T = T total/(Ns (1− γ)), in which Ns represents the number of sub-intervals, and γ is a parameter to circumvent the363

non-convergence nature of the linear solver due to cosine expansion [19]. Then, as mentioned earlier, the results at the364

time instances s∆t = s(1− γ)T, s = 1, ...,Ns, are reported.365

In Figs. 3 and 4, the vertical and horizontal displacement and velocity of the reference point are shown using the366

time-span of T = T total/125 (Ns = 250 and γ = 0.5) with N = 50 and N = 200. Although a good convergence for367

displacements attained through both methods, the robustness of the new method is recognizable in velocity profiles.368

In particular, in the velocity profile, the Newmark method with ∆t = T total/250 failed to converge to the reference369

solution, while an excellent match between the outputs of the new method and the reference solution is seen. This fact370

is attributed to the property of the linear solver that can capture the linear solution regardless of the time-step size. This371

property implies that the new solution procedure is equivalent to higher-order accurate time integration methods in372

the sense that the technique can adaptively capture the solution for larger time-steps provided that the corresponding373

Newton-Raphson algorithm is converged.374

The deformed configuration at t = 0.1s is shown in Fig. 5. To show that the problem incorporates nonlinear geometry,375

we report the engineering strain, Green-Lagrange strain, and their difference, respectively, in Figs. 6, 8, and 7. Fig. 6376

infers that the condition for small strain theory, ‖∇u‖ � 1, is no longer valid in this example. This fact can also be377

concluded from the comparison of Figs. 6 and 7, which shows the magnitude of the strain due to the nonlinear term is378

the same as the engineering strain.379
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Furthermore, the spatial variation of displacement, velocity, and stress fields are illustrated at t = T total using 100380

elements, 200 time-wise terms, Ns = 250 and γ = 0.5 in Figs. 9-11. These figures confirm the satisfaction of the defined381

displacement boundary conditions. Also, compared to displacement fields, more fluctuations are noticed in the velocity382

and stress fields, a similar fashion typically discerned in the linear regime.383

For the subsequent analysis, the Saint Venant–Kirchhoff model, with the potential function (6.4), is utilized as the384

constitutive equations. In Figs. 12 and 13, the vertical and horizontal velocities are depicted for this material through385

the proposed method (Ns = 100, 150 and γ = 0.5). The excellent performance of the CFEM linear solver is evident in386

recovering the Newmark method with the small ∆t (i.e., the reference solution), showing the robustness of the proposed387

solution procedure in obtaining accurate results for larger time-steps.388

Next, to quantify the error of the analysis, we employed the following error-index:389

E index(X) =

√√√√√√√√
T∫
0
(uR(X, t)−uN(X, t))2dt

T∫
0

uR(X, t)2dt
, (6.7)390

where uR(X, t) is a reference solution and uN(X, t) is the numerical solution. For the reference point, the displacement391

error versus the number of elements and time-wise terms is shown in Fig. 14. The reference solution here is the results392

corresponding to the analysis of 100 elements and N = 200. It can be observed that increasing the number of elements393

and N reduces the error. Also, the error-cap can be approximately achieved if N = 200 is selected.394

Subsequently, the characteristics of the proposed method is explored through the conservation of the total energy. For395

different time-wise terms (with Ns = 150 and γ = 0.5), the variation of the total energy versus time is shown in Fig. 15.396

Apparently, by increasing the number of time-wise terms, the conservation of total energy can be fulfilled in a better397

manner. This demonstration confirms that, for a given time-step, the new algorithm can adaptively conserve energy in398

contrast to the Newmark method. It should be noted that the arrowhead block matrix appearing in the linear solver399

makes the calculation possible for large values of N, and thus, the adaptive nature of the new method is feasible.400

To explore the effect of γ , we consider two cases, i.e., γ = 0.2 and γ = 0.6, and the resulting total energy is depicted401

for different N’s (form N = 200 to N = 10,000) in Figs. 16a and 16b. It is observed that by increasing N, the CFEM402

solver can control the energy growth (decay) and obtain accurate results regardless of choice of γ . However, this goal is403

achieved with more computational costs. It is noted that choosing 0.5≤ γ < 1 entails larger values of N to find accurate404

results since a larger time-span T is required for the same ∆t (see Fig. 16a). Also, by comparing Figs. 16a and 16b, one405

can recognize that the decay (growth) pattern of energy in the new method may alter depending on whether 0 < γ < 0.5406

or 0.5 < γ < 1 is selected.407

To better picture the capability of the method, we numerically show that the new method captures the nonlinear response408

of materials over a long range of time intervals. To this end, the conservation of energy, a critical property of any409

rigorous solution procedure, is evaluated for T total = 0.2s for Saint Venant-Kirchhoff plate (see Fig. 17). From this410

figure, it is observed that the trapezoidal rule falls short in conserving the energy, while for sufficiently large N’s, the411

new method conserves the total energy.412

Next, we compare the present algorithm with the energy-momentum method (E-M) developed in [7]. To this end,413

the free vibration of the Saint Venant-Kirchhoff plate is reconsidered. The total energy function has been computed414

using this method with small and large time-steps, the proposed method, and the average acceleration method with415

small and large time-steps (see Fig. 18). In this figure, the exact conservation of total energy has been satisfied using416

the energy-momentum algorithm regardless of the time-step size. In contrast, the present algorithm and the average417

acceleration method with the small time-step could achieve energy conservation numerically. The displacement and418

velocity values for the reference point have then been evaluated and depicted in Figs. 19 and 20. As expected, the419

proposed algorithm, even with a large time-step, closely follows the results corresponding to the energy-momentum420

algorithm with the small time-step. However, the adopted energy-momentum method with large time-step cannot421

recover the accurate solution (i.e., one with small-time steps). This result clearly show that, as opposed to the available422

time integration methods with finite order of the accuracy, by increasing N, the new method captures the exact solution423

for large time-steps.424

6.2 Forced Vibration425

Here we analyze the problem of the forced vibration of nonlinear materials. In this regard, a Neo-Hookean cantilever426

beam with the same-as-before earlier parameters is considered in Fig. 2b. The geometric characteristics of the beam are427

a = 1m and h = 0.1m, and a uniform quadrilateral linear mesh of 20×2 is used for the discretization. Furthermore, a428

uniform pressure of q = 2×105N/m2 is applied instantly on the beam and remains unchanged throughout the analysis.429

The top right corner of the beam is represented as the reference point for output calculations. By utilizing the CFEM430

solver (N = 100,Ns = 1,000 and γ = 0.5), the vertical and horizontal deformations of the reference point are displayed431

in Fig. 21 and compared with the trapezoidal rule using both large and small time steps. The corresponding velocity has432
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also been illustrated in Fig. 22. A slight differences between trapezoidal rule with large and small time-steps can be seen433

from these figures. A similar conclusion is observed from the figure: given that the corresponding Newton-Raphson434

method converges, the present method with larger ∆t’s captures accurately the results of the Newmark Method with435

small ones. Also, the deformed beam at t = 0.1s (t = 0.1×T total) is depicted in Fig. 23. This figure implies the436

presence of a contribution due to the geometrical nonlinearity in computations. To demonstrate this fact, we report the437

infinitesimal strain components and the difference between Green-Lagrange and infinitesimal strains at t = 0.1s in Figs.438

24 and 25. Also, the Green-Lagrange strain field are shown in 26. Clearly, the order of strain due to the nonlinear term439

and the infinitesimal strain tensor are in the same range, showing the necessity of employing the finite strain theory.440

Moreover, the displacement and velocity profiles of the beam are given in Figs. 27 and 28. Finally, the stress field441

variables are depicted in Fig. 29, showing the stress concentration at position of the Dirichlet boundary condition.442

7 Concluding remarks443

In this study, a novel solution procedure to deal with nonlinear elastodynamics has been proposed. The formulation has444

been presented for the large deformation theory where the nonlinearity comes from both constitutive equations and445

geometrical configuration. The results show that the method can successfully address the energy conservation issue446

existing in the trapezoidal method without further enforcing parameters such as Lagrange multipliers. In addition to447

that, the method is conspicuously versatile to obtain accurate results for larger time-steps, meaning that the method is a448

higher-order one in that sense. The main characteristics of the proposed algorithm are:449

• The linear solver, i.e., the CFEM, does not require discretization in time, although it is rooted in a coupled450

space-time variational principle.451

• The solution procedure is similar to the classical nonlinear dynamic finite element method where the Newmark452

average acceleration method is combined with the Newton-Raphson method but, in contradistinction to453

Newmark, can adaptively conserve the energy.454

• As opposed to methods with finite order of accuracy, the algorithm is versatile to obtain accurate solution455

when increasing the time-step.456

• From a computational perspective, the resultant block arrowhead matrix in (5.8) justifies the application of the457

method for nonlinear elastodynamics.458

• The linear solver is suitable for parallel programming as most operations in the convolution-Newton-Raphson459

solver can be executed independently.460

(a) Nonlinear plate.

(b) Nonlinear beam.

Figure 2: The geometry of the problems.
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Figure 3: Horizontal and vertical displacement of the reference point for Neo-Hookean material (T total = 0.02s).
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Figure 4: Horizontal and vertical velocity of the reference point for Neo-Hookean material (T total = 0.02s).
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Figure 5: Deformed configuration of the Neo-Hookean plate at t = T total (Ns = 250 and γ = 0.5).

Figure 6: The infinitesimal strain components for the Neo-Hookean plate at t = T total (Ns = 250 and γ = 0.5).
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Figure 7: The Nonlinear parts of Green-Lagrange strain components for the Neo-Hookean plate at t = T total (Ns = 250
and γ = 0.5).

Figure 8: The Green-Lagrange strain components for the Neo-Hookean plate at t = T total (Ns = 250 and γ = 0.5).
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Figure 9: Horizontal and vertical displacement fields for the Neo-Hookean plate at t = T total (Ns = 250 and γ = 0.5).

Figure 10: Horizontal and vertical velocity fields for the Neo-Hookean plate at t = T total (Ns = 250 and γ = 0.5).
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Figure 11: The stress components for the Neo-Hookean plate at t = T total (Ns = 250 and γ = 0.5).
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Figure 12: Horizontal and vertical velocity fields of the reference point for Saint Venant-Kirchhoff material (T total =
0.02s).
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Figure 13: Horizontal and vertical velocity fields of the reference point for Saint Venant-Kirchhoff material (T total =
0.02s).

(a) Horizontal displacement. (b) Vertical displacement.

Figure 14: The error-index (6.7) in terms of number of elements and time-wise terms for the Saint Venant-Kirchhoff
plate (Ns = 150 and γ = 0.5).
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Figure 15: The energy function for the free vibration of the Saint Venant-Kirchhoff plate material (T total = 0.02s).

0 0.005 0.01 0.015 0.02
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

N=200, Ns=150, =0.2
N=1000, Ns=150, =0.2

N=3000, Ns=150, =0.2
N=10000,  Ns=150, =0.2

(a) γ = 0.2 .

0 0.005 0.01 0.015 0.02
0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

 N=200, Ns=150, =0.6
 N=1000, Ns=150, =0.6

N=3000, Ns=150, =0.6
N=10000, Ns=150, =0.6

(b) γ = 0.6 .

Figure 16: The effect of γ on conservation of energy for the Saint Venant-Kirchhoff plate.
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Figure 17: Conservation of the energy for a relatively longer time interval for Saint Venant-Kirchhoff plate.
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Figure 18: Comparison of energy between present study, Newmark average acceleration method, and the Energy-
momentum algorithm, T total = 0.02s.
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Figure 19: Comparison of displacement between present study and the Energy-momentum algorithm, T total = 0.02s.
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Figure 20: Comparison of velocity between present study and the Energy-momentum algorithm, T total = 0.02s.
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Figure 21: Horizontal and vertical displacements of the reference point for the nonlinear beam (T total = 1s).
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Figure 22: Horizontal and vertical velocities of the reference point for the nonlinear beam (T total = 1s).
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Figure 23: The deformed configuration at t = 0.1s for the nonlinear beam.

Figure 24: Infinitesimal strain field at t = 0.1s for the nonlinear beam.
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Figure 25: The difference between Green-Lagrange and infinitesimal strain fields at t = 0.1s for the nonlinear beam.

Figure 26: Green-Lagrange strain field at t = 0.1s for the nonlinear beam.
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Figure 27: Displacement fields at t = 0.1s for the nonlinear beam.

Figure 28: Velocity fields at t = 0.1s for the nonlinear beam.
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Figure 29: Stress components at t = 0.1s for the nonlinear beam.
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