
2 www.eurosurveillance.org

Rapid communication

The potential for vaccination-induced herd immunity 
against the SARS-CoV-2 B.1.1.7 variant

David Hodgson¹, Stefan Flasche¹, Mark Jit¹, Adam J Kucharski¹, CMMID COVID-19 Working Group1,2

1. Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United 
Kingdom

2. The members of the Working Group are listed below
Correspondence: David Hodgson (david.hodgson@lshtm.ac.uk)

Investigators: The investigators list are listed at the end of the article  

Citation style for this article: 
Hodgson David, Flasche Stefan, Jit Mark, Kucharski Adam J, CMMID COVID-19 Working Group. The potential for vaccination-induced herd immunity against the 
SARS-CoV-2 B.1.1.7 variant. Euro Surveill. 2021;26(20):pii=2100428. https://doi.org/10.2807/1560-7917.ES.2021.26.20.2100428

Article submitted on 29 Apr 2021 / accepted on 20 May 2021 / published on 20 May 2021

We assess the feasibility of reaching the herd immunity 
threshold against SARS-CoV-2 through vaccination, 
considering vaccine effectiveness (VE), transmissibil-
ity of the virus and the level of pre-existing immunity 
in populations, as well as their age structure. If highly 
transmissible variants of concern become dominant 
in areas with low levels of naturally-acquired immu-
nity and/or in populations with large proportions 
of < 15 year-olds, control of infection without non-phar-
maceutical interventions may only be possible with a 
VE ≥ 80%, and coverage extended to children.

Initial reports of vaccine effectiveness against severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus responsible for coronavirus disease 
(COVID-19), have suggested a substantial reduction of 
the risk of infection [1]. Nevertheless, with the emer-
gence of more transmissible variants such as B.1.1.7 
[2], how large-scale immunisation programmes against 
SARS-CoV-2 will perform is currently unclear. This 
study assesses the potential of COVID-19 vaccination 
to generate herd immunity and takes into account vac-
cine effectiveness, naturally-acquired immunity and 
achievable vaccination coverage (depending on the 
population age structure), as well as two transmissi-
bility scenarios ((i) with pre-B.1.1.7, and (ii) with exclu-
sively B.1.1.7 variants).

Vaccination and herd immunity
The feasibility of attaining vaccination-induced herd 
immunity depends on (i) vaccine effectiveness in 
reducing transmission, (ii) the transmissibility of the 
target pathogen and (iii) the vaccine coverage that is 
achievable in a population.

In a scenario where vaccines are distributed randomly 
across a population, the herd immunity threshold (HIT) 
for an immunisation programme is defined as 1 − 1/R0, 
where R0  is the basic reproduction number [3]. Note 

that if R0  is calculated using an age- or risk-structured 
next generation matrix then this equation will still 
hold. If vaccine effectiveness is below the HIT, then 
even vaccination of the entire population would, on its 
own, be insufficient to ensure control (i.e. the effective 
reproduction number, accounting for immunity, would 
remain above 1).
 

Herd immunity, vaccine effectiveness and 
virus transmissibility

Viruses with vaccines of varying effectiveness 
and different transmissibility
Comparing this theoretical HIT with estimated values 
of R0 and vaccine effectiveness for a range of vaccine-
preventable diseases (Figure 1), we see that for infec-
tions caused by viruses with little antigenic variation, 
vaccine effectiveness is sufficiently high to control 
transmission if high vaccine coverage is achieved. This 
is why, in many countries, childhood immunisation pro-
grammes have led to elimination of viruses with little 
antigenic variation and long-lasting sterilizing immu-
nity, such as measles and rubella viruses [4]. 

In contrast, viruses that undergo frequent antigenic 
turnover, such as influenza viruses necessitate regular 
vaccine updates and re-vaccination [5]. Seasonal influ-
enza vaccine effectiveness is influenced by antigenic 
evolution of influenza viruses, with similar rates of evo-
lution to that observed for seasonal human coronavi-
ruses. Moreover, the effectiveness depends on whether 
the influenza vaccine strains are or not the same as 
the circulating ones. In the event of well-matched influ-
enza vaccines, the effectiveness may nevertheless 
still be below the HIT. For influenza A(H3N2) virus, for 
example, the estimated effectiveness of an antigeni-
cally-matched vaccine (33%; 95% confidence interval 
(CI): 22–43) [6] implies that control of this subtype in 
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the absence of natural immunity is unlikely, even in 
theory; we estimate a very small probability (defined 
as number of Monte Carlo samples) in an unexposed 
population with 100% vaccination coverage of being 
above the HIT.

SARS-CoV-2
For SARS-CoV-2, we consider two SARS-CoV-2 vari-
ants for which we assume vaccination provides equal 
protection: pre-B.1.1.7 variants with an R0  of 2.7 
(95% CI: 1.5–3.8) and the B.1.1.7 variant with an R0 of 4.5 
(95% CI: 2.5–6.4) [7]. Assuming 86% (95% CI: 76–97) 
vaccine effectiveness against infectiousness, based 
on early estimates of protection against infection fol-
lowing two doses of Comirnaty (BNT162b2, BioNTech/
Pfizer, Mainz, Germany/New York, United States) [1], 
we estimate, in the case of a pre-B.1.1.7 variant, a 99% 
probability of being above the HIT with whole-popula-
tion coverage and a 94% probability if B.1.1.7 is circu-
lating exclusively.

Ethical statement
Ethical approval was not necessary for this modelling 
study as the analysis uses only aggregated secondary 
data from published articles.

COVID-19 vaccination coverage achievable
The estimated 94% and 99% probabilities to be above 
the HIT, for B.1.1.7 and pre-B.1.1.7 SARS-CoV-2 respec-
tively, are based on the assumption that the whole 
population is vaccinated. However, whole-population 
vaccination would require SARS-CoV-2 vaccines — 
which, as at mid-May 2021, are only approved for adults 
in most countries — to also be used at high coverage in 
children, for whom there is currently limited evidence 
from trials only, on safety or effectiveness.

Assuming a vaccination campaign aimed at all indi-
viduals ≥ 15 years old, the proportion of the popula-
tion currently eligible for vaccination (i.e. comprising 
people aged ≥ 15 years) varies between countries, with 
the proportion of children within a country’s popula-
tion decreasing along increasing income brackets (low, 

Figure 1
Comparison of effectiveness of currently available vaccines against herd immunity threshold for different viruses, 2000–
2021 (n = 9 virus variants/types/subtypes)
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The black line shows the minimum vaccine effectiveness needed to achieve herd immunity for given R0 values. Colour points represent 
samples from available effectiveness and transmissibility estimates (see Supplement), with large circles showing medians. If sampled 
points are above the line, vaccination of the entire population could in theory lead to epidemic control; the more samples that are above the 
line, the higher the probability of control.

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2021.26.20.2100428&domain=pdf&date_stamp=2021-05-20


4 www.eurosurveillance.org

lower-middle, upper-middle, upper income). Given this 
trend, we use income level as a proxy for the total pro-
portion of the population aged 15 years and over, which 
is eligible for vaccination.

COVID-19 vaccination coverage needed 
considering natural immunity
Depending on vaccine coverage and effectiveness 
against infectiousness with future circulating variants 
– which may be antigenically dissimilar to B.1.1.7 [8] – 
herd immunity to SARS-CoV-2 in the absence of other 
non-pharmaceutical interventions may not be reached 
until considerable natural immunity has accumulated. 
As some countries now have a sizeable subpopulation 
with protective antibodies acquired through natural 
infection [9], we estimated the probability of reaching 
the HIT for SARS-CoV-2 under varying degrees of vac-
cination coverage against a background of reduction in 
transmission from natural immunity.

Pre-B.1.1.7 SARS-CoV-2 transmission scenario
We estimated that for pre-B.1.1.7 SARS-CoV-2 variants, 
an immunisation programme targeting all persons 
aged ≥ 15 years (as would be the case for a vaccine not 
approved for use in younger groups), would have gener-
ated herd immunity against homotypic viruses in most 

higher income countries, regardless of the level of nat-
ural immunity, if vaccine effectiveness is at least 70% 
(or at least 90%, with a high degree of confidence). 
However, the high proportion of children in many lower 
income countries means the HIT cannot be reached 
with a ≥ 15-years-old vaccination programme alone and 
would require higher levels of immunity among chil-
dren, acquired either through vaccination or infection, 
to be reached (Figure 2A). 

SARS-CoV-2 B.1.1.7 transmissibility scenario
For B.1.1.7, or similarly transmissible variants, we would 
expect ongoing transmission until a sufficient level of 
natural immunity has been accrued, even in countries 
with an older age distribution. In our results, the esti-
mated level of natural immunity to reach the HIT along-
side vaccination varied considerably across countries, 
with high-income countries, which have a high pro-
portion of adults, needing a 10% reduction in trans-
mission from natural immunity on average, alongside 
widespread vaccination of all persons ≥ 15 years old, 
and low-income countries with a lower proportion of 
adults, needing a 53% reduction in transmission for the 
same vaccination programme (Figure 2B).

Figure 2
Vaccination coverage required to reach herd immunity for COVID-19, considering three different levels of vaccine 
effectiveness in (A) pre-B.1.1.7 and (B) B.1.1.7 SARS-CoV-2 transmission scenarios, 2021
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Vaccination coverage required to reach herd immunity considering different levels of vaccine effectiveness and naturally-acquired immunity 
for SARS-CoV-2 in (A) a pre-B.1.1.7 transmission scenario and (B) a B.1.1.7 one.

Data sources are provided in the Supplement. Thick coloured lines show medians and shaded regions 95% CrI. Blue is the vaccine coverage 
necessary to reduce transmission when vaccine effectiveness is 90%; green, 70%; red, 50%. Black horizontal lines show the maximum 
vaccination coverage (i.e. when all people ≥ 15 years old are vaccinated) for different groups of countries, according to the proportions 
of ≥ 15 year-olds in their population, which are proxied by country income. The lower the country level of income, the lower the proportion 
of ≥ 15 year-olds in its population is, as well as the maximum vaccine coverage achievable. Maximum achievable vaccination coverage is 
averaged across all countries in particular income groups.
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SARS-CoV-2 seroprevalence as a proxy for 
natural immunity
We can use regional estimates of seroprevalence to 
approximate the proportional reduction in SARS-CoV-2 
transmission due to natural immunity. For simplicity, 
we assume random mixing within a population, sero-
positivity as a perfect marker of immunity, and that 
natural immunity is fully sterilising (stops onward 
transmission). This is based on observations that sero-
positivity is associated with at least a 0.84 (95% CI: 

0.81–0.87) reduction in risk of reinfection [10], and 
reinfections are likely to in turn be less infectious [11]. 
As seropositivity from natural infection is likely to be 
concentrated among groups more involved in transmis-
sion (i.e. seroprevalence would underestimate the cor-
responding reduction in transmission) this would also 
offset any contribution to transmission from individu-
als who have immunity that is not fully sterilising.

Figure 3
Estimated seroprevalence and eligible proportion for vaccination in different geographical areas, in relation to the herd 
immunity thresholds obtained with different vaccine effectiveness, considering (A) pre-B.1.1.7 and (B) B.1.1.7 SARS-CoV-2 
transmission scenarios, seroprevalence estimates are from September 2020–April 2021
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Panel (A) shows results considering pre-B.1.1.7 transmission while panel (B) shows results obtained with B.1.1.7 variant transmissibility.

By assuming that the estimated seroprevalence is equal to the proportional decrease in transmission because of natural immunity and that 
the proportion of adults is equal to the maximum achievable vaccination coverage, the plots show how feasible it is for various areas in the 
world to reach herd immunity against pre-B.1.1.7 or B.1.1.7 variants after a mass vaccination programme, for various vaccine effectiveness 
values.

The shape of the point marker represents the geographical scope of population used for the seroprevalence [12] estimate (national, regional 
or local) and the point marker radius scales with size of the study population.

The size of the point markers is proportional to the study size of the serosurvey.

The proportion of the population who are adults in the study site is given by colour hue: high category is above 80% (red), medium category 
is between 70 and 80% (orange), and low category is less than 70% (green) and the time since sample collection finished is shown through 
colour saturation, (i.e. high saturated points represent studies which were conducted more recently). The black line-types show the HIT 
thresholds for different vaccine coverage values. Seroprevalence data from serotracker.com.
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Controlling SARS-CoV-2 spread in populations 
with different age structure and seroprevalence
By assuming that the maximum vaccination coverage 
feasible is equal to the proportion of the population 
aged ≥ 15 years, we can therefore assess the feasibility 
in countries with varying proportions of adult popula-
tion of reaching the HIT (Figure 3). 

We obtain seroprevalence estimates from SeroTracker 
[12], and population distribution estimates from The 
World Bank [13].

Pre-B.1.1.7 SARS-CoV-2 transmissibility 
scenario
When pre-B.1.1.7 SARS-CoV-2 variants circulate, coun-
tries with a high proportion of persons ≥ 15 years old 
could theoretically reach the HIT through an adult mass 
immunisation programme with a vaccine effectiveness 
as low as 70%. For countries with a lower proportion of 
persons ≥ 15 years old, our results suggest adult immu-
nisation campaigns alone would not be sufficient to 
provide vaccine-induced herd immunity if children con-
tribute equally to transmission.

SARS-CoV-2 B.1.1.7 transmissibility scenario
If the B.1.1.7 variant dominates, countries with a high 
proportion of adults require much higher effectiveness, 
ca 90%, to reach the HIT after an adult immunisation 
campaign, and many countries with a lower adult pop-
ulation proportion are again unlikely to reach the HIT 
through vaccination. Although there are some regional 
and local studies in countries such as Brazil [14], Italy 
[15], and Columbia [9] showing high seroprevalence at 
the local level, much lower seroprevalence has been 
estimated at the national level. For countries in which 
there is substantial heterogeneity in natural immu-
nity, these estimates for herd immunity are unlikely to 
equate to a pragmatic protective threshold. However, 
estimates for herd immunity in such areas could be 
improved by developing models that include contact 
structure and geospatial clustering.

Discussion and conclusion
This study considers the feasibility of reaching the herd 
immunity threshold against SARS-CoV-2 through vacci-
nation and draws comparisons with other vaccine-pre-
ventable pathogens, including influenza and common 
immunising childhood infections.

Our observations suggest that if highly transmissible 
variants become dominant in areas with low sero-
prevalence, and/or in populations with a high propor-
tion of children, control of infection by vaccination, in 
the absence of non-pharmaceutical interventions, may 
only be achievable with a vaccine effectiveness against 
infectiousness of ≥ 80% – as suggested by early data 
for the Comirnaty vaccine [1] – or next generation vac-
cines with persistently high effectiveness and cross-
protection against antigenic variants, extended to the 
full population, including children.

As further vaccine effectiveness data emerge, our esti-
mates of the potential for vaccination-induced-control 
could be further refined. Local differences in popula-
tion age structure and behaviour, as well as biologi-
cal characteristics of SARS-CoV-2 variants, could also 
change both baseline transmissibility between coun-
tries and which groups drive outbreaks [16]. If vaccine 
impact in reducing transmission is in reality higher 
than assumed here, the feasibility of local elimina-
tion would increase; for example, there is emerging 
evidence that infected vaccinees have a reduced risk 
of onward transmission (see Supplement). Conversely, 
future variants could reduce the effectiveness of cur-
rent COVID-19 vaccines, and theoretical potential for 
local elimination, much as influenza vaccines are less 
effective against heterotypic strains [17]. In particular, 
while a highly transmissible homotypic SARS-CoV-2 
variant would increase the herd immunity threshold, 
but to a value still below 100%, a sufficiently antigeni-
cally variable variant would mean herd immunity can-
not be achieved with existing vaccines.

In the absence of booster campaigns and expanded cov-
erage, herd immunity reached through a combination of 
vaccination and natural immunity could be short-lived. 
Therefore, our estimates are likely to be optimistic, as 
vaccine impact would decline as a result of increasing 
susceptibility from new births, waning protection and 
antigenic evolution (Supplemental Figure S1). However, 
some countries are considering third doses following 
their initial vaccination campaigns, which may counter-
act these effects [18].

As at mid-May 2021, vaccines are only approved for 
adults in most countries. If evidence on vaccine safety 
or effectiveness in children emerges from trials, the 
acceptability of vaccinating children, for whom an esti-
mated 0.1 to 0.3% of symptomatic cases result in hos-
pitalisation, may in practice be very different to adults, 
where between 1 and 30% of symptomatic cases result 
in hospitalisation, depending on age [19]. However, if 
such programmes are deemed feasible, overall vac-
cination impact could be increased if uptake is high 
among younger groups, such as young adults or older 
children, who contribute most to transmission [20].

In conclusion, based on current evidence, when con-
sidering reopening strategies, policymakers in coun-
tries with low seroprevalence or a high proportion of 
children should not assume that even vaccination of 
all adults will be sufficient to reach the herd immunity 
threshold. However, vaccination could still dramatically 
reduce the impact of SARS-CoV-2 infection on resulting 
disease within a population, particularly among groups 
at higher risk. This emphasises the importance, par-
ticularly in regions with limited vaccine-rollout capabili-
ties and low seroprevalence, of public health measures 
and vaccination campaigns focused on reducing future 
COVID-19 disease burden, instead of relying on an 
assumption that transmission will necessarily be elimi-
nated through vaccination.
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