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Abstract— Machine learning for Non-Destructive Evaluation 

(NDE) has the potential to bring significant improvements in 

defect characterization accuracy due to its effectiveness in pattern 

recognition problems. However, the application of modern 

machine learning methods to NDE has been obstructed by the 

scarcity of real defect data to train on. This paper demonstrates 

how an efficient, hybrid finite element and ray-based simulation 

can be used to train a Convolutional Neural Network (CNN) to 

characterize real defects. To demonstrate this methodology, an 

inline-pipe inspection application is considered. This uses four 

plane wave images from two arrays, and is applied to the 

characterization of cracks of length 1-5 mm and inclined at angles 

of up to 20° from the vertical. A standard image-based sizing 

technique, the 6 dB drop method, is used as a comparison point. 

For the 6 dB drop method the average absolute error in length and 

angle prediction is ±1.1 mm, ±8.6° while the CNN is almost four 

times more accurate at ±0.29 mm, ±2.9°. To demonstrate the 

adaptability of the deep-learning approach, an error in sound 

speed estimation is included in the training and test set. With a 

maximum error of 10% in shear and longitudinal sound speed the 

6 dB drop method has an average error of ±1.5 mm, ±12° while 

the CNN has ±0.45 mm, ±3.0°. This demonstrates far superior 

crack characterization accuracy by using deep learning rather 

than traditional image-based sizing. 

Index Terms— Ultrasound, defect characterization, deep 

learning, neural networks, plane wave imaging, simulation 

I. INTRODUCTION

ON-Destructive Evaluation (NDE) techniques are used to

extend component life spans, reduce manufacturing costs 

and increase safety. Inspections typically involve capturing the 

response of a material to a physical stimulus such as ultrasound, 

eddy-currents or X-rays. This is often carried out from many 

angles and locations to build up an image of the internal 

structure of a component and identify the presence of damage. 

To detect smaller defects and characterize them more 

accurately data capture and signal processing techniques are 

constantly advancing. The quantity and complexity of NDE 

data relating to a potentially defective region is therefore getting 

larger every year. Traditionally, defect characterization is 

achieved by inspection of NDE data by a human operator, 

which inherently causes problems in consistency, especially 
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when data is very complex. As the data volume gets larger, 

inspection by a single operator becomes very slow. This can be 

accelerated by multiple operators working in parallel, but the 

results then become even more inconsistent and analysis of data 

by either one or multiple skilled operators is expensive. These 

issues with consistency, data complexity, speed and cost are 

motivation for an automated defect characterization method. 

Since this is a pattern recognition task, machine learning is well 

suited. 

Broadly, machine learning can be split into shallow and deep 

learning. Shallow learning gives a prediction based on features 

selected by the operator from the raw data, followed by 

statistical analysis, whereas deep learning is an end-to-end 

method that extracts the desired result directly from the raw 

data. Shallow learning in NDE dates back to at least 1991 with 

the use of decision trees to detect defects using the loss in 

amplitude of ultrasonic wall reflections [1] and has continued 

to be an active area of research [2]. For example, fully-

connected neural networks have been used to classify defects 

[3], [4] and estimate material properties [5], [6] from ultrasonic 

measurements and support vector machines used to size cracks 

from eddy current field peaks [7].  

Shallow learning is attractive as it reduces the dimensionality 

of the input, therefore also the complexity of the network 

needed to be trained, by manually selecting parameters. This in 

turn reduces the size of training data required. However, the 

success of the network is heavily reliant on selecting the correct 

parameters and a lot of information, that may well have been 

useful, is unused. Deep learning can make use of all available 

information and produce a more accurate result [8], [9] whilst 

also increasing automation, lowering the chance of human error 

causing mistakes [10]. The shift to deep learning is already well 

underway in medical imaging [11] but application in NDE has 

been hindered by the cost and difficulty of gathering enough 

defect data to train an effective network. Attempts to overcome 

this in the past have mostly relied on data augmentation 

(cropping, translating, zooming etc. in the context of 

photographic image analysis) to create a large pool of defect 

data from a handful of real defects [9], [12]–[14]. However, 

while for photographic images, zooming and translation 

produces realistic examples, this is not necessarily true for all 
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NDE modalities. With most NDE techniques there is rarely a 

linear relationship between defect and indication size, and non-

uniform sensitivity maps [15] mean defect responses are not 

translationally invariant. In some situations deep learning has 

been applied to NDE where by good fortune or large expense a 

large enough number of defects are available [16], [17] or by 

limiting the scope of the problem and accepting a smaller 

training set [18]. However, none of these methods supply a 

solid, general case answer to creating a large enough training 

set for NDE deep learning.  

This paper aims to show how accurate and efficient forward 

modeling of data can be used to train a deep learning network 

that can generalize to experimental data it has never seen 

before. While this approach could be applied to any inspection 

scenario, here the application considered is sizing surface-

breaking cracks in ultrasonic inline pipe inspection. Note that 

to avoid confusion the term ‘network’ is used in this paper to 

refer to any machine learning predictor while ‘model’ is used 

exclusively to describe physics-based forward models such as 

Finite Element (FE) and ray tracing. 

Ultrasonic inline pipe inspection uses transducers mounted 

on a ‘pig’ (pipeline inspection gauge)  that travels in the flow 

of product to detect issues such as corrosion and cracks. The pig 

travels many kilometers, capturing data every 1-10 mm. When 

online processing flags a defect, the data from that position is 

compressed and stored for offline analysis, often involving 

significant operator input. Increases in computational power 

and efficient methodologies offer the potential for automated 

real-time analysis in the future. The pig considered here 

contains a ring of ultrasonic arrays that capture the data required 

to produce multiple overlapping images of any part of the cross-

section of the pipe. This paper uses four distinct images per 

defect to predict its orientation and length. While imaging 

provides a large amount of data size reduction, learning from 

four images directly is still a very high dimensional problem. 

Convolutional Neural Networks [19] are a natural answer to this 

as they connect only nearby pixels at each layer, vastly reducing 

the complexity of the network. They have also seen widespread 

success with natural [20], medical [21]–[23] and NDE [13], 

[14], [16], [17] images in the past. There are many well-known 

Convolutional Neural Network (CNN) architectures for image 

characterization such as LeNet, DenseNet, Inception, AlexNet 

and ResNet [24]. The broad structure for the network used in 

this paper takes inspiration from networks such as AlexNet and 

VGG-19 and makes use of advances such as dropout, ReLu 

activations and max pooling [24] to assist in generalizing to 

experimental data after training on simulated data. 

Typically, medical and NDE deep learning papers use 500-

10,000 examples in their training sets. However, in the wider 

machine learning community sets such as ImageNet are being 

used that have more than 10,000,000 examples. It is generally 

accepted that the power of a deep learning network hinges 

heavily on the size of its training set. As in NDE, samples 

containing real or manufactured flaws are expensive, there is a 

shortage of experimental training data. This paper intends to 

show how by using forward models to create training sets the 

NDE community can begin to unlock the power of the state-of-

the-art deep learning being used elsewhere. To simulate defect 

responses accurately a local FE model is used to generate 

scattering matrices [25]. Then, to efficiently create Plane Wave 

Capture (PWC) data a ray-based model [26] is used. The 

structural and grain noise is included by gathering experimental 

PWC data from a defect-free steel plate and adding it to the 

simulated data [27] which is then filtered and imaged. To cover 

a parameter space of varying crack length, angle and position 

this hybrid approach is used to generate 25,625 image sets that 

train the sizing network while 999 purely experimental sets 

from samples containing notches, made using Electrical 

Discharge Machining (EDM), are used to evaluate its accuracy. 

Section II describes the creation of these data sets. Section III 

outlines the deep learning method used to characterize them, as 

well as a more traditional sizing technique, the 6 dB drop 

method. Section IV presents results for the accuracy of the 

methods in sizing experimental defects and demonstrates the 

adaptability of the deep learning approach, by sizing defects 

imaged with incorrectly estimated sound speed. Overall success 

is judged by comparison in sizing error to the 6 dB drop 

method.  

II. INSPECTION SETUP AND DATA SET CREATION

In this section the inspection setup, imaging technique used, 

and the method for simulating a training set is described. The 

parameter space covered by the simulated and experimental sets 

is also given. 

A. Inspection Setup

A major objective in inline pipe inspection is to detect and

size the cracks that might occur on the outer or inner surfaces 

of the pipe. These are usually caused by manufacturing flaws 

such as weld toe cracks or lack of fusion, or in-service 

mechanisms such as stress corrosion cracking or thermal 

cycling fatigue and most commonly occur at the outer surface 

of the pipe. Sizing these surface-breaking defects, at the outer 

surface, with detection assumed already complete, is the focus 

of this paper. The experimental inspection set up used here to 

mimic in-line pipe inspection is described in Fig. 1a.  

As pigs are typically used for pipes of least 40 cm diameter 

the effect of curvature is ignored, and a flat, 10 mm thick 

stainless-steel plate sample is used to represent the pipe wall 

material. Most pipelines for this application are made of 

carbon-steel and contain oil. Stainless-steel has been chosen for 

these samples to avoid corrosion and water used instead of oil 

to reduce cost. These replacements are acceptable as sound 

speeds, attenuation and levels of grain noise are comparable. 

Plane waves are fired in turn from a commercially available 

5 MHz, 0.3 mm pitch, 40 element standard phased array at 𝜙 =
0° and ±19° to the vertical in water to create longitudinal waves 

at  𝜓 = 0° and shear waves at ±45° inside the stainless-steel 

sample. In this paper the two angled waves are used to 

characterize defects while the 0° wave is only used to calculate 

standoff (𝜍) and thickness (𝛤). Note that as 𝜙 = 19° is beyond 

the first critical angle there are no longitudinal waves 

transmitted into the stainless-steel. The array receives on all 

elements individually with a sample rate of 16.7 MHz, a point 
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sufficiently above the center frequency of the array to capture 

most of its bandwidth without needlessly using excess data 

storage (an important resource in inline pipe inspection). Sound 

speeds in the steel are calculated using a calibration sample of 

known thickness (10 mm) and standoff (20 mm) giving 

longitudinal speed to be 5759 m/s, a shear speed of 3165 m/s 

and water speed to be 1480 m/s. All experimental defects are 

made using EDM to create 0.3 mm wide notches described by 

their angle from the vertical (𝜃), length (𝐿) and horizontal 

distance from the array center (P), as indicated in Fig. 1a. Note 

that in this paper, crack length is defined as the distance 

between the defect’s root and tip rather than its extent 

perpendicular to the surface. While EDM notches are simpler 

in shape and texture than most cracks found in in-service 

pipelines they allow for very accurate true length measurement. 

Research into the behaviour of this method when applied to 

more realistic cracks is left to future work. 

B. Imaging

Plane Wave Capture (PWC) data can be focused on reception 

to create images, this is called Plane Wave Imaging (PWI) [28]. 

Multiple images, termed views, can be formed of the same 

physical region in the sample by considering different ray paths. 

Views are named according to the wave modes (L for 

longitudinal, S for shear) in the sample on the transmit leg and 

receive leg, with the two legs separated by a hyphen indicating 

the imaging point. In this application, half-skip shear ray-paths 

in transmission and direct shear or longitudinal ray-paths in 

reception have been found to provide the strongest signal 

response and clearest images of the defect, hence the views SS-

L and SS-S and are used throughout. The intensity of the PWI 

image 𝐼 for view SS-γ (where γ is L or S) at position 𝑥, 𝑧 due to 

the plane wave at angle 𝜓 in the sample is defined by 

𝐼𝛾,𝜓(𝑥, 𝑧) = |∑ ℎ𝑗,𝜓(𝑡𝜓
𝑇 + 𝑡𝑗,𝜓,𝛾

𝑅 )

𝑗

| (1) 

where  ℎ𝑗,𝜓(𝑡) is the complex, filtered A-Scan for receiving

transducer 𝑗, and the ultrasonic transit times between the array 

and image point in transmission, 𝑡𝜓
𝑇 , and between the imaging 

point and receiving transducer, 𝑡𝑗,𝜓,𝛾
𝑅 , are calculated using 

𝑡𝜓
𝑇 (𝑥, 𝑧) =

𝜍

𝑐𝑐cos(𝜙)
 +

𝛤

𝑐𝑆cos(𝜓)
+

𝜍 + 𝛤 − 𝑧

𝑐𝑆cos(𝜓)
(2) 

𝑡𝑗,𝜓,𝛾
𝑅 (𝑥, 𝑧) =

√(𝑥 − 𝑥𝑜𝑢𝑡)2 + (𝑧 − 𝜍)2

𝑐𝛾

 +
√(𝑥𝑜𝑢𝑡 − 𝑥𝑗)2 + (𝜍)2

𝑐𝑐

(3) 

where 𝜍 is standoff, 𝛤 is thickness, 𝑥𝑜𝑢𝑡 is the position of the

exiting ray on the front wall (as described in Fig. 1b), 𝑐𝑐 is the

speed of sound in the couplant, 𝑐𝑆 is the shear speed in the

sample and 𝑐𝛾 is the speed of the return ray. Note that 𝑥𝑜𝑢𝑡 must

be found using an iterative method such as Newton-Raphson 

[29] to minimize the time of flight between the imaging point

and receiving transducer. The array is assumed to be parallel to

the 𝑋-axis and positioned at 𝑧 = 0.

C. Simulation

To simulate a training set large enough to enable deep

learning in reasonable time, an efficient method is needed. To 

this end, a mixture of FE models in the defect locality and ray-

based models for the whole region of interest are used. 

Structural and grain noise are included by summation of the 

simulated data with data collected from a defect-free sample. A 

flow chart describing this process is given in Fig. 2a. 

The local FE model functions by exciting a scatterer with a 

uni-modal plane wave and recording the angle-dependent 

scattered wave amplitude to calculate its scattering matrix [25]. 

In this paper, the scatterers are surface-breaking cracks 

represented as 0.3 mm wide perfect reflectors with flat tips. The 

local FE model can be conducted independently of the ray-

based model, so each defect length and angle combination need 

only to be simulated once, no matter where in the image the 

defect lies. This is significantly more efficient than using a fully 

FE approach, which would demand a model encompassing the 

whole region of interest to be run for all positions, as well as all 

lengths and angles. It should be noted that this method assumes 

that the receiving element is in the far field of the defect, where 

the scattered field decays monotonically with distance. In the 

immersion set-up considered here, the approach has been found 

to be applicable for defects of up to 5mm in length. For longer 

defects, the far-field assumption is not satisfied, and their 

simulated image responses are noticeably distorted. 

A ray-based model is used to simulate the Full Matrix 

Capture (FMC) data, tracing all relevant paths (direct and half 

Fig. 1.  a) A diagram of the inspection scenario using a plane wave at angle 𝜓 

to the vertical transmitted in the sample with a standoff and thickness of 𝜍 and 

𝛤 where 𝐿, 𝜃 and 𝑃 represent the crack length, angle and position and b) all 

half skip shear (S) and longitudinal (L) mode ray-paths used in this paper 

where 𝑥, 𝑧 are the co-ordinates of the imaging point and 𝑥𝑜𝑢𝑡, 𝜍 the co-

ordinates of the returning ray on the front wall. 
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skip) from the array to the defect and using scattering matrices 

to calculate the phase and amplitude of its reflections [26], [30]. 

The FMC dataset, 𝑓𝑖,𝑗, is used to generate PWC data, ℎ𝑗,𝜓, with

ℎ𝑗,𝜓(𝑡) = ∑ 𝑓𝑖,𝑗(𝑡 − 𝜏𝑗,𝜓)

𝑖

(4) 

by summation over receiving transducers, 𝑖, where the 

appropriate delay, 𝜏, is given by 

𝜏𝑗,𝜓 = (𝑥𝑗 − 𝑥𝑟)
𝑠𝑖𝑛(𝜓)

𝑐𝑆

(5) 

where 𝑥𝑟  is the 𝑥 position of an arbitrary reference element in

the array, chosen to be the central element in this paper. Note 

that scattering induced attenuation has not been included in the 

simulation. This is because through the 10mm thick stainless-

steel sample its effect is minimal. 

Accurately representing structural and grain noise in the 

training data is achieved efficiently by collecting FMC datasets 

from a defect-free sample and combining them with the 

simulated defect data [27]. This is implemented here by 

choosing, at random, one of 24 FMC data sets obtained from a 

defect-free stainless-steel plate. To ensure the arrival times in 

these data sets match accurately with the simulated data, the 

standoff (𝜍) and sample thickness (𝛤) used both in imaging and 

the ray-based model are calculated using the experimental 0° 

PWC data (ℎ𝑗,0). These are calculated with

𝜍 =
∑ 𝑡𝑗,𝐹𝑗

2𝑁𝑐𝑤

 ,   𝛤 =
∑ (𝑡𝑗,𝐵 − 𝑡𝑗,𝐵𝐹𝐵)𝑗

2𝑁𝑐𝐿

(6) 

where 𝑡𝑗,F and 𝑡𝑗,B are the arrival times of the front and backwall

reflections, 𝑁 is the number of transducers in the array and 

𝑡𝑗,BFB is the arrival time of the first reverberation inside the

sample. Amplitudes are ensured to be on the same scale by 

normalizing both defect and defect-free sets to a backwall 

reflection in the 0° PWC data set. 

The resulting PWC data now contains signals due to grain 

noise, front and back wall reflections and all direct and half skip 

ray-paths from the defect. A Gaussian filter centered at 5 MHz 

with a -40 dB half width of 4.5 MHz is applied to the PWC data 

to remove data outside the frequency range of the transducer. 

Finally, PWI using Eq. (1) is used to create SS-S and SS-L 

images from the arrays on each side of the defect. An example 

of the resulting synthetic images and an equivalent, fully 

experimental set, are given in Fig. 2b,c. In these images, 

indications at the expected location of the defect are caused by 

corner reflections and tip diffractions while the ‘artefacts’ at 

other locations are due to these same effects but from a ray-path 

other than the one being imaged. For example, in Fig. 2c an 

artefact from the SS-S ray-path from the defect is very clear in 

the SS-L image. 

Fig. 2. a) A flow chart describing the method used to create the simulated data set given a defect’s length (𝐿), angle (𝜃) and position (𝑃), b) an example set of 

simulated images for a defect with 𝐿 = 3 mm, 𝜃 = 8° and 𝑃 = 19.2 mm and c) a fully experimental set of images for a defect of the same parameters. Note that 

the black lines show the true extent of the defects and all images are on the same dB color scale, normalized to the maximum intensity in the experimental set. 
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D. Data Set Summary

The defects of interest are surface-breaking cracks between

1 and 5 mm in length, angled at most 20° from the vertical. The 

root of the defect can be positioned anywhere between 𝑃 =
13 mm and 𝑃 = 21 mm which corresponds to all bar 2 mm of 

the insonified backwall region. 25,625 image sets are simulated 

and are summarized in Table. I. The simulated set covers 

lengths and angles beyond that of the experimental set to ensure 

the resulting network learns across the full parameter space. 

Lengths larger than 5 mm are not included as they extend 

beyond the imaging domain, hence will be sized at 5 mm, a 

level which is already well above the critical crack length. 

Experimentally, FMCs are gathered with an array at 27 

different positions (𝑃) relative to each of the 21 available 

defects. The samples are rotated 180° to obtain data from 

defects with both positive and negative angles. The resulting 

999 image sets are summarized in Table. II. The maximum 

intensity of defect indications in the simulated set is found to 

have a Mean Absolute Error (MAE) relative to the experimental 

set of 0.97%. Along with the visual similarity of the images 

such as in  Fig. 2b,c this low level of MAE is considered to 

validate the simulation. The methodology for creating the 

standard data sets has now been described, the following 

subsection (Section II.E) outlines how this is altered to create 

sets with varying sound speeds. 

E. Sound Speed Variation

With machine learning, creating a network that can cope with

expected variations in inspection conditions is achieved by 

including these variations in the training set. Here the case of 

inaccurate knowledge of sound speeds is considered as an 

example. In practice, the variation would be in the physical 

measurements and the image reconstruction sound speeds 

would be fixed. However, because it is not readily possible to 

obtain a large amount of experimental data from physical 

systems with different sound speeds, the sound speeds used for 

image reconstruction are varied instead. Varying the 

reconstruction sound speed is not directly equivalent to varying 

the specimen sound speed, as the latter causes changes in 

physical quantities such as the crack length to wavelength ratio. 

However, in terms final image distortion, these are second order 

effects compared to a mismatch between the specimen and 

reconstruction sound speeds.  

It is assumed that a sensor is available to get an accurate 

reading of temperature in the couplant from which its speed of 

sound can be estimated from previously acquired speed vs. 

temperature calibration data. Because in practice the pipeline 

product acts as the couplant, there will be some uncertainty in 

its sound speed due to uncontrolled variables, such as the exact 

composition of the product. Shear and longitudinal speeds in 

the steel pipe have larger potential uncertainty caused by effects 

such as variation in material composition, corrosion and 

temperature change due to the external environment. To include 

these variations in sound speed, random uniform multipliers are 

used at the imaging stage. These are 

0.99 < 𝛽𝑊 < 1.01

0.9 < 𝛽𝑆 < 1.1

0.9 < 𝛽𝐿 < 1.1  

(7) 

where 𝛽𝑊, 𝛽𝑆 and 𝛽𝐿 are multipliers for the water speed, 𝑐𝑤 ,
shear speed, 𝑐𝑆, and longitudinal speed, 𝑐𝐿 , used in Eqs. (2-6).

These values are larger than the true variation in material sound 

speed is likely to be; for example, carbon steel experiences less 

than a 10% variation in sound speed [31] across the full 

temperature range an inline pipe inspection tool is able to 

operate in (−10 to 50°C [32]). These large values of 𝛽 are 

chosen to demonstrate the effectiveness of this method even 

under extreme conditions. As is evident from Eq. (6), the 

calculated thickness and standoff will change proportionally to 

longitudinal and water speeds, respectively. The coordinates of 

the imaging mesh are moved to consistently sit at the predicted 

position of the plane wave aperture on the backwall. An 

TABLE I 
SIMULATED DATA SET SUMMARY 

Parameter Range Step Number 

Crack Length, L (mm) 0.2 to 5 0.2 25 

Crack Position, P (mm) 13 to 21 0.2 41 

Crack Angle, θ (°) -24 to 24 2 25 

Non-Defect Scan 24 

Total = 25×41×25=25,625 data sets 

TABLE 2 
EXPERIMENTAL DATA SET SUMMARY 

Crack Angle, θ (°) 

0 ±2 ±5 ±8 ±12 ±15 ±20 

C
ra

ck
 L

en
g

th
, 

L
 (

m
m

) 1 ✓ 

2 ✓ ✓ ✓ ✓ ✓ 

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

5 ✓ 

37 length/angle combinations 

Range Step Number 

Crack Position, P (mm) 13 to 21 0.2 27 

Total = 37× 27=999 data sets 

Fig. 3. a) An experimental image set for a defect with 𝐿 = 3 mm, 𝜃 = 8°, 𝑃 =

19.2 mm and no sound speed variation and b) the same PWC data imaged with 

𝛽𝑆 = 1.1, 𝛽𝐿 = 0.9 𝑎𝑛𝑑 𝛽𝑊 = 0.99. All images are on the same color scale in 

dB, normalized to the maximum intensity in the experimental set. The black 

lines show the true extent of the defect. 

a

b

SS-S, SS-L, SS-S, SS-L,
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example of images produced with the most severe set of errors 

is given in Fig. 3b where it can be seen that the sound speed 

errors have caused significant spatial movement of defect 

responses, total loss of co-registration  and a change in 

indication amplitude and size for some cases. 

III. DEFECT-CHARACTERIZATION ALGORITHMS

In this section, the process for implementing the 6 dB drop 

sizing method will be explained, the CNN architecture used will 

be described and the training method outlined. 

A. 6 dB Drop Method

The 6 dB drop method is a common way to size defects in

ultrasonic images and is presented here as a comparison for the 

deep learning approach. The 6 dB drop method is based upon 

the idea that if a defect is the strongest indicator in an image the 

region of the image that is within 6 dB of the peak value can be 

used as a good approximation of the size of the defect. This is 

implemented by calculating the minimum area of a rectangular 

box that encloses all pixels within 6 dB of the peak value and 

taking the crack length and angle as those of the major axis of 

the enclosing box [33]. Pixels above -6 dB must be within a 

certain distance of each other to be considered part of the same 

defect. In this paper the maximum distance is set at 4 pixels 

(1.27 mm). 6dB drop is deemed to be the most appropriate 

traditional sizing technique as amplitude based methods for 

large surface breaking defects suffer from constant amplitude 

corner reflections [34], [35], tip diffraction signals aren’t 

consistently strong enough to enable temporal based techniques 

and the restricted range of incident and reflected angles means 

that scattering matrices [36] cannot be calculated. The reader is 

directed to [35] for a comprehensive review of traditional NDE 

sizing techniques. 

This method has a few advantages over a machine learnt one. 

For example, it requires no tuning other than setting the range 

at which indications are considered to be from different defects, 

it is simple to execute, and is not a ‘black box’ method (a 

common criticism of deep learning). It can be argued to be a 

physics-based approach in that a single transducer above a 

large, planar defect will return half the amplitude when ‘half on, 

half off’ the defect compared to a measurement from directly 

above it [35], [37]. As this occurs at the edges of the defect the 

indication in a simple B-Scan should be described by a 6 dB 

drop. Figure 4a shows an experimental example where this 

works well, with the 6 dB box describing the extent of the 

defect quite accurately, undersizing by only 0.5 mm. However, 

this method performs poorly in more complex scenarios. For 

example, Fig. 4b shows a more angled defect from which the 

specular and tip reflections are well below -6 dB so only the 

corner indication is picked up, resulting in undersizing by 

2.1 mm. Importantly, it is also difficult to make use of 

information from more than one image using 6 dB drop. In this 

application, defects of |𝜃| > 12° are much more accurately 

visualized in the SS-L view than SS-S, however, effectively 

deciding which one to use without prior knowledge of the 

defect is challenging. The SS-S view has been used for 6 dB 

sizing throughout this work as on average it gives a more 

accurate result. 

B. Deep Learning

1) Network Architecture

The deep learning architecture used here is convolutional and

loosely based on image recognition architectures such as 

AlexNet and VGG-19 due to their widespread success in image 

classification and regression [38]. Similar to these architectures, 

Fig. 4. Experimental SS-S images for a) a defect with 𝐿 = 4 mm, 𝜃 =

0° and 𝑃 = 15 mm, predicted by the 6 dB drop method to have 𝐿 =

3.5 mm and 𝜃 = 0° and b) a defect with 𝐿 = 4 mm, 𝜃 = 20° and 𝑃 = 15 mm, 

predicted to have 𝐿 = 1.9 mm and 𝜃 = 0°. Black dashed lines indicate the box 

fit by the 6 dB drop method and grey solid lines the true extent of the defect. 

Note that the images are in dB, each image is normalized to its own maximum 

value. 

a b

Fig. 5. a) An illustration of the chosen architecture and b) absolute experimental validation set wall loss error for all tested CNN architectures where the error bars 

represent ± standard deviation over 10 independent initializations. Hyperparameters for all tested architectures can be found in the accompanying data store 

(https://doi.org/10.5523/bris.1u376lnlam8ac2lf0uato86zrr). 
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sets of convolutional and max pooling layers with ReLu 

activation functions are used to achieve feature extraction and 

are followed by fully connected layers to predict the output. 

However, all hyperparameters have been tuned for this 

application. Directly using a well-known architecture ‘off-the-

shelf’ is not possible as the images they are designed for are 

much larger in size than those used in this paper. It can also not 

be assumed that the most successful architecture for natural 

images will be the best choice for NDE images as their content 

is significantly different in structure. In this paper, as shown in 

Fig. 5a, dropout before each fully connected layer is used to 

minimize overfitting to the training set, 10% is chosen as this 

was found to be a good tradeoff between train time needed to 

converge and decrease in validation set loss (indicating reduced 

overfitting). To make use of all four images they are stacked at 

the input (akin to how natural image CNNs treat red, green and 

blue channels) producing a 32x32x4 input. This input is then 

fed into one network that predicts crack length and another 

network that predicts angle. These networks are decoupled to 

allow them to learn the image features that are most useful in 

predicting each property. Note that the outputs can take on any 

real value, making this a regression, rather than classification 

network. 

The route to arriving at the final networks shown in Fig. 5a 

is by trialing different numbers of layers, filters and filter sizes 

to increase complexity (and therefore train time) until the 

improvement in accuracy is minimal. To simplify this analysis, 

length and angle predictions are combined into ‘wall loss,’ 

defined as 𝐿𝑐𝑜𝑠(𝜃), which is usually the metric of interest when 

deciding upon the safety of a pipeline. The result of this study, 

using the experimental validation set to calculate wall loss, is 

shown in Fig. 5b with error bars representing the standard 

deviation in results over 10 independent initializations of each 

architecture using different starting weights and 

train/test/validate shuffles. Figure 5b shows that there is a 

diminishing return in adding complexity to the network. The 

architecture selected is chosen as it is accurate enough for this 

stage of research with more complex networks (with longer 

train times) giving minimal decrease in wall loss error. For real 

world implementation, as training need only occur once, more 

filters could be used at each stage to slightly increase prediction 

accuracy. 

2) Training

For use in machine learning the simulated and experimental

sets are each further split into two more. The simulated images 

are split 85% (21781 examples) for training and 15% (3843 

examples) for validation while the experimental images are 

split 75% (749 examples) for testing and 25% (250 examples) 

for validation. The purpose of these sets are as follows: 

Simulated, train: Used to iteratively update the weights and 

biases of the network. 

Simulated, validation: Automatically analysed to implement 

the training stop condition, minimizing overfitting to the 

simulation.  

Experimental, validation: Used during research and design 

stages to ensure the network is not overfitting to the simulated 

images and to implement the training stop condition. 

Experimental, test: To evaluate the performance of the trained 

network on previously unseen data. 

The CNN is implemented in Python using TensorFlow, 

trained using a Mean Square Error (MSE) loss function and the 

state-of-the-art ‘Adam’ optimizer [39] with a learning rate of 

0.001, in mini-batches of 128 for a maximum of 400 epochs 

with a patience of 150. For machine learning terminology and 

definitions see [40]. This learning rate was selected by raising 

it from a low value until any significant instability in simulated 

training set loss appeared. The mini-batch size of 128 is selected 

to reduce overfitting without causing train time to increase 

Fig. 6. An example pair of training progress graphs for a) length and b) angle 

predictions. 

a

b

Fig. 7. a) Three experimental image sets with black lines indicating the true 

defect extent (all images are on the same color scale in dB, normalized to the 

maximum intensity in the experimental set) and b) a histogram showing the 

length and angle CNN predictions for these defects from 80 different training 

attempts. Dashed vertical lines represent true length and angle. 

i)

a

ii)

iii)

SS-S, SS-L, SS-S, SS-L, 

b
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dramatically as while a small batch size gives a regularization 

effect it increases train time [41]. After training, the weights and 

biases chosen are from the point of minimum experimental 

validation loss. An example training progress graph is shown in 

Fig. 6 where it can be seen that a minima in experimental 

validation loss is reached at 180 epochs, past which point 

validation loss begins to increase due to overfitting to the 

simulation. On a workstation GPU (NVIDIA Quadro K620) 

training 400 epochs takes ~3 hours. 

IV. RESULTS AND DISCUSSION

As outlined in Section III.B, the weights within the CNN are 

initialized with a random seed. In addition, the assignment of a 

particular dataset to the train, test and validation sets is also 

random to avoid potential bias. The first consideration is 

therefore repeatability of the trained CNN. This section will 

also present and discuss length and angle prediction accuracy 

of the 6 dB drop method in comparison to that of the CNN both 

with and without errors in sound speed estimation. 

A. Deep Learning Repeatability

It is important to know the amount of variation in accuracy over 

different network initializations as large scatter could suggest 

poor generalization. This is because in a wide distribution of 

test results the lower errors may be caused by fortuitous 

train/test splits rather than better networks. With low scatter, a 

higher level of confidence can be placed in the model’s success 

not being due to overfitting. To test this, 80 networks are trained 

from different starting seeds and the spread of their results for 

three example defects are shown in Fig. 7. The low standard 

deviations in these results suggests that there is a big enough 

training set and enough network complexity for the network to 

generalize and the training to be satisfactorily independent of 

initial weights and train/test/validation data partitioning. This 

means that the final network can be picked at random from 

these 80 realizations. 

The larger standard deviation in error for defect ii) compared 

to iii) is unintuitive as defect ii) has a higher Signal to Noise 

Ratio (SNR) and its indications better match its true size. 

Investigation into this found that experimental defects of 8 ≤
|𝜃| ≤ 15 cause weak reverberations from ray paths not 

considered in the simulation. These are very low in amplitude 

relative to the SS-S and SS-L views but cause an average SNR 

drop of 2 dB across these angles. While this is a small value for 

high SNR data like this (~30 dB) it is hypothesized to be the 

cause of the larger spread in error for defect ii). This finding 

highlights the importance of an accurate simulation. Further 

research into the cause of these reverberations will allow them 

to be modelled in the future. 

B. Deep Learning vs 6 dB Drop Accuracy

Figure 8a shows the error in characterizing the experimental

test set using the 6 dB drop method, a CNN trained without any 

variation in training set sound speeds and a CNN trained with 

the sound speed variation described in Section II.E. Table. III 

gives the mean and standard deviation of these prediction 

Fig. 8. Histograms of length and angle prediction error of methods applied to a) the standard experimental test set and b) the experimental test set with sound speed 

variation applied. Note that for CNN results all predictions from 80 independent initializations are shown. 

a b

TABLE III 

MEAN AND STANDARD DEVIATION OF PREDICTION ERRORS 

Characterization Algorithm 

6 dB Drop CNN 

(Standard Train Set) 
CNN 

(Speed Varying Train Set) 

Mean St.Dev. Mean St.Dev. Mean St.Dev. 

Te
st

 S
e

t,
 

Q
u

an
ti

ty
 

Speed Constant, Length (mm) -0.86 1.1 -0.063 0.39 0.03 0.59 

Speed Varying, Length (mm) -0.78 1.8 0.088 0.98 0.18 0.56 

Standard, Angle (°) 1.4 12 -0.13 4.1 0.062 4.1 

Speed Varying, Angle (°) -2 20 -0.15 10 -0.048 4.2 
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errors. In terms of length prediction, the 6 dB drop method 

shows a non-negligible mean prediction error of -0.86 mm so is 

on average under-sizing the cracks. It also has a significant 

standard deviation of 1.1 mm. Both the standard CNN and the 

CNN trained with speed variation outperform this with near-

zero mean error and standard deviations of 0.39 mm and 

0.59 mm, respectively. The results for angle follow a similar 

pattern. The most successful method for this test set is the 

standard CNN that has 95% confidence intervals of ±0.77 mm 

and ±8.0°. 

Figure 8b shows the performance of the same methods on the 

experimental test set with sound speed variation included. As 

shown in Table. III, the standard deviations in length and angle 

prediction for the 6 dB drop method rise by 64% and 67%, 

respectively, compared to results on the standard test set. The 

standard CNN more than doubles in standard deviation. 

However, while adding sound speed to the training set increases 

errors for the standard test set the increased generality it creates 

means that adding speed variation to the test set decreases 

standard deviation by 5% for length and 31% for angle. This 

results in a network with 95% confidence intervals of ±1.1 mm 

and ±8.2° even with uncertainties in material sound speed up 

to 10%.  

Whilst the results presented are for a relatively coarse 

imaging grid (pixel size = 
𝜆𝑆

2
= 0.317 mm), a finer grid (pixel 

size = 
𝜆𝑆

6
) provided negligible improvement for either the CNN 

or dB drop methodologies. For the 6 dB drop, this is because 

the limitation is accuracy rather than precision, evidenced by 

81% of absolute length errors in Fig. 8a being larger than the 

coarse image pixel size. The standard CNN sizes much fewer 

defects with errors larger than a pixel (34% in Fig. 8a), but its 

prediction is not intrinsically based on distances in the image 

so is harder to relate to the pixel size. Furthermore, as the 

chosen resolution is already at the diffraction limit (
𝜆𝑆

2
) 

reducing it does not provide any further information about the 

defect to the network. 

C. Discussion

This paper shows, once again, that avoiding overfitting is key

to the success of deep learning. While this is common 

knowledge within the machine learning community, its 

importance cannot be overstated. This is of even more 

importance when training on simulated data, as for the network 

to be useful it must be able to operate on real data, despite any 

simplifications or assumptions the simulation may make. Use 

of dropout, analysis of validation data and careful training set 

creation is essential. It must also be ensured that the training set 

contains all significant variation that is expected to occur in the 

real inspection. This is demonstrated here with sound speed 

variation in the training set, but the principle extends to many 

other properties such as variable attenuation, standoff, surface 

roughness and array alignment. It is worth noting that finding 

which simulation inaccuracies cause significant errors in 

experimental sizing is difficult and not always intuitive. This is 

exampled in Section IV.A where reverberations not included in 

the simulation, despite being weak relative to the defect’s half 

skip response, cause non-negligble decreases in angle 

prediction accuracy. Ultimately, the main limitation of this 

method is the breadth and accuracy of the training set. Including 

the correct variation, or somehow accounting for the 

deficiencies of your simulation, is key to creating a network that 

is applicable to real data. 

Due to its simplicity the 6 dB drop method is computationally 

inexpensive. However, it is shown to give far less accurate 

predictions than the CNN. A large factor in this is the quantity 

of information available to each sizing algorithm. While the 

6 dB drop method must size a crack solely from its shape in one 

image the CNN is able to take information from the amplitude 

and shape of indications and artefacts in multiple images. This 

could be further capitalized upon if applied to situations with 

more views such as multi-mode Total Focusing Method (TFM) 

[39]. However, deep learning is not without its drawbacks as it 

is often perceived to be a ‘black box’ method. This makes it 

difficult to directly relate its predictions to their cause. For a 

conservative field like NDE where historically, inspections 

have been qualified using physics-based reasoning this is a big 

drawback, but one that could be overcome by ongoing work in 

techniques such as activation and feature visualization [42]–

[44] which provide mechanisms to understand the rationale

behind the final sizing choice. How deep learning is integrated

into the workplace must also be done carefully. Making use of

its predictions without introducing unwanted bias or degrading

human skills through overreliance are issues demanding

thought and care. However, as current deep learning application

to safety-critical problems such as self-driving cars has proved,

this is certainly achievable. Therefore, the significant increase

in characterization accuracy compared to current methods that

this paper has presented are a strong motivation for application

and further research of deep learning for NDE.

V. CONCLUSION

This paper has demonstrated how a simulation approach can 

generate the large training datasets which enable deep learning 

for crack characterization. The resulting CNN sizes 97% of the 

tested experimental defects of length 1 to 5 mm within ±1 mm 

while the 6 dB drop method only achieves 48%. Even with a 

maximum of 10% uncertainty in material sound speed the CNN 

still achieves 91% sizing in the ±1 mm range, while the 6 dB 

method drops to 40%. Future research should be carried out in 

testing the adaptability and limits of this method by 

characterizing a wider range of defects such as branching 

cracks, corrosion and cracks at welds. The network could also 

be improved by exploring methods to add an output that 

indicates a level of confidence in its characterization of each 

defect. The deep learning characterization approach identified 

in this paper is demonstrated to be successful for in-line pipe 

inspection and is readily applicable to other ultrasonic NDE 

inspections. 

APPENDIX 

Supporting code and data are available at the University of 

Bristol data repository, data.bris at: 

https://doi.org/10.5523/bris.1u376lnlam8ac2lf0uato86zrr 
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