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Abstract: The micro-defects on KH2PO4 (KDP) optic surfaces are mainly repaired by the micro-
milling technique, while it is very easy to introduce brittle cracks on repaired surfaces, as KDP is
soft and brittle. To estimate machined surface morphologies, the conventional method is surface
roughness, but it fails to distinguish ductile-regime machining from brittle-regime machining directly.
To achieve this objective, it is of great significance to explore new evaluation methods to further
characterize machined surface morphologies. In this study, the fractal dimension (FD) was introduced
to characterize the surface morphologies of soft-brittle KDP crystals machined by micro bell-end
milling. The 3D and 2D fractal dimensions of the machined surfaces and their typical cross-sectional
contours have been calculated, respectively, based on Box-counting methods, and were further
discussed comprehensively by combining the analysis of surface quality and textures. The 3D FD

is identified to have a negative correlation with surface roughness (Sa and Sq), meaning the worse
the surface quality the smaller the FD. The circumferential 2D FD could quantitively characterize the
anisotropy of micro-milled surfaces, which could not be analyzed by surface roughness. Normally,
there is obvious symmetry of 2D FD and anisotropy on the micro ball-end milled surfaces generated
by ductile-regime machining. However, once the 2D FD is distributed asymmetrically and the
anisotropy becomes weaker, the assessed surface contours would be occupied by brittle cracks and
fractures, and corresponding machining processes will be in a brittle regime. This fractal analysis
would facilitate the accurate and efficient evaluation of the repaired KDP optics by micro-milling.

Keywords: KDP crystal; fractal dimension; box-counting approach; brittle-to-ductile transition;
surface morphology analysis; material removal modes

1. Introduction

Potassium dihydrogen phosphate (KDP) crystals, known as an excellent non-linear
optical material [1,2], have been widely adopted to generate harmonics for Nd: YAG laser
systems [3,4]. While working under continuous laser irradiation, laser-induced damage
defects (e.g., micro-cracks and micro pits [5–7]) are vulnerable to generate on the KDP
surfaces, thus restricting the sustainable operations of inertial confinement fusion (ICF).
In order to recycle and use these valuable KDP optics, the most cost-efficient way is
to repair the damaged defects as quickly as possible to avoid them further growing to
scrap the entire optics. Currently, the most flexible method is micro ball-end milling to
achieve this objective [8,9]. However, there are some important issues that urgently need
in-depth investigation before performing this micro-milling repair approach into the actual
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engineering application in ICF facilities [10]. One challenge is that as KDP optics are
soft and brittle [11–13], brittle cracks are quite easily involved in micro-milling processes,
deteriorating the machined surfaces, which might shorten the service performance and life
of the repaired KDP optics [8,14,15]. Thus, it is significant to carry out a comprehensive
evaluation of the repaired KDP surface morphologies.

The surface morphologies of the machined parts have a direct and significant effect on
their ultimate service performance [16–18], especially for the optics components working
with high-power lasers like KDP crystal [4,19–21]. To evaluate the machined surface mor-
phologies, the traditional method is to use a series of statistical parameters of the surface
contours, represented by the surface roughness [22,23]. However, most of these statistical
parameters, like Ra, Rq for 2D profiles and Sa, Sq for 3D surfaces, unfortunately, are heavily
dependent on the practical measurement conditions (e.g., the resolution of measurement
instruments), and are easily affected by the evaluation uncertainty [24], frequency-based
errors [25], and measurement noise [26]. Therefore, they could not accurately describe the
machined surface quality and texture features [27]. To bridge this gap, a great number
of efforts have been made to evaluate machined surface morphologies during the past
decades. For instance, the power spectrum density (PSD) [28,29] has been used to ex-
tract the frequency information from machined surfaces, while the continuous wavelet
method [30] has been employed to analyze the dynamic evolution process of the dominated
frequency with the change of machining distance. These methods are all based on the Fast
Fourier Transform analysis of the surface contour data, which are similarly affected by the
measurement conditions.

Therefore, finding an intrinsic parameter that is independent of measurement accuracy,
to characterize the machined surfaces, has become an essential task. Fractal dimension
(FD) has been acknowledged as one promising approach [31–33] and could evaluate the
complexity of some objects in anomalous dimensions and provide a deeper insight into the
surface generation processes, compared with surface roughness [34]. The fractal dimension
is defined as a ratio of the statistical index to the scale at which it is measured [35], thus it
could accurately evaluate the complexity of the accessed objects without any disturbance
from the measurement resolution. Qu [36] used the fractal dimension to uncover the
relationship between the micro-milling parameters of rolled Elgiloy material and the
resultant surface quality. It was reported that the feed rate plays an important role in
affecting surface complexity. Zheng [37] similarly estimated the surface topography of
SiCp/Al machined by UVA grinding based on the fractal theory, and a fitting calibration
formula that links the FD to Ra was developed. Chen and Li [30,38] have attempted to
adopt fractal dimension to analyze the microscope features (e.g., micro-waviness) on the
large-aperture crystal optics fabricated by single-diamond fly-cutting method, but they did
not further reveal the effect of brittle- and ductile-regime machining on the fractal features
of these fly-cutting surfaces.

The above literature review shows that although the fractal dimension has been
identified as a promising approach to estimating the machined surface morphologies
comprehensively [30,36,37], little work has been done to use fractal dimension to identify
the brittle/ductile micro-milling conditions of KDP crystals, and it is important to evaluate
the micro-milled surface qualities and resultant optical performance.

For bridging this research gap, a systematic fractal analysis has been carried out to
evaluate the machined surface morphologies of KDP crystals by the micro-milling process.
Firstly, a series of micro ball-end milled KDP surfaces was produced with different surface
qualities and morphologies. Then, the corresponding three- and two-dimensional fractal
dimensions were calculated based on the Box-counting method, respectively, and analyzed
by combining the related surface morphologies. The underlying relationship between the
brittle/ductile-machined surfaces and their fractal dimension features (i.e., amplitude and
symmetry) was explored, which could contribute to improving the repaired surface quality
and facilitating the application of the micro-milling repair technique.
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2. Fractal Analysis Based on the Box-Counting Approach

Fractal has been acknowledged as a promising mathematical approach to analyzing
and evaluating the geometrical features which are self-affine, generally adopting fractal
dimension as its descriptor. The fractal dimension (FD) is usually a non-integer when
compared with the traditional topological dimension in metrology, which is a quantitative
evaluation of the geometrical irregularity of target objects over multiple scales. Many kinds
of approaches have been proposed to estimate the fractal dimension, like the Box-counting
dimension, Hausdorff dimension, correlation dimension [36,39], and so on. Among them,
the Box-counting approach is the most widely used, as it is consistent with the basic
definition of fractal theory and is easy to implement [34]. Thus, this method is adopted
here for the calculation of the fractal dimension of the three-dimensional (3D) surface and
two-dimensional (2D) cross-section contour of the micro-milled KDP surfaces.

The 3D Box-counting approach is shown in Figure 1. It is an extension of the simple
2D Box-counting algorithm to high-dimensional space. Its introduction gives a quantitative
description of the complex extent of 3D surface topographies. The more complex the shape,
the larger the FD. The 3D FD calculation process is demonstrated below:
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Figure 1. Schematic of fractal dimension calculation using the 3D Box-counting approach.

(1) Use small cubes to envelop the whole surface. These small cubes should have the
same side length l (l is used as the initial observation scale, which can be any scale), and
count the cube numbers (Nl) that completely envelop the 3D surface topography.

(2) Analyze the obtained surface data and fractal. If its minimum and maximum
height values were in Pth and Qth small cubes, the cube number nl (i, j) that can envelop
the fractal at the (i, j)th element should be [34]

nl(i, j) = Q − P + 1 (1)

Moreover, the cube number Nl(i, j) which could fully cover the whole surface is [34]

Nl(i, j) = ∑ i,jnl(i, j) (2)

(3) Change the value of l, and repeat the processes of step (2). The Nl under differ-
ent measurement scales can be obtained and then fit the data (ln(1/l), ln(Nl)) in double
logarithmic coordinates. The fitted slope is the 3D FD of micro-milled KDP surfaces [33,34]

FD = ln(Nl)/ln(1/l) (3)

To make the FD calculation clear, an example is presented in Figure 2. For a micro-
milled surface presented in Figure 2a, the calculation procedures of FD could be divided
into the following steps. Firstly, a series of cubes with a reasonable size (l) are selected
and stacked side-by-side to cover the entire 3D surface, as shown in Figure 1. Afterwards,
the total number of non-empty boxes Nl required to completely cover the entire object
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is then obtained. Furthermore, by changing the box size l, the same counting process
repeats gradually. Finally, the fitted curves of the ln (Nl) versus ln(1/l) can be obtained at
different box sizes, and the fitted slope is the corresponding FD as shown in Figure 2b. The
R-square of the fitting is 0.9943, indicating a very high confidence of calculation results. It
is worth noting that this study is not focused on developing a novel method to calculate the
fractal dimension but rather on attempts to use fractal dimension to identify the generation
mechanism (i.e., via brittle or ductile material removal) of machined surfaces, which is the
novelty of this manuscript.
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KDP surface produced by micro-milling; (b) the calculated fractal dimension of the micro-milled
surface in (a).

3. Experimental Design and Details

To obtain the 3D topography data of the machined surfaces for fractal analysis, a
series of micro-milling tests were performed on a house-built precision machine, which is
particularly designed for the engineering repair of KDP optical components [40,41]. This
machine tool has multi-function, like the vision-based detection of surface defects [42],
in-situ monitoring of micro-milling repair processes [43], and automatic tool setting [44].
Regarding the micro-milling repair function, it consists of a three-axis motion platform
and a high-speed electric spindle. The platform is a linear motion assembly, the resolution
of which along the X, Y, and Z axis is 0.01 µm, 0.01 µm, and 0.05 µm, respectively. The
positioning accuracy is smaller than 1 µm for these three axes. Figure 3 shows the schematic
of the three-axis ball-end milling system. The spindle is fixed on the motion platform. A
micro ball-end milling cutter (SSBL200, NS Tool) was adopted in this test, the radius of
which is 0.25 mm. According to our previous study [45], the cutter shank, as well as the
spindle, was placed at a 45◦ inclination angle to KDP surfaces in order to avoid the tip of
this spherical cutter engage in the milling process, causing brittle-regime machining.
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Figure 3. (a) Image of micro-milling repair system for KDP [46] and (b) the schematic of milling
processes with parallel trajectory [21].

As shown in Figure 3b, parallel milling paths were adopted here for simulating the
actual milling trajectory of the cutter during the actual KDP repair processes. The distance
between adjacent trajectories is known as path interval (P), which was set as 25 µm here [46].
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The spindle speed (N) and milling depth (ap) are 5 × 104 RPM and 2 µm, respectively. The
feed per tooth has a dominant role in the brittle-to-ductile transition of material removal
behaviors of KDP crystals when the spindle speed and depth of cut have been set as their
optimized values (N ≥ 5 × 104 RPM, ap ≤ 2 µm) [47,48]. To better clarify the capacity of
fractal dimension in identifying the generation mechanism of machined surfaces (i.e., via
brittle or ductile material removal), various machined surfaces with different qualities are
required. Thus, feed per tooth has been set in a wide range (i.e.,0.50 µm/z, 1.00 µm/z,
1.50 µm/z, 2.00 µm/z, 2.50 µm/z, and 3.00 µm/z) for producing brittle, brittle-to-ductile,
and ductile surfaces, according to our previous study about the effect of feed rate per tooth
on the brittle-to-ductile transition in micro-milling processes of KDP crystals [47,48].

After the micro-milling tests, all milled surfaces will be observed by scanning electron
microscope (SU8100, Hitachi High-Tech. Co., Ltd., Tokyo, Japan), and white light interfer-
ence (NewView 3200, Zygo Co., Ltd., Middlefield, CT, USA). Following that, the surface
roughness, as well as the three-dimensional data of surface topographies, were obtained.
Every machined surface was measured three times. The presented results are the average
values of three times the measured results.

4. Results and Discussions
4.1. Analysis of Micro-Milled KDP Surface Morphologies

Figure 4 presents the SEM images of the micro-milled KDP surfaces under different
feed rates where various material removal modes (i.e., brittle- or ductile-regime mode)
might occur. As shown in Figure 4a, a fairly smooth morphology could be observed without
any cracks, implying that KDP was milled in ductile-regime mode. As the feed per tooth
rises, the actual undeformed chip thickness (UCT) during each cutting process (i.e., every
rotation of the milling cutter) also increases synchronously [49]. Once the actual UCT
exceeds the critical UCT of brittle-to-ductile transition, micro-cracks will engage in material
removal behaviors [49,50] and occur on machined surfaces, as shown in Figure 4b–d. These
micro-cracks could prove a mixed material removal mode or ductile-to-brittle transition
occurred on these machined surfaces. With the rise of feed per tooth, the actual UCT would
further increase, giving the risk of generation of brittle removal (see Figure 4e), which sees
an increasing number of brittle cracks on the micro-milled KDP surfaces. Furthermore, the
observed surface morphology in Figure 4f is quite dissimilar to those shown in Figure 4a–d.
In this case, the obtained surface was fully covered with lots of continuous macro-brittle
fractures, indicating that the brittle-regime mode dominated material removal processes.
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Meanwhile, Figure 5 shows the surface topographies of micro-milled KDP surfaces
observed by the white light interferometer, which could evaluate the surface quality quan-
titatively (i.e., surface roughness) and provide 3D topography data for fractal analysis. It
was found that, when the feed rate per tooth rises gradually, the features (i.e., brittle cracks)
on the presented surfaces show a similar increasing trend with those observed by SEM (see
Figure 5). This scenario further illustrates the different material removal behaviors engaged
in these micro-milling processes. However, it is worth noting that although the material
removal behaviors are slightly different on the machined surfaces shown in Figure 5b,d,
the measured roughness of these two surfaces is quite close, with a very small deviation of
only 0.004 µm. This means that the surface roughness fails to characterize and reflect the
subtle change of microscopic texture and structure of these micro-milled KDP surfaces.
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Figure 5. 3D morphologies of micro-milled KDP surfaces at various feed rates per tooth.

4.2. 3D Fractal Analysis on the Machined Surface Morphologies

Based on the above discussion, both the arithmetical mean height (Sa) and root mean
square height (Sq) of the measured surfaces, which are the most widely-used surface rough-
ness parameters, could not be able to accurately characterize the topography complexity of
the precision micro-milled KDP surfaces. In contrast to Sa and Sq, the 3D fractal dimension
(FD) has been reported to have a powerful capacity to quantitatively evaluate the topogra-
phy complexity of the machined optical surfaces [30,38]. As mentioned in Section 2, the
values of FD are equal to the slopes of lnNl/ln(1/l), so the value variation of calculated FD,
which could be caused by the changes of box numbers required to envelop the surface with
the same box size, can accurately characterize the evolution of the complexity of assessed
surface topography. To acquire the relationship between Sa, Sq, and FD, six micro-milled
KDP surfaces with different surface quality were analyzed. Figure 6 presents the obtained
3D FD of micro-milled KDP surfaces and the corresponding surface roughness (Sa and Sq).
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Meanwhile, to better uncover the correlation between Sa, Sq, and FD, a correlation
analysis was performed between these values with two outcomes: correlation coefficient,
R, and statistical significance, P. The calculated R can be used to indicate the extent of the
correlation between two assessed objects. The p-value indicates the probability, by random
chance, of obtaining a correlation as large as the observed values. The detailed formula for
performing correlation analysis can be expressed below:

[R, P] =
∑l

i=1
(
Si − S

)(
Fi − F

)√
∑l

i=1
(
Si − S

)2(Fi − F
)2

(4)

where S is the measured surface roughness (i.e., Sa, Sq) while F is the calculated fractal
dimension (FD). The correlation coefficient R is in the range of [–1, 1]. If R is positive, the
accessed objects are positively correlated, while negative R-values mean the accessed objects
are negatively correlated. The size in the absolute value of R means the correlation extent.
Besides, if the calculated p-value is less than 5%, the correlation between the variables is
usually considered statistically significant in the results.

Table 1 lists the calculated correlation results between the 3D FD and Sa, Sq. By ob-
serving R- and p-values, it was revealed that the calculated FD has a statistically significant
correlation with the measured Sa and Sq. Taking Sa for instance, the coefficient R = −0.8985
sees a negative correlation between Sa and FD with a small p-value (0.0149 < 0.05). This
means, although the correlation between FD and Sa is not strict, the FD overall reduces as
Sa rises. The evolution of Sq versus FD keeps like that of Sa. Thus, if the machined surface
quality was observed in view of 3D fractal dimension, it can be found that, the larger the
FD, the finer the microscopic morphology of machined KDP surfaces, and the finer the
machined surface textures, indicating the better micro-milled surface quality produced.
When it comes to the surface with smaller FD, a great number of micro-cracks and brittle
removal take place, as shown in Figure 5, implying that a worse surface quality with coarse
textures was produced. Furthermore, as mentioned above, the two machined KDP surfaces
shown in Figure 5b,d have similar Sa, although their surface quality and surface textures
are quite different. However, combining the surface morphologies shown in Figure 5b,d,
the calculated fractal dimension presented in Figure 6 demonstrates that the micro-milled
surface with a larger FD value has a better surface quality. Thus, the fractal dimension could
be employed here as a powerful approach to quantitatively evaluate the micro ball-end
milled KDP surfaces and to identify the brittle or ductile machining behaviors.
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Table 1. Calculated correlation between 3D fractal dimension and surface roughness.

Ex. No Sa Sq FD R p-Value

1 195 240 2.528 −0.8985
(Sa vs. FD)

0.0149
(Sa vs. FD)2 225 270 2.473

3 254 330 2.424
4 229 295 2.351 −0.9117

(Sq vs. FD)
0.0114

(Sq vs. FD)5 272 339 2.294
6 345 412 2.215

4.3. 2D Fractal Analysis on the Machined Surface Morphologies
4.3.1. Anisotropy Analysis of the Micro Ball-End Milled Surfaces

Through the above analysis, the 3D FD is good enough for characterizing the overall
quality of the machined surfaces, as it treats them as a whole during the calculation
processes. This indicates that the 3D FD loses the ability to characterize local texture
features of the machined surfaces, especially for anisotropic surfaces like milled surfaces.
During the micro-milling processes, the milling cutter will feed not only along its feeding
direction but also move perpendicular to its feeding direction (i.e., path direction) with
parallel trajectories, resulting in different types of residual tool marks [45,46]. To achieve
ductile machining for KDP, the federate per tooth is selected as about several µm close
to its critical UCT of brittle-to-ductile transition [51], and is much smaller than the path
interval (25 µm) between adjacent trajectories. This scenario inevitably causes the residual
height of tool marks along the path direction to be much larger than that along the feed
direction, further forming anisotropic features on the machined surfaces. Besides, this kind
of anisotropic feature also means the contours of cross-sectional surfaces along different
directions have different characteristics, which could be used for calculating the 2D fractal
dimension. Thus, the calculated 2D along different directions could be used to characterize
the anisotropy of the micro ball-end milled surfaces.

When calculating the 2D FD, as shown in Figure 7, the center of the obtained surface
could be regarded as the coordinate origin. The X-axis direction in the measurement
coordinate system is assigned as the direction with the angle of θ = 0◦, while the Y-axis
direction in the coordinate system is assigned as the direction with the angle of θ = 90◦. The
plane passing through the coordinate origin and perpendicular to the machined surface
can be defined as the cross-section plane. The included angle between this cross-section
plane and the X-axis direction could vary from 0◦ to 360◦. The interaction contour between
the cross-section plane and machined surface is the cross-sectional surface profile, which
can be used as the sample data for the 2D fractal dimension. Thus, the 2D fractal dimension
might be varied even for the same machined surface because the adopted cross-sectional
surface profile might be selected with different included angles. Therefore, if the direction
of cross-sectional surface profiles could be evenly selected from the entire circumference,
the circumferential fractal dimension could be obtained.
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Figure 8 presents the circumferential 2D FD of the micro-milled KDP surfaces processed
with different milling parameters. The anisotropic features of these surfaces can be observed
more visible and intuitively. The maximum values of each circumferential FD occur at the
angle of 90◦, which corresponds to the feed direction. It is worth noting that the values
of circumferential FD at both sides of the Y-axis tend to decrease substantially while the
FD values around X-axis keep stable, which further quantitatively proves the existence
of anisotropic feature on machined KDP surfaces. Besides, although the shapes of these
six circumferential FD shown in Figure 8 are similar, the overall amplitude of their values
is slightly different. For example, the FD in Figure 8a is higher than 1.6 while those in
Figure 8f are less than 1.6, indicating the different surface quality and textures on these
machined surfaces.
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To better compare the evolution of surface textures with the change of included angles,
the 2D FD values of these six micro-milled surfaces (see in Figures 4 and 5) were presented
in the cartesian coordinate system with the included angle range of 0◦~180◦, as shown in
Figure 9. It is noteworthy that the FD profiles at 0◦~180◦ are distributed symmetrically with
those at 180◦–360◦ (see in Figure 8). Thus, only the FD profiles at 0◦~180◦ were selected
and presented in Figure 9. For the surface shown in Figure 5a, it can be seen that the FD
amplitudes tend to be stable at around 1.64 within the included angle range of 0◦~45◦, as
shown in Figure 9a, and then fall off quickly with the rise of included angles, reaching a
low point of 1.40 at around 80◦. Afterward, the FD values show a sharp increasing trend
and peak at their maximum close to 1.67 at 90◦ (i.e., the feed direction), followed by a
quick drop back to 1.40 at 100◦. With the further increase of included angles, the FD values
rebound noticeably and subsequently level out at 1.64 when the angles become higher
than 135◦. The FD profiles of the surfaces shown in Figure 5b,c demonstrate a similar
evolution tendency, except that their overall amplitudes are slightly smaller than those of
Figure 5a. These phenomena clearly show the strong symmetry of the 2D fractal dimension
and further clarify the anisotropy of these micro ball-end milled KDP surfaces which are
normally produced by ductile-regime removal mode.
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Figure 9. The 2D fractal dimension at various included angles to the x-axis on the different machined
KDP surfaces, as shown in Figure 5.

When it comes to the surfaces shown in Figure 5d–f, the overall changing trend of
their 2D FD profiles is similar to those in Figure 5a–c with the rise of included angles to
the X-axis. As seen in Figure 9b, one noticeable difference is that the FD values of the
cross-sectional surface fluctuate markedly and considerably. For example, the FD values
of Figure 5e surfaces within the angle range of 0◦~45◦ and 135◦~180◦ are not as stable
as those of Figure 5a. This scenario should be attributed to the random generation of
brittle micro-cracks on these machined KDP surfaces as observed above from Figure 4.
Furthermore, the symmetry of the 2D fractal dimension with w = 90◦, as the symmetry
axis also becomes weak due to fluctuations of FD values at different angles, indicating
that these surfaces have a relatively weaker anisotropic feature owing to the occurrence of
brittle-regime removal behaviors.

Thus, through the above analysis, it can be concluded that the extents of the anisotropy
of the micro-milled KDP surfaces severely depend on the material removal behaviors (i.e.,
ductile, or brittle removal modes), suggesting that the 2D FD of cross-sectional surfaces
could be utilized to distinct the ductile-regime removal from brittle-regime removal in
micro-milling processes of KDP crystals.

4.3.2. Fractal Dimension Analysis of Cross-Section Surface Contours

As revealed in Section 4.3.1, the FD values of the cross-sectional surface contours and
their distribution could be employed to identify the various material removal behaviors. To
further uncover the underlying relationship between the 2D FD and brittle/ductile material
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removal modes, two types of cross-sectional surface contours on each machined surface
in Figure 5 were selected: one is perpendicular to the milling feed direction (i.e., in the
XOZ-plane) while the other one is in parallel with the milling feed direction (i.e., in the
YOZ-plane). Then, the corresponding 2D fractal dimensions (FD-XOZ and FD-YOZ) were
calculated and are presented in Figures 10 and 11, respectively.
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One can see that the six cross-sectional surface contours along the path direction are
similar in structures (see Figure 10). To further understand their structural characteristics,
cubic polynomials were used to fit these surface contours. The fitted curves are presented
by red-dash lines in Figure 10 and show obvious waviness features. Thus, it was found
that these surface contours along the path direction mainly consist of residual tool marks
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and micro-waviness due to the dynamic response between the micro-milling cutter and
workpiece [52]. As they are similar in structure, it seems to be hard to identify the par-
ticular material removal modes through the cross-sectional surface contours along this
path direction.

In contrast to them, the cross-sectional surface contours in parallel with the feed
direction, as shown in Figure 11, show a significant difference, and the corresponding
fractal dimension FD related to ductile-regime modes are prone to be higher than those
related to brittle-regime modes. When the 2D FD increases from 1.481 to 1.658, it witnesses a
significant change of surface contours from rough to fine and smooth, as well as a transition
from brittle- to ductile-regime removal. To be specific, as depicted in Figure 11f, due to
the occurrence of brittle cracks and fractures, the cross-sectional surface contours are quite
rough with many large peak-valley fluctuations, and the corresponding FD-YOZ is the
smallest (1.481). A similar phenomenon can be found in Figure 11d,e, where the brittle
cracks have a negative impact on their fractal dimension. However, when the surface
contours become smooth without obvious brittle cracks, as shown in Figure 11a, the 2D FD
achieved its maximum (FD-YOZ = 1.658). For the surface contours shown in Figure 11b,c,
there are only a few fluctuations, so their FD is just between 1.532 and 1.658.

Thus, by comparing the contents presented in Figures 10 and 11, it was found that the
cross-sectional surface contours generated by brittle- or ductile-regime are much different
in the cutter feeding direction. This is because the surface contours along the feed direction
normally have smaller residual tool marks and thus are much easier to highlight the
existence of brittle cracks and fractures, compared with the surface contours perpendicular
to the feed direction with higher residual-height tool marks.

5. Conclusions

In this work, the fractal dimension has been introduced to characterize the surface
morphologies of soft-brittle KDP crystals produced by micro bell-end milling processes, as
the conventional method (i.e., surface roughness) can only give the machined surface an
overall estimation and fails to characterize the texture features of surface morphologies.
The main conclusions are summarized below:

(1) The 3D machined surfaces and their typical 2D cross-sectional contours were analyzed
using the Box-counting method for calculating corresponding 3D and 2D fractal
dimensions, respectively. The calculated fractal dimension of different micro-milled
KDP surfaces was discussed comprehensively, combining the analysis of the surface
quality and textures. It was found that there was a negative correlation between the
3D fractal dimension and surface roughness (Sa and Sq). This means that the worse
the surface quality, the smaller the fractal dimension.

(2) The circumstances 2D fractal dimension of cross-sectional surfaces has been approved
to quantitively characterize the anisotropy of the micro ball-end milled surfaces,
which could not be analyzed by surface roughness. If the 2D fractal dimension is
distributed symmetrically, the surface contours are supposed to be generated by
ductile-regime removal. While it is distributed asymmetrically, the surface contours
should be occupied by brittle cracks and fractures and corresponding machining
processes in brittle-regime. This phenomenon becomes more significant for the cross-
sectional surface contours along the feed direction than those perpendicular to the
feed direction.

In all, the micro ball-end milled KDP surfaces could be characterized comprehensively
by systematical fractal analysis (i.e., 3D and 2D fractal dimensions), and the fractal di-
mension with high values tends to occur on the high-quality smooth surfaces, which are
normally produced by ductile-regime machining processes.
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