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Abstract—Advances in media compression indicate significant
potential to drive future media coding standards, e.g., Joint
Photographic Experts Group’s learning-based image coding tech-
nologies (JPEG-AI) and MJoint Video Experts Team’s (JVET)
deep neural networks (DNN) based video coding. These codecs
in fact represent a new type of media format. As a dire
consequence, traditional media security and forensic techniques
will no longer be of use. This paper proposes an initial study
on the effectiveness of traditional watermarking on two state-
of-the-art learning based image coding. Results indicate that
traditional watermarking methods are no longer effective. We
also examine the forensic trails of various DNN architectures in
the learning based codecs by proposing a residual noise based
source identification algorithm that achieved 79% accuracy.

Index Terms—Media forensics, security, learning based image
coding, JPEG-AI, DNN, watermarking, source identification.

I. INTRODUCTION

Recent years have seen a huge growth in creative industries,
which includes, film, TV, video, radio and photography, adver-
tising, publishing, galleries, libraries, archives and museums
(GLAM), music and visual arts. Creative industries contributed
significantly worldwide, e.g., more than £111bn to the UK
in 2018 and is one of the fastest growing sectors across
the economy [1]. Digital rights management, privacy and
security, integrity verification, authenticity are some of major
challenges in the media content consumption chain, e.g., the
loss of income in creative sector due to piracy, spread of fake
news, or evidence tampering for fraud purposes. Therefore the
need for media security and forensics solutions has been more
than ever. This paper explores the effectiveness of the current
security and forensic solutions against new technologies such
as machine learning based coding standards.

Advances in deep learning show major promises across vari-
ous applications of which, examples of media compression [2],
[3] are of interest in this paper due to its direct contribution in
the creative industry. Literature indicates media compression
techniques using deep learning have significant potential to
drive future media coding standards, e.g., Joint Video Experts
Team’s (JVET) deep neural networks (DNN) based video
coding [4] and Joint Photographic Experts Group’s (JPEG)
learning-based image coding technologies (JPEG AI) [5]. As a
dire consequence, traditional media security techniques includ-
ing watermarking and other data hiding algorithms may not
be of use. Similarly, traditional media forensics, in particular,
camera source identification [6] may require a fresh outlook
due to the fact that learning based image coding no longer

necessarily keep the original sensor noise like artefacts. There-
fore, it requires new explorations and approaches in order to
develop a holistic solution in secured media distribution and
consumption chain.

This paper examines the effectiveness of current solutions,
such as, digital watermarking and source identifications against
learning based coding and compression. The security and
forensic exploration is inspired by a recent JPEG activity
named JPEG AI on learning based image coding [7] and
therefore the scope of this work is restricted to similar image
coding and compression. For image security, we evaluate wa-
termarking embedding distortion and robustness performance
against two state-of-the-art learning based coding methods. For
forensics we made an attempt to identify specific DNN-based
compression architectures that are used in this new type of
image coding. Unlike camera sensors that produces raw pixels,
we argue that DNN-based approaches are new type of imaging
sources that learn the visual representations in order to produce
highly compressed images. Therefore, it is fair to proclaim
that DNN-based compression architecture identification is a
new but important aspect of the new age image forensic. To
the best knowledge of the authors, no such explorations were
carried out in the literature. The main contributions of the work
are two fold:

• Watermarking based security evaluation against learning
based image coding and compression and

• DNN architecture (as a new imaging source) identifi-
cation using three deep learning based methods with
varying layer depths.

The rest of the paper is organised as follows: Section II
outlines existing learning based image coding techniques, Sec-
tion III describes the watermarking based security evaluation
and DNN architecture (source) identification approaches fol-
lowed by results and discussion in Section IV and concluding
remarks in Section V.

II. LEARNING BASED IMAGE CODING

With the increasing accessibility to high-quality, easy-to-
use cameras and, consequently, in the generation of images
and videos, it is essential to compress image data as much
as possible, whereas maintaining good quality, in order to
improve storage and transmission. Historically and till date
JPEG has played a major role in image compression with
various standards such as JPEG 1 [8], a format which is still
dominant today even after 28 years of its inception; JPEG
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2000 [9], largely used in medical imaging, digital cinema and
geographic information systems; and more recent others, e.g.,
JPEG XS [10] for low latency applications, JPEG XL [11], a
potential successor of JPEG 1 with significant improvement in
efficiency etc. Other approaches include intra coding of High
Efficiency Video Coding (HEVC) [12] and WebP [13].

Currently, with the resurgence of neural networks and their
widespread success in several tasks [14], [15], researchers
began to investigate and propose data-driven learning-based
compression approaches based on deep learning [16]–[19].
Such methods seek to learn the compression transforma-
tions/representations based on a large amount of training data
and ultimately aim to produce high quality images at a very
low bit rate achieving high compression ratio. Understandably
for past couple of years JPEG has been engaged in exploring
the potential of an end-to-end learning based image coding
standard through its activity called JPEG AI. Currently it is
evaluating various approaches proposed in the literature. In
this paper we seek to understand the security and forensic
implications of such compression and coding methods.

Among the deep learning-based compression approaches,
two state-of-the-art works have been selected to be further
investigated for the watermarking and source compression
identification tasks within the scope of this work. The first
one, proposed by Mentzer et al. [19] and called HiFic, uses
a Conditional Generative Adversarial Network [20] to learn
the compression transformations. Precisely, in this approach,
two networks play a minimax game: one (generative) network
seeks to learn effective compression transformations whereas
another (discriminative) network tries to distinguish between
real and (generated) compressed data. Such technique has three
variants (depending on the target bit rate) whose difference is
the final compression quality: (i) HiFic-lo, for low quality, (ii)
HiFic-mi, for intermediate quality, and (iii) HiFic-hi, for high
compression quality.

The second technique [18] proposes an end-to-end trainable
model for image compression based on variational autoen-
coders. This method, optimized using Mean Squared Error
(MSE), has two variations: (i) the first one uses a fully
Factorized (F) prior density model to learn the compression
transformations, and (ii) the second defines a Hyperprior
(H) capable of capturing compression dependencies. These
variations can vary in compression quality, from 1 (lowest)
to 8 (highest) indicating the quality level.

III. METHODOLOGY

In exploring security and forensics of learning based image
coding, we 1) use a commonly known multiplicative water-
marking technique and evaluate embedding distortion and ro-
bustness performances; and 2) propose a residual noise based
deep learning algorithm for DNN architecture identification
and report the accuracy.

A. Watermarking

Digital watermarking is in use for quite sometime to pro-
vide media security, especially for copyright protection or
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Fig. 1: Image security evaluation using watermarking.

digital rights management. Traditionally frequency domain
watermarking schemes have shown better performances [21]–
[23], and therefore we propose to use a similar approach
in measuring the effect of compression over a non-blind
watermarking process (as shown in figure Fig. 1). The main
steps of this framework are as follow: (1) one of the frequency-
based transforms (Discrete Wavelet Transform (DWT) or
Discrete Cosine Transformation (DCT)) are used to embed a
watermark inside an original image, (2) a compression coding
is applied over the watermarked image using JPEG 1 [24] or
learning-based coding (HiFic [19]), F-MSE [18]) at different
quality levels, (3) the watermark is extracted through the same
frequency-based transform used in the embedding process at
step 1. The embedding process is defined as follows:

Ôi,j = FT (Ox,y) (1)

D̂i,j = Ôi,j(1 +Wx,y ·G) (2)

Dx,y = FT−1(D̂i,j) (3)

where Ox,y and Wx,y are original and watermark images in
spatial domain. FT (.) and FT−1(.) are forward and inverse
frequency-based transform functions (either DCT or DWT).
The watermarked image is represented in frequency domain
as D̂i,j and in spatial domain as Dx,y . G is the gain factor
for watermarking fusion. The compression coding process
is computed as follows: Cx,y = H(Dx,y), where H(.) is
compression function and Cx,y is compressed watermarked
image. The extraction process is defined as follows:

Ĉi,i = FT (Cx,y) (4)

Êi,j =
Ĉi,j − Ôi,j

Ôi,j ·G
(5)

Ex,y = FT−1(Êi,j) (6)

where the extracted watermark image is represented in fre-
quency domain as Êi,j and in spatial domain as Ex,y .

B. Source (DNN Architecture) Identification

Due to the increasing use of machine generated image
contents [25], camera can no longer be considered as the
single original image source. In addition, learning based
image coding (as discussed in Section II) relies on large
input data to train DNN architectures to learn compression
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Fig. 2: Overview of the compression source identification pipeline.

transformations/representations and other compression param-
eters. Therefore, it is more pragmatic to restate the camera
source identification problem as joint identification of DNN-
based image coding architectures along with the original
sensors as the new age imaging source(s). We model this
DNN source identification as a classification task, in which
the DNN architecture of each learning based compression
technique represents a class/label. Specifically, given an input
image (decoded following a compression), the main objective
is to predict which class that image belongs to, i.e., which
compression method was applied to that image.

The proposed compression source identification pipeline is
composed of three main steps, as depicted in Fig. 2. Firstly,
images are compressed using the compression techniques
mentioned in Section II. Then, each compressed image, after
decoding, is further processed using DWT to extract residual
noises. Finally, the high frequency diagonal (or HH) compo-
nent of the DWT is used as input for a machine learning model,
which is responsible for classifying the input data.

This classification process is capable of performing com-
pression source identification given that it associates the input
data to a label, which, as explained, is directly related to
the compression method applied to that data. Distinct ma-
chine learning techniques can be used with the described
pipeline. Given the success of neural networks for the image
classification task [14], [15], [26], in this work, three deep
learning-based approaches were selected to be evaluated for
the compression source identification task.

The first approach [27], is a simple Convolutional Net-
work conceived for Source Camera Identification (SCI). This
method, referenced hereafter as SCI, is composed of only 3
convolutional layers. The motivation for testing this approach
was to assess how efficient traditional state-of-the-art methods
in SCI are in source compression identification.

The second approach evaluated for source compression
identification is the famous and traditional Residual Net-
works [28]. This technique has several convolutional layers
with residual (or skip) connections in order to allow better
optimization. Precisely, in this work, we evaluated the ResNet-
18 [28], which has 18 convolutional layers.

Finally, the last technique evaluated for compression source
identification was the InceptionV3 [29]. Such convolutional
network, evolution of the traditional GoogleNet [30], is com-
posed of modules that process the input with multiple convo-
lutional filters in parallel. As expected, InceptionV3, which is
48 convolutional layers deep, has several improvements when
compared to the original network, including label smoothing,
factorized convolutions, and the use of auxiliary classifiers.

IV. RESULTS AND DISCUSSION1

A. Watermarking

Test images are selected from Kodak lossless true color
image suite2: original images (kodim01, kodim02, kodim05,
kodim21, kodim23) and watermark image (kodim15). Both
the embedding distortion and watermark robustness perfor-
mances are measured using common metrics such as Structural
Similarity (SSIM) Index [31] and Peak Signal to Noise Ratio
(PSNR) for quantitative comparison. The values of gain factor
(empirically chosen) are 0.9 for DCT and 0.4 for DWT. Low
frequency components of the original images are used to
embed the watermark image. A post-processing step using
median filter has been applied on watermark images and its
extracted version for noise reduction.

Table I shows the average results of watermarking task with
compression methods of different quality levels. The embed-
ding and extraction stages always reach highest watermark-
ing performance without using any compression. With high
compression quality, the learning-based methods (especially F-
MSE-8) and JPEG have close results. With decreasing quality
levels, JPEG better preserves the watermark content at the
extraction stage against others. Figure 3 shows that learning-
based methods have superior compression ratio over JPEG
while maintaining similar SSIM values, but perform poorly in
extracting a clear watermark. In summary, handcrafted water-
marking methods are not compatible well with learning-based
compression models for watermark preservation. Therefore,
alternative approaches such as deep learning based watermark-
ing methods [32]–[34] might be well worth to explore.

1Source code is available at: https://github.com/mawady/vcip21
2http://r0k.us/graphics/kodak/index.html
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Embedding Extraction

SSIM PSNR SSIM PSNR

DWT

No comp 0.946 22.869 0.992 43.761

JPEG Q90 0.909 22.710 0.700 21.013
JPEG Q70 0.870 22.462 0.605 16.449
JPEG Q50 0.842 22.271 0.510 13.349

F-MSE-8 [18] 0.914 22.876 0.732 23.234
F-MSE-4 [18] 0.804 22.518 0.530 14.616
F-MSE-1 [18] 0.664 21.317 0.360 11.260

HiFic-hi [19] 0.842 22.521 0.570 17.625
HiFic-mi [19] 0.796 22.231 0.534 15.697
HiFic-lo [19] 0.725 21.728 0.442 13.258

DCT

No comp 0.919 25.575 0.956 31.781

JPEG Q90 0.885 25.349 0.539 13.581
JPEG Q70 0.845 24.840 0.426 13.340
JPEG Q50 0.818 24.506 0.368 12.226

F-MSE-8 [18] 0.882 25.649 0.544 15.667
F-MSE-4 [18] 0.768 24.909 0.274 10.976
F-MSE-1 [18] 0.652 22.995 0.219 10.038

HiFic-hi [19] 0.825 25.029 0.349 11.090
HiFic-mi [19] 0.787 24.852 0.324 11.211
HiFic-lo [19] 0.725 23.990 0.285 10.281

TABLE I: Watermarking embedding distortion and robustness
performances against standard JPEG compression and two
state-of-the-art learning based image coding. Top three results
are highlighted as bold, underline, italic respectively.

B. Source Identification

For the source identification part, we used three state-of-the-
art learning based image coding approaches, F-MSE-8 [18],
H-MSE-8 [18] and HiFic-hi [19] as target classes. To train
and test our approach, we exploited the JPEG AI dataset3,
which is composed of 5, 264 images for training, 350 for
validation, and 40 for test. Although the image resolution of
this dataset varies considerably, ranging from 835 × 628 to
6000×4000 pixels, all images have been resized according to
each network’s specifications. Data from all sets are processed
using the aforementioned compression methods. Images from
the training set are used to optimize the networks whereas the
validation set is only used to evaluate the convergence of the
algorithms. Finally, results are reported based on the test set.

Aside from this, all networks assessed in this work were im-
plemented using PyTorch. During training, all networks used
the same set of hyperparameters, which were defined based
on convergence analyses. Specifically, learning rate, weight
decay, batch size, and number of epochs are 0.01, 0.005, 128,
and 50, respectively. All experiments were performed on a 64
bit Intel i7 8700K machine with 3.7GHz of clock, Debian 10,
64GB of RAM memory, and a GeForce GTX 1080 Ti with
12GB of memory under a 10.1 CUDA version.

Table II presents the obtained results. As can be seen
through this table, SCI [27] produced the worst results, which
indicates that methods proposed for source camera identifi-
cation are not suitable for source compression identification.

3https://jpeg.org/jpegai/dataset.html
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images. For similar visual quality at high CR (for both learning
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Network → SCI [27] ResNet18 [28] InceptionV3 [29]

Accuracy (%) 34.17 59.17 79.17

TABLE II: Source (DNN architecture) identification perfor-
mance for state-of-the-art learning based image coding.

Aside from this, InceptionV3 [29] yielded the best outcome,
followed by ResNet18 [28], an expected outcome, given that
deeper networks have more learning capacity and, conse-
quently, tend to produce better results.

V. CONCLUSIONS

This paper explores the security and forensic performances
of the futuristic learning based image codecs. The image
security has been evaluated by using frequency domain mul-
tiplicative watermarking techniques and compared against
standard JPEG compression and two state-of-the-art learning
based codecs. Results indicate that generic watermarking
techniques are unable to provide adequate robustness against
learning based codecs. The forensic aspects are examined
with a residual noise based deep learning source identification
algorithm where the DNN-based compression architectures
of the learning based codecs are classified with considerable
accuracy.
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