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Abstract
The stoppage of a mobile platform is generally scheduled to feed parts for machines on production lines, such as fenced 
industrial robotic manipulators. A non-stop mobile robotic part feeding system can contribute to production efficiency and 
flexibility but contains several challenging tasks. For example, the industrial robotic manipulator needs to perceive the posi-
tions of the mobile robot accurately and robustly before grasping the supplies when the mobile robot moves around. Thus, 
based on the relative distance between the two robots, an interaction mode of the integrated robotic system consisting of a 
fixed robotic manipulator and a mobile robot is developed for robotic interaction. In order to accurately and robustly perceive 
the positions of a mobile robot, two different positioning approaches for the robotic manipulator positioning mobile robot 
in an indoor environment are utilised. One approach is ultrasonic sensors fused with inertia measurement units (IMU) by 
extended Kalman filter (EKF). Furthermore, an outlier rejection mechanism is implemented to escape outliers from ultra-
sonic measurement. Another positioning approach is achieved by detecting an ArUco marker with visual sensor. Lastly, a 
positioning switching strategy according to the visual sensor state allows the robotic manipulator to reposition the mobile 
robot seamlessly. According to the static experiments, EKF-based positioning approach fusing IMU with ultrasonic sen-
sor can export high-accuracy (the root mean square error is 0.04 m) and high-precision (the standard deviation is 0.0033 
m) in positioning while keeping a high update frequency of 181.9 HZ in static positioning. Evaluations through dynamic 
experiments demonstrate that the proposed positioning system can suppress the positioning drifts over time in comparison 
with wheel encoder-based positioning method. The two-stage repositioning strategy can support the robotic manipulator to 
identify the positions of the mobile robot robustly, even in the case when the visual sensor is occluded.

Keywords Integrated robotic system · Multi-sensor fusion · Positioning · Swtiching · Industrial manipulator and mobile 
robot

1 Introduction

In modern manufacturing, part feeding is to ensure that 
production lines never stop due to an insufficient amount 
of parts. Fixed industrial manipulators, often placed in a 
fenced cell for safety, are supplied by conveyor and human 
operators (Bøgh et al. 2012). However, these feeding solu-
tions lack the anticipated flexibility and efficiency when hav-
ing to deal with dynamic tasks (Fathi et al. 2016). Thus, in 
order to achieve a greater flexibility as well as an efficient 

production, it is essential to develop a flexible and autono-
mous part feeding systems. Today, mobile robot, as a flexible 
and movable platform, has been a popular choice at produc-
tion lines to transport materials. Considerable progress has 
been made on using mobile robot for transporting and feed-
ing part materials. However, existing feeding systems using 
mobile robot need to set stop locations for pick-up (Dang 
et al. 2014), which is a drawback to efficiency within produc-
tion, and therefore, is time-consuming and limits the overall 
performance of the advanced production. Whereas, with-
out stoppage intervals, non-stop part feeding for a robotic 
manipulator by mobile robot benefits the feeding efficiency 
and flexibility, which is worth investigating as a potential 
for improving the industrial production processes. Further-
more, a mobile robot is normally driven to the predefined 
spot with few interactions from robotic manipulator. Owing 
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to this, the interactions between a mobile robot and a fixed 
robotic manipulator in the same work scope has received 
little attention. In addition to achieving dynamic grasping, 
accurate and robust perceiving and estimating the state of a 
mobile robot are necessary for a robotic manipulator, which 
is one of the key focuses in this case.

In the last few decades, multi-sensor fusion approach 
which integrates multiple information sources to obtain 
robust and reliable sensing performance, has been exten-
sively researched (Nomura and Naito 2000) as a typical 
option for robot state estimation. With the rapid develop-
ment of machine vision techniques, image-based positioning 
system using cameras has been developed as a promising 
positioning solution for industrial applications, as well as 
robotic positioning (Mautz and Tilch 2011). Nevertheless, 
there are no limitation-free sensors. On one hand, it has been 
demonstrated that the vision-based positioning system can 
provide accurate and reliable information of state, especially 
with fiducial visual markers, which have been widely used 
in literature. The well-known “ArUco” visual marker, devel-
oped by Garrido-Juradoetal et al. (2014) in 2014, has been 
used extensively as a low-cost and straightforward solution 
to obtain position information. In Babinec et al. (2014), the 
authors tested the positioning accuracy of ArUco marker. 
The conducted experiments demonstrated that the position-
ing error is less than 0.005m by using webcam when the 
distance between the camera and the marker is less than 
1.2m. Thus, the vision-based positioning system by using 
ArUco marker has been verified as a superb accurate posi-
tioning method and is used in this work. On the other hand, 
there are some challenges for visual positioning methods, 
such as a random blocked view and low-quality and distorted 
images, which result in the failure of visual positioning. In 
this case, it is reasonable to combine vision system with 
other sensors for robotic positioning (Ben-Afia et al. 2014). 
An IMU can offer robust signal with high sampling rate 
while suffering from accumulated errors owing to the inte-
gration during state estimation. Ultrasonic sensor system is 
superior in accuracy for indoor environment positioning but 
works at a slow rate with random outlier. To address limita-
tions and utilise the specific features of standalone sensors, 
IMU and ultrasonic sensors are fused to provide auxiliary 
state estimation for positioning. Benefited from the design of 
a backup positioning system, seamless switching positioning 
is allowed and thus robust repositioning mobile robot can be 
achieved for robotic manipulator.

Recent years have seen a growing interest in investigat-
ing multi-sensor fusion algorithms for robot’s state esti-
mation. Kalman-based filter is a classical method for esti-
mating the state of robot and various variations have been 
developed to improve different aspects, such as unscented 
Kalman filter and extended Kalman filter (EKF). For 
emerging method, neural network based approach has 

been one of the research focuses in recent years and the 
technique has been extensively applied into state estima-
tion. The researchers in Guo et al. (2018) and Guo and 
Chen (2021) constructed neural network based control 
to estimate the state of robotic manipulator and handle 
unknown uncertainties for improving the tracking perfor-
mance. However, neural network based algorithm usually 
requires large computational load and training process, 
which is not suitable for real-time performance. In this 
research work, to accurately grasp the moving objects, the 
robotic arm must obtain the real-time positions of mobile 
robot. EKF can deal with nonlinear system through Taylor 
expansion while ensuring the computational efficiency and 
thus is implemented in this work to fuse IMU and data 
from ultrasonic positioning system for providing real-time 
state estimation.

As part of a preliminary study into the feasibility and 
efficiency of part feeding for a cooperative mobile robot 
and manipulator system (Co-MRMS), this paper investi-
gates the interaction mode between the fixed base robotic 
manipulator and mobile robot, and a multi-sensor fusion 
positioning strategy between mobile robot and robotic 
arm. The performance of accurate and robust positioning 
with seamless switching on a robotic manipulator identify-
ing a moving mobile robot is achieved by following three 
main technical contributions:

– A novel flexible and efficient interaction mode, based 
on the relative distance between the fixed base robotic 
manipulator and mobile robot, is designed for the Co-
MRMS.

– A new multi-sensor fusion positioning system for the 
fixed industrial manipulator to perceive and interact 
with mobile robot is developed. To accurately and 
robustly acquire the positions of mobile robot, two dif-
ferent indoor environment positioning methods, namely 
EKF-based approach fusing ultrasonic sensors with 
IMU and vision-based approach with ArUco marker, 
have been investigated. In addition, with an outlier 
rejection method strategy, the EKF-based approach can 
eliminate the outlier of ultrasonic sensor measurement 
efficiently.

– A novel two-stage positioning strategy is proposed to 
allow the fixed-base robotic manipulator to reposition 
the mobile robot seamlessly for dealing with the sce-
nario that visual sensor is occluded.

The remainder of the paper is presented as follows. In 
Sect.  2, the positioning approaches are reviewed. In 
Sect. 3, the designed interaction mode of the Co-MRMS is 
presented and validated by simulation-based experiments. 
The positioning approaches are described in Sect. 4. In 
Sect. 5, the system performances in number of physical 
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static and dynamic experiments are evaluated. The feasi-
bility of the proposed switching strategy is demonstrated. 
Finally, in Sect. 6, the conclusions are provided and some 
directions for future research are drawn.

2  Related works

Many approaches have been proposed to address the part 
feeding problem in literature. The conveyor-based solution 
has been carried out and applied in industry over the years 
(Akella et al. 2000; Lynch 1999; Mirtich et al. 1996; Carl-
isle et al. 1994; Causey et al. 1997). With the advantages of 
more robotic mobility and task flexibility over conventional 
approaches, the interest of deploying mobile robots to pro-
viding materials for robotic manipulator is increasing sig-
nificantly nowadays (Han et al. 2019; Andersen et al. 2017). 
However, mobile robots in these works are rather inflex-
ible as they are driven and stopped at a predefined location 
for feeding part. In this work, the problem of an interac-
tive part feeding robotic system that a robotic manipulator 
dynamically fetches the object on a moving mobile robot, is 
considered. To achieve this, investigation into continuously 
identifying and handling moving objects is indispensable 
and it has been studied by different types of robots such 
as standalone robotic manipulator and mobile manipulator 
(Zhang et al. 2019; Dewi et al. 2015; Zhu and Ren 2020; 
Chang et al. 2015; Salehian et al. 2016; Luu and Tran 2015; 
Zhang et al. 2018).

The interaction model and coordinated control are signifi-
cant for a workspace sharing system especially one which 
contains moving agents. Liu and Tomizuka (2014) estab-
lished the workspace sharing interaction model between 
a robot and a human to perform collaborative tasks. In Li 
et al. (2022), the kinematic modelling between human and 
exosuit was established. To adapt to different terrains, the 
impedance learning was utilised in the inner loop to regulate 
the impedance parameters of the exosuit while human-in-
the-loop was deployed in external loop to adjust speeds. Yu 
et al. (2020, 2021) used visual and force sensors to obtain 
human motion and the interaction force for human-robot co-
transportation task. Impedance-based control strategy and 
an advanced robot end-effector controller were proposed 
successively to deal with uncertainties in robot’s dynamics. 
Loria et al. (2015) deduced the relative kinematic interac-
tion model of swarms of mobile robots for leader-follower 
formation control. The authors in Muszynska et al. (2016) 
combined artificial neural networks and fuzzy logic systems 
to develop a motion controller for dealing with the nonlin-
earity and uncertain modelling of robotic system. The pro-
posed neuro-fuzzy controller was validated on a wheeled 
mobile robot to implement predefined loop trajectory and a 
robotic manipulator to apply hybrid force/position control 

on a surface. The experiments validated the advantage of 
neuro-fuzzy information in motion controller, showing fast 
error convergence. In spite of these advances, cooperative/
hybrid robotic system involving mobile robot platform and 
fixed-base robotic manipulator has received little attention 
in the context of part feeding and interaction mode design. 
By contrast, this work addresses the interaction between 
a mobile robot and a fixed-base robotic manipulator in a 
single cooperative robotic system. Through establishing a 
novel interaction mode between the mobile robot and robotic 
manipulator, the efficiency and flexibility of material detec-
tion and grasping can be improved.

An equally important concern for the cooperative/hybrid 
robotic system is that the robotic manipulator can robustly 
and accurately perceive the mobile robot, as otherwise it 
would undermine the performance of picking up objects 
from the moving platform. Over the years, a plethora of lit-
erature applying vision system to localize moving objects 
have been presented (de Farias et al. 2021; Papanikolopoulos 
et al. 1993; Ding et al. 2021; Allen et al. 1993). In Mane and 
Mangale (2018), a standalone vision system with neural net-
works based algorithm was researched for object detection 
and tracking. With regards to fixed-base robotic manipula-
tor, a camera is generally mounted on the end-effector as a 
hand-eye to obtain a superb viewpoint to track the moving 
object. Researchers in Zabalza et al. (2019) placed an over-
head camera as the main camera and a fixed side camera 
as the complementary camera to detect the obstacle. While 
only relying on this feature is fairly accurate to identify the 
location of a moving object, it is not robust to sudden “blind 
spots” or distorted captured images which may cause a fail-
ure of the tracking. Thus, another challenging problem that 
is unique for a fixed-base robotic manipulator tracking sys-
tem is visual sensor occlusion.

Multi-sensor fusion, existing in state-of-art literature as 
a remarkable subject in most robot application research, is 
adopted to reduce the uncertainty and enhance the robust-
ness of the system. A number of positioning techniques 
based on multi-sensor fusion have been presented till date 
(Ebner et al. 2015; Xu et al. 2018). Researchers in Dobrev 
et al. (2016) proposed a positioning system that based on the 
multi-sensor fusion of radar, ultrasonic and odometry data, 
using EKF algorithm to determine the positions and orien-
tation of a mobile robot in indoor environment. The work 
in Alatise and Hancke (2017) utilized an EKF approach to 
integrate IMU and vision data extracted from sped-up robust 
feature and random sample consensus algorithms to estimate 
mobile robot pose in indoor environments. Authors in Chen 
et al. (2016) proposed a hybrid mode data fusion approach. 
The IMU data was fused with ultrasonic data by EKF when 
it is available while the trained least squares support vector 
machine (LS-SVM) corrected the inertia navigation sys-
tem during outages. In Coelho et al. (2018), the researchers 
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applied EKF to fuse the wheel encoder and computer vision 
system with augmented reality code. In simulation environ-
ment, the approach can successfully deal with unknown ini-
tial position and robot kidnapping problems where the robot 
is moved to a new position without previous information. In 
Kaltiokallio et al. (2018), the relative performance of Parti-
cle filter and EKF, were compared in terms of performances 
in localisation and tracking. The experimental results con-
cluded that they have similar tracking accuracy but Particle 
filter is much more demanding than EKF in computation 
cost.

Although a variety of research about multi-sensor fusion 
have been conducted, the visual positioning using ArUco 
marker is either generally integrated into the fusion, affect-
ing the positioning accuracy and precision, or used individu-
ally for positioning, lacking of sufficient robustness. Addi-
tionally, research into ultrasonic sensor aided positioning 
system still needs to be explored owing to its low-cost and 
superior positioning accuracy in an indoor environment.

Sensor suites switching has been used and validated to 
perform robust state estimation (Hausman et al. 2016). GPS 
and cameras were added into inertial navigation system in 
Mourikis and Roumeliotis (2007) to handle different cases 
during the experiment. In Lynen et al. (2013), EKF-based 
framework was employed to seamlessly handle additional 
or lost sensor signals. A backup operation mode of airspeed 
measurement was proposed in Leutenegger and Siegwart 
(2012) for an unmanned airplane to deal with GPS outages. 
Hausman et al. (2016) introduced an approach based on 
statistical signal quality analysis for seamless sensor suites 
switching on agile aerial vehicles. In this work, due to the 
existence of a backup positioning module, the positioning 
system allows seamless switching between different sensor 
modalities according to the given conditions of the robotic 
tracking system.

This work deals with the specific problem of position-
ing mobile robot for fixed-base robotic manipulator. Com-
pared with other multi-sensor fusion positioning method, 
this research designed a new two-stage positioning strat-
egy based on two different positioning methods, which are 
EKF-based approach fusing ultrasonic sensors with IMU 
and vision-based approach with ArUco marker, incorporat-
ing both accuracy and robustness. When the vision sensor 
is available, fusing the positioning data from ArUco marker 
detection with other positioning data from other sensors such 
as IMU and ultrasonic sensor undermines the positioning 
accuracy and precision owing to the superb positioning per-
formance of ArUco marker. Therefore, the ArUco marker 
is taken as the principal positioning method and used indi-
vidually without integration with other sensors. If it is avail-
able, the pose extracted from the marker is used directly 
for positioning. However, relying solely on visual sensor 
is not robust and may cause a failure of the detection due 

to the sudden “blind spots” or distorted captured images. 
Therefore, another positioning method fuses IMU and ultra-
sonic sensors by EKF is adopted and taken as the auxiliary 
positioning method. In this designed positioning system, 
thanks for the design and adoption of a backup positioning 
approach, the seamless switching positioning is allowed and 
thus robust repositioning the mobile robot can be achieved 
for the fixed-base robotic manipulator to identify the posi-
tions of mobile robot.

3  Interaction of Co‑MRMS

3.1  Interaction design of Co‑MRMS

The objective of designing the interaction mode for the Co-
MRMS is to enhance the flexibility and efficiency of part 
feeding for the fixed base robotic manipulator by mobile 
robot. Given that obtaining the accurate position of object 
is the prior target, the interaction mode is simplified without 
considering orientational information. Assume that the state 
vector is X, which is 

[
x y z

]T . The states of robotic manipula-
tor and mobile robot are represented as XR and XM respec-
tively. The relative distance between the robotic manipulator 
and mobile robot denoted by drel(t) , which is

The interaction mode between the mobile robot and fixed-
base robotic manipulator in the Co-MRMS has been 
designed and the framework is shown in Fig. 1. The rela-
tive distance drel(t) is calculated and the interaction between 
two robots can be divided into three stages: If the location 
of mobile robot is out-of-scope of the fixed-base robotic 
manipulator, the robotic manipulator keeps static without 
movement; If the relative distance is smaller than the value 
that set for the sake of safety and object identification, both 
robots stop, waiting for the following operations such as 
object detection and material grasping; If the mobile robot 
located in the scope of robotic manipulator and the relative 
distance is larger than the set value, the robotic manipulator 
moves quickly to the mobile robot.

The interaction mode was validated in simulated envi-
ronment and the result is shown in Figs. 2 and 3. For the 
convenience of validation, the mobile robot is simplified as 
a moving point and the fixed-base robotic manipulator is a 
two-link robotic arm. As shown in the figures, the mobile 
point moves at a certain speed in the vertical direction and 
horizontal direction respectively. The interaction mode 
between the fixed-base robotic manipulator and the mobile 
point is adjusted according to the relative distance between 
two agents. The fixed-base robotic manipulator keeps static 
when the moving point is out-of-scope. When the moving 

(1)drel(t) =

√
(xR − xM)

2 + (yR − yM)
2 + (zR − zM)

2
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point is in the scope and the relative distance between them 
is larger than the set value, the fixed-base robotic manipu-
lator promptly moves to the moving point. If the relative 
distance is smaller than the set value, both of the robots 
stop. Therefore, the feasibility of the designed interaction 
mode is validated.

So far, the interaction mode of the integrated robotic sys-
tem is designed and validated. The movement of the fixed-
base robotic manipulator depends on the relative distance 
between the mobile robot and fixed-base robotic manipula-
tor. To obtain the relative distance, the industrial robotic 
manipulator needs to continually perceive the positions of 

Fig. 1  Interaction design of the 
Co-MRMS

Fig. 2  Demonstration of the 
designed interaction with verti-
cally moving point

Fig. 3  Demonstration of the 
designed interaction with hori-
zontally moving point
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mobile robot. Therefore, positioning the mobile robot accu-
rately and robustly for the robotic manipulator in the Co-
MRMS is a critical technique and is as well the research 
focus in this research.

3.2  Coordinate frame transformation

As is illustrated in Fig. 4, five sets of coordinate frames are 
defined in the whole system for coordinate transformations 
to derive the predicted equations and measurement equa-
tions for positioning. Here, four stationary ultrasonic sensors 
are arranged around the workspace and form a positioning 
system (Xu, Yu, Zu) . The base coordinate system (Xb, Yb, Zb) 
is defined in the base axis while the end-effector coordinate 
frame (Xe, Ye, Ze) is located at the end-effector of robotic 
manipulator. The mobile robot coordinate frame (Xm, Ym, Zm) 
is fixed orthogonally to the origin located at the centre 
between the two wheels of mobile robot. Correspondingly, 
the obtained raw IMU readings are attached with the mobile 
robot coordinate frame and are in correspondence with the 
direction of mobile robot’s motion. To unify the coordinate 
frames for EKF-based positioning, the accelerations from 
the accelerometer of IMU are transformed to the ultrasonic 
sensor coordinate frame. Since the end-effector of the fixed 
robotic manipulator moves along with the mobile robot, the 
transformation from the ultrasonic sensor coordinate frame 
to the end-effector coordinate frame should be calculated 
and it can be expressed as

where TUB denotes the transformation matrix from the ultra-
sonic sensor frame to the base coordinate frame and q is the 

(2)XE = f (q)TUBX
U

vector of joint angles. The joint angles can be obtained by 
the inverse kinematics as the end effector target position 
is known. Owing to the dynamics modelling of the fixed 
robotic manipulator, the corresponding torque is calculated 
and then applied to each joint. Therefore, handling the 
objects by the end-effector can be fulfilled.

For the visual positioning approach, an eye-in-hand cam-
era is fixed on the end-effector of the robotic manipulator 
and thus the camera coordinate frame (Xc, Yc, Zc) is attached. 
The ArUco marker coordinate frame (Xa, Ya, Za) is attached 
on the ArUco marker and the marker positions obtained 
from image processing are relative to the eye-in-hand cam-
era coordinate frame and should be transformed into the 
end-effector coordinate frame to facilitate the movement. 
Therefore, the transformation of the marker position from 
the camera coordinate frame to the end-effector coordinate 
frame can be expressed as

 where TCE denotes the transformation matrix from the eye-
in-hand camera frame to the end-effector coordinate frame.

4  Multi‑sensor positioning approaches

In this work, the information fusion includes two meanings: 
one is the fusion of IMU and ultrasonic sensor based on 
EKF algorithm for the position estimation of mobile robot, 
and another is the fusion of two different kinds of position-
ing methods for repositioning. This section firstly discusses 
the two kinds of positioning methods that are deployed for 
localising a mobile robot in an indoor environment. These 

(3)XE = TCEX
C

Fig. 4  Schematic diagram of the 
system and coordinate frames
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are EKF-based approach fusing IMU with ultrasonic posi-
tioning system and vision-based approach by camera with 
ArUco marker. Each positioning technique has both limita-
tions and capabilities. The positioning method using cam-
era with ArUco marker has high accuracy and precision but 
is not robust due to the sudden “blind spots” or distorted 
captured images, while the EKF-based fusion positioning 
method with ultrasonic sensor and IMU is robust to the 
detection distance or views but is not as accurate and precise 
as the visual positioning method with ArUco marker. Then 
the seamless switching strategy for repositioning the mobile 
robot is introduced to deal with the case that the camera 
becomes unavailable.

4.1  EKF‑based state estimation

As a classic sensor fusion approach for nonlinear system, 
EKF was employed to estimate the positions of mobile robot. 
The position prediction is done through IMU readings and 
the correction comes from the position data of ultrasonic 
sensor. The EKF algorithm, taking advantages of specific 
features with overcoming the limits of standalone sensors, 
presents a better resulting performance than individual sen-
sor. The general forms of prediction model and correction 
model in discrete-time domain are given, respectively:

 where X is the state vector corresponding to the positions 
and velocities in X-Y plane, which is 

[
x y vx vy

]T . �i+1 and 
�i+1 represent the system noise and measurement noise, 
respectively. Both of the noises are modelled using zero 
mean Gaussian distribution with the associated covariance 
matrices:

The values of the covariance matrices used in the EKF 
method refer to the input-noise covariance matrix Q and 
output-noise covariance matrix R. The input-noise covari-
ance matrix stems from the IMU noise while the output-
noise covariance matrix stems from the ultrasonic sensor 
noise. Q and R are defined as:

(4)Xi+1 = f (Xi, ui+1) + �i+1.

(5)Zi+1 = h(Xi+1) + �i+1.

(6)
�i+1 ∼ N(0,Qi+1).

�i+1 ∼ N(0,Ri+1).

(7)Q =

[
�2

ax
0

0 �2

ay

]

(8)R =

[
�2

ux
0

0 �2

uy

]

�2

ax
 and �2

ay
 represent the variance of the accelerations that 

obtained from IMU in the x direction and y direction respec-
tively. �2

ux
 and �2

uy
 represent the variance of the positions 

obtained from ultrasonic sensor in the x direction and y 
direction, respectively. These variances vary at different 
experimental conditions. Thus, the data from IMU and ultra-
sonic sensor are collected before the experiment to calculate 
the variances.

Control vector u, which is corresponding to the mobile 
robot accelerations along x and y directions, is repre-
sented by 

[
ax ay

]T  . The following equation expresses the 
acceleration along x or y axis:

where ã and a are the nominal and true acceleration respec-
tively. ba represents the bias and �a is the measurement noise. 
According to the practical measurement, the bias of IMU got 
minor changes in an hour, which can be assumed that the 
bias is a constant during the short-term movement. Moreo-
ver, the bias can be measured by first recording some read-
ings while the IMU is stationary, then taking those values 
as offsets when reading the acceleration values in the future.

Let ΔT  denote the sampling time interval. The state 
prediction of the mobile robot in this work is defined by 
the following kinematic equation:

4.1.1  The establishment of measurement equation ‑ 
measurement modelling

The ultrasonic positioning system used in this work con-
sists of four stationary beacons, a mobile beacon, a router 
and the dashboard beacon software. Each beacon has five 
transceivers. The distance of the mobile beacon affixed on 
the mobile robot is calculated by the router with receiv-
ing ultrasonic signals from the stationary beacons. The 
position of the mobile beacon can be calculated using the 
equation below:

where ( xi+1 , yi+1 , zi+1 ) represents the positions of mobile 
beacon at time i+1, and ( xs , ys , zs ) represents the station-
ary beacon’s coordinates. With the position readings from 
ultrasonic positioning system, the correction model of EKF 
can be presented in the following equation:

(9)ã = a + ba + �a

(10)

Xi+1 = f (Xi, ui+1) + �i+1 =

⎡
⎢⎢⎢⎢⎣

xi + vx(i)ΔT +
1

2
ax(i+1)ΔT

2

yi + vy(i)ΔT +
1

2
ay(i+1)ΔT

2

vxi + ax(i+1)ΔT

vyi + ay(i+1)ΔT

⎤
⎥⎥⎥⎥⎦
+ �i+1

(11)pi+1 =

√
(xi+1 − xs)

2 + (yi+1 − ys)
2 + (zi+1 − zs)

2
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4.1.2  EKF process

Now, the nonlinear system in state-space has been obtained. 
Then, the EKF procedures can be operated as follows by the 
given prediction and correction models:

– Initialisation with state X0 and covariance matrix P0

– State prediction by motion model: 

  where X̂ represents the estimate of the state vector X. 
Covariance matrix prediction: 

  where Fi is the Jacobian matrix of prediction model and 
can be written as: 

 Outlier rejection: Since ultrasonic signal may be delayed 
or reflected by obstacles in real cases, non-updated read-
ings or error values with a drastic change are obtained 
occasionally from ultrasonic sensors. Thus, a straight-
forward outlier rejection strategy to reject outlier from 
ultrasonic sensor data is proposed. In each iteration, the 
difference between readings at time i+1 and time i from 
ultrasonic sensor is calculated and compared with a con-
stant positive value. If the following equation is satisfied, 
Zi+1 would be considered as an outlier. 

  where v is the driving speed of mobile robot and ΔT  is 
the sampling time interval, and � is the adjustment factor. 
Likewise, if the difference between Zi+1 and Zi is equal 
to 0, which is taken as no updated reading from ultra-
sonic sensor. Then the measurement data at time i+1 is 
abandoned. Otherwise, the ultrasonic receiver data would 
be adopted in the correction step of EKF algorithm if 
satisfying the formula: 

 Due to the EKF-based estimation with outlier rejection 
method, the effects of error readings from ultrasonic 
sensor can be effectively reduced and the distinguished 
measurement data can be used for correction model.

– Measurement data update: 

(12)Zi+1 = h(Xi+1) + �i+1 =

[
xi+1
yi+1

]
+ �i+1

(13)X̂i+1∣i = f (X̂i∣i, ui+1) + 𝜀i+1

(14)Pi+1∣i = FiPi∣iF
T
i
+ Qi

(15)Fi =
𝜕f

𝜕X
∣X̂i∣i,ui+1

(16)||Zi+1 − Zi
|| ≥ � × v × ΔT

(17)0 < ||Zi+1 − Zi
|| < 𝜌 × v × ΔT

– Calculation of Kalman gain: 

 where Hi is the Jacobian matrix of measurement model 
and can be written as: 

– State update: 

 where Ẑi+1∣i is the estimated measurement and can be 
written as: 

– Covariance matrix update: 

Afterwards, by setting the estimated state as the target posi-
tion XE defined in Sect. 3.2, robotic interaction by the EKF 
fusion method can be realized and the equation is stated 
below.

The flow chart of EKF-based algorithm with outlier rejec-
tion method is shown in Fig. 5. It should be noted that the 
update frequency of IMU is around 200 Hz while ultrasonic 
sensor is around 3.65 Hz, which occurs to the data unsyn-
chronization during fusion. To solve this issue, the adopted 
EKF-based fusion strategy is employed as follows: The pre-
dicted state and covariance matrix obtained from the motion 
model would be corrected if available measurement data is 
received. Otherwise, the positions of the mobile robot would 
be estimated with the motion model solely. Accordingly, 
the time interval is strongly related to the update frequency 
of acceleration. The IMU possess high update frequency, 
which is around 200 Hz. The 0.005s time interval implies 
that adopting uniform acceleration equation affects a little on 
the effectiveness of the state prediction of the mobile robot.

4.2  Vision system based estimation

Another positioning approach by using an aided camera to 
detect ArUco marker, except EKF-based algorithm fusing 
ultrasonic sensors and IMU, is utilised in this work. The used 
marker is generated with OpenCV library and affixed on top 
of the mobile robot. A standard ArUco marker is defined 
by a 7 × 7 square array, where data and fault detection are 

(18)Zi+1 = h(Xi+1) + �i+1

(19)Ki+1 = Pi+1∣i × HT
i+1

× (Hi+1 × Pi+1∣iH
T
i+1

+ Ri+1)
−1

(20)Hi+1 =
𝜕h

𝜕X
∣X̂i+1∣i,ui+1

(21)X̂i+1∣i+1 = X̂i+1∣i + Ki+1(Zi+1 − Ẑi+1∣i)

(22)Ẑi+1∣i = h(X̂i+1∣i)

(23)Pi+1∣i+1 = (I − Ki+1Hi+1)Pi+1∣i

(24)X̂i+1∣i+1 = XE
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contained in an inner 5 × 5 matrix of each row and generates 
a binary pattern. The marker is identified by the unique pat-
tern that is encoded in each ArUco marker, which is robust 
with low failure rate. Additionally, the marker orientation 
can be detected by the layout of the four corners. Distortion 
of images occurs commonly in the applications of computer 

vision, which affects the measurement accuracy. To correct 
the image distortion, the process of camera calibration is 
conducted with OpenCV to determine the intrinsic and 
extrinsic parameters of camera. Intrinsic parameters are 
related to the camera itself and correspond to its internal 
characteristics such as focal length and optical centres while 
extrinsic parameters refer to the coordinates transformation 
between camera frame and world frame. As the frame of the 
marker is identified, multiple computational steps would be 
performed to obtain the relative pose between camera and 
marker and the processes are described in Fig. 6.

The original image is firstly converted to a grey-scale 
image, then the image binarization is fulfilled through the 
threshold method. Contours in the image are detected by 
means of a Canny edge detector (Canny 1986). By the 
Suzuki algorithm (Suzuki 1985), contours in the image are 
extracted and filtered with discarding and deleting shapes 
other than square and closely adjacent shapes. Further pro-
cessed marker is analysed by detecting the black and white 
pixels and segmenting the marker image into cells. With 
Otsu’s method (Otsu 1979), a binarized image is generated 
again by setting threshold value. The pixels of both colours 
are counted in each cell, and a certain grid map is obtained 
based on the average binary value of the cell. In order to 
enhance the accuracy of the ArUco marker detection, cor-
ners of the marker are found with sub-pixel interpolation by 
the cornerSubpixel function in OpenCV library. Afterwards, 
the pose of the camera with high accuracy is estimated using 
the Levenberg-Marquardt optimization algorithm (Mar-
quardt 1963).

4.3  Seamless switching repositioning strategy

The design of the proposed localising system enables 
the robotic manipulator to estimate the auxiliary state of 
a mobile robot with additional sensors, which allows the 
seamless switching between different sensor suites. On one 
hand, including additional sensors benefits the enhancement 
of estimating the robot state. On the other hand, the ele-
ments of the different sensor suites are capable of seamless 
switching, which improves the fail-safety and versatility of 

Fig. 5  EKF-based algorithm flow chart

Fig. 6  Marker detection process
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the positioning system. In this work, the measurement from 
vision acts as the core state while the estimation by EKF-
based algorithm involved with IMU and ultrasonic sensors 
is taken as the auxiliary state. As shown in Fig. 7, a seam-
less switching repositioning strategy with two main stages 
is proposed for the positioning system.

The first stage processes vision data to estimate the posi-
tions, while the second stage fuses IMU and ultrasonic sen-
sors by the EKF with the outlier rejection method for seam-
less switching. As one of the most popular fiducial markers, 
the ArUco marker presents high accuracy and speed in 
pose tracking (Kam et al. 2018). Therefore, the common 
case is the change from vision-based position estimation 
to EKF-based positioning in the case of unavailable vision 
data. In each time, a judgement statement is performed to 
determine whether the Aruco marker is detected. If the posi-
tion outputs from vision are zero, then the vision system is 
labeled as a disabled state. The positioning system is seam-
lessly switched to the backup positioning stage, which is 
the EKF-based positioning method fusing IMU and ultra-
sonic positioning data. As a result of the seamless switch-
ing repositioning strategy, the positioning of the integrated 
robotic system would be robust against an occluded visual 
sensor, which can achieve reliable and accurate positioning 
performance.

5  Evaluations

5.1  System hardware and experimental setup

Extensive experiments including static and dynamic state 
estimation were performed to evaluate the performance of 
adopted positioning approaches and the proposed switching 
strategy for repositioning. The overall experimental flow-
chart is given in Fig. 8.

The hardware system design for experimental implemen-
tation is given in Fig. 9, where TurleBot3 Burger and UR10e 
were used as the mobile robot and robotic manipulator 

respectively. The four stationary ultrasonic beacons and a 
mobile beacon affixed on the mobile robot were supplied 
by the Starter Set HW v4.9 of Marvelmind. As a high per-
formance optical motion capture system, OptiTrack Trio 
camera was utilised and placed on the flat terrain to deter-
mine the real-time positions of the mobile robot and the 
measurement was taken as the ground truth. A low-cost and 
monocular camera was mounted on the end-effector of the 
fixed robotic manipulator to identify the positions of the 
ArUco marker. In this work, the large size 1.6m × 1.6m 
experimental table was setup based upon two considerations. 
On one hand, the beacons in ultrasonic positioning system 
can be conveniently arranged at a certain distance from each 
other to ensure the positioning accuracy. On the other hand, 
sufficient scope is required for mobile robot motion. Robot 
control and computations were processed on a laptop with 
an Intel i7-8750H, 8 GB RAM.

5.2  Static state estimation experiment

The static state estimation experiment aims to compare 
the EKF-based fusion approach and stand-alone ultrasonic 
sensor system in positioning accuracy, precision to update 
frequency. Therefore, the mobile robot was placed at the 
different predefined positions and the data by two position-
ing approaches were acquired. The root-mean-square errors 
(RMSE) of positioning were calculated and quantified by the 
cumulative distribution function (CDF). In this experiment, 
the static performances of the EKF-based fusion approach 
and stand-alone ultrasonic sensor system for positioning a 
mobile robot were investigated and compared from accuracy, 
precision to update frequency. Firstly, the four stationary 
ultrasonic beacons were installed at the four corners of a 
platform to ensure the mobile robot can be located in the 
effective coverage area of ultrasonic positioning system 
consistently. The IMU was placed statically on the table 
and 10,000 accelerations are collected. The ground truth 
of acceleration is zero. Therefore, the bias and the noise of 
the IMU data can be obtained by calculating the average 

Fig. 7  Two-stage seamless 
switching strategy for reposi-
tioning
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and standard variation of collected data, which can be used 
to get the Q for the EKF algorithm. The bias and the noise 
of the ultrasonic sensor were tuned by the first recording 
readings before the experiment, then taking the bias as off-
sets when reading the values in the future. The noise can 
be calculated and the variance of the data can be used to 
obtain the R for the EKF algorithm. Then the mobile robot 
was placed successively at the predefined four positions and 
the positioning data by the two approaches were acquired. 
Next, the RMSE of positions were calculated and quanti-
fied by the CDF. Fig. 10 depicts the comparisons of the 
position error CDF between the EKF-based approach and 

stand-alone ultrasonic senor system at four defined points. 
The median (p50), 95th percentile (p95) errors and standard 
deviation (STD) are summarised in Table 1. As expected, 
the ultrasonic sensor reveals high-accuracy in indoor envi-
ronment positioning as 95th percentile errors are less than 
0.04m. It can be observed that the median positioning errors 
of both EKF-based approach and ultrasonic sensor system 
are below 0.04m with a little difference. This suggests that 
an EKF-based approach attains comparable accuracy to the 
ultrasonic method. Furthermore, both of the approaches 
achieve high-precision performance which is reflected by 
the millimetre-level STD. Additionally, it shows by practical 
measurement that the positions were updated by ultrasonic 
sensors with 3.65 HZ while it can reach to 181.9 HZ through 
the EKF-based position approach. Thus, an EKF-based 
positioning approach fusing IMU with ultrasonic sensors 
can export high-accuracy and high-precision in positioning 
while keeping high update frequency in static positioning.

To evaluate the convergence rate of the EKF-based 
method, a simulation was implemented in Matlab. The 
initial estimation error was set to 5cm. The update fre-
quency of IMU was set to 200 Hz while the update fre-
quency of ultrasonic sensor was set to 3.65 Hz. The EKF-
based positioning process is shown in Fig. 11. As it can be 
seen from the figure, the EKF-based positioning method 
requires around 0.5 seconds to reach the steady state, prov-
ing the fast convergence rate of the EKF-based positioning 
method.

Fig. 8  Overall experiment flowchart

Fig. 9  Experiment layout
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As described in the section of EKF process, a potential 
issue of an ultrasonic sensor system is that outliers exist 
randomly during operation and the measurement reading 
may be obtained with a drastic change compared to previ-
ous reading, such as positioning in Fig. 12. In this work, 
the outliers of ultrasonic sensor measurement can be effec-
tively eliminated on account of the proposed outlier rejection 
method in Sect. 4.1.2, which is another competitive advan-
tage in positioning.

5.3  Dynamic state estimation experiment

The dynamic experiments were conducted to determine the 
accuracy and robustness of the proposed positioning system 
and seamless switching repositioning strategy when mobile 
robot moves. The moving lines of the mobile robot were 

Fig. 10  Positioning error CDF comparison

Table 1  positioning errors and 
STD at four predefined test 
points

Point position Estimator p50/m p95/m STD/m

EKF-based positioning 0.037 0.043 0.0033
Point 1 [0.009 m, – 0.75 m] Ultrasonic sensor system  0.036  0.039 0.0018

EKF-based positioning  0.024  0.026  0.0025
Point 2 [0.775 m, – 1.49 m] Ultrasonic sensor system  0.027  0.027  0.0012

EKF-based positioning  0.017 0.016  0.0027
Point 3 [1.55 m, – 0.75 m] Ultrasonic sensor system  0.020  0.020  0.0026

EKF-based positioning  0.03  0.03  0.0013
Point 4 [0.92 m, – 0.065 m] Ultrasonic sensor system  0.033  0.033  0.0016

Fig. 11  EKF-based positioning process
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predefined to ensure that the robotic arm can reach all the 
positions of mobile robot during the movement process. 
The robotic arm identifies the positions of the mobile robot 
depending on the state of sensors, where the feasibility of 
seamless switching repositioning strategy can be evaluated. 
Here, the mobile robot was driven along a complex path 
involving linear motions and a U-turn while the end-effec-
tor of the manipulator kept perceiving the positions of the 
mobile robot. While the mobile agent moved along the path, 
the (x,y) positions of the mobile beacon were determined 
by the ranges obtained from four stationary beacons and 
trilateration.

The experimental results of trajectories, x-axis position 
and y-axis position using different approaches are shown 
in Figs. 13, 14 and 15 respectively, in which the ultra-
sonic sensor marked as green line represents the ultrasonic 
receiver data for mobile robot positioning. The end-effec-
tor marked as yellow line represents the end-effector posi-
tions of robotic manipulator, EKF-based approach marked 
as purple line represents the robot positions after fusing 
IMU with ultrasonic receiver data by EKF, ground truth 
marked as red line represents the robot positions obtained 
from OptiTrack, and wheel encoder marked as blue dash 

line represents the robot positions using wheel encoder 
that embedded in mobile robot. From the results, outli-
ers from an ultrasonic positioning system occur randomly 
during mobile robot moving, which leads to a dramatic 
positioning error. While fusing ultrasonic receiver data 
with IMU by the EKF method, the trajectory is smoothed 
and the abnormal value is eliminated even when incorrect 
ultrasonic readings are obtained.

Fig. 12  Positioning with outliers of ultrasonic sensor system

Fig. 13  Comparisons of trajectories Fig. 14  Comparisons of x-axis position

Fig. 15  Comparisons of y-axis position
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Comparing the results of five trajectories, the vision sys-
tem has an outstanding stability and accuracy if the ArUco 
marker can be recognised by the camera while the position-
ing with wheel encoder gradually deviates from the ground 
truth with time accumulation over a period. The RMSE of 
different positioning approaches during dynamic motion is 
shown in Fig. 16. At the end point, the RMSE of wheel 
encoder is 0.0608m, which is much larger than the vision’s 
0.015m, the ultrasonic sensor system’s 0.0095m and the 
EKF-based approach’s 0.0057m. It is observed that the 
EKF-based approach with ultrasonic sensor and IMU per-
forms well without the accumulated error but got a lower 
than 0.05m deviation at the U-turn. This is attributed to the 
variational transceiver and different arrival time of ultrasonic 
signals. Nevertheless, the EKF-based approach achieves 
accurate millimetre level positioning without outlier and 
accumulative positioning error.

Moreover, to demonstrate the capability of the seamless 
switching repositioning strategy, the ArUco marker was cov-
ered randomly at two phases to cause drop-outs of visual 
measurements and the dependent sensor suite is indicated 
in the figures where US represents ultrasonic system. As 
expected, once the dropouts of the visual update occur, the 
position of end-effector of the robotic manipulator then 
seamlessly switches to the EKF-based state estimation, 
which shows the robustness and capability of the proposed 
seamless switching repositioning strategy.

6  Conclusions

In this work, an interaction mode between the mobile robot 
and fixed-base robotic manipulator is firstly designed for 
the Co-MRMS. Based on the relative distance between 
the mobile robot and fixed-base robotic manipulator, the 
Co-MRMS performs different forms of interaction. The 
simulation-based experiments were conducted to validate 
the feasibility of the proposed interaction mode. Then, two 

different kinds of indoor environment positioning meth-
ods, EKF-based approach fusing ultrasonic sensors with 
IMU and vision-based approach with ArUco marker, have 
been adopted. In addition, with an outlier rejection method 
strategy, the EKF-based approach can eliminate the outlier 
of ultrasonic sensor measurement.

Furthermore, a two-stage positioning strategy allows 
the fixed robotic manipulator to reposition the mobile 
robot seamlessly to deal with the scenario in which visual 
sensor is occluded. Through a series of static and dynamic 
experiments, it is demonstrated that the EKF-based multi-
sensor fusion positioning approach can achieve compara-
tive millimetre-sized accuracy as ultrasonic sensor sys-
tem while keeping high update frequency. In contrast to 
the wheel encoder positioning, the proposed positioning 
system can suppress the positioning drifts over time by 
the benefits from the camera and ultrasonic sensor. The 
fixed robotic manipulator achieves desirable robust posi-
tioning, even in the case when the visual sensor fails. In 
future work, the positioning system of mobile robot before 
arriving around robotic manipulator would be focused on 
and the complete positioning system would be validated 
for non-stop part feeding. Future work will also focus on 
comparing the performance of two positioning methods 
in different cases especially when the robot exhibits fast 
dynamic movement. In conclusion, by adopting new two-
stage multi-sensor fusion positioning method for the Co-
MRMS, it is possible for the fixed-base robotic manipula-
tor to obtain the positions of mobile robot accurately and 
robustly.
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