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Abstract: The top challenges of adopting new methods to forensic DNA analysis in routine labora-
tories are often the capital investment and the expertise required to implement and validate such
methods locally. In the case of next-generation sequencing, in the last decade, several specifically
forensic commercial options became available, offering reliable and validated solutions. Despite this,
the readily available expertise to analyze, interpret and understand such data is still perceived to be
lagging behind. This review gives an introductory overview for the forensic scientists who are at the
beginning of their journey with implementing next-generation sequencing locally and because most
in the field do not have a bioinformatics background may find it difficult to navigate the new terms
and analysis options available. The currently available open-source and commercial software for
forensic sequencing data analysis are summarized here to provide an accessible starting point for
those fairly new to the forensic application of massively parallel sequencing.

Keywords: massively parallel sequencing (MPS); next-generation sequencing (NGS); short tandem
repeat (STR); sequence analysis; software

1. Introduction

Next-generation sequencing (NGS) technologies transformed the field of genetics in
the past decade. Descriptively referred to also as massively parallel sequencing (MPS), this
high-throughput genomics method developed on various platforms provides genome-scale
insights from data for the fields of medical diagnostics [1], epidemiology [2], population
genetics [3], and more recently for forensic genetics [4–7] as well. The generation of mas-
sive datasets creates new challenges in data storage and security, analysis, interpretation,
and comparable reporting, which is required to be consistent with traditional forensic
genetics standards.

The field of forensic genetics often requires its scientists to have widespread knowledge
in related fields such as general genetics, chemistry, physics, physiology, and pathology;
however, bioinformatics was rarely among the skills in demand previously. With the
introduction of MPS to the field came the generation of a greater amount of data. Due
to the lack of readily available user-friendly software, such scarce skills became not just
desirable but necessary for early adopters. In the beginning, software to interpret the
sequencing data was only developed by research laboratories, naturally with none of the
usual emphasis on an attractive graphical user interface (GUI) but focused on functionality
and required the users to comfortably navigate the command line. Most analysts working
in the forensic DNA laboratories are familiar with running software on the Windows
operating system; even those using their Macintosh with the Unix-based operating system
rarely would open their terminals and engage in command line operations. Suddenly,
the need for data analysis required skills in navigating a whole new world of software
running on Unix- and Linux-based computers, and while purchasing such computers was
simple enough, gaining the skills to use the software may seem more challenging [8]. Such
limitations were recognized and, with time, more software options were developed from
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research laboratories for the needs of the forensic community, some even offering versions
run on Windows or more accessible web-based software. To date, several commercial
options also entered the arena, offering to close the gap by providing visual, easy to use
and ready-to-export solutions, which would satisfy those in need of quick answers and no
particular desire to look ‘under the hood’.

Some forensic laboratories already established analysis of the mitochondrial DNA
(mtDNA) using Sanger sequencing, and for those laboratories the introduction of MPS
brings benefits mostly from the upscaling of the sequencing processes, lowering costs
and manual workload, speeding up and automating the analyses. Furthermore, MPS of
mtDNA may allow insight into more nuanced phenomena, such as low-level heteroplasmy,
length heteroplasmy, and better detection of low-level mixtures. Short tandem repeat (STR)
typing, however, had never used sequencing as a standard for forensic analysis, therefore
the analysis of this new type of data introduces challenges. DNA analysts are familiar with
interpreting STR data from capillary electrophoresis (CE) electropherograms from the last
two decades, and many of the CE features are transferable to sequencing, e.g., the length-
based allele names, the electrophoretic peaks, and the stutter artifacts. The application
of sequencing offers an extra dimension of information for the markers, which drives
the ongoing efforts to standardize the nomenclature of the sequence-level data, with the
requirement to be back-compatible with the length-based allele names. Software solutions
developed individual reporting formats that are sometimes difficult to reliably compare;
however, most of these also provide a visual representation of the data, comparable to the
already familiar electropherograms, and detailed counts of coverage read depth, similar
to CE relative fluorescence unit (RFU) values. Despite the variable formats, these efforts
aim to provide a human-readable sequence structure, as well as a sequence string format
for universal comparison of the detected sequence variants. One area of non-consensus is
the degree or range of reporting of the flanking regions surrounding the markers. While
this is mostly influenced by the chemistry used, interpretation of these regions may be
optional, dependent on settings, or may even be omitted; therefore becoming a potential
source of discrepancy between analysis methods. Similar to reporting from CE data, the
analysts will be required to report which kit they used, supplemented with the genomic
range of reporting to avoid such discrepancies. While adjustments to reporting will become
straightforward with nomenclature standardization and the available software options are
increasingly user-friendly, the most critical adaptation for the analysis of STR sequencing
data is reaching a comfort level with this data type, developing some basic bioinformatic
skills to process data and interpret sequence variants routinely or in challenging cases.

Here we provide a short compendium of the various software and algorithm options
available for sequencing data analysis to date with a focus on the forensic context. We aim
to provide an accessible guide for forensic professionals starting to implement these novel
sequencing methods into their standard forensic DNA analysis workflows.

2. Rationale of Massively Parallel Sequencing Data Analysis Methods for STRs

True to the proverbial concept of bioinformatics, that ‘there is more than one way to
solve a problem’, individual algorithms indeed differ, but regardless of which programming
language they use, on which operating systems they run or which sequencing data type, or
platform they can process, the general approach is broadly similar and summarized on the
schematic graph in Figure 1.
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Figure 1. Schematic representation of general forensic MPS data processing steps. 
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set of attributes with characteristics of the targeted markers by which to filter. The termi-
nology of the software describing these attributes significantly differ, therefore Table 1 
compares not just the software themselves, but the verbiage for the files providing locus 
definitions and names for the landmarks of the targeted loci. These files provide configu-
rations for the analyses in respect to the range and specificity of sequence targeted, by 
allowing strict or flexible matching to the short sequences landmarking the targeted loci 
and their immediate flanking regions. These landmark sequences anchor the reads to the 
selected loci, and often coincide with known or presumed primer regions of the ampli-
cons. The targeted markers are also described by their repeat motifs and/or structure, 
which increases the locus-specificity and allows for the precise recognition of allele vari-
ants. Approaches differ as to whether software only recognizes a predefined set of allele 
variants aligning reads to these references, or could recognize and call undefined, novel 
variants, and furthermore, capable of creating various possible combinations of expected 
alleles just from the provided repeat blocks of the array. Regardless of the approach, the 
reads of each marker are tallied and summarized in the form of a read depth value (or 
coverage) for each allele. The recognition of a group of reads as alleles are also facilitated 
by adjustable analytical thresholds separating signal from noise. The relationship between 
observed sequences is often used to categorize calls as true alleles or their derivatives 
(stutter or reads with errors). Some software offers options to flag, remove, and/or correct 
potential artifacts and errors from sequencing. At the end of the process, allele calls are 
designated based on adequate coverage surpassing thresholds for interpretation and be-
ing excluded as artifacts. The common denominator of any software approach is the gen-
eration of sequence strings as the ultimate comparable form of sequence alleles, a require-
ment [9,10] for publishing population study sequence variants that allow for concordance 
checking between methods; with the caveat of different analysis ranges may still generate 
discrepancies between different methods. While such sequence strings are easily compa-
rable by computer programs, this is not true for human analysts, therefore the software 
also reports a human-friendly format of the sequence alleles in their preferred nomencla-
ture. These usually are presented in a ‘bracketed’ form with the counts of the repeat blocks 
summarized using brackets (e.g., [GATA]8); furthermore, these formats could address the 

Figure 1. Schematic representation of general forensic MPS data processing steps.

The input files are text files containing sequence data in different formats generated
by the sequencing platforms: files of sequence data with or without quality values for each
base call in each read (FASTQ or FASTA), or sequence alignment files and their indices
(BAM and BAI). The sequencing reads from the input files are parsed by using a defined set
of attributes with characteristics of the targeted markers by which to filter. The terminology
of the software describing these attributes significantly differ, therefore Table 1 compares
not just the software themselves, but the verbiage for the files providing locus definitions
and names for the landmarks of the targeted loci. These files provide configurations for the
analyses in respect to the range and specificity of sequence targeted, by allowing strict or
flexible matching to the short sequences landmarking the targeted loci and their immediate
flanking regions. These landmark sequences anchor the reads to the selected loci, and
often coincide with known or presumed primer regions of the amplicons. The targeted
markers are also described by their repeat motifs and/or structure, which increases the
locus-specificity and allows for the precise recognition of allele variants. Approaches differ
as to whether software only recognizes a predefined set of allele variants aligning reads to
these references, or could recognize and call undefined, novel variants, and furthermore,
capable of creating various possible combinations of expected alleles just from the pro-
vided repeat blocks of the array. Regardless of the approach, the reads of each marker are
tallied and summarized in the form of a read depth value (or coverage) for each allele.
The recognition of a group of reads as alleles are also facilitated by adjustable analytical
thresholds separating signal from noise. The relationship between observed sequences
is often used to categorize calls as true alleles or their derivatives (stutter or reads with
errors). Some software offers options to flag, remove, and/or correct potential artifacts
and errors from sequencing. At the end of the process, allele calls are designated based on
adequate coverage surpassing thresholds for interpretation and being excluded as artifacts.
The common denominator of any software approach is the generation of sequence strings
as the ultimate comparable form of sequence alleles, a requirement [9,10] for publishing
population study sequence variants that allow for concordance checking between methods;
with the caveat of different analysis ranges may still generate discrepancies between differ-
ent methods. While such sequence strings are easily comparable by computer programs,
this is not true for human analysts, therefore the software also reports a human-friendly
format of the sequence alleles in their preferred nomenclature. These usually are presented
in a ‘bracketed’ form with the counts of the repeat blocks summarized using brackets
(e.g., [GATA]8); furthermore, these formats could address the marker, genomic location
analyzed, the length equivalent of the allele and may also include any flanking region
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variation observed when compared to the human reference genome (usually the most
recent version, GRCh38). Most software, apart from the standard outputs of the sequence
strings, read depths and a form of bracketed nomenclature, also provide a visual output: a
graphical representation of the detected alleles in a familiar histogram format, which being
similar to the electropherogram peaks aids the transition of analysts from STR typing by
CE to sequencing.

Table 1. Summary of characteristics of software for the interpretation of MPS data of forensic markers.

Software Versions Author/Vendor Year Accessibility Runs on Locus
Definition

Landmarks
for Loci

STRait Razor

v1.0 Warshauer et al. [11] 2013 free Unix/Linux

config file ‘anchor’
v2.0 Warshauer et al. [12] 2015 free Unix/Linux
v2s King et al. [13] 2017 free Unix/Linux
v3.0 Woerner et al. [14] 2017 free all platforms

Online King et al. [15] 2021 free online/
all platforms

FDSTools

TSSV Anvar et al. [16] 2014 free Unix/Linux
library file

‘flank’
v1.0 van der Gaag et al. [17] 2016 free Unix/Linux

v1.1.1 Hoogenboom et al. [18] 2017 free Unix/Linux
v2.0 Hoogenboom et al. [19] 2021 free all platforms STRNaming

STRinNGS
v1.0 Friis et al. [20] 2016 on request Unix/Linux configuration

file
‘flanking
sequences’v2.0 Jonck et al. [21] 2020 free Unix/Linux

MyFLq v1.1 Van Neste et al. [22,23] 2014 free online/Unix/Linuxpanels ‘recognition
elements’

toaSTR v1.0 Ganschow et al. [24] 2018 free online allele
database ‘primer’

Altius Cloud Bailey et al. [25] 2017 on request online lookup
table

‘target
regions’

ExactID v2.0 Battelle [26] 2015 commercial Windows config file default

GeneMarker
HTS v1.0 SoftGenetics [27] 2017 commercial Windows default default

MixtureAce v1.0 NicheVision [28] 2018 commercial Windows default default

CLC
Genomics

Workbench
AQME Sturk-Andreaggi et al. [29] 2017 commercial all platforms non STR non STR

Universal
Analysis
Software

v2.3 Verogen [30] 2021 commercial Windows default default

Converge
Forensic
Analysis
Software

v2.2 Thermo Fisher [31] 2019 commercial Windows BED files default

A new phenomenon introduced by using bioinformatic software for forensic DNA
analysis is the occasional appearance of bioinformatic null alleles. These are the bioinfor-
matic equivalents of null alleles in CE where sequence variation underneath the primer
binding sites could impair or prevent amplification of the actual alleles. In the case of
bioinformatic nulls, the amplification is not compromised and the sequencing reads are
present in the raw data files, but there is an unexpected sequence variation underneath the
landmark regions of a locus that a software uses to recognize locus-specific reads. While
most software allows for ‘wobble’ or approximate matching in these landmark regions,
this sequence variation can be significant enough for the software to fail to recognize and
analyze the true reads in the filtering process, thus resulting in a null allele. The best
prevention of bioinformatic nulls being reported in profiles is the use of a secondary data
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analysis method, which can be particularly useful in forensic validations or population
studies. Using a sequencing platform-specific software in combination with another com-
mercial, free or open-source software can largely eliminate the chance of bioinformatic
nulls remaining unrecognized. In the case of the custom loci set developed in-house, where
only open-source software can be used, it is good practice to use multiple software to call
alleles, or at least use the same software with different settings in their locus definition files
specifying different landmark regions, to avoid the occasional bioinformatic nulls.

Analysis of sequencing data requires access to adequate storage and safeguarding of
the generated data. Local protocols need to be developed for the long-term maintenance
and expansion of these resources, considering the size of the data files is not comparable to
those originating from CE, often measured in gigabytes per run. Most of the following tools
can be run on a standard laptop or desktop, but high-performance computing resources
can be beneficial when processing a lot of samples.

3. Freely Available Software

In the early stages of the application of massively parallel sequencing to the forensic
field, most solutions were developed in academic settings as a necessary research tool to
be able to characterize and analyze data generated by sequencing platforms [11,16,20,22].
These approaches often focused on STR markers, occasionally offering options to analyze
mtDNA data as well [18]. These software are freely available but assume the users have
a basic level of bioinformatics skills allowing them to navigate and operate through the
command line. Such basic skills can be obtained either through professional training [32] or
self-taught courses via one of the several available online tutorials on ‘how to Linux’ [33].
Once the basic command-line skills are comfortably obtained, the following software can
be run just as confidently through a terminal window as clicking an icon in a GUI. While
there are a few software options available through web-based interfaces [23–25], some
developers offer [21,34] or transition to [35] providing a version of their software that can
be downloaded as a ‘Docker image’. This is a ‘ready to use’ packet of the program and all
its dependencies required to run the application successfully, regardless of the underlying
resources available locally [36]. A program, the Docker engine, facilitates the use of such
packets on both Linux and Windows-based applications. While similar to virtual machines,
this solution is more flexible and portable, as the isolated environment does not require a
part of the hardware to be closed off, but rather creates such containers on a software level.
This form of software availability improves not only data security, satisfying those who
cannot allow data file exchange outside of their local laboratory but can also make these
applications more accessible for those who are just beginning their journey with software
operated through the command line.

3.1. STRait Razor

This software, designed to analyze reads from sequenced amplicons targeting STRs,
was first published in 2013. Its evolution went through iterations from STRait Razor [11],
v2.0 [12], v2s [13], v3.0 [14], and STRait Razor Online (SRO) [15] improving its processing
speeds and output files, extending its analysis to the flanking regions and providing
secondary analysis tools, such as additional workbooks for visual interpretation of the data
using histograms and reporting sequence alleles following the International Society for
Forensic Genetics (ISFG) early considerations [37].

The software uses FASTQ files as an input and versions prior to SRO required com-
mand line navigation. Detailed help files and guides are available, instructing users how
to run an analysis by entering a command with the desired options. The file that sets the
locus definitions is referred to as the ‘config file’ and the landmarks on each side of the
loci are called the ‘anchors’. These modifiable config files are included for the currently
available main sequencing kits, or custom files can be generated by the user. The output are
simple text files, which can be processed further either by the provided Excel workbooks,
the online platform, or custom scripts for the advanced users. These additional processes
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can summarize the results in a tabular and a visual format and facilitate additional insights
such as allele nomenclature, stutter analysis, or sequencing error profiles. While previous
versions could be run on the command line (using a Mac or a Linux computer), the v3.0
of this software can also run using the Command Prompt in Windows. The latest version
(SRO) introduces the main functionality of the software in an online tool format, suitable
for quick analysis of individual files, without the use of a Unix or Linux environment. The
online format significantly decreases the need for bioinformatics skills; however, for batch
processing a large number of files or for the use of custom settings running the downloaded
command-line version of SRO is more practical.

The software includes config files for the commercially available sequencing kits and
a default set of predefined alleles to call theses from the sequencing reads it analyzes,
therefore any undefined sequence allele by default would require the user to establish an
appropriate nomenclature. In such cases, the software may label the unrecognized variant
as ‘novel’ by default, however, the variant may have been reported in more up-to-date
literature or increasingly available databases [38–40].

The software is a general starting point for those interested in exploring their data
further, specifically to be able to provide an unrestricted reporting of the flanking region
variants [41]. It has proven useful in providing a secondary analysis to commercial software
outputs as a means for eliminating bioinformatic null alleles [42].

3.2. FDSTools

This software is also designed to analyze reads from amplified STRs, with later ver-
sions offering the capability to analyze mtDNA results [43] from sequencing data. The
evolution of the software through its iterations starts with the standalone TSSV tool [16]
recognizing repetitive motifs in the reads, which was integrated into the FDSTools bun-
dles v1.0, later v1.1.1 [17,18]. The latest version (v2.0) was expanded by an integrated
nomenclature package STRNaming [19]. The software is a bundle of several tools to be
used in the analyses of sequencing data from raw FASTQ files. Analyzed loci and their
analysis attributes are defined by a ‘library file’, including their landmark regions referred
to as ‘flanks’. Results include coverage values with options for different outputs including
bracketed and string formats. The package includes several additional tools for stutter
analysis and correction, databasing, and visualizations as well. The addition of the STR-
Naming module eliminates the need for user input on the locus definition files. Instead,
the program now automatically recognizes repetitive sequences in the reference sequence
using these as the preset preferences for bracketing interpretation of the sequence reads
and, as such, automates nomenclature classification of the called alleles. The addition of
this module facilitates the ongoing efforts to reach a unified nomenclature for the standard
human forensic STR markers [37,44,45].

The software is a good starting point as a secondary analysis option with additional
flexibility for those interested in building custom solutions for their more specific needs
beyond standard reports [17,46,47]. The offered modular tools and customization are
ideal for stutter analysis or the visualization of stutter restoration to the respective parent
allele [48]. Those who appreciate graphics generated in a report-ready format will find the
graphical HTML outputs useful [17]. Beyond the standard or custom niche sets of STR
markers of human forensics, the software is an ideal tool for those developing wildlife
forensic markers with the need for flexible software adaptable to species identification from
novel STR multiplexes [49].

3.3. STRinNGS

The software STRinNGS v1.0 [20] was one of the early approaches available on request
developed by researchers. This tool required command-line skills to analyze the data and
use the output files in further scripts to summarize stutter and error profiles observed.
The recently released v2.0. [21] is openly available to download for local use and has been
updated to provide a more refined set of criteria for improved reliability in allele calling
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including error filtering, identifying stutter reads, and flagging unusual sequences for
manual review. STRinNGS accepts FASTQ files as input and runs the settings via its locus
definition file which is referred to as the ‘configuration file’ where it defines the marker
landmarks as ‘flanking sequences’. To accommodate the need for quality control (QC), the
software offers an output format that can be used directly for submission to STRidER [9].
This site (https://strider.online/) is dedicated to the QC of autosomal STR population data
sets, providing unique identification numbers as proof of data passing their checks.

The software is a good alternative as a secondary analysis to eliminate bioinformatic
nulls in the analysis and is now an improved tool that helps the analyst with the manual
review by providing several optional flags and settings. The software reports a format in
line with guidance from the forensic community [9,10,37] as well as its own developed
format for allele nomenclature which is easily comparable with other free software outputs
for concordance. It provides clear indications of the genomic locations, the length-based
alleles, the sequence structures, and the flanking variations [50] and, for the convenience of
the user, includes the sequence strings analyzed.

3.4. MyFLq

One of the earliest software solutions for forensic STR data analysis from MPS was
developed [22] in a form of a web-based user-friendly application using FASTA or FASTQ
files for input. In the past, this was also available as an integrated online tool on BaseS-
pace [23], for use with Illumina sequencing data output. For the practicality of analyzing
sensitive data locally, a desktop version of the software is also available to download [22]
or provided as a Docker-container file [34] to be downloaded as a functional package and
run locally. To help recognize non-predefined true alleles, MyFLq can estimate whether an
unrecognized allele is truly a novel allele or a result of errors. The landmarks defining the
loci analyzed are referred to as ‘primers’, however, this does not necessarily mean that they
completely overlap with the primers in the amplification reaction. The approach uses a
dynamic calculation of the flanking regions and the region of interest (ROI), rather than a
static definition of repeat region and flanking regions. The ROI, the variable part of the
sequence, is compared to the reference alleles and allows an easy interpretation of SNPs
as well as STR length polymorphisms within the analyzed region. The output is a report
of the sequences with their sequence and the derived length alleles as well, including
visualization of the results.

The use of this software can be interesting for those who want an alternative analysis
when comparing methods and those who are interested in viewing their data in a simple,
non-bracketed nomenclature format. MyFLq has the potential to work with SNP and
mtDNA data as well. This approach could also be useful for working with new STRs or
non-human STRs, capitalizing on the flexible approach of locus analysis which can adjust
to a dynamically growing reference allele database.

3.5. ToaSTR

This software offers a user-friendly graphical web-based solution for the analysis of
STR data from sequencing. It does not require bioinformatics expertise from the users as it
provides an intuitive GUI to analyze data from FASTQ or FASTA files. Web-based software
options often face questions about data security and laboratories may be restricted from
uploading sensitive data to the web, therefore the developers currently provide access to
this secure web-based tool upon request [24]. Those who require further assurance will
welcome the recent update that will move the web-based application at the end of 2021 to
a Docker-based format [35], allowing the software to be downloaded as a functional unit
operating securely locally.

ToaSTR defines the analyzed loci together as a ‘panel’ and refers to the landmark
sequences as ‘recognition elements’. The panels to be analyzed are customizable and
therefore independent of the sequencing platforms and kits [51]. The software includes
predictive stutter modeling allowing an automatic classification of the observed sequences

https://strider.online/
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and the differentiation of artifacts. The reporting nomenclature format of ToaSTR is aligned
to the ISFG considerations [37] and includes graphical visualization of the results.

Until the introduction of the new format of the software, the web-based version can still
prove to be useful for analyzing training data and experiments or mobile demonstrations
that require quick, visually appealing outputs.

3.6. Altius

Altius was developed as an independent secure Cloud-based software optimized for
high-throughput data processing from FASTQ files. As users access this intuitive GUI
through a web browser, it requires no bioinformatic expertise. The software is capable
of processing MPS data of a predefined set of STRs (autosomal, X- and Y-STRs) [52,53]
generated by different platforms, including the MinION. The analysis is robust and is ready
to accommodate batch data processing [25]. The target regions for locus identification
parameters are adapted from STRaitRazor v2.0 [12] and locus definitions are collated in
a lookup table for the software to identify the targeted loci. The results are output to a
MySQL database and exportable reports are provided for the sequences, including full
sequence strings, a visual output of the results, and a format of nomenclature in line with
the considerations of ISFG [37]. Data security for this software is provided by the resources
of Amazon Web Services, allowing users to set their locally required level of access-control
measures. Because Altius is using the secure cloud system, access is provided upon request
and after authentication.

4. Commercial Software

Apart from the freely available academic software, there are several options offered
by commercial companies. These are either provided as a supplement to the vendors’ own
sequencing chemistry and platform or developed as standalone solutions for analyzing
raw data output from various sequencers.

In general, these are user-friendly programs with visually appealing graphical inter-
faces and with limited options to customize processes, all designed to provide a stream-
lined process of hassle-free analysis, familiar graphical output, and presentation-ready
results. Many of these offer options for mtDNA analysis as well as STR data analysis, both
generated on the sequencing platforms. Commercial software is designed to make the in-
troduction of MPS easier to any new user, building confidence working with sequence data;
however, there is less control of the algorithms and occasional troubleshooting requires the
assistance of the companies. For high-throughput routine laboratories, these qualities are
attractive and the reliable convenience offered by these programs could justify the cost.

4.1. GeneMarker HTS (SoftGenetics, State Collage, PA)

GeneMarker HTS [27] offers an integrated solution for analyzing sequencing data
from mtDNA, STRs, and SNPs generated on either Illumina or Ion Torrent platforms. The
software is validated for mtDNA data analysis [54,55]. It can be used to analyze the mtDNA
control region or the whole mtDNA genome, as required [56]. The STR analysis utilizes
an in-built panel for the Promega PowerSeq 46GY kit (Promega, Madison, WI, USA),
using FASTQ files generated from an Illumina MiSeq (Illumina, San Diego, CA, USA),
alternatively, a panel for custom chemistries can be used for analyzing data from other
kits. MtDNA and STR analysis (including flanking region variations) can be performed
individually or simultaneously. GeneMarker HTS reports the length-equivalent of the
sequence alleles, provides sequence strings and a visual interpretation of the results using
histograms. An audit trail of changes and analysis settings are logged, and user access
rights are controlled by its database. Demo and trial versions, training materials, and
product support are available. GeneMarker HTS operates under Windows.
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4.2. ExactID (Battelle, Colombus, OH)

Battelle’s ExactID [26] offers another fully integrated agnostic software solution de-
signed for professional use in government agencies and crime laboratories. The sequencing
platform-independent software analyzes data from FASTQ files generated from various
chemistries targeting forensic markers, such as autosomal, X- and Y-STRs [57,58], SNPs,
microhaplotypes, and mtDNA. The analysis settings are defined in ‘config files’ for the var-
ious marker panels. The user-friendly GUI offers a familiar display of the observed alleles
in a histogram format along with the length-equivalent alleles and the bracketed sequence
alleles in line with the ISFG considerations [37] for STRs. The software can recognize previ-
ously undefined alleles and to report flanking region variation. The results can be exported
in multiple formats: .pdf file with tabular and graphical summaries, .csv files for further
external analysis, and an additional .sef file format for evidence preservation. Furthermore,
ExactID offers additional intelligence leads by interpreting data relating to phenotypic
markers and biogeographical ancestry using the Battelle Avatar plugin. Audit trail and
user access control are provided by the software. ExactID operates under Windows.

4.3. MixtureAce (NicheVision, Akron, OH)

MixtureAce [28] the plugin tool for the ArmedXpert software offers a user-friendly op-
tion to analyze MPS data from FASTQ files for STR (autosomal, X- and Y-STR) markers [59,60]
with the benefit of the integrated hash-based Sequence Identifier (SID) nomenclature [61], a
unique abbreviated format of sequence-based alleles designed to identify the relationships
between sequences. MixtureAce uses the SIDs to recognize reads of stutter or other prede-
fined artifacts using customizable thresholds and thus facilitates the recognition of reads
not filtered out as true alleles. Undefined artifacts still need to be manually curated [60].
The software reports within the ranges of sequences encompassing the STRs following the
UAS flanking region report [44]. This ready-to-use solution can report from a single source
or interpret mixed samples using another ArmedXpert plugin: Mixture Interpretation.
MixtureAce operates under Windows.

4.4. CLC Genomics Workbench (QIAGEN, Hilden, Germany)

CLC Genomics Workbench [62] is a genomic bioinformatic tool collection developed
by and offered from Qiagen for comprehensive sequencing data analysis in general. This
tool allows customization of its collection with plugins, such as the AQME [29], the toolbox
specifically developed in collaboration with AFDIL to accommodate forensic-specific
mtDNA sequence analysis for data generated from any MPS platform. AQME also includes
haplogroup estimation and phylogenetically consistent nomenclature to facilitate reporting
of the results. This specific plugin can be applied within the CLC Workbench framework.

4.5. Universal Analysis Software (Verogen, San Diego, CA)

Universal Analysis Software (UAS) [30] is the custom software of the MiSeq FGx
sequencing platform that can analyze sequencing data from forensic markers using spe-
cific modules for the ForenSeq line of kits. Currently available chemistries target STRs
(autosomal, X- and Y-STRs), SNPs, and mtDNA. Raw data is directly processed from the
sequencer to generate demultiplexed raw sequence output FASTQ files. This is then further
analyzed within the software using alignment to the human reference sequence and variant
calling from the sequences at the range reported by the software. To extend the reported
range outside of the repeat region an additional flanking region report is also available in
the form of an excel file. To further analyze variation outside of expected flanking region
variations, the raw FASTQ files can also be exported and processed by external software
for independent analysis and concordance. The software is validated together with the
platform and chemistry as the MiSeq Forensic Genomics System [63,64] supported by
training and direct product support from the vendor.

The GUI is designed to be intuitive and user-friendly and with default and additional
modules for different forensic genomic applications for the FGx platform, such as the STR
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analysis module or the data analysis for mtDNA sequencing chemistries. A supplementary
analysis generates investigative leads, such as the estimation of phenotypic markers (hair
and eye color) and biogeographical ancestry estimation of the samples [65,66]. Furthermore,
genomic applications can analyze data generated from dedicated SNP panels for SNP-based
identification of degraded remains; or can pre-format the generated data for downstream
use in databases specific to the application of forensic genetic genealogy (FGG). FGG is
an investigative tool for identifying distant kinship of a sample using databases built
from ‘direct-to-consumer’ (DTC) genealogy DNA test results, data volunteered by citizen
scientists. The generated data is formatted to be comparable with the markers in the
database allowing to facilitate the investigation of serious crimes or to identify unidentified
human remains [67].

4.6. Converge Forensic Analysis Software (Thermo Fisher, Waltham, MA)

Converge Forensic Analysis Software [31] is the comprehensive validated software
customized to the HID Ion S5 sequencing platforms of Thermo Fisher. Converge is designed
for this specific sequencing platform and visualizes the analyzed results obtained from the
Torrent Server via the HID Genotyper plugin. It has modules specific to workflows of the
offered chemistries targeting specific forensic markers: STRs including multiple markers
for sex-determination [68], mtDNA control region, or the full mitochondrial genome [69].
Additional modules beyond STR analysis include those interpreting data from kits targeting
selected SNP sets, which can establish identity from degraded samples [70,71] or can
provide investigative leads and estimate biogeographic ancestry [72]. Data organization
in Converge is optimized and streamlined around case management. The software and
chemistries are validated for mtDNA analysis [73] and the users are supported by training
and documentation from the vendor.

Via the HID Genotyper plugin, the generated sequencing reads are demultiplexed and
aligned to the default reference sequence in regions specified by the BED file. The BED files
are specific to the chemistries targeting different marker sets. Both the chosen reference
and the BED files can be customized. The generated data can be downloaded as alignment
files (BAM and BAI) or alternatively can also be generated as FASTQ files to download for
independent analysis and concordance analysis.

The GUI is designed to be intuitive for the sequence-based data and follows the famil-
iar look of the vendor’s CE-based software (GeneMapper ID-X, Thermo fisher, Waltham,
MA, USA) and it can integrate and compare the two data types for casework, paternity, and
kinship calculations. For markers that are not currently supported by the offered kits and
the software (for example chemistry targeting multiple Y chromosomal markers), sequenc-
ing can be performed using a custom set of amplicons [74,75]. The generated raw data then
can be downloaded and analyzed with the available independent software options.

5. Other Software Options for Whole Genome Sequencing (WGS) Data

Without exhausting the list there are other software options available [76,77], and many
were designed to identify and analyze STR markers from genome-wide sequencing data
without a forensic focus. STRs, in general, may be medically relevant or used as markers for
population genetics, and specific software has also been designed to identify other relevant
tandem repeats to facilitate medical diagnosis or genotype of these markers [78–83]. Recent
reviews [84,85] also provided an overview of several alternative software that can generate
STR profiles from whole-genome sequencing data [86–94].

While these may not be the immediate focus of forensic analysts mainly interested
in reporting the sequencing data from the targeted amplification of markers specifically
curated for forensic purposes, WGS data analysis methods could prove useful in exploring
alternative approaches with already available data sources or in research projects.



Genes 2021, 12, 1739 11 of 16

6. Tips, Tricks, and More Tools

Despite the evolution of software solutions for forensic MPS data, occasionally data
analysis can come to a halt if suspicious results are observed. This could be an unexpected
null or supernumerary allele, unreasonably low coverage, or confusing sequence structure.
In case of concern, there are always a few options to investigate the reason for discrepancies.
For example, one can investigate the observed coverage values in relation to the expected
inter-locus balance, which can indicate failure to detect an allele in heterozygotes inter-
preted falsely as homozygotes (bioinformatic null alleles). Any software can potentially
generate bioinformatic null calls, i.e., the inability to recognize and report a specific variant.
The best approach to confirm any unexpected instances is to use multiple software (or
at least multiple settings) for the analysis and perform a concordance check-in between
analysis methods.

In-built software of the sequencing platforms (UAS and Converge) can offer investiga-
tive leads using SNP data from some of their chemistries. Additionally, the user can harvest
the relevant SNP data and independently verify certain phenotypic traits: eye and hair color
using the constantly updated and freely available tools (https://hirisplex.erasmusmc.nl/)
hosted at the Erasmus MC University. The website offers options for a manual or au-
tomated upload of the SNP genotype data to verify the prediction of these phenotypic
traits using the established results from relevant studies (IrisPlex [95], HIrisPlex [96],
HIRISPlex-S [97–99]).

Visualizing variants often helps to understand how some nucleotide changes create
unusual sequence structures. A useful tool for visualization is the Integrative Genomics
Viewer (IGV) [100], where alignment and variant calling files can be viewed manually
compared to the reference sequence. If the consensus sequence of the reads is not obvious
by manual revision another tool, VisCoSe, may be of interest that can calculate and compare
consensus sequences of multiple datasets [101].

It is a good practice to perform independent Quality Control of the raw data prior to
analysis, starting by monitoring the main characteristics of the dataset before and after any
additional clean-up steps, which can be done, for example, using the FastQC program [102].
The additional steps of detailed adapter trimming using additional software (for example
Trimmomatic [103], Cutadapt [104], seqtk [105]) or the merging of paired-end reads (using
FLASH [106], BBMerge [107], CASPER [108]) may improve the analysis downstream.
There are instances where using additional clean-up tools on raw data can improve the
analysis. For example, removing erroneous reads and/or low-quality parts of reads specific
to chemistry and platform can lead to unambiguous allele calls and can even improve
retrieved coverage values for the dataset.

Available open datasets are a valuable resource for those not yet engaged in massively
parallel sequencing but interested to learn more about data analysis ahead of establish-
ing a workflow locally. One such source is the Forensic DNA Open Dataset, published
by the NIST Applied Genetics Group [109] at https://doi.org/10.18434/M32157. Open
datasets for WGS data are also available at the 1000 Genomes Project data portal, the Interna-
tional Genome Sample Resource (IGSR) [110–112] (https://www.internationalgenome.org/
home), and the variants found in these projects can be viewed at the 1000 Genome Browsers
hosted at NCBI [113] (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/).

7. Summary

In this review, the aim was to provide a short, digestible overview of the currently
available software options, acknowledging the challenges for the bioinformatically non-
specialist reporting forensic professionals of this field. DNA analysts already familiar with
the CE-based analysis and software, but inexperienced in high-throughput sequencing, or
those planning to generate sequencing data in the future, would benefit from this review.

All the presented software options perform well and selecting one (or as suggested
here: more) over others may be due to personal preference, financial limits or the compati-
bility to already available equipment. If routine forensic casework laboratories engage in

https://hirisplex.erasmusmc.nl/
https://doi.org/10.18434/M32157
https://www.internationalgenome.org/home
https://www.internationalgenome.org/home
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
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exploring these various options, the DNA analysts will better understand the sequence-
level variation of the forensic markers and the advantages of incorporating sequence data
analysis into their workflows. An increased comfort level with basic bioinformatics is a
key step to utilizing the new possibilities introduced by MPS to the field.
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