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Abstract—Satellite schedules are derived from satellite mission
objectives, which are mostly managed manually from the ground.
This increases the need to develop autonomous on-board schedul-
ing capabilities and reduce the requirement for manual manage-
ment of satellite schedules. Additionally, this allows the unlocking
of more capabilities on-board for decision-making, leading to
an optimal campaign. However, there remain trust issues in
decisions made by Artificial Intelligence (AI) systems, especially
in risk-averse environments, such as satellite operations. Thus, an
explanation layer is required to assist operators in understanding
decisions made, or planned, autonomously on-board. To this
aim, a satellite scheduling problem is formulated, utilizing real
world data, where the total number of actions are maximised
based on the environmental constraints that limit observation
and down-link capabilities. The formulated optimisation problem
is solved with a Constraint Programming (CP) method. Later,
the mathematical derivation for an Abstract Argumentation
Framework (AAF) for the test case is provided. This is proposed
as the solution to provide an explanation layer to the autonomous
decision-making system. The effectiveness of the defined AAF
layer is proven on the daily schedule of an Earth Observation
(EO) mission, monitoring land surfaces, demonstrating greater
capabilities and flexibility, for a human operator to inspect the
machine provided solution.

Index Terms—Satellite, Scheduling, Earth Observation, Con-
straint Programming, Abstract Argumentation, Optimization,
Feasibility, Explainability, Explainable Artificial Intelligence,
Decision-making, Framework

I. INTRODUCTION

The collation of visual images and data from instruments
on-board a satellite are essential for different areas of research
for EO missions, such as: vegetation monitoring [1], weather
tracking and monitoring [2]–[4], and deep space EO missions
[5]. To maximise utilization through the most efficient methods
for data throughput of these instruments, it is essential that
highly feasible, towards optimal, schedules are created for
these satellites [6]–[8].

Wang et al. [9] discussed the current methods for scheduling
satellites, which are all based on search algorithms, identi-
fying the following types of methods; exact methods, which
are intended for small scale campaigns, but are effective at
achieving near optimal solutions; heuristic, that are easily
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and quickly implemented, but must be specifically designed
for each campaign and cannot guarantee solution quality;
metaheuristic, which are highly effective at searching and can
be flexibly applied, however have variable performance and
require modifying for specific problems; and machine learning,
that require large data for training and have limited outputs,
yet require minimal maintenance once established.

All methods of solving a satellite schedule require the
identification and inclusion of constraints, that determine the
parameters by which a satellite must operate. For example,
some constraints will restrict when certain activities can be
executed, or how often they can be executed, in support
of maximising delivery on campaign goals [9]. The mission
objectives for each satellite will determine the tasks to be
executed, the resources required, the respective orbit and the
opportunities for data retrieval by ground stations in fixed
locations [7], [10], [11]. Schedules are derived by Ground
Station Operators (GSO) and are uploaded to the orbiting
platform; however, manually generated mission schedules have
their limitations, as they can be labour intensive. As a result,
different scheduling techniques are being investigated to assist
with scheduling, to reduce human intervention and enhance the
robustness in responding to unexpected events [4], [10], [11].

In addition to these unexpected events occurring, when
communication is limited or completely unavailable, there is
a requirement for scheduling to be performed autonomously
on-board. However, there is hesitance in trusting automated
systems, due to inconsistent and inaccurate performance
across applications such as autonomous driving and robotics
[12]. To help explain any decisions made and executed by
an autonomous system, Explainable Artificial Intelligence
(XAI) can be applied as a means of explaining a system’s
behaviour. XAI techniques can improve the communication
with users by utilising graphs, images, and text to expose
the reasoning behind what was executed, what the current
state is, and what could happen next [13]. When unexpected
situations develop, and where a schedule is updated, XAI is
used to provide transparency [14] within a system to build
trust and understanding for the generated results retrieved
by the GSO. This is achieved by allowing investigation of
queries, concerns, and/or impact to the mission objectives
[15], [16].
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Some queries for an EO satellite mission are:
• Is it better to interrupt sequences of repeated actions, or

maintain the sequence? For example, should processing
occur in the middle of an image taking sequence or after?

• Is the time critical for task ’x’ or is task ’x’ critical for
a certain time?

• Does the on-board memory impact the criticality of a
task?

• Why execute an action over another, for example take
images vs down-linking vs processing on-board?

• Can the memory limit be relaxed for critical actions?
• If the conditions have been changed, how different will

the revised schedule be?
There is no set approach when delivering explanations,

however, a use case will determine how much detail is to
be provided; for example, researchers will require full and
precise explanations as opposed to end users or stakeholders
of an organisation, who may require less detailed or different
explanations [15], [17], [18].

With an increase in the complexities of computational
methods in AI applications, an Argumentation Framework
(AF) is a concept used to support explanations comprised of
mathematical models [19] that have been defined around the
objectives, containing elements of the problem [20]. An AF
is represented in different forms of logic, one of which is
a graph displaying possible decisions with pre-defined attack
properties due to conflicts around the contained elements,
resulting in a decision leaning towards the most suitable
element for the scenario of the mission [19]–[21].

The detected conflict relations, known as Abstract Argu-
mentation (AA), can influence the conditions to either be
improved or changed depending on the properties of elements
within a system. This can therefore provide support in explain-
ing how the conditions are affected [22], and thus an AAF has
been stated to be created as pairs, containing both arguments
and binary relations, where a relation is known as an attack
[19]–[21], [23]–[25].

Argument semantics can assist with the labelling and un-
derstanding of the logic of attacks and decisions made by
a system, through stating whether arguments are accepted,
rejected, or undecided [26]. However, this is not considered
for this paper as the approach is more advanced argumentation
and not the purpose of this paper. The arguments within an AF
can have the conditions of their acceptability grouped together
as sets, the most commonly used groups being cores and
remainders. The set of cores for an argument are the arguments
required to be accepted to satisfy the original argument. While
conversely, the set of remainders for an argument, are the
arguments required to reject the original argument. This is
helpful in understanding long chains of dependent arguments
but is not appropriate for the scale and nature of AF utilised
in this paper [27]. There may be uses for one or both of these
methods in future investigations.

In addition to the AAF, there are several other types of
AF, some of which are: Bipolar Argumentation Framework

(BAF) - where attack and support relations occur [19], [25],
[28] with two extensions: Quantitative Bipolar Argumentation
Framework (QBAF) and Probabilistic Bipolar Argumentation
Framework (PBAF) [19]; Structured Argumentation Frame-
work (SAF) - where constraints are introduced in the form of
preferences between arguments in accordance with the order
of these arguments [19], [29]; and Tripolar Argumentation
Framework (TAF) - where attack, support, and neutral rela-
tions occur to enable interactive recommendations [28]; and
Abstract Dialectical Framework (ADF) that specifies the exact
conditions by which an argument is accepted (or rejected)
through the linking of dependencies, depicted as a directed
graph [30]. The principles of ADF influence the methodology
of this paper.

To date, and to the best of the authors knowledge, there
are no applications of AA to real life engineering problems.
Therefore, this paper focuses on applying AA to a previously
generated simple EO satellite schedule [16], building on re-
search in other industries, to provide transparent explanations
to build trust and enhance the understanding of the generated
schedule retrieved by the GSO. The schedule consists of three
actions, performed at fixed time intervals, based on the mission
objectives and constraints to determine when the actions can
be executed.

The contributions of this paper are as follows:

• The formalisation of an EO satellite scheduling problem,
including layered constraints to represent real world re-
quirements.

• A novel design and the first application of AA to satellite
scheduling.

• Provide results, utilising real world data, demonstrating
the success of AA on the scheduling problem, proving
it’s viability for further investigation.

• Introduce capabilities for XAI on the results, addressing
the questions posed in this Introduction, confirming the
potential AA has to facilitate XAI interfacing.

The remainder of this paper is divided into five sections,
excluding this Introduction:

• Section II contains two subsections:
– Section II-A provides a summary of the satellite

scheduling problem generated by Powell et al. [16].
– Section II-B defines exchange properties influenced

by Cyras et al. [31] and their applications to the
satellite schedule derived.

• Section III describes how an AF derived from Cyras et
al. [32] can be applied to satellite scheduling.

• Section IV provides graphical representations and expla-
nations of arguments between actions within a satellite
schedule for a selected time frame.

• Section V summarizes and concludes the findings of this
paper.

• Section VI discusses the future works.

The source code and domain-specific models are available
at github.com/strath-ace/smart-xai.
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II. BACKGROUND

A. Satellite Scheduling Problem
To generate a schedule for an EO satellite, it is essential

to know the actions planned and the timelines, that are driven
by constraints, the environmental conditions on Earth and the
availability of resources to achieve mission objectives [33]–
[35]. Despite the differences between satellite missions, there
is a common need for a schedule to be created on-board to
compensate for anomalies in the absence of human control,
as previously stated in Section I. One approach to creating a
schedule is the utilization of a numerical solver.

A problem was formulated by Powell et al. [16], and solved
with the use of Google OR-Tools implementing the CP-SAT
solver [36] for an EO satellite in sun synchronous orbit, using
an existing real world data-set covering a period of 6 months.
Three actions were used in the problem formulation: taking
of images, processing of images and down-linking of images.
Each of these actions were given constraints and a fixed time
interval of 5 seconds per occurrence across a given time
horizon (24 hrs), which is referred to as an instance of an
action throughout this paper. Each instance of an action, based
on the hardware capabilities, was assigned a memory value
which is monitored while the schedule is being generated by
the solver to prevent system memory saturation.

The constraints for the actions are listed below:
• Taking of images:

– Only occurs when the satellite is over land and in
sunlight exposure

– Will utilize the on-board memory (2.688 GB) for
each instance.

– The number of images in memory will only be
reduced when they are down-linked to a ground
station.

• Processing of images:
– Can only process images that have been taken but

may occur at any time.
– Will utilize the on-board memory, with an assumed

processing rate of 50 MB/s for 5 seconds per in-
stance, and will not remove any of the memory from
the total number of images taken.

– The number of processed images in memory will
only be reduced when down-linking is executed.

– For every instance of this action, a fraction of an
image is processed.

• Down-linking of images:
– Only occurs when there is direct communication with

the assigned ground stations (line of sight) and when
there are processed images available in on-board
memory.

– This action, with a data rate of 280 MB/s for 5
seconds per instance, will down-link an equivalent
amount of processed data, while deleting the same
amount from the images taken, thus removing twice
as much from the on-board memory once retrieved
by the ground station.

A binary decision matrix X was created (1) where T
represents the scheduling time horizon for any time instance
i, when any of the possible actions ap, ar, ad, ae ∈ A can be
executed:

X ∈ {0, 1}T×A (1)

Where A represents all actions, containing; ap for taking an
image, ar for processing an image, ad for down-linking an
image, and ae generated as idle time when no other actions
occur.

The constraint equations excluding the memory constraint
are as follows:∑

a∈A

Xi,a ≤ 1 ∀i ∈ 1, ..., T (2)

pi =
i∑

j=1

Xj,ap
−

i∑
j=1

Xj,ad

Dm

Im
∀i ∈ 1, ..., T (3)

ri =
i∑

j=1

Xj,ar

Rm

Im
−

i∑
j=1

Xj,ad

Dm

Im
(4a)

ri ≤ pi ∀i = 1, ..., T (4b)

di =

i∑
j=1

Xj,ad

Dm

Im
(5a)

di ≤ ri ∀i = 1, ..., T (5b)

Equation (2) enforces that only one action can be taken at
instance i, and to keep track of the images taken and processed
in memory, four main equations were created along with their
respective constraints. pi, ri and di represent the total number
of remaining images taken in memory (3), the total number of
remaining processed images in memory (4a) and (4b), and the
total number of images down-linked (5a) and (5b) up to that
specific time instance i respectively. Meanwhile the constant
values for memory demand of each action, per instance, are
represented as Im (2.688 GB), Rm (250 MB) and Dm (1400
MB), namely: image taking (ap), image processing (ar) and
image down-linking (ad) respectively.

It can be noted that (5a) is used in (4a) and (3) to remove
the total number of images down-linked up to that point in
time. Since the constant value for memory demand Dm for
every down-linked action instance ad equates to a fraction of
the memory of an image Im; the total occurrence throughout is
subtracted from the total images taken and processed resulting
in the number of images and processed left in memory (pi and
ri). Furthermore, only images that have been processed can
be down-linked (5b) as defined by the constraints.

As can also be seen in (4a), since the memory demand for
every instance of action ar, known as Rm, is a fraction of the
original image memory Im; subtracting the total down-linked
images up to that instance in time is done to provide the total
number of remaining processed images in memory. Also, in
(4b), there must be at least 1 unprocessed image in memory
for this action to occur as defined by the constraints.
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Additionally, to calculate the total memory at any instance
mi requires the number of remaining taken images in memory
(pi) and the remaining processed images in memory (ri)
followed by converting the number of images remaining in the
form of memory (6a) followed by an additional constraint (6b)
ensuring the memory does not exceed the maximum memory
available on-board Mmax. The memory constraint is therefore:

mi = Im(pi + ri) ∀i = 1, ..., T (6a)
mi ≤ Mmax ∀i = 1, ..., T (6b)

Equations (3) - (5) were used to create objective function
(7) for the schedule, aiming to maximise the weighted sum of
the three actions, excluding ae. The scheduling problem can
be formulated as:

max

(
T∑

i=1

Xi,ap
+

T∑
i=1

Xi,ar
+

T∑
i=1

2Xi,ad

)
(7)

To better understand how a schedule is generated with the
use of the objective equation, environmental conditions, and
constraints that can affect each action execution, two figures
were created:

• Fig. 1 represents all the possible execution times for each
action only considering the environmental conditions,
before the constraint equations and objective function are
applied:

– ap (shaded red), with respect to the light exposure
(shaded yellow) and land visibility (shaded green).

– ar (shaded blue), may happen at any time, as previ-
ously stated.

– ad (shaded orange), may occur when there is line
of sight with the assigned ground stations (shaded
grey).

– ae, should happen when no other action occurs but
isn’t shown as ar can be seen to be in execution
across the time horizon.

• Fig. 2 represents an example of a generated schedule on
the first day where the constraints (including the memory
constraints), and the objective equation ((2) - (7)), are
applied to the actions from Fig. 1. The broken lines
highlighted represent the start and end times of each
action, and show ap starting initially, followed by ar (4b),
then ad being executed, and ae (shaded purple) occurring
filling in the available slot.
It can be noted, the environmental conditions are suited
for ad to be executed sooner, but could not have occurred
as it would have violated the constraint based on (5b).
Additionally, at each instance, the maximum memory
(Mmax) would not have been exceeded at any time.

Following the generation of the schedule, exchange prop-
erties were investigated to see how they can be applied to a
satellite schedule.

B. Application of exchange properties for satellite scheduling
In generating an AAF for the previously defined scheduling

problem, the approach taken was to investigate the applica-
bility of the Single Exchange Property (SEP) and Pairwise

Fig. 1. A sample schedule for all the possible action executions based on the
environmental conditions.

Fig. 2. A sample schedule generated based on the environmental conditions
and constraints applied to each action.

Exchange Property (PEP) for the targeted application. These
definitions have been adapted from the work of Cyras et al.
[31], where their objective was to determine the minimum
makespan of a schedule by minimizing the last machine
completion time, followed by examples on how it can be
applied to a nurse roster.

The authors defined SEP as a single exchange of any critical
job with another job between machines throughout a schedule
to improve the given schedule. While PEP entails an exchange
of multiple critical jobs with other jobs between machines to
gain improvements [31].

These definitions have been adapted to apply to the satellite
scheduling problem introduced in Section II-A.

Initially, an equation needs to be defined that can be applied
to both concepts derived by Cyras et al. [31] and Powell et al.
[16]. We are noting that:

v∗ = min
a∈A

va (8)

where va is the memory required by action a during any
time, hence v∗ is the smallest memory value required by the
considered actions, excluding ae, as it has no value; unless it
undergoes an attack from another action or is undergoing PEP,
which is later explained in Section III, with results shown in
Section IV. Equation (8) is used as a representation of any of
the three memory variables Im, Rm and Dm, as they have a
fixed memory value at any time instance, as previously defined
in Section II-A.

Definition II.1. An action a ∈ A is said to be critical at time
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interval i ∈ {1, ..., T} if:

Xi,a = 1 ∧Mmax − v∗ ≤ mi ≤ Mmax

Meaning that an action is defined as critical during a spec-
ified instance, where if any other action were to replace that
action and this change is cascaded throughout the schedule, it
will not satisfy the on-board maximum memory constraint.

Definition II.2. SEP is satisfied by a schedule S iff for every
critical action a ∈ A at instance i, it holds that, for any a′ ̸= a

mi −m′
i > va′ − va ∧ m′

j ≤ Mmax, ∀j > i

where m′
i and m′

j is the value of memory at time interval i
and j respectively, if action a′ is chosen instead of action a
at time interval i.

Once an action va has been replaced by any of the other
three actions va′ , an alternate memory m′

i is created at that
instance and therefore an alternate memory m′

j following this
action is generated throughout the schedule, and while within
Mmax will satisfy SEP.

Definition II.3. PEP is satisfied by a schedule S iff for every
critical action a ∈ A at instance i, it holds that, for any a′ ̸= a,
and any j ̸= i:

mi −m′
j > va′ − va ∧ m′

k < Mmax, ∀k

Therefore an action va is exchanged with any of the other
three actions va′ at a different instance j. Two alternate mem-
ory values are created (m′

k and m′
j) where m′

j is generated
following the exchange and m′

k is the memory value being
updated throughout each of the following actions to ensure
Mmax is satisfied, thus satisfying PEP.

Overall SEP ensures that the feasibility and criticality of ac-
tion a, with respect to the memory constraint, is not worsened
by the substitution at time interval i and in all the following
time intervals. Similarly PEP ensures that the swapping of a
critical action with another one does not invalidate the memory
constraint across the whole time horizon.

The authors Powell et al. [16] generated an optimal schedule
S∗ utilising the CP-SAT solver, from an initial first guess S,
modelled with heuristics from problem constraints. Similar to
Cyras et al. [31], we can define a negative decision set as
the subset of decision space T × A where action constraints,
namely equations: (3), (4a), (4b), (5a), and (5b) hold. These
are the constraints that were derived from the position of the
satellite in time and the possibility of performing a particular
action.

Definition II.4. The negative fixed decision set is defined as:

D− = T− ×A− ⊆ T ×A

such that a feasible schedule S satisfies:

(i, a) ∈ D− → Xi,a = 0

The definition of the negative decisions can also capture
extreme situations, such as memory being saturated during
time i and the next opportunity for down-link is at a time

interval j > i. In this case, the negative decision set is
transformed into:

D− = T− ×A− ∪ {(k, a) : i < k < j}.

Similarly, the positive fixed decisions can also be defined for
this specific use case. These may be actions enforced by the
GSO in support of EO campaign goals.

Definition II.5. The positive fixed decision set is defined as:

D+ = T+ ×A+ ⊆ T ×A

such that a feasible schedule S satisfies:

(i, a) ∈ D+ → Xi,a = 1

Here the decisions will be kept, resulting in a schedule being
derived around these decisions, generating a feasible schedule.

III. ABSTRACT ARGUMENTATION (AA)

AA is a mathematical framework that analyses the conflicts
between two or more arguments [20], [21], [25]. Arguments
may represent a particular realisation of decisions within a
schedule. If changes were made dynamically within a schedule
due to AA occurring, this can influence the execution time
of the activities within the schedule and thus create further
arguments and attacks and generate a structured argument [37].
In combining the concepts of SEP and PEP with the concept of
AA, when an exchange occurs between two or more actions,
this is considered an attack.

Therefore, the constraints for attacks created for this paper
are:

• Any action can attack another except themselves.
• When in SEP, ae must not attack another action, however

can be attacked by another.
• When in PEP, ae can attack another action.
• For PEP, only exchanges between any two actions within

the schedule, excluding themselves, may occur across the
schedule.

Fig. 3 is a representation of what happens when there is
an attack within a schedule S at instance i, with an existing
memory (mi1). Individual memory values Vap, Var, and Vad,
also referred to as v′i, have arrows coloured pink, blue, and
green respectively representing every action attack, ap, ar,
and ad. The constraints equation (6) is used to ensure there
is no breach in Mmax at mi1, therefore complying with SEP,
and an alternate memory m′

i is generated, creating alternate
memories for proceeding times m′

j for (mi2,mi3,mi4...mj),
further generating (mi

′
2,mi

′
3,mi

′
4...m

′
j) based on the follow-

ing actions scheduled, as stated in Definition II.2.
In this example, it is important to note: Vap, Var, and

Vad will only occur when the action at mi is ae, where the
three other actions will attempt to replace this existing action.
Otherwise for SEP, there will only be two actions attacking;
e.g. if ap is presently scheduled to take place at instance i
then actions ar and ad will attack.

The concept of PEP in Fig. 4 represents an overview
of how pairwise exchanges may occur within a schedule
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Fig. 3. An overview of the argumentation process across one time interval
representing the occurrence of a single exchange of an action with memory
variables Vap, Var , and Vad within a schedule S to alter the memory mi1

at that instance.

Fig. 4. An overview of the argumentation process across each time interval
representing what occurs during a pairwise exchange between actions within
a Schedule S, impacting the existing memory mi1, mi2, mi3, mi4, and
mi5, on-board a satellite by the respective memory values Vap, Var , Vad

and Vae of an action following an attack.

S between any two non-identical actions scheduled to be
executed at different times. The existing memory values
(mi1,mi2,mi3...mj) prior to an exchange of actions remain
the same. Following an exchange across the schedule, alternate
memories m′

j and m′
k, as defined in Definition II.3, are created

only on the condition that Mmax is not breached, as stated
in (6b). It can be noted, in the figure there are four Va

variables representing each of the four actions ap, ar, ad, and
ae being interchanged with each other by the teal and purple
bi-directional arrows. The action at i will determine which
a will be exchanged and then applied to create an m′

j and
these arrows are represented with colours pink, blue, green,
and brown for values Vap, Var, Vad and Vae respectively.
Therefore, meaning an attack has been created that led to
a decision, resulting in a decision vector Xi,a, the memory
profile mj ∀j ≥ i, and the final objective function value.

A binary attack (⇝) is defined as an action that can occur
within the schedule at a specified instance over an existing
action currently scheduled for the same time. However, this
is based on the memory availability and the position of the
satellite, which will determine whether or not the action is
feasible. Represented in Fig. 5, if action ap, for example, was
scheduled at i, it would be analysed for viability of attacks
by actions ar, ad and ae; while ar would be analysed by
ap, ad and ae; ad by ap, ar and ae; and ae by ap, ar and
ad respectively, with all actions represented by circles shaded
grey.

Fig. 5. Conditions involved with attacks ap (Image taking), ar (Image
Processing), ad (Down-linking), and ae (Idle time) during time i and the
conditions affecting ′−′ and supporting ′+′ these actions from occurring.

Both negative and positive arguments are represented in Fig.
5, with an arrow pointing away from the blue shaded circles,
with negative ′−′ conditions preventing the actions from
occurring. The arrows pointing towards the yellow shaded
circles are the supportive ′+′ conditions for an action to occur
based on the conditions; with the exception of idle time, ae, as
that action has no memory value and is only generated when
no other actions may occur, as stated in Section II-A. This
conflict and support concept was derived from the definition of
BAF, as described in Section I. The environmental conditions,
such as land visibility and ground station access (highlighted
as constraints in Section II-A), control the possibilities of the
execution of the actions; as a result Fig. 5 is represented to
best visualise how each action execution is impacted by the
conditions.

In applying the constraints along with SEP and PEP, it
can be noted, ai,j with the argument ”An assignment of an
action j to time instant i”, by applying the principles of AA
to feasibility, the following definition is:

Definition III.1. The feasibility AF, (ArgsF ,⇝F ) is defined
as:

• ArgsF = {ai,j : (i, j) ∈ (T ×A)\D−}
• ai,j ⇝F ak,l iff j ̸= l, i = k
• ai,j ⇝F ak,l iff mq > Mmax for q > i if i < j, or for

q > j if j < i.

This therefore means, in addition to the assignment of the
action within the decision matrix (first point), the second point
represents an action attacking another for the available time
slot, as only one action can occur at any time instance. The
third point represents an action attacking another only when
the memory is breached, if the duration of i is not long enough
for the action to be completed while the action has occurred
before time q; or if the action ends before the given duration
of i, while it has occurred before time q. This means another
action would be preferred to prevent the memory breach and
utilize the available time efficiently.

6

Abstract argumentation for explainable satellite scheduling



IV. RESULTS

An EO satellite schedule in sun synchronous orbit was
generated with the use of the CP-SAT solver derived by Powell
et al. [16]. The generated schedule spanned over a time frame
of 14 days, from the 6 months data-set. A day from the 14 days
was selected excluding the first, as the schedule was initialized
with an empty memory, on this day.

A. SEP Results

Starting with SEP, each action scheduled was attacked by
any other action, apart from itself and action ae, and a violation
of SEP occurred when no other action could be executed for
the specified time instance i. Whenever an attack occurred the
replacement of the action at i affected the memory profile from
that point onward, thus, depending on the alternate memory
created, this may result in a solution being either feasible or
infeasible, with respect to the maximum memory constraint at
instance j′, as shown in Definition II.2.

To visualize the attacks of all actions, a 2 hour period
(equating to 1440, 5 second interval data points) was selected
out of the day and shown in Fig. 6, to produce a gantt
chart when each action was scheduled to be executed. Below
the scheduled actions (ap, ar, ad, and ae) are the infeasible
results for every attack of each action made at each instance,
as a representation of Mmax being breached. As previously
mentioned in Section II-B, for every instance, the effect of
each attack was cascaded through the onward schedule to
assess the infeasibility of the attack. It can be noted no
infeasible results were recorded for ad as there were enough
processed images in the memory during this time period cross
referenced to shaded region in Fig. 7.

Fig. 7, shows the overall memory profile, with all three main
actions displaying the number of images held in memory at
any instance in time throughout the day on the left, and the
total memory utilized labelled on the right. At 21 : 04 hrs,
action ar was attacked by ap, as highlighted in a blue shaded
region, followed by a broken vertical line at m′

j where the
memory breached Mmax, represented by a horizontal green
line in the figure. It can be seen earlier that day the memory
approached saturation, however in that instance down-linking,
coloured in red, occurred immediately after; reducing the
processed and original images stored in memory on-board the
satellite, coloured blue and purple respectively, thus reducing
the utilized memory. The count for the number of images
down-linked resets after every 3000 instances to improve the
readability of the graph plotted as this number will only
increase. Due to the time horizon shown in this figure it is
challenging to see the variance in the memory following the
attack. As a result, Fig. 8 is provided to show a magnified view
of what happened at i and the effect it had on the memory
at j′. This means, according to the definition, SEP was not
satisfied and an alternate action would be tested by the system
to determine if there is another schedule that can be derived.

In addition to the figures provided, a calculation was done
to retrieve a total percentage of all the infeasible solutions
over the period of the same day (Fig. 7) as shown in Table

Fig. 6. Summary of infeasible solutions when an action attack occurs.

Fig. 7. Results of ap attack on ar resulting in an alternate memory m′
i at

time instance i followed by the updated memory m′
j exceeding the available

memory on-board Mmax.

I. This means the scheduled actions (ap, ar, ad) including
ae, were individually attacked by each of the other actions
excluding themselves. Thus, across 17,278 data points, when
ar, ad and ae were attacked by ap, this generated 74% (2897
possibilities), 16% (630 possibilities), and another 6% (244
possibilities) respectively out of a total of 3921 exchange pos-
sibilities, with the remaining 4% returning feasible solutions.

Meanwhile ar attacking ap generated 0% due to every
exchange being feasible as this action exchange reduces the
memory usage, ad generated 44% (1923 possibilities), and ae
generated 19% (821 possibilities) out of a total of 4324 ex-
change possibilities, with the remaining 37% returning feasible
solutions.

Finally, when ad attacked ap, ar, and ae respectively, the
exchanges generated no infeasible possibilities, meaning it
could have been exchanged at any of the 2082 instances,
reducing the memory by the value of the action Vap or Var

as it has been replaced, and Vad as ad represents the removal
of memory by Vad.

B. PEP Results

Following the application of SEP, PEP was then investigated
to see the effects it would have on the generated satellite
schedule; using the same day and data to see what the
implications would be and to determine whether it is a viable
approach for applying it to AA for this type of problem. Fig. 9
was created in the form of an n×m matrix where the actions
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Fig. 8. A magnified view of Fig. 7 showing where memory at time instance
j′ breached the maximum on-board memory Mmax following an attack at
instance i.

TABLE I
PERCENTAGES OF ACTION EXCHANGE INFEASIBILITIES OVER A PERIOD

OF 1 DAY

Action Scheduled Actions
Exchanges ap ar ad ae

% % % %
ap 74 16 6
ar 0 44 19
ad 0 0 0

are scheduled for time i (represented as 5 second intervals)
throughout a day. The time range displayed in the image starts
at 02 : 12 : 31 hrs ending at 02 : 13 : 41 hrs; placed in
both the n rows and m columns generating a grid containing
cells with numbers represented as actions: (ap, ar, ad and ae)
as (0, 1, 2, − 1) respectively. When these cells, containing
any two actions excluding the action itself (shaded purple),
overlapped at any instance, a pairwise exchange was initiated
resulting in the actions attacking each other at the other
actions time slot. Upon completion of the swap, as described
in Definition II.3 and Section III, a violation check was
done, initially at the earlier scheduled action, where a revised
m′

j was created. The change in memory, as with SEP, was
carried throughout the schedule, while with each iteration the
alternate memory was checked until the second action, that
was previously exchanged, was approached by the system.
Another memory check was done at this point to determine if
the second revised action was appropriate. On the condition it
was, the scan resumed until either memory has been breached,
or the end of the schedule has been reached. When a breach
occurred at any point, the scan was terminated and the cell
was shaded red, treating that exchange as infeasible; whereas,
when PEP was satisfied, the cell was shaded green to confirm
the alternate schedule was feasible.

Following the observation of these results, the questions
raised in Section I were considered; the answers to which
may be based on the hardware capabilities of the system, as
well as the amount of flexibility the system is allowed by the
GSO for making decisions. This may determine altered or new
definitions of the constraints, as demands may change during

Fig. 9. An example showing the implications of pairwise exchange occurring
between any two actions within a 70 seconds window of a satellite schedule.

a satellites’ mission. However, the concepts of SEP and PEP
were used to see what would happen if action ’x’ was replaced
with another and how different a schedule may appear based
on the actions replaced.

Overall, this AA approach was deemed suitable and useful
to assist an explainable layer in providing explanations to the
end user, as XAI, noting that AA was used in this paper as
a means of explaining the schedule created by the solver and
not how the solver converged to the schedule. This may be
applied to, but is not limited to the following:

• Provide a user interface with the generated schedule to the
end user, allowing them to interact and query the system.

• Provide computational results of the reasoning behind the
generated schedule.

• Provide detailed conditions representing conflicts with the
environment and conditions on-board a satellite, as shown
in Fig. 5.

• Provide an instantaneous reflection of the exchange prop-
erties of SEP and/or PEP, as shown in Fig. 3 and Fig. 4,
based on the users queries.

• Generate a representation of a decision matrix to enable
the user to see the decisions made that were influenced
by the conditions.

V. CONCLUSION

AA was applied to an EO satellite scheduling problem to
achieve feasibility through the form of relational attacks of
scheduled actions by other substituting actions at different time
intervals throughout a day. Each action within the generated
schedule was subject to constraints that needed to be satisfied
throughout attacks, which resulted in an immediate memory
comparison to the original schedule when SEP was applied.
PEP enabled two actions at any point in time to be exchanged
with each other, on the condition that the on-board memory
stayed within it’s limit. When a breach occurred, depending
on the exchange property, visual techniques were provided to
see the impact the schedule would experience. To summarize
this paper, AA has been shown to be useful to assist with
the improvements of satellite scheduling, which may be used
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within an explainable layer of an autonomous scheduling
system, which leads to more advanced applications of XAI.

VI. FUTURE WORKS

There remains further techniques to explore, such as ar-
gumentation semantics and sets, and other AF types, namely
TAF, that could add additional detail and accuracy to an ex-
panded problem. The problem could progress in exploring the
use of AA for more complex campaigns aligned to real world
problems, solving for a constellation of satellites for instance.
These deeper investigations could then add further scope to
develop a functional prototype explainable layer, which would
include the exploration of effectiveness in visual displays and
prompts, how to provide XAI for different implementations of
scheduling solvers, and the use of Natural Language Process-
ing (NLP) for facilitating interactions between the user and
the system.
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