On the creation of a subject specific finite element model of the wrist joint
Gislason, M.K. and Nash, D.H. and BARNES, R.; Lennon, A.B. and Prendergrast, P.J. and Lennon, A.B. and Prendergrast, P. J., eds. (2007) On the creation of a subject specific finite element model of the wrist joint. In: Proceedings of the 2007 Summer Workshop of the European Society of Biomechanics. Dublin: Trinity Centre for Bioengineering, pp. 122-124. ISBN 095485831X
|
Text (strathprints008448)
strathprints008448.pdf Accepted Author Manuscript Download (346kB)| Preview |
Abstract
Anatomy varies greatly between individuals and therefore it can be inaccurate to derive any clinical conclusions based on a single computer model. It is important to create models which are directly linked to a specific subject who then can be identified as a part of a larger population 1. By these means it is possible to draw conclusions about the discrepancy between two or more subjects or two or more subject groups. Advances have been made to create a subject specific finite element model of the hip, by using automated procedures 2. The hip poses a relatively simple geometry for such robust procedures to be implemented. However when faced with a more geometrically such as the wrist joint or the ankle joint, the procedure becomes more laborious since automatic procedures become impossible to apply. The geometry is the single most important factor for modeling such types of multi-bone systems and there needs to exist a good balance between creation time and level of accuracy and mesh refinement. In previously reported finite element studies of the wrist joint, ad hoc boundary conditions have been applied to the system. In creating a subject specific model it is important to apply boundary conditions that have been measured from the particular subject. Coupling subject specific boundary conditions with accurate application of material properties of the bones and soft tissues allows the creation of models to predict realistic in-vivo stresses on the carpal bones. In this study three subject specific finite element models were created of the wrist joint, ranging from the distal end of the radius and ulna to the proximal third of the metacarpals, a total of 14 bones were included in the model.
Creators(s): | Gislason, M.K., Nash, D.H. and BARNES, R.; Lennon, A.B., Prendergrast, P.J., Lennon, A.B. and Prendergrast, P. J. | Item type: | Book Section |
---|---|
ID code: | 8448 |
Keywords: | biomechanics, mechanobiology, physiology, bioengineering, writst, hand, finite element model, Mechanical engineering and machinery, Bioengineering, Physiology, Human anatomy, Biomedical Engineering |
Subjects: | Technology > Mechanical engineering and machinery Technology > Engineering (General). Civil engineering (General) > Bioengineering Science > Physiology Science > Human anatomy |
Department: | Faculty of Engineering > Mechanical and Aerospace Engineering Faculty of Engineering > Biomedical Engineering |
Depositing user: | Strathprints Administrator |
Date deposited: | 31 Jul 2009 13:47 |
Last modified: | 14 Jan 2021 02:44 |
Related URLs: | |
URI: | https://strathprints.strath.ac.uk/id/eprint/8448 |
Export data: |