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ABSTRACT
The Kelch-like eCH associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 
(Nrf2)/antioxidant response elements (ARe) signaling pathway is considered a master regulator 
of the cellular response against oxidative stress. Numerous studies have investigated the 
role of Keap1/Nrf2/ARe in the different stages of cancer development. A comprehensive 
literature search using the Google Scholar, PubMed and Science Direct databases was 
performed to retrieve information related to the cancer protective role of 21 selected dietary 
polyphenols via modulation of Keap1/Nrf2/ARe and interconnected signaling pathways/
proteins (MAPK/eRK1/2, Pi3K/Akt, PKD, JNKs, AMPK, NF-κB). information on the 
anti-inflammatory and cytoprotective effects caused by the selected dietary polyphenols 
following Keap1/Nrf2/ARe modulation was also collected. The majority of the studies analyzed 
in this review demonstrated the cancer protective role of the selected polyphenols mostly 
in-vitro. Limited work was performed in-vivo and only one of the selected polyphenols was 
subjected to a clinical trial. it is hoped that this review will encourage further in-vivo studies 
to confirm the cancer protective role of methyleugenol, carnosol, and catechin, as well as 
further clinical trials to unambiguously establish whether the consumption of dietary 
polyphenols impacts on the incidence and progression of cancers in humans.

ABBREVIATIONS:  ROS: Reactive oxygen species; Keap1: Kelch-like eCH associated protein 1; 
Nrf2: Nuclear factor erythroid 2-related factor 2; ARe: Antioxidant response elements; GSH: 
Glutathione; MAPK: Mitogen activated-protein kinase; eRK1/2: extracellular-regulated kinase 
1/2; Pi3K: Phosphatidylinositol 3-kinase; Akt: Protein kinase B; PKD: Protein kinase D; JNKs: 
c-Jun N-terminal kinases; NF-κB: Nuclear factor kappa B; PKC: Protein kinase C; AP-1: Activator 
protein-1; HiF 1α: hypoxia-inducible factor 1-alpha; MDA: Malondialdehyde; veGF: vascular 
endothelial growth factor; PAK-1: p21-activated kinase-1; NOX: NADPH oxidases; NFe2: Nuclear 
factor erythroid-derived 2; Neh: NRF2-eCH homology; sMAF: Small musculo-aponeurotic 
fibrosarcoma; BTB: Broad complex, tramtrack, bric-a-brac; ivR: intervening region; Maf: Muscle 
aponeurosis fibromatosis; GST: Glutathione S-transferase; NQO1: NADPH quinine 
oxidoreductase; GCL: Glutamylcysteine ligase; GPx: Glutathione peroxidases; SOD: Superoxide 
dismutase; UGT: UDP-glucuronosyl transferase; HO-1: Heme oxygenase-1; Trx: thioredoxin; 
eH: epoxide hydrolases; iL-1β: interleukin-1β; PPARγ: peroxisome proliferator-activated receptor 
gamma; AMPK: AMP-activated protein kinase; ASK: Apoptosis signal-regulating kinase 1; 
BCL-2: B-cell lymphoma 2; HiPK2: Homeodomain-interacting protein kinase 2; PDGF: Platelet 
derived growth factor; eMT: epithelial to mesenchymal transition; MMP-2: Matrix 
metalloproteinase-2; STAT3: Signal transducer and activator of transcription 3; LPS: 
Lipopolysaccharide; GSK3β: Glycogen synthase kinase-3 beta; NLRP3: NLR family pyrin domain 
containing 3; TNF-α: Tumor necrosis factor-α; mTOR: Mammalian target of rapamycin; TLR4: 
Toll-like receptor 4; NO: Nitric oxide; PGe2: Prostaglandin e2; CAT: Catalase; OGG1: 8-oxoguanine 
glycosylase; TCDD: 2,3,7,8-Tetrachlorodibenzo-p-dioxin; SiRT1: Sirtuin 1; FOXO1: Forkhead box 
protein O 1; DeNA: Diethylnitrosamine; TGF-β1: Tumor growth factor-β1; iKKβ: inhibitor of 
nuclear factor kappa-B kinase subunit beta; GCLC: Glutamate cysteine ligase catalytic; GCLM: 
Glutamate cysteine ligase modifier; LTB4: Leukotriene B4; Syk: Spleen tyrosine kinase; PLA2: 
Phospholipase A2; 5-LO: 5-lipoxygenase; AKR1B10: Aldo-keto reductase family 1 member 
B10; FTL: Ferritin Light Chain; GGTLA4: Gamma-glutamyltransferase-like activity 4; GCS: 
γ-glutamylcysteine synthetase; FKHR: Forkhead transcription factors; NSCLC: Non-small cell 
lung cancer cell; CCL5: Chemokine (C-C motif ) ligand 5; iNOS: inducible nitric oxide synthase; 
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COX-2: Cyclooxygenase-2; wnt: wingless-related integration site; 5-FU: 5-Fluorouracil; TPA: 
12-O-tetradecanoylphorbol-13-acetate; eGF: epidermal growth factor; PARP: Poly (ADP-ribose) 
polymerase; cGMP: Cyclic guanosine monophosphate; MT: Metallothionein; iGF ii: insulin-like 
growth factor ii; JAK2: Janus kinase 2; TRAiL: TNF-related apoptosis-inducing ligand; PeRK: 
Protein kinase RNA-like endoplasmic reticulum kinase; DNMT: DNA methyltransferase; HDAC: 
Histone deacetylases; NLCs: Nanostructured lipid carriers; MRP2: Multidrug resistance-associated 
protein 2; MCP-1: Monocyte chemotactic protein-1; vCAM-1: vascular cell adhesion protein-1; 
MDR: Multi drug resistance; UGT1A: UDP glucuronosyltransferase 1 family, polypeptide A; 
HUveCs: Human umbilical vein endothelial cells; UGTs: UDP-glucuronosyltransferases; GCS: 
Glutamyl cysteine-synthetase; GR: Glutathione-reductase; TGM2: Transglutaminase-2; PTeN: 
Phosphatase and tensin homolog; CDK2: Cyclin dependent kinase 2: iRS-1: insulin receptor 
substrate 1

Introduction

Role of Keap1/Nrf2/ARE in Carcinogenesis

The overproduction of reactive oxygen species 
(ROS)—associated with mitochondrial cellular respi-
ration, phagocytosis, digestion, aging tissues, and the 
metabolism of xenobiotics—generates high levels of 
free radicals in cells and causes oxidative stress. The 
latter has been strongly linked to carcinogenesis as it 
induces DNA mutations, promotes cancer cell growth 
and proliferation, stimulates angiogenesis and increases 
resistance to cell apoptosis and autophagy. Oxidative 
stress interferes with the mitogen activated-protein 
kinase (MAPK)/extracellular-regulated kinase 1/2 
(ERK1/2), phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (Akt), protein kinase D (PKD), c-Jun 
N-terminal kinases (JNKs), and nuclear factor kappa 
B (NF-κB), and other cell signaling proteins such as 
Ras, Raf, Bad, Bax, Bim and Foxo (1–4). At low doses, 
ROS promote tumor formation by influencing the 
expression of genes coding for proteins such as pro-
tein kinase C (PKC), Nrf2, MAPK, activator protein-1 
(AP-1), NF-κB and the hypoxia-inducible factor 
1-alpha (HIF-1α) involved in the growth of mutated 
cells. At high doses, they cause DNA point mutations, 
deletions, insertions, and chromosomal translocations, 
which promotes tumor cell mutagenesis by oncogene 
activation or tumor suppressor gene inactivation (e.g., 
p. 53) (5,6). Oxidative stress also induces mutation 
by causing lipid peroxidation and producing malond-
ialdehyde (MDA) (7). In addition, ROS contribute to 
angiogenesis by regulating the vascular endothelial 
growth factor (VEGF), p21-activated kinase-1 (PAK-1) 
in Rac-associated cytoskeleton remodeling, and the 
ROS-generating enzymes (e.g., NADPH oxidases 
(NOX)) (8).

The Kelch-like ECH associated protein 1 (Keap1)/
nuclear factor erythroid 2-related factor 2 (Nrf2)/anti-
oxidant response elements (ARE) signaling pathway 
is considered a master regulator of the cellular 

response against oxidative stress (9,10). Nrf2, encoded 
upon activation of the nuclear factor erythroid-derived 
2 (NFE2) gene, is a transcription factor with an 
N-terminal conserved region that has DNA-binding 
specificity. Nrf2 is highly expressed in the skin, lungs, 
gastrointestinal tract, and in metabolic and detoxifying 
organs such as the liver and kidneys (11,12). Nrf2 is 
a major mediator of a variety of functions contribut-
ing to cell survival, such as drug/xenobiotic metabo-
lism, DNA repair, mitochondrial function, iron, lipid 
and carbohydrate metabolism, proteostasis and cell 
proliferation (13). Nrf2 contains 7 Nrf2-ECH homol-
ogy (Neh) domains (Neh1-Neh7). The Neh1 domain 
recognizes ARE for the activation of gene transcrip-
tion by heterodimerization with small musculoapo-
neurotic fibrosarcoma proteins (sMAF) K, G, and F. 
The Neh2 domain mediates Nrf2 ubiquitination and 
degradation by interacting with the Kelch domain of 
Keap1 (14). The latter is a cytoplasmic actin-bound 
adaptor protein that acts as an oxidative stress sensor 
and negative regulator of Nrf2 (15). Keap1 consists 
of the following domains: broad complex, tramtrack, 
bric-a-brac (BTB), Kelch. It also has an N-terminal 
region, an intervening region (IVR) and a C-terminal 
region (16). Under basal conditions, Nrf2 exists in 
the cytoplasm as an inactive complex bound to its 
negative regulator Keap. There, it undergoes rapid 
proteasomal degradation triggered by Cul3-directed 
polyubiquitination through the Keap1/Cul3 ubiquitin 
ligase (17). In the absence of oxidative stress (i.e., 
when the need for an antioxidative response is min-
imal), Nrf2 basal levels are low (18). Under oxidative 
stress, the highly reactive cysteine thiol groups in the 
IVR region of Keap1 are oxidized. This results in 
conformational variations in Keap1, causing its dis-
sociation from Nrf2 (19–21). Once dissociated, the 
stabilized Nrf2 in the cytosol is translocated into the 
nucleus upon phosphorylation, along with de 
novo-synthesized Nrf2 proteins, forming heterodimers 
with nuclear small muscle aponeurosis fibromatosis 
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(Maf) proteins (22). These Nrf2/sMaf heterodimers 
then interact with a regulatory enhancer sequence 
named ARE which regulates about 250 human genes 
controlling the expression of antioxidant cytoprotective 
proteins (23). These restore cellular homeostasis fol-
lowing an oxidative insult by regulating inflammation, 
apoptosis, redox metabolism, iron and heme metab-
olism, phase-I, -II, and -III drug/xenobiotic metabo-
lism and proteostasis (24,25). The phosphorylation 
reaction associated with Nrf2 activation is controlled 
by several kinases, including JNK, PI3K, PKC and 
ERK (26). Overall, the activation of the Keap1/Nrf2/
ARE signaling pathway enhances cellular antioxidant 
capacity by upregulating the expression of genes cod-
ing for detoxifying and cytoprotective enzymes such 
as glutathione S-transferases (GSTs), NAD(P)H qui-
nine oxidoreductase (NQO-1), glutamylcysteine ligase 
(GCL), glutathione peroxidases (GPx), superoxide 
dismutases (SODs), UDP-glucuronosyl transferases 
(UGTs), heme oxygenase-1 (HO-1), thioredoxin (Trx), 
and epoxide hydrolases (EH) (27–29). Nrf2 activation 
also promotes the synthesis/recycling of oxidized 
co-factors (e.g., glutathione) and detoxifying enzymes 
(30). As aforementioned, Keap1/Nrf2/ARE widely 
interacts with other signaling pathways and proteins 
to regulate the cell redox status. This includes MAPK/
ERK1/2, PI3K/Akt, PKD, JNKs, AMPK, NF-κB and 
proteins such as Ras, Raf, Bad, Bax, Bim and Foxo 
(1–4). For example, it is known that inflammation 
induced by cytokines released via the NF-κB pathway 
is implicated in carcinogenesis through an increase 
in the production of ROS (31,32). Nrf2 activation 
inhibits oxidative stress by downregulating NAD(P)H 
oxidases and genes coding for interleukin-1β (IL-1β) 
and IL-6, and upregulating gene encoding for the 
peroxisome proliferator-activated receptor gamma 
(PPARγ) (33). Previously, we have reported the cancer 
chemopreventive role of dietary terpenoids via mod-
ulating the Keap1-Nrf2-ARE signaling pathway (34). 
Here, we describe and discuss the cancer protective 
role of selected dietary polyphenols via the same sig-
naling system.

Role of Keap1/Nrf2/ARE in the Hallmarks of 
Cancer

Numerous in-vitro and in-vivo studies have investi-
gated the role of Keap1/Nrf2/ARE in cancer, providing 
evidence for its dual effects (cancer-preventive and 
cancer-promoting) depending on the different stages 
of cancer development. Whilst the controlled/transient 
activation of Keap1/Nrf2/ARE in normal cells can 
prevent cancer initiation, its uncontrolled/prolonged 

activation in cancer cells drives cancer promotion, 
progression, and metastasis. The role of Keap1/Nrf2/
ARE in sustained cell proliferation, apoptosis, angio-
genesis, and metastasis is described below.

Sustained Cell Proliferation
Studies have demonstrated that Nrf2 targets the 
expression of genes controlling cell proliferation and 
survival. Experiments carried out using Nrf2+/+ 
(wild-type) cells have revealed a significant increase 
in cell proliferation compared to Nrf2-/- cells. This 
has also been established In Vivo using Nrf2-/- mice 
(35,36).

Apoptosis
Apoptosis is generated in response to excessive ROS 
production, through oxidation of apoptosis 
signal-regulating kinase 1 (ASK) and activation of 
p38MAPK and JNK. In cancer cells, activation of the 
Keap1/Nrf2/ARE pathway leads to resistance to apop-
tosis via the enhanced expression of B-cell lymphoma-2 
(BCL-2) and BCL-xL proteins. These suppress mito-
chondrial cytochrome C release and decrease 
caspase-3/7 activation (37). Nrf2 has also recently 
been found to target the homeodomain-interacting 
protein kinase 2 (HIPK2) gene which has anti-apoptotic 
functions (38,39).

Angiogenesis
It has been demonstrated that activation of Keap1/
Nrf2/ARE promotes angiogenesis following increased 
Nrf2-induced NQO1 expression, which allows NQO1 
to bind to HIF-1α, inhibiting HIF-1α degradation. 
Studies have revealed that blood vessel formation is 
markedly suppressed in Nrf2 knockdown tumor xeno-
graft animal models. This anti-angiogenic effect is 
mediated via decreased levels of HIF-1α and of VEGF, 
platelet derived growth factor (PDGF), angiopoietin, 
and angiogenin (40).

Metastasis
In cancer cells, Keap1/Nrf2/ARE activation promotes 
the process of epithelial mesenchymal transition 
(EMT) important for metastasis, via downregulating 
the expression of the adhesion protein E-cadherin 
(41). It has also been reported that Nrf2 downregu-
lation correlates with reduced expression of extracel-
lular matrix remodeling enzymes such as the matrix 
metalloproteinase 2 (MMP2) and matrix metallopro-
teinase 9 (MMP9) required for cancer cell migration 
(42). Other conflicting reports have indicated that 
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high NRF2 expression led to anti-metastatic effects 
(16,43,44). For a comprehensive review on the role 
of Keap1/Nrf2/ARE in other hallmarks of cancer (e.g., 
avoiding of immune destruction, tumor-promoting 
inflammation, genomic instability and others), the 
reader should refer to the work by de La Vega et  al. 
(45). Two comprehensive updates provide additional 
details on the role of Keap1/Nrf2/ARE in metabolic 
reprogramming (46,47).

Methodology

A comprehensive literature search using the Google 
Scholar, PubMed and Science Direct databases was 
performed to retrieve information related to the can-
cer protective effects of 21 selected dietary polyphe-
nols via modulation of Keap1/Nrf2/ARE and other 
interconnected signaling pathways/proteins (MAPK/
ERK1/2, PI3K/Akt, PKD, JNKs, AMP-activated protein 
kinase AMPK, NF-κB). Information on the 
anti-inflammatory and cytoprotective effects caused 
by the selected dietary polyphenols following Keap1/
Nrf2/ARE modulation was also collected. The poly-
phenols were selected based on their various roles in 
restricting different cancer types, their abundance in 
dietary foods, and the amount of published evidence 
for their cancer protective role compared to other 
compounds. The keywords used for this search 
included ‘dietary polyphenols’, ‘antioxidant’, ‘free rad-
ical scavenger’, and ‘Nrf2’, ‘Keap1/Nrf2’, ‘Keap1/Nrf2/
ARE’, ‘MAPK’, ‘PI3K’, ‘protein kinase B or Akt’, ‘ERK’, 
‘AMPK’, ‘NF-κB’ and ‘cancer’. A further search using 
the keywords ‘anti-inflammatory’, ‘hepatoprotective’ 
and ‘cytoprotective’ was performed to collect infor-
mation on additional Nrf2-modulated effects caused 
by the selected dietary polyphenols. Only research 
articles detailing in-vitro and in-vivo studies as well 
as clinical trials (419 in total) published in high-quality 
peer-reviewed journals between 2001–2022 were 
selected for the write-up of this review.

Cancer Protective Role of Plant-Based Dietary 
Foods via Modulation of Keap1/Nrf2/ARE and 
Interconnected Signaling Pathways

Multiple in-vitro and in-vivo studies have linked the 
effects of various cancer chemopreventive agents with 
activation of the Keap1/Nrf2/ARE pathway (48). Nrf2 
activators exert cancer chemopreventive activity as 
they inhibit the metabolic activation of pro-carcinogens, 
block their reaching of target sites, prevent their inter-
actions with cellular macromolecules (DNA, RNA, 

and proteins) as well as induce detoxification and 
increase the production of antioxidant enzymes (49). 
Various plant-derived natural products, including sev-
eral from dietary sources, can modulate the Keap1/
Nrf2/ARE pathway. This includes structurally-diverse 
phytoconstituents, such as isothiocyanates (50), 
garlic-derived organosulfur compounds (51), indoles 
from cabbage and broccoli (52), terpenoids from 
Citrus fruits and other dietary sources (53–55), and 
many aromatic and phenolic derivatives (56). Some 
of these natural products, such as sulphoraphane (in 
broccoli, Brussels sprouts, cabbage), curcumin (in tur-
meric), resveratrol (in grapes) or trigonelline (in coffee 
and fenugreek seeds), have been used as templates 
for the development of future cancer chemopreventive 
or anticancer drugs (13). The common dietary sources 
of the discussed polyphenols are presented in Table 1.

Selection of Polyphenols with Cancer 
Protective Activity via Modulation of the 
Keap1/Nrf2/ARE and Interconnected Signaling 
Pathways

The cancer protective role of 21 dietary polyphenols 
(Figure 1) in the modulation of Keap1/Nrf2/ARE and 
interconnected signaling pathways/proteins is described 
below and summarized in Table 2 and Figure 2.

Kaempferol

The prenylated chalcone xanthohumol (1) is the main 
flavonoid of the female inflorescences of hops 
(Humulus lupulus L.) and is found in beer (57). This 
compound exhibits a range of biological effects includ-
ing cardioprotective, antioxidant, anti-inflammatory, 
antiviral, anti-obesity, as well as cancer chemopreven-
tive and anticancer activity (221).

Xanthohumol activates the Keap1/Nrf2/ARE path-
way by inducing the translocation of Nrf2 from the 
cytosol to the nucleus, as well as its binding to ARE 
(84). This activation upregulates the expression of 
several antioxidant enzymes, leading to decreased ROS 
generation and reduced GSH depletion (222,223). 
Xanthohumol has been shown to reduce 
cisplatin-induced inflammation and oxidation via acti-
vation of the Nrf2 pathway and upregulation of HO-1 
expression (224), leading to a pro-apoptotic effect as 
apoptosis can be induced by inhibition of inflamma-
tion and oxidation (225). It has demonstrated cyto-
protective and cancer chemopreventive activity on 
normal THLE-2 hepatocytes and hepatocellular car-
cinoma HepG2 cells via activating the Nrf2 pathway, 
upregulating phase-II enzymes, such as GSTs, HO-1, 
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and NQO1 combined with p53 induction (84). In 
PANC-1 and Mia-Pa-Ca-2 pancreatic cancer cells, the 
anti-inflammatory and pro-apoptotic effects of xan-
thohumol have been reported to reduce cell prolifer-
ation via Nrf2 activation and to increase the expression 
of antioxidant and detoxifying genes (SOD, NQO1, 
and GSTP) (85). Both in-vivo and in-vitro studies 
have showed that a combination of xanthohumol and 
phenethyl isothiocyanate induces apoptosis by mod-
ulating Nrf2 and abrogating NF-κB, signal transducer 

and activator of transcription 3 (STAT3), and the Akt/
P70S6K signaling pathways in PSN-1 cancer cells. The 
same combination showed cytoprotective activity via 
activation of Nrf2 in non-cancerous MS1 cells (86). 
Xanthohumol ameliorates lipopolysaccharide (LPS)-
induced lung injury, increasing the expression of anti-
oxidative enzymes via Nrf2 activation associated with 
AMPK and glycogen synthase kinase-3 beta (GSK3β) 
phosphorylation. This suppressed the LPS-activated 
Txnip/NLR family pyrin domain containing 3 (NLRP3) 

Table 1. Common dietary sources of the 21 selected polyphenols.
Name Common dietary Sources (Scientific Name) references

Xanthohumol (1) Hops (Humulus lupulus) (57)
Punicalagin (2) Pomegranates (Punica granatum) (58,59)
resveratrol (3) Grapes and wine (Vitis vinifera); Peanuts (Arachis 

hypogaea); Soybean (Glycine max)
(60)

Methyleugenol (4) Cloves (Syzygium aromaticum); Lemon grass 
(Cymbopogon spp.); Sweet basil (Ocimum 
basilicum); Nutmeg (Myristica fragrans)

(61–63)

6-Shogaol (5) Ginger (Zingiber officinale) (64)
Chlorogenic acid (6) robusta Coffee (Coffea canephora, Coffea 

arabica); Yerba Mate (Ilex paraguariensis); 
Winter’s Bark (Drimys winteri)

(65)

Ferulic acid (7) Various fruits, grains and beverages as well as 
aubergines (Solanum melongena); tomatoes 
(Solanum lycopersicum); artichokes (Cynara 
cardunculus var. scolymus); Bamboo Shoots 
(Bambusa vulgaris)

(66)

Carnosic acid (8) rosemary (Rosmarinus officinalis) (67)
Carnosol (9) rosemary (Rosmarinus officinalis); Mountain 

desert sage (Salvia pachyphylla)
(68)

ellagic acid (10) Cranberries (Vaccinium macrocarpon); 
raspberries (Rubus idaeus); Walnuts (Juglans 
regia); Pecan nuts (Carya illinoinensis)

(69)

apigenin (11) Parsley (Petroselinum crispum); Celery (Apium 
graveolens); Chamomile tea (Matricaria 
chamomilla)

(70)

Catechin (12) Green/White/Black tea (Camellia sinensis) (71,72)
epicatechin (13) Green tea (Camellia sinensis); Grapes (Vitis 

vinifera);  Cocoa (Theobroma cacao)
(73,74)

eGCG (14) Green tea (Camellia sinensis) (75)
Fisetin (15) Strawberries (Fragaria × ananassa); Persimmon 

(Diospyros kaki); Grapes (Vitis 
vinifera);  apples (Malus spp.); Cucumber 
(Cucumis sativus)

(76)

Genistein (16) Soybean seeds (Glycine max) (77)
isoorientin (17) Bamboo (Phyllostachys pubescens, Sasamorpha 

borealis); Buckwheat (Fagopyrum esculentum) 
Foxtail lilies shoots (eremurus spectabilis)

(78,79)

Quercetin (18) red wine, medicinal herbs, and onion (Allium 
cepa); Blueberries (Vaccinium sect. 
Cyanococcus); Green tea (Camellia sinensis)

(80)

Luteolin (19) Various medicinal herbs, and Celery (Apium 
graveolen); Green Peppers (Capsicum 
annuum); Parsley (Petroselinum crispum); 
Perilla leaves (Perilla frutescens); Chamomile 
tea (Matricaria chamomilla)

(81)

rutin (20) asparagus (Asparagus officinalis); Buckwheat 
(Fagopyrum esculentum); Cherries (Prunus 
avium); oranges (Citrus × sinensis); Grapes 
(Vitis vinifera); Grapefruits (Citrus × paradisi); 
apricots (Prunus armeniaca); apples (Malus 
spp.); tea (Camellia sinensis)

(82)

Kaempferol (21) aloe (Aloe vera); ivy gourd (Coccinia grandis); 
drumstick tree (Moringa oleifera); Broccoli 
(Brassica oleracea); French beans (Phaseolus 
vulgaris); tea (Camellia sinensis); Strawberries 
(Fragaria × ananassa)

(83)
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inflammasome and the NF-κB signaling pathway 
(222,226). In myeloid leukemia, the activation of 
PI3K/Akt, NF-κB, and other signaling pathways causes 
proliferation, transformation, and resistance to apop-
tosis (227). Xanthohumol is a potent inhibitor of T 
cell proliferation, cytokine production, and T 
cell-mediated cytotoxicity through the inhibition of 
NF-κB (228). It targets cell growth and angiogenesis, 
and causes impaired migration and invasion both 
in-vivo and in-vitro models of acute and chronic 

myeloid leukemia through inhibition of the PI3K/Akt 
and NF-κB signaling pathways (87). The inactivation 
of NF-κB can reduce the excessive production of 
inflammatory mediators, such as NO, IL-1β and tumor 
necrosis factor-α (TNF-α) in LPS-induced microglial 
BV-2 cells, thus exerting an anti-inflammatory effect 
(229). Xanthohumol also shows anticancer activity by 
downregulating topoisomerase-I and the expression 
of efflux drug transporters through induction of both 
caspase-dependent and caspase-independent apoptosis 

Figure 1. Chemical structures of the dietary polyphenols that modulate Keap1/Nrf2/are and interconnected signaling pathways. 
Here, (1) xanthohumol, (2) punicalagin, (3) resveratrol, (4) methyleugenol, (5) 6-shogaol, (6) chlorogenic acid, (7) ferulic acid, 
(8) carnosic acid, (9) carnosol, (10) ellagic acid, (11) apigenin, (12) catechin, (13) epicatechin, (14) eGCG, (15) fisetin, (16) 
genistein, (17) isoorientin, (18) quercetin, (19) luteolin, (20) rutin, and (21) kaempferol.
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(230,231). It has been reported to significantly alle-
viate the proliferation of HCT116-derived human 
colon cancer cells upon inducing apoptosis via acti-
vat ion  of  de at h-re ceptors  as  wel l  as 
mitochondrial-mediated programmed cell death path-
ways by downregulation of Bcl-2 and activation of 
the caspase cascades (88). In human prostate cancer 
cells, it induces apoptosis by activating the 
pro-apoptotic proteins Bax and p53, decreasing the 
activation of anti-apoptotic NF-κB (89) and inhibiting 
Akt, NF-κB, p-mammalian target of rapamycin 
(mTOR) and NF-κB-regulated anti-apoptotic proteins 
Bcl-2 and survivin (90).

Punicalagin
The ellagitannin punicalagin (2) is the main bioactive 
constituent of pomegranate (Punica granatum) fruit, 
husk, and juice (58,59). This compound has antioxi-
dant, anti-inflammatory (232), antiviral (233), 
anti-atherosclerotic (234), antimicrobial (235), anti-
quorum sensing (236) and antiproliferative activ-
ity (237).

Punicalagin activates the Nrf2 pathway by decreas-
ing Keap1 levels via activation of the PI3K/Akt path-
way which causes the dissociation of Nrf2 from Keap1 
and increases nuclear translocation of Nrf2, thereby 
inducing HO-1 expression. These events, along with 
the reversal of the LPS-induced reduction of SOD1 
mRNA expression, give punicalagin its protective 
effect against LPS-induced oxidative stress (238). 
Punicalagin has been demonstrated to protect from 

heat stress-induced intestinal epithelial cell damage 
and cell death (239). It also acts as an anti-mutagenic 
agent by inhibiting DNA adducts caused by the induc-
tion of phase-II enzymes (240). The upregulated HO-1 
is at the core of the Nrf2-mediated NF-κB inhibition; 
the pathway involved in the cytokine production 
(241). Whilst activation of the NF-κB pathway plays 
a pivotal role in tumor cell progression, growth, pro-
liferation and resistance to apoptosis, inactivation of 
NF-κB plays a cancer protective role as it activates 
the Keap1/Nrf2/ARE pathway (225). The inhibition 
of the NF-κB pathway by punicalagin can impede 
cancer cell proliferation and enhance cell apoptosis 
in cervical cancer ME-180 cells and osteosarcoma 
(91,92). A tumor xenograft mouse model shows that 
punicalagin is able suppress the growth of osteosar-
coma and inhibit angiogenesis via suppression of 
NF-κB activation (92). The TNFR-induced Akt acti-
vation, required for NF-κB activity, is also abrogated 
by punicalagin which is responsible for inhibiting cell 
proliferation and induction of apoptosis in human 
colon cancer cells (93,94). Studies have also shown 
that punicalagin exerts its anti-inflammatory activity 
via inhibition of the NF-κB and MAPK pathways 
mediated by toll-like receptor 4 (TLR4) mRNA expres-
sion. This anti-inflammatory effect is also mediated 
via the inhibition of the production of pro-inflammatory 
cytokines and other factors such as nitric oxide (NO), 
prostaglandin E2 (PGE2), IL-1β, IL-6, and TNF-α 
(242). The Keap1-Nrf2 activation induced by puni-
calagin has been shown to reduce palmitate-induced 
lipotoxicity, including attenuation of mitochondrial 

Figure 2. Cancer protective role of dietary polyphenols via modulating Keap1/Nrf2/are and interconnected signaling 
pathways.
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membrane potential loss, ATP depletion and ROS 
generation by the ERK/Nrf2 pathway and increase the 
v i a b i l i t y  o f  h e p at o c y t e s  by  b l o c k i n g 
mitochondria-mediated caspase-dependent apopto-
sis (58).

Resveratrol
Resveratrol (3) is a stilbene that has been identified 
in more than 70 plant species, and predominantly 
occurs in grapes’ skin and seeds, as well as in red 
wines (60).  Resveratrol  has antioxidant, 
anti-inflammatory, and anticancer activity (211).

It activates the Nrf2 signaling pathway by causing 
dissociation of Nrf2 from Keap1 and its translocation 
into the nucleus, leading to the activation of 
ARE-driven gene promoters (243). This activation of 
ARE downstream genes causes the scavenging of ROS 
that are responsible for DNA damage and the activa-
tion of phase-II enzymes (GST and HO-1) resulting 
in the detoxification of carcinogens (99,244). 
Resveratrol has been reported to protect porcine intes-
tinal epithelial cells from oxidative stress through the 
PI3K/Akt-mediated Nrf2 signaling pathway by upreg-
ulating HO-1, SOD-1, and catalase (CAT) expression 
levels (245). It has been shown to prevent the forma-
tion of 17,β-estradiol-induced breast tumors by upreg-
ulating antioxidant genes NQO1, SOD3, and 
8-oxoguanine glycosylase (OGG1) and thereby pro-
tects cells against oxidative DNA damage (95). The 
upregulation of NQO1 expression caused by resvera-
trol can protect leukemic cells from DNA adducts 
formation (246) and to decrease estrogen metabolism 
in 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-
induced breast cancer MCF-10F cells (247). As an 
Nrf2 activator, resveratrol has been shown to decrease 
the growth and clonogenic potential of breast cancer 
MCF-7 cells exposed to doxorubicin, resulting in the 
inhibition of apoptosis, autophagy, and inflammation. 
In the ovaries, resveratrol can decrease the oxidative 
stress caused by chemotherapy by upregulating Nrf2 
and activating the sirtuin 1 (SIRT1)/forkhead box 
protein O1 (FOXO1) pathway. In the presence of the 
cytotoxic agent sitagliptin, resveratrol was shown to 
ameliorate renal cell carcinoma showing antioxidant 
activity through restoring Nrf2/HO-1 content (96). 
Resveratrol also attenuates diethylnitrosamine (DENA)-
induced liver tumorigenesis by modulating Nrf2 sig-
naling pathway and suppressing oxidative stress and 
inflammatory cytokines (97). It inhibits ROS produc-
tion by activating the Nrf2 pathway, reducing the 
expression of Keap1 and inhibiting NF-κB activation 
(248). The latter is caused by the inhibitor of nuclear 

factor kappa-B kinase subunit beta (IKKβ)-mediated 
IκBα phosphorylation by resveratrol (249). A number 
of reports have shown that NF-κB is an important 
inflammatory transcriptional regulator that can be 
activated by ROS (250). Thus, resveratrol acts as an 
anti-inflammatory agent by blocking IL-1β, TNF-α 
and NF-κB activation. These inflammatory factors 
play a role in the development of carcinogenesis 
including tumor growth, angiogenesis, invasion, and 
metastasis (251). Resveratrol has shown apoptotic and 
antiproliferative activity on human prostate cancer 
cells mediated by NF-κB inhibition (98). Resveratrol 
also causes the accumulation of Nrf2 in the cytoplasm 
and inhibits Nrf2-dependent transcription via SIRT1 
deacetylase activity, in both K562 leukemia and 
HepG2 hepatocellular carcinoma cells, demonstrating 
its effect in both Nrf2 accumulation and translocation 
(99). In-vivo studies carried out on resveratrol showed 
that it suppresses pancreatic cancer (by abrogating 
PI3K and Akt phosphorylation), liver cancer (by 
enhancing Nrf2 expression), colorectal cancer (by 
increasing Bax expression), and breast cancer (by sup-
pressing tumor growth factor-β1 (TGF-β1) and NF-κB 
expression) (100). A number of clinical trials have 
been conducted to evaluate the effectiveness of res-
veratrol on patients with prostate, colorectal and 
breast cancer. It was concluded that resveratrol was 
an unlikely candidate for prostate cancer, but showed 
a very slight effect on colon cancer and a promising 
effect on breast cancer, respectively (252).

Methyleugenol
Methyleugenol (4) is a phenylpropene found in the 
essential oils of clove, sweet basil, lemon grass, nut-
meg and pimento (61). This compound is commonly 
used as a flavoring additive (253). It has anti-allergic, 
antinociceptive, antioxidant, anti-inflammatory (62,63), 
and anticancer (254) activity. It can also ameliorate 
cerebral ischemic injury (255).

Studies have revealed that methyleugenol can 
enhance the nuclear translocation of Nrf2, reduce 
Keap1 levels, and increase ARE activity (256). This 
compound has demonstrated antioxidant activity on 
different cell lines by scavenging ROS, decreasing 
superoxide generation along with increasing SOD, 
CAT and GSH (254). Its beneficial effects in ischemic 
cell injury both in-vivo and in-vitro have been 
attributed to its ability to scavenge ROS and generate 
an antioxidant effect via Nrf2/ARE activation (254). 
It also upregulates the expression of antioxidant 
enzymes, such as glutamate cysteine ligase catalytic 
(GCLC), glutamate cysteine ligase modifier (GCLM), 
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HO-1, and NQO1 by activating the Nrf2/ARE signal-
ing pathway via activation of the AMPK/GSK-3β and 
ERK pathways (257). Methyleugenol was found to 
have anticancer activity in cervical cancer individually 
or in combination with cisplatin by inhibiting cell 
growth, inducing cell apoptosis, mitochondrial mem-
brane potential loss and caspase 3 activity (101).It has 
also been reported to reduce cell viability, impede the 
expression of the PI3K/mTOR/Akt pathway and 
induce G2/M cell cycle arrest in human retinoblastoma 
cancer cells (102). It has anticancer activity against 
leukemia cells (HL-60) and human colon carcinoma 
cells (103). Methyleugenol also exerts an 
anti-inflammatory effect by suppressing the release of 
pro-inflammatory cytokines, such as TNF-α, IL-4, 
PGE2, PGD2, leukotriene B4 (LTB4), and LTC4 via 
suppressing the activation of spleen tyrosine kinase 
(Syk), ERK1/2, p38, JNK, c phospholipase A2 (PLA2), 
and 5-lipoxygenase (5-LO) (62). To the best of our 
knowledge, no in-vivo studies have been carried out 
to investigate the cancer protective role of methyleu-
genol via modulation of Keap1/Nrf2/ARE and inter-
connected pathways.

6-Shogaol
The polyphenol 6-shogaol (5) is the main bioactive 
constituent of dried or cooked ginger (Zingiber offi-
cinale). This compound displays a range of biological 
properties, including anti-inflammatory, analgesic, 
antipyretic, cancer chemopreventive and antioxidant 
activity (64).

It has been shown to decrease Keap1 levels by upreg-
ulating, phosphorylating, and translocating Nrf2 in-vitro 
and in-vivo, resulting in the upregulation of Nrf2 target 
genes including aldo-keto reductase family one member 
B10 (AKR1B10), Ferritin Light Chain (FTL), 
gamma-glutamyltransferase-like activity 4 (GGTLA4), 
HO-1, GCLC and GCLM. This activation of Nrf2 sig-
naling enhances cellular antioxidant activity, GSH levels 
and ARE promoter activity (258). 6-shogaol activates 
Nrf2 via the JNK-mediated pathway, causing an increase 
in JNK activation and in the expression of 
γ-glutamylcysteine synthetase (GCS) and HO-1 (259,260). 
6-shogaol also activates Nrf2 in PC12 cells and provides 
cytoprotection against oxidative stress (261). An analog 
of 6-shogaol, named 3-phenyl-3-shogaol (3-Ph-3-SG), 
has also been reported to provide cytoprotection by 
inducing the ARE-driven genes NQO1 and HO-1 and 
abrogate cancer cell invasion by suppressing NF-κB sig-
naling (262). The latter causes inhibition of 
PMA-stimulated MDA-MB-231 breast cancer cell inva-
sion via downregulating MMP-9 expression (104). 

Besides this, the blocking of Akt and downstream targets 
(including the mTOR, forkhead transcription factors 
(FKHR) and GSK-3β) by 6-shogaol has been reported 
to inhibit the survival of non-small cell lung cancer 
(NSCLC) cells (105). Here, 6-shogaol induces apoptosis 
by causing cell cycle arrest in G1 or G2/M phase. Its 
suppression of the Akt kinase activity results in reduced 
STAT3 activity and decreased expression of cyclin D1/3, 
and Akt signaling (263). The inhibition of STAT3 activity 
and NF-κB signaling by 6-shogaol has an effect on pros-
tate cancer cells too, both in-vivo and in-vitro. 6-Shogaol 
causes a decrease in NF-κB target genes and protein 
levels, including cyclin D1, survivin, and cMyc, and 
modulates the mRNA levels of chemokines, cytokines, 
cell cycle, and apoptosis regulatory genes, such as IL-7, 
chemokine (C-C motif) ligand 5 (CCL5), Bax, Bcl2, p21, 
and p27 (106). In human pancreatic tumors, 6-shogaol 
blocks the growth of tumor cells and acts as adjuvant 
to potentiate gemcitabine via suppression of TLR4/
NF-κB-mediated inflammatory pathways linked to tum-
origenesis (107). 6-shogaol has an effect on pathways 
which is regulated for the prevention of carcinogenesis. 
Thus, the over expression of MAPKs (ERK1, JNK1 & 
p38) on UVB-induced HaCaT cells is minimized by 
6-shogaol, thereby protects against UVB-induced oxida-
tive skin damage (264). This compound also causes 
attenuation of several pro-inflammatory mediators in 
response to UVB, such as inducible nitric oxide synthase 
(iNOS), cyclooxygenase-2 (COX-2), MMP, cell adhesion 
molecules, chemokines and cytokines (258). As an 
anti-inflammatory agent, 6-shogaol has been shown to 
increase HO-1 levels by attenuating COX-2, iNOS, 
NF-κB and MAPK signaling. It also helps in reducing 
edema by inhibiting leukocyte infiltration into inflamed 
tissue (265). Interestingly, one study has indicated that 
a novel potent Nrf2 activator molecule called (1E,4E)-
1-(4-hydroxy-3-methoxyphenyl)-7-methylocta-
1,4,6-trien-3-one (SA), synthesized from 6-shogaol acted 
as a Michael acceptor to cause dissociation of Nrf2 from 
Keap1, inhibit Nrf2 ubiquitination and activate the Nrf2 
response (266). Finally, 6-shogaol exerts activity against 
human endometrial cancer via mediating ROS genera-
tion both in-vitro and in-vivo (108). It is also able to 
inhibit metastasis in endometrial carcinoma by triggering 
PI3K/Akt signaling both in-vitro and in-vivo (109). Other 
in-vivo studies have established the activity of 6-shogaol 
in prostate and lung cancer (106,110).

Chlorogenic Acid
The polyphenol chlorogenic acid (6), also known as 
3-caffeoylquinic acid (3-CQA), is mainly found in 
coffee (Coffea canephora, Coffea arabica) and mate 
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(Ilex paraguariensis) plants as well as in some fruits 
and vegetables (65). It exerts antioxidant, 
anti-inflammatory (267) and anti-carcinogenic activ-
ity (119).

Several chlorogenic acid derivatives are found in 
plants. These include 3-caffeoylquinic acid (3-CQA), 
4-caffeoylquinic acid (4-CQA), 5-caffeoylquinic acid 
(5-CQA), 3,4-dicaffeoylquinic acid (3,4-diCQA), 
3,5-dicaffeoylquinic acid (3,5-diCQA), and 
4,5-dicaffeoylquinic acid (4,5-diCQA) which interact 
with Keap1-Nrf2 complex to activate Nrf2 signaling 
(268). This activation leads to an increased nuclear 
translocation of Nrf2 followed by enhanced expression 
of ARE-dependent genes coding for the phase-II 
enzymes GST, γ − GCL, NQO1, and HO-1 in colon 
carcinoma HT29 cells (111). Pretreatment with chlo-
rogenic acid has been shown to protect from 
CCl4-induced liver injury via activation of the Nrf2 
pathway and suppression of NLRP3 inflammation 
(269). The activation of Nrf2/ARE also interacts with 
the phosphorylation of IĸB and suppresses the acti-
vation of NF-ĸB (270). In LPS-induced inflammation, 
chlorogenic acid alleviates the symptoms and inhibits 
the LPS-induced oxidative stress through modulation 
of the NF-κB/MAPK pathway and nuclear transloca-
tion of Nrf2, respectively (271). In breast cancer, chlo-
rogenic acid enhances antitumor immunity, exerts 
antitumor and anti-metastatic effects by impairing the 
NF-κB/EMT (120) and β-catenin of wingless-related 
integration site (Wnt) signaling pathways (272). 
Chlorogenic acid is also reported to kill MDA-MB-231 
and MCF-7 cells by binding and stimulating the trans-
location of PKC, an important molecule for malignant 
tumor (112). Chlorogenic acid protects against cellular 
oxidative damage and renal cell carcinoma by acti-
vating Nrf2/ARE and modulating the PI3K/Akt path-
way (113). It has been shown to exert an inhibitory 
effect on the PI3K/Akt/mTOR pathway in A498 kid-
ney cancer cells (114). Chlorogenic acid also induces 
p38 MAPK and JNK gene expression, affecting 
apoptosis-related genes that are involved in oxidative 
stress in lung cancer cells (115). It also has the ability 
to induce ROS generation and exert cytoprotective 
effects on human colon cancer cells (116). The gen-
eration of ROS promotes anti-tumorigenic signaling 
and triggers oxidative stress–induced cancer cell death 
showing the dual characteristics of ROS (273). 
Chlorogenic acid also acts as a chemosensitizer of 
5-fluorouracil (5-FU) chemotherapy, displaying a syn-
ergistic effect in combination with 5-FU, and inacti-
vates ERK through the overproduction of ROS in 
HepG2 and Hep3B hepatocellular carcinoma cells 
(117). It has in-vitro activity against the proliferation 

of  A549 human cancer  cel ls  and the 
12-O-tetradecanoylphorbol-13-acetate (TPA)-induced 
neoplastic transformation of JB6 P + cells (274). Both 
in-vitro and in-vivo studies have reported that chlo-
rogenic acid is active against lung cancer via disrup-
tion of the binding of annexin A2 to the p50 subunit 
of NF-κB (118). Chlorogenic acid also has in-vitro 
and in-vivo anti-angiogenic activity via inhibition of 
HIF-1α/Akt signaling (275). It has been demonstrated 
to suppress the proliferation of HepG2 hepatocellular 
carcinoma cells by inactivating ERK1/2, MMP-2 and 
-9 expression in a xenograft model (119). Studies have 
also reported the effect of chlorogenic acid in-vitro 
and in-vivo against breast cancer via inhibition of 
NF-κB, VEGF, EGF, IL-10, TGF-β, and CD34 
(120,121).

Ferulic Acid
Ferulic acid (7) a caffeic acid derivative found abun-
dantly in vegetables (aubergines, tomatoes, artichokes), 
fruits, grains, and some beverages. This compound 
displays a range of biological effects in diseases that 
are linked with cancer, Alzheimer’s disease, diabetes 
mellitus, skin and cardiovascular disorders (66).

Ferulic acid modulates the Keap1-Nrf2 pathway, 
causing dissociation of the Keap1/Nrf2 complex, 
increases Nrf2 transcription (276) and therein 
enhances expression of Nrf2-mediated phase-II 
enzymes, including NQO1, GSTA2 and SOD (277). 
It has been found to reduce serum TNF-α and IL-1β, 
hepatic NF-κB, p65, Bax, and caspase-3, and increase 
Bcl-2, Nrf2, NQO1, HO-1, and PPARγ, thereby atten-
uate oxidative stress, inflammation, and cell death 
(278). It causes activation of Nrf2 and enhances ARE 
promoter activity via phosphorylating ERK1/2 in 
PC-12 cells (279). The activation is caused by induc-
tion of Nrf2 nuclear translocation and transcriptional 
activity which significantly upregulates the HO-1 
mRNA and protein expression controlled by the ERK 
signaling pathway (280). The activation of Nrf2/HO-1 
increases antioxidant defenses via activating 
ARE-mediated genes leading to ROS scavenging and 
protection against γ-radiation-induced oxidative stress 
(281). NF-κB signaling is responsible for the devel-
opment and progression of several human cancers 
(282). Blocking this pathway and activating antioxi-
dative enzymes via Nrf2/ARE signaling abrogates the 
initiation of carcinogenesis. Ferulic acid can inhibit 
IL-6 and NF-κB promoter activity upon reduction of 
the nuclear translocation of Nrf2 and NF-κB through 
reduced expression of phosphorylated IKK (283). In 
cervical cancer cells, ferulic acid induces MMP-9 
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mRNA expression and G0/G1 phase blocking by 
increasing p53 and p21 along with decreasing auto-
phagy related proteins (122). On the other hand, in 
HCT 15 colorectal cancer cells, it downregulates the 
human epidermal growth factor (EGF) receptor that 
is a vital for inducing colorectal cancer (123). It pro-
tects PC-3 prostate cancer cells by inducing apoptosis 
and cell cycle arrest (124). It exhibits antitumor activ-
ity against breast tumor cells both in-vitro and in-vivo 
through suppression of EMT (125). Ferulic acid, when 
administered together with poly (ADP-ribose) poly-
merase (PARP) inhibitors, increases breast tumor cells 
sensitivity to PARP inhibitors (284), exerting their 
protective effects through the regulation of various 
signaling pathways, including MAPKs, HIF-1α, Nrf2 
and NF-κB (285). It has also been reported to reduce 
the LPS-induced overexpression of pro-inflammatory 
enzymes, such as iNOS and the subsequent excessive 
production of NO and cyclic guanosine monophos-
phate (cGMP) in intestinal Caco-2 cell monolayers. 
Two ferulic acid derivatives, iso-ferulic acid and dihy-
droferulic acid, and their glucuronidated and sulfated 
metabolites can decrease the nuclear translocation of 
NF-κB by promoting Nrf2 expression and controlling 
the activation of MAPK, p38, ERK and Akt (286). In 
LPS-activated RAW 264.7 mouse macrophages, ferulic 
acid inhibits the expression of inflammatory media-
tors, such as IL-6, TNF-α and iNOS and activates the 
expression of antioxidant metallothioneins (MT-1, 
MT-2) (283). A recent study used in-vivo and in-vitro 
models to assess the effect of ferulic acid lipid nano-
capsules in colorectal cancer. These showed potential 
activity via suppressing the expression of cyclin D1, 
insulin-like growth factor II (IGF II), and VEGF, as 
well as via auto-regulating the apoptotic/anti-apoptotic 
gene BAX/Bcl-2 (126). Ferulic acid also exhibits 
anti-angiogenic and antitumor potential against mel-
anoma, both in-vivo and in-vitro, via blocking 
PI3K-Akt signaling (127).

Carnosic Acid
Carnosic acid (8) is a major polyphenol in rosemary 
(Rosmarinus officinalis) with various biological properties, 
such as antioxidant, anti-inflammatory, neuroprotective 
and anticarcinogenic activity (67). Carnosic acid contains 
a catechol group that converts into electrophilic quinones 
upon oxidation, and this electrophilic nature helps in 
interacting with the cysteine residues of Keap1, activating 
the Keap1/Nrf2/ARE pathway and the synthesis of anti-
oxidant enzymes (287).

Along with its effect on the Keap1/Nrf2/ARE path-
way, the cytoprotective effect of carnosic acid also 

involves inhibition of the PI3K/Akt and NF-κB path-
ways (288,289). NF-κB activation is a key factor 
involved in the release of pro-inflammatory cytokines 
and inflammation-associated cancer (290). Both PI3K/
Akt/mTOR and NF-κB pathways are important in 
chemoresistance and survival of cancer cells and are 
considered potential targets for cancer treatment 
(291,292). Carnosic acid has been reported to atten-
uate pro-inflammatory cytokine mRNA and protein 
levels in the colon of mice, as well as upregulate GSH 
and SOD activity and downregulate iNOS and MDA 
levels (293). Carnosic acid has been found to down-
regulate the expression of COX-2 at both the mRNA 
and protein levels in Caco-2 human colorectal cancer 
cells (128). This COX-2 inhibition is interrelated with 
NF-κB inactivation (294). One study revealed that 
carnosic acid, encapsulated into albumin nanoparti-
cles, is able to mediate apoptosis to in MCF-7 breast 
and Caco-2 colorectal cancer cells (129). This effect 
is induced by upregulation of the expression of GCLC, 
and COX-2, and downregulation of Bcl-2. The mod-
ulation of NF-κB by carnosic acid in hepatocarcinoma 
is mediated by Akt signaling. This was confirmed 
in-vitro and in-vivo (130). By modulation of the Akt/
mTOR signaling pathway, carnosic acid also prevents 
proliferation and survival of human gastric cancer 
cells (131). This inactivation of the Akt/mTOR path-
way contributes to the induction of autophagic cell 
death in hepatoma cells (295). Carnosic acid enhances 
the apoptosis of human colorectal carcinoma cells via 
generation of ROS, induction of p53, activation of 
caspases and modulation of Janus kinase 2 (JAK2)-
STAT3/Src-STAT3 signaling pathway (132). ROS gen-
eration also promotes anti-tumorigenic signaling and 
stimulates oxidative stress-induced cancer cell death 
(273). In human cervical cancer cells, carnosic acid 
induces ROS production, which phosphorylates the 
JNK, activates endoplasmic reticulum stress, and 
induces apoptosis. In addition, a notable decrease in 
tumor formation was observed in cancer cells xeno-
grafted mice after administration of carnosic acid for 
five weeks (133). The induction of apoptosis by car-
nosic acid also enhances the effect of tamoxifen in 
breast cancer cells via caspase-3/TNF-related 
apoptosis-inducing ligand (TRAIL) activation. The 
combination of carnosic acid and tamoxifen also led 
to breast tumor suppression in a mouse xenograft 
model (134). Carnosic acid also acts in synergy with 
curcumin to activate the expression of antioxidants 
(AKR1C2, HO-1) and apoptotic genes (GDF15, 
PHLDA1, DDIT3) as well as inhibit the cell cycle 
genes (CDKN2C) (296). Carnosic acid, in combination 
with fisetin, induces apoptosis in lung cancer cells via 
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activation of caspase-3 (297). Carnosic acid loaded 
into transferrin-conjugated liposomes have been 
reported to mediate apoptosis in liver cancer, both 
in-vivo and in-vitro, via upregulating the expression 
of cleaved PARP, caspase-3 and -9, and downregulat-
ing the expression of Bcl-2 (135).

Carnosol
Carnosol (9) is a phenolic diterpene which is present 
in rosemary (Rosmarinus officinalis) (68). This mole-
cule has been found to increase the nuclear translo-
cation and accumulation of Nrf2 as well as ARE 
activity resulting in the induction of phase-II enzymes 
and the increased expression of the GSH synthesis 
enzyme subunit GCLC/GCLM (298). Carnosol also 
enhances HO-1 activity in both mRNA and protein 
levels by causing nuclear translocation of Nrf2, 
increasing its binding to ARE and inducing 
Nrf2-dependent activation of the HO-1 promoter 
region (299). Being a strong Nrf2 activator, it also 
induces NQO1 and can modulate other intra and 
extracellular signaling in addition to activation of 
Nrf2/HO-1 signaling (300). Carnosol activates the 
ERK, p38 and JNK pathways with PI3K driven sur-
vival pathway in PC-12 cells (301). One study revealed 
that a carnosol-containing rosemary extract was able 
to suppress the growth of HCT116 colon cancer cells 
by upregulating Nrf2 through the protein kinase 
RNA-like endoplasmic reticulum kinase (PERK)/Nrf2/
Sestrin-2 mediated pathway (136). Carnosol can also 
inhibit EGF-induced epithelial to mesenchymal tran-
sition which enables cancer cells to become invasive 
and undergo metastasis via inhibiting the phosphor-
ylation of ERK (302). Carnosol also protects prostate 
cancer PC3 cells via modulation of the PI3K/Akt/
mTOR and AMPK signaling pathways (137). It has 
antitumorigenic activity against human colon cancer 
cells, reducing STAT3 signaling and ROS generation 
(303). The latter promotes anti-tumorigenic signaling, 
oxidative stress-induced apoptosis (273), and blocks 
the growth, invasion and migration of MDA-MB-231, 
Hs578T, MCF-7, and T-47D breast cancer cells via 
targeting STAT3 signaling (138). Carnosol has demon-
strated a cytoprotective effect against H2O2 in HepG2 
cells (298). It has also been demonstrated that the 
activation of Nrf2 in HepG2 cells is caused by 
increased expression of sestrin2 and MRP2 (139). In 
stress situations, the sestrin (1–3) family can interact 
directly with AMPK to maintain genomic integrity 
and suppress tumorigenesis (304). Carnosol can 
enhance the effect of curcumin on cancer cells via 
reducing the phosphorylation of ERK1/2, Akt and 

STAT3 (302). Although one recent review included 
in-vitro and in-vivo studies on the effects of carnosol 
against cancer (305), this did not include any in-vivo 
work on its role in the Keap1/Nrf2/ARE and inter-
connected pathways.

Ellagic Acid
Ellagic acid (10) is a polyphenol abundant in fruits 
and nuts, particularly cranberries, raspberries, walnuts 
and pecans (69).

Ellagic acid increases Nrf2 translocation and HO-1 
activity in cells by downregulation of mRNA and 
Keap1 protein levels (306). This Nrf2/HO-1 activation 
by ellagic acid modulates Akt and ERK phosphoryla-
tion, thereby preventing oxidative stress in HepG2 
cells (307). The activation of Nrf2 also suppresses 
ROS and MDA levels while enhancing GSH and 
Mn-SOD levels (308). In UVA stimulated HaCaT kera-
tinocytes, ellagic acid induces autophagy by enhancing 
the expression of γ-GCLC, HO-1, and NQO1 proteins 
via Nrf2 activation and other signaling pathways, such 
as ERK, JNK, and PI3K/Akt/mTOR (309). Its antitu-
mor effect against endometrial cancer, via inhibition 
of PI3K and MMP9 expression, was reported in-vitro 
and in-vivo (140). In MDA-MB-231 breast cancer 
cells, it acts as an anti-angiogenetic agent, limiting 
the development and migration of cells via inhibition 
of the PI3K/Akt and MAPK pathway of VEGFR 2. 
In MDA-MB-231 xenografted animal models, ellagic 
acid reduced tumor growth via suppressing P-VEGFR2 
expression (141). Ellagic acid decreases the prolifer-
ation and development of prostate cancer PC3 cells 
via downregulating the phosphorylated STAT3, ERK 
and Akt signaling proteins (142). In Mia PACA-2 and 
PANC-1 human pancreatic carcinoma cells, ellagic 
acid has an antiproliferative effect, causing apoptosis 
via inhibition of the NF-κB pathway (143,310). In 
PANC-1 tumor-bearing mice, it was found to reduce 
tumor growth via downregulation of COX-2 and 
NF-κB expression (143). Ellagic acid exerts a hepato-
protective effect against methotrexate-induced toxicity 
in-vivo by upregulating Nrf2 and HO-1 expression 
and inhibiting the NF-κB signaling pathway and the 
overproduction and expression of inflammatory fac-
tors (311). In T24 human bladder cancer cells, it 
induces apoptosis via increasing G0/G1 phase cell cycle 
arrest and upregulating p53 and p21 expression (144). 
In human bladder cancer xenografted animal models, 
ellagic acid demonstrates notable decrease in tumor 
growth rate, infiltrative behavior and tumor-associated 
angiogenesis, with upregulation and downregulation 
of VEGF-A and VEGFR-2 expression, respectively 
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(312). In lung cancer, ellagic acid abolishes mitochon-
drial respiration and tumor growth both in-vivo and 
in-vitro via upregulating AMPK and downregulating 
HIF-1α expression (145).

Apigenin
Apigenin (11) is a flavonoid that constitutes with the 
aglycone moiety of many naturally-occurring glyco-
sides, including apigetrin, vitexin, and isovitexin. It is 
widely distributed in many plants and vegetables, such 
as parsley, celeriac, celery, and in chamomile tea (70). 
It possesses different biological effects including 
anti-inflammatory, antioxidative, antitumor proper-
ties (313).

It protects against oxidative stress through the 
upregulation of the antioxidant HO-1 enzyme medi-
ated via Nrf2 signaling (146,314). The α, β unsaturated 
ketone moiety of apigenin interacts with the cysteine 
residues in Keap1, leading to activation of the 
Keap1-Nrf2-ARE system (134). Apigenin induces ARE 
activity, enhances Nrf2 mRNA and protein levels and 
the expression of HO-1 in HepG2-C8 cells. This ARE 
activation is mediated through different signaling 
pathways including MAPK, p38, ERK 1/2 and JNK 
(315). In human melanocytes, it exerts antioxidative 
activity via increasing levels of SOD, CAT and GPx 
enzymes. In another study using melanocytes under 
hydrogen peroxide-induced oxidative stress, apigenin 
enhances cell viability, SOD, CAT, and GPx activities 
and inhibits MDA levels (316). In hepatocellular car-
cinoma cells, apigenin inhibits cell proliferation and 
autophagy via suppressing the PI3K/Akt/mTOR path-
way (70). Skin carcinogenesis is also prevented by 
apigenin via restoration of the activation of Nrf2 and 
enhancing its downstream gene NQO1 as well as 
decreasing epigenetic proteins, such as DNA methyl-
transferase (DNMT) and histone deacetylases (HDAC) 
expression (146). It can also protect hepatocytes from 
tBHP-induced stress by upregulating HO-1, GCLC, 
and GCLM gene transcription via the ERK2/Nrf2/
ARE signaling pathway (314). Overexpression of Nrf2 
can cause chemoresistance and in this regard, apigenin 
shows Nrf2 inhibiting activity which is enhanced by 
hyaluronic acid-based nanostructured lipid carriers 
(NLCs). HAAPG-NLCs significantly decrease Nrf2, 
multidrug resistance-associated protein 2 (MRP2), 
HO-1 and Bcl-2 with an increase in Bid mRNA levels, 
thereby improving the efficacy of docetaxel in lung 
cancer (147). Apigenin is also effective in 
doxorubicin-resistant hepatocellular carcinoma cells 
(317). Several pharmaceutical preparations containing 
apigenin in combination with other natural products 

have been reported as useful for preventing or treating 
cancers (318,319). It can also upregulate the mRNA 
and protein expression of Nrf2 and its downstream 
genes via activation of the PI3K/Nrf2/ARE pathway. 
It exerts its anti-inflammatory effect by suppressing 
LPS-induced NO, iNOS, and cPLA2 (315). Two dif-
ferent studies conducted on the activity of apigenin 
against prostate cancer report that it exerts this effect 
both in-vivo and in-vitro via inhibiting Akt signaling 
and inducing apoptosis (148,149). Apigenin also shows 
anti-colon cancer effects. This has been demonstrated 
in-vitro and on xenografted mice model via inhibition 
of the m-TOR/PI3K/Akt pathway (150). Furthermore, 
apigenin has anti-leukemic activity. This has been 
observed in-vitro and in U937 xenografts via inacti-
vation of Akt and activation of JNK expression (151). 
In cervical cancer, xenograft models suggest evidence 
for the antitumor activity of apigenin which is able 
to reverse the abnormal estrogen receptor signal in 
tumor tissue. The underlying molecular mechanism 
of this effect is via suppression of the PI3K/Akt/mTOR 
signaling (152).

Catechin
The polyphenol catechin (12) is found in green, white, 
and black tea (Camellia sinensis) (71,72). Green tea 
contains the highest amount of catechin making up 
to 25% of its leaf composition (320).

Catechin interacts with the Nrf2 binding site of 
Keap1 thus suppressing the Keap1-Nrf2 interaction. 
It increases the ERK1/2 expression, promotes the 
phosphorylation of ERK1/2, enhances Nrf2 nuclear 
translocation and increases the expression of 
Nrf2-dependent genes including GCLC/GCLM, HO-1 
and NQO1 (321). In addition, catechin upregulates 
Nrf2 expression by inactivating the NF-κB signaling 
pathway (322). This inactivation blocks anti-apoptotic 
gene Bcl-XL expression and increases apoptosis which 
contributes to the anticancer activity of catechin (290). 
Catechin has also been demonstrated to synergize the 
effects of the anticancer drug 5-FU in-vitro (323). The 
activation of the Keap1/Nrf2/ARE pathway by catechin 
leads to an antioxidative effect via the upregulation 
of Gpx, glutathione reductase (GR), and an increase 
in total sulfhydryl groups associated with high Nrf2 
and HO-1 expression (324). Interestingly, one study 
showed that catechin-derived metabolites (produced 
by the intestinal microbiota) when combined with 
curcumin could abrogate VEGF expression and sup-
press miR-210 and miR-21 oncogenic microRNAs, 
protecting against cervical cancer (153). In addition, 
catechin and curcumin exert synergistic activity 
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against human colon adenocarcinoma HCT 15, HCT 
116, and human larynx carcinoma HepG-2 cell lines 
(154). To the best of our knowledge, no In Vivo stud-
ies have been carried out to investigate the cancer 
protective role of catechin via modulation of Keap1/
Nrf2/ARE and interconnected pathways.

Epicatechin
Among four diastereoisomers of catechin, (-)-epicat-
echin (13) is found in green tea, grapes and cocoa 
(73,74). It has antioxidant and anti-inflammatory 
activity and is effective against various diseases such 
as cancer, diabetes, cardiovascular disease, stroke and 
neurodegenerative disorders (325).

Studies demonstrated that epicatechin increases the 
nuclear accumulation of Nrf2 by interacting with 
Keap1, therein upregulating the expression of phase 
II enzymes, and providing protection against oxidative 
injury (326). Epicatechin increases GSH levels via 
activating the Nrf2 pathway and upregulating 
ARE-mediated HO-1 and NQO1 gene expressions 
(327). Some studies have demonstrated the anticancer 
effect of epicatechin. For instance, it induces apoptosis 
via generating ROS and modulating pro-apoptotic 
proteins resulting in decreased viability in MCF-7 and 
MDA-MB-231 breast cancer cells (155). Epicatechin 
can synergize the anticancer activity of panaxadiol on 
human colorectal cancer cells (156). The synergistic 
effect has also been observed on human gastric car-
cinoma cells where epicatechin, along with 
(-)-epigallocatechin-3-gallate, exerts cytoprotective 
activity (157). The exact mechanism behind this activ-
ity is not clear, but this might be exerted through 
modulation of various cell cycle regulatory pathways, 
including activation of the Keap1/Nrf2/ARE and mod-
ulation of the PI3K/Akt and ERK pathways (328). In 
addition, epicatechin has been shown suppress the 
PI3K/Akt/mTOR signaling pathway to inhibit the 
prostate cancer cell migration (158). It can also upreg-
ulate ERK1/2 and suppress MAPKs (JNK1/2 and p38) 
(326), thus impacting on cell proliferation, differen-
tiation, migration, senescence, apoptosis, and inflam-
mation (315). All of the pathways aforementioned are 
linked with cellular transformation, tumorigenesis, 
cancer promotion and progression (329). Epicatechin 
has been demonstrated to reduce liver inflammatory 
injury by inhibiting the NF-κB activation (73). 
Epicatechin can also activate this NF-κB pathway in 
HepG2 cells and this activation is related to ERK, 
PI3K/Akt and Nrf2 signaling as well (328). One study 
reported that an epicatechin-rich extract had in-vitro 
and in-vivo anti-leukemic activity as it arrested the 

cell-cycle at the G0/G1 phase, activated caspase-3 and 
-8, increased levels of the anti-inflammatory cytokines 
IL-10 and IL-4, and suppressed of NF-κB activa-
tion (159).

EGCG
(-)-Epigallocatechin-3-gallate or EGCG (14) is the 
predominant polyphenol in green tea. It has antioxi-
dant potential and has been widely studied for its 
anticancer potential in-vitro and in-vivo (75).

A study showed that EGCG exerts significant cyto-
protection against H2O2 by upregulating HO-1, Nrf2 
levels in nuclear extracts and ARE-luciferase activity 
via modulating the Akt and ERK1/2 pathways (330). 
The Akt and MAPK pathways contribute to 
anti-apoptotic and growth stimulatory signaling (331). 
EGCG also regulates ARE-driven antioxidant gene 
expression through induction of HO-1 and Nrf2 
nuclear translocation mostly mediated by modulation 
of Akt, p38 and MAPK signaling in B lymphoblasts 
(332). EGCG inhibits the MAPK and PI3K/Akt sig-
naling pathways and modulates the expression of tar-
get genes which are associated with induction of 
apoptosis and cell cycle arrest in cancer cells (333). 
Moreover, it upregulates the expression of Nrf2 and 
related antioxidant enzymes (GST, NQO1) as well as 
reduces DNA binding of NF-κB that inhibits the 
expression of inflammatory markers, such as mono-
cyte chemotactic protein-1 (MCP-1) and vascular cell 
adhesion protein-1 (VCAM-1) producing PCB 
126-induced inflammatory responses in endothelial 
cells (334). Another report suggests the same notion 
regarding the anti-oxidative role of EGCG where they 
show that prevention of the activation of carcinogens 
by EGCG is mainly induced by the phase II detoxi-
fying enzymes (335) and thus contributes to cancer 
chemoprevention (75). It also stimulates caspase-3 
activity and induces apoptosis (336). The activation 
of Nrf2 by EGCG increases the sensitivity of colorectal 
cancer cells toward radiation therapy, causing auto-
phagy and inhibiting cell proliferation (160). EGCG 
can increase the activity of chemotherapeutic agents 
by activating the AMPK pathway and inhibiting 
COX-2 expression (337). The activation of Nrf2 by 
EGCG suppresses ROS production and has been 
reported to exert a cytoprotective effect on pancreatic 
cells (338). EGCG also reduces ERK activation and 
activates p38 and JNK, and thus reduces the growth, 
invasion and angiogenesis in pancreatic cancer cells 
(339). EGCG is able to suppress multi drug resistance 
(MDR). It has been reported to reduce Nrf2-mediated 
etoposide resistance in lung adenocarcinoma cells 
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(161). It reverses MDR by downregulating the Akt/
mTOR pathway and sensitizing MDR cancer cells to 
chemotherapeutic agents (340). The downregulation 
of PI3K/Akt/mTOR/HIF-1α by EGCG can also inhibit 
endometrial tumor angiogenesis (162). EGCG has also 
been demonstrated to stop tumor growth, prolifera-
tion, migration, and angiogenesis in breast cancer cells 
via modulating the aforementioned pathways (341). 
EGCG induces apoptosis in estrogen receptor negative 
MDA-MB-468 breast adenocarcinoma cells (163). The 
downregulating effect of EGCG on the PI3K/ERK/
NF-κB and PI3K/Akt pathways suppresses cancer cell 
invasion and induces apoptosis, respectively, while 
modulation of Nrf2 by EGCG causes antioxidant 
activity and induces apoptosis in breast cancer cells 
(342). In-vivo studies have revealed that EGCG is 
most active against breast, colorectal, esophageal, gas-
tric, lung, neural, oral and prostate tumors. These 
effects are induced via upregulation of Nrf2-UDP 
glucuronosyltransferase one family, polypeptide A 
(UGT1A) and VEGF/VEGFR, and downregulation of 
p-ERK1/2, COX-2, IL-6, and HIF-1α expression (164).

Fisetin
Fisetin (15) is a flavonoid found in various vegetables 
and fruits, including strawberry, persimmon, grape, 
onion, apple and cucumber (76). Fisetin has antican-
cer, antioxidant, and anti-inflammatory activity (343).

The mechanism behind its antioxidative activity 
can be explained by its effect on Nrf2 activity. By 
dissociating Nrf2 from Keap1, fisetin enhances the 
accumulation of Nrf2 in the nucleus and increases 
the upregulation of ARE-regulated downstream genes 
coding for HO-1, GCLC, GCLM and NQO1 (344). 
Fisetin has been demonstrated to increase GSH and 
SOD and reduce inflammatory cytokines release 
in-vivo via activating Nrf2/HO-1 and inhibiting the 
TLR4/NF-κB pathway, respectively (345). Fisetin also 
regulates antioxidative mechanisms, such as SIRT1/
Nrf2 signaling, and suppresses the activated p-JNK/
NF-kB pathway to protect against oxidative stress 
(346). The Nrf2 mediated upregulation of HO-1 pro-
vides cytoprotection from H2O2 induced cell injury 
in human umbilical vein endothelial cells (HUVECs) 
(347). This Nrf2/HO-1 activation is also responsible 
for induction of apoptosis and attenuation of liver 
damage (120). The cytoprotective effect of fisetin is 
mediated by phosphorylation of ERK, JNK and p38/
MAPK pathways (348). These pathways play a central 
role in cell proliferation, differentiation, transforma-
tion, migration and apoptosis (349). The cytoprotec-
tion through ERK modulation helps in protecting 

from cholangiocarcinoma (165). Fisetin induces apop-
tosis in oral squamous cell carcinoma by inhibition 
of autophagy (166). This is also seen in MCF-7 breast 
cancer cells where fisetin induces apoptosis by inhib-
iting autophagy (350). Fisetin inhibits autophagy by 
activating PI3K/Akt/mTOR and modulating the AMPK 
signaling pathway (351). Another report suggests that 
it ameliorates mammary carcinoma both in-vitro and 
in-vivo via inhibiting PI3K/Akt/mTOR (167). It can 
suppress the phosphorylation of MAPK/ERK/JNK and 
mRNA levels of pro-inflammatory factors (352). It 
can eliminate damaged mitochondria in a 
p62-dependent manner, inhibiting the TLR4/
MD2-mediated activation of the NLRP3 inflam-
masome (353). Fisetin also inhibits inflammation and 
has a cytoprotective role in nephropathy by blocking 
of iRhom2/NF-κB signaling (354). In hypoxia/
re-oxygenation-treated RAW264.7 cells, fisetin exerts 
anti-inflammatory activity through modulation of the 
GSK-3β/AMPK signaling (355). In LPS-stimulated 
human pulmonary artery endothelial cells, fisetin sup-
presses iNOS and TNF-α via downregulating p-STAT-1 
and NF-κB pathway (356). Through inhibiting this 
pathway and inhibiting the phosphorylation of ERK1/2 
proteins, fisetin exerts anti-inflammatory activity 
(357). Along with the inhibitory activity toward 
NF-κB, fisetin upregulates p53 to cause the induction 
of apoptosis in bladder cancer cells (168). In colon 
cancer cells, fisetin also induces apoptosis upon mod-
ulation of the COX-2 and Wnt/EGFR/NF-κB signaling 
pathways where it inhibits COX-2 and EGF produc-
tion (169). Fisetin inhibits proliferation and migration 
of colorectal cancer cells and induces apoptosis, par-
tially via interfering with signaling pathways related 
to the cell cycle regulators p21, p27, cyclin D1 and 
NF-κB p65. Suppression of tumor growth is also 
observed in mice inoculated with human HCT 116 
colorectal cancer cells (170). In prostate cancer cells, 
fisetin inhibits the PI3K/Akt pathway and induces 
apoptosis (171). In-vitro and in-vivo evidence indicate 
that fisetin is able to suppress angiogenesis by medi-
ating cell cycle arrest at G1 and G2/M phases, reducing 
cyclin D1 and survivin, enhancing the levels of p53, 
cleaved caspases-3 and -7 and PARP, and the ratio of 
Bax to Bcl-2 (358). Fisetin downregulates eNOS, 
VEGF, iNOS, MMP-2 and -9 expression in A549 lung 
and DU145 prostate cancer cells. The effect of fisetin 
in pancreatic cancer via suppression of the PI3K/Akt/
mTOR pathway was confirmed in-vivo (172). Fisetin 
causes apoptosis in HeLa cells by ERK1/2-induced 
activation of caspase-8 and -3. This effect was also 
confirmed with decreased tumor growth in xeno-
grafted mice (173). A recent study suggests evidence 
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in favor of the anti-colorectal cancer effect of fisetin 
in-vivo and in-vitro via downregulation of cyclin D1 
and NF-κB and induction of apoptosis (359).

Genistein
Genistein (16) is a flavonoid found in soybean seeds 
and known for its estrogen-like biological activity (77). 
Genistein has demonstrated activity in various cancer 
cells, including leukemia, lymphoma, prostate, breast, 
lung and head and neck cancer cells (360).

Its anticancer effect, along with its antioxidative 
and anti-inflammatory activity can be attributed to 
its modulation of Nrf2 signaling. Genistein causes an 
increase in Keap1 S-nitrosylation with nuclear accu-
mulation and DNA binding of Nrf2, resulting in an 
elevated level of antioxidant gene HO-1 expression. 
Genistein has demonstrated its cytoprotective activity 
against oxidative stress-induced epithelial cells 
through the activation of Nrf2 pathway and conse-
quent upregulation of HO-1, SOD, CAT, GSH and 
NQO1 expressions (361). A study reported that the 
activation of HO-1 and GCLC mRNA and protein 
expression is mediated via activation of ERK1/2 and 
PKC/Nrf2 signaling (362). Genistein also activates 
Nrf2 via modulating PI3K activity, contributing to 
cytoprotective activity in cerebrovascular endothelial 
cells (363). The modulation of PI3K/Akt and Nrf2/
ARE activity by genistein contributes to the cancer 
chemopreventive activity of this molecule as these 
pathways regulate cell cycle progression, transforma-
tion, migration and apoptosis (364). Genistein helps 
prevent prostate cancer by inhibiting the nuclear 
translocation of NF-κB, its binding to DNA, as well 
as blocking NF-κB activation by DNA-damaging 
agents (174). Genistein, in combination with gemcit-
abine, displays anti-pancreatic cancer activity. This 
has been evidenced in-vitro and in-vivo via abolishing 
NF-κB and Akt expressions (175). Genistein shows 
anti-inflammatory activity via inhibiting the produc-
tion of pro-inflammatory mediators, including NOS2, 
COX-2 and MMPs that are produced following NF-κB 
activation (365). It can modulate the genes associated 
with cell cycle and apoptosis by inactivating NF-κB 
and Akt pathways that affect the cell cycle and apop-
tosis (360). By inducing apoptosis and inhibiting 
uncontrolled cell proliferation, genistein prevents the 
growth of MCF-7 breast cancer cells as well (176). 
It activates the phase-II UDP-glucuronosyltransferases 
(UGTs) via SIRT1 activation (366). Active SIRT1 has 
a biological effect on growth regulation and tumor-
igenesis and therefore, SIRT1 modulation provides 
anticancer activity (367,368). Genistein has 

anti-leukemic activity in-vitro and in-vivo, inducing 
ROS and Ca2+ generation (177). It mediates apoptosis 
by G2/M phase cell cycle arrest, enhances the expres-
sions of pro-apoptotic proteins, including Bax, 
PARP-cleavage, caspase-9, and -3, and reduces the 
expression of the anti-apoptotic protein Bcl-2. It sen-
sitizes bladder cancer cells to hydroxycamptothecin 
in-vitro and in-vivo via apoptosis and the suppression 
of NF-κB (178). Genistein has also been reported to 
enhance the activity of cisplatin on NSCLC in-vitro 
and in-vivo, via reduction of Akt and PI3K phos-
phorylation (179).

Isoorientin
Isoorientin (17) is a flavonoid found in different plant 
species used for edible purposes, like Phyllostachys 
pubescens, Sasamorpha borealis, Eremurus spectabilis, 
and Fagopyrum esculentum (buckwheat) (78,79). 
Isoorientin has anti-nociceptive, anticancer and 
anti-inflammatory activity (369).

It activates Nrf2 signaling and upregulates the 
expression of Nrf2-mediated antioxidative proteins 
(GCLC, GCLM, HO-1, NQO1 and Trx-1) and 
decreases the expression of Keap1 causing its disso-
ciation from Nrf2 (370). This activity helps to exert 
its antioxidative effect against cell injury. The antiox-
idative activity of isoorientin has been shown to ame-
liorate the cisplatin-induced side effects via activating 
the SIRT1/SIRT6/Nrf2 pathway. Apart from increasing 
the phase-II detoxifying enzymes, isoorientin also 
increases GSH levels in the liver and acts as a hepa-
toprotective agent (371). The activation of phase-II 
enzymes, specially NQO1 by isoorientin fights against 
oxidative damage in liver carcinoma and provides 
cytoprotective activity that is dependent on the PI3K/
Akt pathway (79). Isoorientin induces apoptosis in 
HepG2 cells by modulating the PI3K/Akt pathway as 
well upon inhibition of Akt phosphorylation (180). 
Apoptosis in HepG2 cells is also caused via modula-
tion of the MAPK/ERK pathway (372). It also exerts 
an inhibitory effect on p53 and the PI3K/Akt depen-
dent NF-κB pathway (78). Isoorientin inhibits the 
expression of inflammatory mediators, like COX-2, 
TNF-α, IL-6, 5-LO, and IL-1β via NF-κB inhibition 
(373). Furthermore, isoorientin increases the expres-
sion of p-GSK-3β, thereby causing inhibition of 
GSK-3β and suppression of inflammation (374). 
Isoorientin has also demonstrated antitumorigenic 
activity on pancreatic cancer cells by activating the 
AMPK pathway and decreasing the secretion of VEGF 
by AMPK (181). In UVB-induced skin carcinogenesis, 
isoorientin provides protection by its autophagic 
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action and suppression of JNK pathway activation 
(182). Isoorientin induces apoptosis in lung cancer 
cells via modulating the MAPK/STAT3/NF-κB signal-
ing pathways (183), which are all linked with cellular 
transformation, tumorigenesis, cancer promotion and 
progression (329). A recent study revealed that isoori-
entin is effective against oral squamous cell carcinoma 
in-vitro and in-vivo. The inhibition of EMT potential 
via suppression of JAK/STAT3 and Wnt/β-catenin sig-
naling is involved behind this effect (184).

Quercetin
Quercetin (18) is a flavonoid found in various fruits, 
vegetables, and in tea, red wine and medicinal herbs 
(80). This compound has numerous biological prop-
erties including an ability to protect different 
organs (375).

Quercetin increases Nrf2 mediated transcription 
and binding activity with ARE, stabilizes Nrf2 and 
enhances the mRNA and protein expression of Nrf2. 
It also reduces the level of Keap1 and enhances Nrf2 
translocation in the nucleus, causing the activation of 
Nrf2 regulated antioxidant genes and phase-II detox-
ifying enzymes (376). The activation of Nrf2 by quer-
cetin plays a vital role for various disease prevention. 
In liver carcinoma, quercetin provides protection from 
hepatotoxicity upon activation of Keap1-Nrf2 signal-
ing, causing the dissociation and translocation of Nrf2 
as well as induction of the JNK pathway (80). It mod-
ulates Nrf2 and induces p38-MAPK signaling and cell 
death in HepG2 cells by increasing glutathione related 
enzymes, such as GSH, glutamyl cysteine-synthetase 
(GCS), Gpx, and GR (377). Quercetin restores SOD 
and MDA levels via upregulating Nrf2 (378). It acti-
vates the phosphorylation of JNK, p38 and PI3K/Akt 
as well as enhances Nrf2 DNA binding activity (379). 
In LPS-induced oxidative stress, quercetin attenuates 
the LPS-mediated inhibition of JNK, ERK and p38 
phosphorylation in the MAPK/Nrf2 signaling pathway 
(380). It also suppresses NF-κB nuclear translocation 
and expression, causing the downregulation of COX-2 
and thus exerting anti-inflammatory activity via Nrf2 
activation (381). Quercetin protects from inflamma-
tory liver damage by reducing PI3K/Nrf2-mediated 
oxidative stress, activating mTOR in autophagy, inhib-
iting the expression of apoptotic factors and suppress-
ing the NF-κB/TLR/NLRP3 pathway (382). It 
modulates Nrf2/HO-1 and p38/STAT1/NF-κB signal-
ing pathway by upregulating Nrf2 and inducing HO-1 
activity, inhibiting p38 and STAT1 activation and 
inactivating NF-κB (383). This NF-κB inactivation not 
only provides quercetin with anti-inflammatory 

activity but also with a cancer protective role as 
NF-κB signaling affects cell survival and proliferation, 
and is linked with carcinogenesis and the response of 
cancer cells to therapy (290). It shows antigenotoxic 
effect and prevents DNA damage in human hepatoma 
cells by blocking the NF-κB pathway as well (185). 
This effect of attenuating DNA damage also protects 
colon cancer cells from 1,2-dimethylhydrazine-induced 
colon cancer (186). Along with vitamin C, quercetin 
exhibits cytotoxicity against MDA-MB 231 breast can-
cer cells via reducing the overexpression of Nrf2 and 
balancing ROS levels (187). This cytotoxic effect of 
quercetin and vitamin C has also been observed in 
DU145 and PC3 prostate cancer cells upon decrease 
in Nrf2 gene expression (188). It has been noted that 
in some cases it is important to decrease Nrf2 levels 
because overexpression of Nrf2 causes a marked 
increase in chemoresistance (384). In combination 
with kaempferol and pterostilbene, it exerts a syner-
gistic effect on ROS scavenging by activating Nrf2/
ARE signaling and increasing the expression of mRNA 
and protein Nrf2 levels (385). Quercetin also induces 
apoptosis by modulating the Nrf2 pathway and pro-
viding cytoprotection in malignant mesothelioma 
MSTO-211H and H2452 cells (189). Quercetin has 
anti-prostate cancer activity in-vitro and in-vivo. It 
significantly increases antioxidant enzymes (SOD, 
CAT, Gpx, GR, and GST), reduces the expression of 
the anti-apoptotic protein Bcl-2, and enhances the 
expression of caspase-8. It is able to suppress Akt and 
ERK levels in prostate cancer-induced rats (190). 
Studies on different animal models have reported that 
its cancer protective mechanism is mediated via down-
regulation of PI3K/Akt, Akt/mTOR and upregulation 
of JNK/ERK MAPK signaling (386). Another study 
showed that quercetin could, in addition to its apop-
totic effect, enhance the levels of SOD, GSH, and 
reduce the level of MDA in lung cancer cells (191).

Luteolin
Luteolin (19) is a flavonoid present in high concen-
trations in celery, green pepper, parsley, perilla leaf, 
chamomile tea and various other fruits, vegetables 
and medicinal  herbs (81).  Luteolin has 
anti-inflammatory, antioxidative, anti-allergic and anti-
cancer activity (387).

It exerts its biological effects by modulating various 
pathways, such as the Nrf2/ARE, PI3K/Akt and NF-κB 
signaling (387). Luteolin shows cytoprotective effect 
by increasing the binding of Nrf2 with ARE followed 
by an upregulation of its downstream HO-1 mRNA 
and protein expression via activating the ERK1/2 
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signaling (388). This cytoprotective effect of luteolin 
enables it to protect hepatocytes from tBHP-induced 
oxidative injury by upregulating GCLC and GCLM, 
intracellular GSH and HO-1 expression via increasing 
Nrf2 activity (314). Luteolin has shown synergistic 
activity with metformin on carbon tetrachloride-induced 
hepatotoxicity by activating Nrf2/ARE signaling and 
decreasing the release of inflammatory cytokines 
IL-1β, TNF-α, and IL-6 (389). Luteolin protects against 
pyroptosis-linked inflammation by suppressing ROS 
production via Nrf2 activation and inactivation of the 
NF-κB signaling that is associated with carcinogenesis 
via the production of inflammatory cytokines (390). 
Luteolin also shows activity against oxidative cell 
injury via the activation of Nrf2/ARE that causes the 
upregulation of Nrf2 downstream genes HO-1, NQO1, 
SOD, GPx, CAT and enhancement of the eNOS medi-
ated S-nitrosylation of Keap1 (391). Luteolin induces 
apoptosis and exerts its anticancer effect on colon 
cancer cells by upregulating Nrf2 via the suppression 
of DNA methylation, followed by initiation of the 
interaction between Nrf2 and p53 (192). Luteolin 
attenuates aflatoxin B1-induced apoptosis in mice by 
decreasing Bax, Cyt-c, caspase-3 and caspase-9 tran-
scription and upregulating Nrf2 and its downstream 
protein expressions (HO-1, NQO1, GCLC, SOD1) 
(392). Another study indicated that luteolin attenuates 
the proliferation and transformation of HCT116 and 
HT29 cells upon demethylation of the Nrf2 promoter 
region, thereby upregulating Nrf2 and its downstream 
antioxidative products (193). Luteolin has also been 
reported to induce apoptosis in HT29 cells through 
Nrf2 modulation (393). Apart from its anticancer 
potential, luteolin also prevents chemoresistance. It is 
known that overexpression of Nrf2 causes cancer cell 
promotion and growth that confers therapeutic resis-
tance toward anticancer drugs (394). Luteolin can 
inhibit Nrf2 when it overexpresses in-vivo and down-
regulate the Nrf2-regulated NQO1 gene expression 
(395). For instance, A549 human NSCLC cells show 
resistance toward anticancer drugs as these cells pos-
sess constitutively active Nrf2. Luteolin is able to sen-
sitize these cells toward therapeutic drugs by repressing 
Nrf2 activation (81). Luteolin inhibits the expression 
of Nrf2, HO-1 and Cripto-1 proteins which cause 
breast cancer stemness and thereby enhances chemo-
sensitivity (396). It also inhibits the chemoresistance 
in human colorectal cells toward oxaliplatin by inhib-
iting the overexpressed Nrf2 and downregulating 
NQO1, HO-1 and GSTα1/2 expressions (397). It pre-
vents chemoresistance in breast cancer cells as well, 
by significantly increasing cancer cell death. Here, 
luteolin downregulates the expression of HO-1 and 

MDR1 via blocking the Nrf2 activation in MDA-MB 
231 breast cancer cells resistant to doxorubicin (194). 
Luteolin has activity against human bladder cancer 
in-vitro and in-vivo by enhancing TRX1 and reducing 
ROS levels. The inhibition of mTOR signaling is the 
major pathway by which luteolin exerts this effect 
(195). Luteolin has an effect on ER-negative breast 
tumors and melanoma in-vitro and in-vivo via induc-
tion of apoptosis, as evidenced by a marked reduction 
in MMP-2 and -9 expression, and inhibition of PI3K 
and Akt phosphorylation (196,197). In a mouse model 
of pancreatic cancer, luteolin and gemcitabine syner-
gistically induce apoptosis via abrogating K-ras/
GSK-3β/NF-κB signaling, reducing the Bcl-2/Bax ratio, 
releasing cytochrome C, and activating caspase 3 
(198). Luteolin, in combination with paclitaxel, acts 
synergistically against esophageal cancer in-vitro and 
in-vivo by abrogating cell migration and EMT that is 
associated with suppression of SIRT1 expression, and 
the ROS/JNK-induced activation of the mitochondrial 
apoptotic pathway (199). Another study shows that 
luteolin alone is active against esophageal cancer by 
inhibiting the PI3K/Akt pathway (200).

Rutin
Rutin (20), also known as rutoside or vitamin P is 
present in various plants, including asparagus, buck-
wheat, cherries, plums, oranges, grapes, grapefruit, 
apricots, apples and tea (82). It possesses antioxidant, 
anti-inflammatory, antiangiogenic, pro-apoptotic, and 
antiproliferative effects, all of which may participate 
in the prevention and treatment of cancer (398).

Studies demonstrated that rutin upregulates the 
expression of Nrf2 by enhancing the activity of down-
stream HO-1, NQO-1, GST and Mn-SOD phase-II 
detoxifying enzymes which repair the oxidative imbal-
ance in cells (399). The activation of Nrf2 in associ-
ation with the degradation of Keap1 via modulating 
phosphorylation of PI3K/Akt is a major antioxidative 
mechanism of rutin (399). This demonstrates the anti-
cancer potential of rutin as ROS imbalance is a key 
factor affecting apoptosis and autophagy (400). Rutin 
has been reported to hinder tumor growth in colon 
cancer cells via inhibition of NF-κB signaling and 
modulation of MAPK and MAPK activated protein 
kinase 2 (201). This role of rutin in inactivating 
NF-κB via p38 along with cell cycle arrest also helps 
prevent lung (202) and gastric cancer (203). Lung 
cancer can also be blocked by rutin through modu-
lating TNF-α and GSK-3β expressions, which play a 
vital role in cell cycle, cell proliferation and apoptosis 
(204). In case of prostate cancer, rutin upregulates 
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p53 expression synergistically with 5-FU (205). It also 
provides protection against breast cancer by modu-
lating Akt/mTOR signaling as well as inducing cell 
cycle arrest at G2/M phase via p53 signaling (206). 
Rutin has been reported to protect liver cells against 
inflammation via downregulating CCl4-induced acti-
vation of NF-κB, TNF-α and COX-2 (401). It sup-
presses JNK-mediated autophagy in brain cancer cells 
as well (207). On the other hand, in leukemia THP-1 
cells, rutin enhances autophagy and suppresses inflam-
mation by inactivating NF-κB and reducing TNF-α 
levels (208). Autophagy is an important process that 
acts both as tumor generator and tumor inhibitor 
(402). Rutin has also been demonstrated to protect 
against oxidative stress and inflammation following 
bisphenol and dibutyl phthalate exposure through 
upregulation of Nrf2, SOD, GSH and inhibition of 
NF-κB activation (403). Rutin, along with ascorbic 
acid, abrogates UVA-and UVB-induced damage in 
skin keratinocytes, providing cytoprotective activity 
via the activation of Nrf2 signaling (404). The in-vivo 
activity of rutin against various cancers has been asso-
ciated with the suppression of STAT3/NF-κB, Bcl-2, 
AP-1, p38 MAPK and the activation of the 
Wnt/β-catenin pathway. Its anticancer effect has also 
been linked to its inhibition of COX-2, iNOS, TNF-α, 
and ROS (209,210).

Kaempferol
Kaempferol (21) is a flavonoid found in many 
plant-derived foods like Aloe vera, Coccinia grandis, 
Moringa oleifera, broccoli, tea, beans and strawberries 
(83). Kaempferol exerts diverse biological effects, such 
as antioxidative, anti-inflammatory, and anticancer 
with potential uses in diseases, such as diabetes, 
allergy, osteoporosis, cardiovascular, neurodegenerative 
and infectious diseases (405).
It increases Nrf2 protein expression leading to the 
upregulation of its downstream HO-1 gene and an 
increase in SOD and GSH levels (406). This activa-
tion of Nrf2/HO-1 signaling reduces ROS levels and 
is regarded as the major mechanism behind antiox-
idative activity of kaempferol (385). Kaempferol also 
elevates nuclear levels of HO-1 and Nrf2 through 
attenuation of the cisplatin-mediated phosphoryla-
tion of p38, ERK1/2 and JNK (407). In case of pan-
creatic cancer, kaempferol promotes apoptosis by 
elevat ing ROS generat ion and decreasing 
transglutaminase-2 (TGM2) mRNA and protein lev-
els (212). Kaempferol has also been reported to exert 
cytoprotective activity in liver and lung cells via 
upregulating Nrf2 and increasing CAT, SOD and 

p38 levels (408). In HepG2 cells, t-BHQ induced 
phase-II enzymes are dependent on Nrf2 stability 
and kaempferol can influence this stability (409). 
Besides activating the Nrf2 pathway, kaempferol also 
suppresses the activation of NF-κB and reduces the 
levels of TNF-α and IL-6 which helps to exert its 
protective effect against cellular damage (410). The 
reduction in intracellular ROS and inflammatory 
cytokines can help prevent tumorigenesis and car-
cinogenesis. It induces apoptosis in human MCF-7, 
SGC-7901, Hela and A549 cells (378). Kaempferol 
is a potent inducer of Nrf2 and its downstream 
NQO1 gene and plays a pivotal role in preventing 
carcinogenesis in breast cancer cells (411). It 
increases the activity of phosphatase and tensin 
homolog (PTEN) and AMPK while decreasing the 
activation of Akt/mTOR signaling (412). Akt/mTOR 
is a key signaling pathway involved in tumorigenesis 
(413) and an imbalance in this pathway is respon-
sible for apoptosis resistance (414). Studies have 
reported that kaempferol had anti-cervical and col-
orectal cancer activity via inhibition of PI3K/Akt 
signaling (213,214). Furthermore, kaempferol inhib-
its the proliferation of human hepatocellular carci-
noma cells via inducing autophagy through the 
activation of AMPK signaling (211). Kaempferol 
induces G1 and G2/M cell cycle arrest by inhibiting 
the activity of cyclin dependent kinase 2 (CDK2), 
CDK4, and Cdc2 in HT-29 human colon cancer 
cells (415). To combat oxidative injury, kaempferol 
activates and increases the accumulation of the 
SIRT1 linked with cellular growth regulation and 
tumorigenesis (367), as well as inhibits PARP1 that 
leads to increased Nrf2 expression (416). Kaempferol 
also shows anticancer activity by inhibiting GSK-3β/
Nrf2 signaling as GSK-3β plays a vital role in reg-
ulating cell cycle, cell proliferation and apoptosis 
(405). In ovarian cancer, kaempferol upregulates p53 
expression and induces cell cycle arrest at G2/M 
phase (417). It also prevents gastric cancer tumor 
growth in-vivo and in-vitro via modulating Akt, ERK 
and COX-2 expressions (215). By modulating these 
pathways that control cell cycle, growth, and apop-
tosis, kaempferol affects tumorigenesis. It has been 
reported to alleviate endothelial cell injury and oxi-
dative stress and induce apoptosis in HUVEC cells 
by activating AMPK/Nrf2/HO-1 signaling (418). It 
can also modulate the NF-κB/MAPK and AMPK/
Nrf2 pathways to decrease inflammation and oxida-
tive stress (419). Besides inducing activation of Nrf2, 
kaempferol can also downregulate the excess Nrf2 
activation through reduction of Nrf2 mRNA and 
protein levels along with Nrf2 target genes (NQO1, 
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HO-1, AKR1C1 and GST). In this way, kaempferol 
increases ROS accumulation and makes NSCLC cells 
sensitive to apoptosis which causes abrogation of 
chemoresistance (216) .  Kaempferol  exer ts 
anti-angiogenic effect in-vitro in ovarian cancer via 
abolishing VEGF secretion, suppressing ERK phos-
phorylation and NF-κB and cMyc expression, but 
facilitating p21 expression (217). In NSCLC, kae-
mpferol in combination with radiotherapy was 
reported to show promising antitumor activity 
in-vitro and in-vivo via inhibiting the Akt/PI3K and 
ERK pathways and activating mitochondrial apop-
tosis (218). In MCF-7 breast cancer cell xenografted 
mice, kaempferol inhibits the phosphorylation of 
insulin receptor substrate 1 (IRS-1), Akt, MAPK/
extracellular signal-regulated kinase 1/2, and ERK 
signaling proteins (219). Additional In Vitro and In 
Vivo studies indicated that kaempferol had anti-breast 
cancer activity via inhibiting the PKCδ/MAPK/AP-1 
pathway and downregulating MMP-9 expres-
sion (220).

Strengths/Limitations of Previous Studies and 
Suggestions for Future Work

The results of the above studies indicate that the 
21 selected dietary polyphenols have a promising 
cancer protective potential via modulation of Keap1/
Nrf2/ARE and other interconnected signaling path-
ways. Studies, carried out using in-vitro and/or 
in-vivo models, showed that these compounds 
exerted their effects (antiproliferative, antitumori-
genic, pro-apoptotic, anti-inflammatory, and antiox-
idative) in a variety of different cancers. A limited 
number of in-vivo studies were performed to con-
firm the in-vitro findings. Only one clinical trial 
was conducted to evaluate the effectiveness of res-
veratrol on patients with prostate, colorectal and 
breast cancer.

Further studies are required to confirm the cancer 
protective role of the selected dietary polyphenols. 
In particular, the cancer protective role of polyphe-
nols, such as methyleugenol, carnosol, and catechin, 
has yet to be studied in-vivo. In addition, further 
work should be focused on designing rigorous con-
trolled clinical trials to establish whether the con-
sumption of such polyphenols has an impact on the 
incidence and progression of cancers in humans. 
These compounds may prove to be particularly use-
ful as alternative options for patients with 
pre-neoplastic lesions, early-stage cancers, as well 
as in end stage disease where there is enhanced 
drug resistance.
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