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Abstract

This paper presents OPEN, an open-source software platform for integrated modelling, control and simulation of
smart local energy systems. Electric power systems are undergoing a fundamental transition towards a significant
proportion of generation and flexibility being provided by distributed energy resources. The concept of ‘smart
local energy systems’ brings together related strategies for localised management of distributed energy resources,
including active distribution networks, microgrids, energy communities, multi-energy hubs, peer-to-peer trading
platforms and virtual power plants. OPEN provides an extensible platform for developing and testing new smart
local energy system management applications, helping to bridge the gap between academic research and industry
translation. OPEN combines features for managing smart local energy systems which are not provided together by
existing energy management tools, including multi-phase distribution network power flow, energy market mod-
elling, nonlinear energy storage modelling and receding horizon optimisation. The platform is implemented in
Python with an object-oriented structure, providing modularity and allowing it to be easily integrated with third-
party packages. Case studies are presented, demonstrating how OPEN can be used for a range of smart local
energy system applications due to its support of multiple model fidelities for simulation and control.

Highlights

• Presents the Open Platform for Energy Networks (OPEN), github.com/EPGOxford/OPEN

• Integrated modelling, control & simulation framework for smart local energy systems

• The object-oriented approach offers modularity, code reuse & extensibility

• Development has been motivated by four industry–academic demonstration projects

• Case studies demonstrate how OPEN can be extended for new applications

Keywords: Distributed energy resource, distribution network, modelling, Python, open-source software, smart
local energy system.

1. Introduction

Electric power systems are undergoing a fundamen-
tal transition, away from the traditional model of cen-
tralised generation, towards a significant proportion of
generation and flexibility being provided locally by
distributed energy resources (DERs), including renew-
able sources, electric vehicles (EVs) and heat pumps.
Coordinating DERs on a localised basis could offer
significant value by reducing upstream power flows
and losses, alleviating the need to curtail renewable
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generation and enabling the deferral of distribution,
transmission and generation infrastructure upgrades
[1]. There is also the potential for aggregated groups
of DERs to offer ancillary services upstream as a ‘vir-
tual power plant’ [2], or for DER clusters to support
autonomous ‘microgrid’ operation [3].

The concept of ‘smart local energy systems’ brings
together related strategies for localised management of
DERs [4], including active distribution networks [5],
microgrids [6], energy communities [7], multi-energy
hubs [8], peer-to-peer trading platforms [9], distribu-
tion flexibility markets [10], virtual power plants [11]
and federated power plants [12]. These strategies are
distinct, but they also overlap and have the potential to
be combined. Smart local energy systems have a com-
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mon set of elements: a set of DERs; an interconnect-
ing local power network; an upstream energy market;
and a digital coordination platform providing sensing,
communications and control.

The UK Government has invested £102.5m in the
Prospering from the Energy Revolution Challenge, to-
wards the design, development and demonstration of
smart local energy systems [13]. The objective is to
make the best use of cheaper renewables, energy stor-
age, EVs, energy efficiency, low carbon heat and dig-
ital infrastructure. International programmes support-
ing smart local energy system research and develop-
ment include EN SGplusRegSys [14] and IO.Energy in
the EU [15], the Brooklyn Microgrid in the US [16] and
the Decentralised Energy Exchange (deX) in Australia
[17].

The authors are contributing to four smart local en-
ergy system innovation projects involving industry–
academic collaboration [18]:

(i) Vehicle-to-Grid Oxfordshire (V2GO): an optimi-
sation platform demonstration for coordinating
EV delivery fleets to charge at lowest cost and
provide ancillary services upstream [19].

(ii) Multi-Sites, Actors, Vectors, Energy Services
(Multi-SAVES): a smart building demonstration
of flexible heating ventilation and air condition-
ing (HVAC) and solar generation to reduce en-
ergy costs and carbon emissions [20].

(iii) Power Energy Technology Efficiency (PETE): a
virtual power plant demonstration made up of
500 smart electric hot water tanks and 100 home
battery systems [21].

(iv) Local Energy Oxfordshire (LEO): a demonstra-
tion of a county-wide market platform for dis-
tribution system flexibility bringing together and
coordinating 90 plug-in projects (including solar
generation, microgrids and EV hubs) [22].

These projects are diverse, focusing on a range of
different DER technologies, including EVs, flexible
HVAC, residential batteries and solar generation; and
are based on different coordination strategies, includ-
ing site-level optimisation, virtual power plant aggre-
gation and distribution flexibility markets. Despite this
variety, they each require a common set of manage-
ment tools: modelling, to understand the characteris-
tics and constraints of DERs and the local network;
control, to achieve the system objectives within op-
erating constraints; and detailed simulation, to verify
performance ahead of implementation.

Recent academic interest in smart local energy sys-
tems has led to the application of advanced modelling
and control techniques. These include technology-
specific nonlinear DER modelling (including for bat-
tery storage [23], low-carbon heat [24] and power elec-
tronics [25]), computationally scalable optimal power
flow for unbalanced multi-phase distribution networks

[26] and receding horizon model predictive control
(MPC) to address model approximations and uncer-
tainty when scheduling DERs [27].

Despite this, current energy management software
tools do not adequately support smart local energy
system research and development. The capability to
model, control and simulate distribution systems with
embedded DERs is divided between multiple tools,
with a lack of extensibility and interoperability, and
advanced modelling and control techniques are not of-
fered. This creates challenges for collaboration and
replication between laboratories, slowing the develop-
ment and testing of new methods and the translation of
these methods to industry application. Another impor-
tant gap is the inability of existing tools to support a
range of model fidelities for DERs and networks.

To address these challenges, this paper presents the
Open Platform for Energy Networks (OPEN). OPEN
is an open-source Python platform for developing and
testing smart local energy system management appli-
cations. It provides an extensible object-oriented plat-
form for integrated modelling, control and simulation.
The development of OPEN has been motivated by
gaps identified with existing energy management tools,
along with the increasing importance of smart local en-
ergy systems as an architecture for renewable integra-
tion, off-grid electrification, and the electrification of
heat and transport. The latest version of OPEN is avail-
able for download [28], along with full documentation
[29] .

The rest of the paper is organised as follows: First,
a detailed comparison between the features offered by
OPEN and those offered by existing energy manage-
ment tools is provided. Then, OPEN’s object-oriented
structure and program flow are described. Two case
studies are presented, demonstrating OPEN applica-
tions for building energy management and EV smart
charging. The Appendices detail the modelling and
optimisation techniques used by OPEN’s classes.

2. Comparison with Existing Tools

Table 1 provides a comparison between OPEN and
other popular energy management software tools. Ex-
isting software tools can be broadly divided into three
groups: power network simulation tools; energy sys-
tem management tools; and transmission system man-
agement tools. A more comprehensive review of soft-
ware tools for energy system modelling and manage-
ment is presented in [45].

Power network simulation tools focus on detailed
modelling and simulation of transmission or distribu-
tion power flows, which are important for system plan-
ning and dispatch. Examples include pandapower [30],
MATPOWER [31], DiSC [32], PowerFactory [33],
GridLAB-D [34] and OpenDSS [35]. These tools are
focused on traditional generation, and do not consider
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Table 1: Comparison between OPEN and other energy management
software tools.
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pandapower [30] BN BN
MATPOWER [31] BN BN
DiSC [32] BN
PowerFactory [33] MN BN
GridLAB-D [34] MN
OpenDSS [35] MN
Calliope [36] ET ET
oemof-solph [37] ET ET
OSeMOSYS [38] ET ET
urbs [39] ET ET
PLEXOS [40] BL BL
PyPSA [41] BN BL
TIMES [42] BL BL
Switch 2.0 [43] BL BL
PowerGAMA [44] BL BL

OPEN [28] MN ML
∗Power flow models used for simulation/optimisation:
(ET) energy transfer; (BL) balanced linear; (BN)
balanced nonlinear; (ML) multi-phase linear; or (MN)
multi-phase nonlinear.

multi-period scheduling relevant for modern systems
with energy storage and flexible loads. Energy sys-
tem management tools focus on higher-level planning.
Calliope [36], oemof-solph [37], OSeMOSYS [38]
and urbs [39] are examples of energy system manage-
ment tools. These tools include multi-period schedul-
ing, but use simplified energy transfer network models,
rather than detailed electrical power flow modelling.
Finally, transmission system management tools ad-
dress the adoption of renewable generation and energy
storage within electric power systems, by combining
multi-period optimal scheduling with balanced power
flow models suitable for transmission systems. Exam-
ples of transmission system management tools include
PLEXOS [40], PyPSA [41], TIMES [42], Switch 2.0
[43] and PowerGAMA [44].

An important insight from the smart local energy
system projects the authors are contributing to is the
need for an integrated platform that can support a range
of DER and network models, varying in detail and
complexity, for simulation and control. OPEN has

been designed with a modular structure to support this,
enabling it to offer features relevant to smart local en-
ergy systems which are not provided by other tools,
including:

(i) Multi-period scheduling of DERs combined with
multi-phase distribution network modelling. The
balanced power flow models used by the trans-
mission system management tools do not address
voltage constraints and losses when DERs are
connected on different phases, which is an impor-
tant consideration for distribution systems [46].

(ii) Receding horizon optimisation, where schedul-
ing is updated during operation based on new
forecasts and a predictive system model [47].
This is important for addressing uncertainty (e.g.
associated with upstream prices, load, genera-
tion, DER availability) and DER/network model
approximations required to reduce computational
complexity for optimisation. Of the transmission
system management tools, only PLEXOS (which
is not open source and does not include nonlinear
power flow) offers receding horizon optimisation.

(iii) Nonlinear energy storage modelling for simula-
tion (e.g. battery efficiency depends nonlinearly
on output power [23]). This is an important fea-
ture for comparing different energy storage tech-
nology options. Linearised models for storage
systems are used for optimisation to maintain
computational scalability.

(iv) Separate model fidelities for control and simula-
tion, allowing DERs to be scheduled based on
simplified resource and network models. Optimi-
sation based on a full distribution system model
is sometimes considered impractical due to com-
putational complexity or a lack of network infor-
mation. The suitability of a simplified control
model can be tested by coupling it with a higher
fidelity nonlinear system model for simulation. If
this results in constraint violations, designers can
then consider more accurate power flow optimi-
sation strategies.

(v) Demand charges (per-kW charges on the maxi-
mum demand during a particular time period).
Demand charges are an important local energy
market pricing mechanism which are commonly
imposed to incentivise local supply–demand bal-
ancing [48].

3. Platform Structure

OPEN is implemented in Python, which is a widely
used programming language for open-source scientific
computing [49]. This allows OPEN to be easily inte-
grated with a range of open-source third-party pack-
ages. It has been developed using an object-oriented
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Asset
+ bus_id
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+ Pnet
+ Qnet

StorageAsset
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+ update_control()

+ Tmax
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Network
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…has a list of … …has a … …has a …

EnergySystem

+ EMS_copper_plate_t0()
+ EMS_3ph_linear_t0()
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+ T

+ dt_ems
+ T_ems …
+ simulate_network()
+ simulate_network_mpc_3phPF()…

Market

+ calculate_revenue()

+ bus_id
+ prices_export
+ prices_import

+ demand_charge
+ Pmax
+ Pmin

+ Pnet_pred
+ Qnet_pred

+ Pmax
+ Pmin
+ c_deg_lin
+ eff
+ eff_opt

+ T0
+ C
+ R
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Network_3ph

+ linear_pf()
+ zbus_pf()
+ update_YandZ()
+ linear_model_setup()…

+ bus_df
+ line_df
+ N_iter
+ Y
+ Z

+ N_phases
+ transformer_df
+ capacitors_df
+ res_bus_df
+ res_lines_df …

Figure 1: A UML class diagram of OPEN, showing the platform’s main classes, attributes, methods, inheritance relationships and associations.

programming approach, providing modularity, code
reuse and extensibility.

Fig. 1 shows a universal modelling language
(UML) class diagram of OPEN. OPEN has four im-
portant base classes: Asset, Network, Market and
EnergySystem.

3.1. EnergySystem Class

In OPEN, a smart local energy system application
is built around an EnergySystem object, which has
a list of Asset objects defining the loads and DERs,
a Network which the Asset objects are embedded
within, and an upstream Market which the Network

is connected to.
The EnergySystem class has two main types of

methods: (i) energy management system (EMS) meth-
ods and (ii) simulation methods. EMS methods im-
plement algorithms to calculate Asset control refer-
ences. Simulation methods first call an EMS method
to generate control references for Asset objects, then
update the state of the Asset objects by calling their
update control() method, and finally update the
state of the Network by calling its power flow method.
An EnergySystem has two separate time-series, one
for the EMS, and the other for simulation. The reso-
lution of the simulation time-series sets the update rate
of the Asset states and Network power flows, while
the resolution of the EMS time-series sets the update
rate of Asset references. Separating these time-series
allows OPEN to simulate intra-interval variability be-
tween EMS updates [50].

OPEN includes two EMS methods for controllable
Asset objects: (i) one for multi-period optimisation
with a simple copper plate network model, and (ii) the
other for multi-period optimisation with a linear multi-
phase distribution network model from [46] which in-
cludes voltage and current flow constraints. OPEN

Main File

EnergySystem 
simulate_network_mpc_3phPF()

Time Horizon 
Recedes

Problem Definition 
Network

Market
Asset 1

Asset KEMS 
parameters

Simulation Step

EMS_3ph_linear_t0()

(Simplified)
Problem 
Formulation

Solver

Asset 1

Asset K

Network

Simulation Step

Simulation Step

Sim.
Time
Steps

EMS 
Time 
Step

Visualisation

Asset & Network States

Feedback

Asset References

Figure 2: A high-level program flow diagram for an MPC OPEN
application. The instantiated objects, method calls and information
flows are shown.

has simulation methods for: (i) open-loop optimisa-
tion, where the EMS method is run ahead of operation
to obtain controllable Asset references over the EMS
time-series; and (ii) MPC, where the EMS method is
implemented with a receding horizon so that the flex-
ible Asset references are updated at each step of the
EMS time-series.

Fig. 2 shows a high-level program flow diagram for
an example MPC OPEN application. In a new main
file, the user first initialises a Network object, Market
object, a list of Asset objects and parameters associ-

4

OPEN: an open-source platform for developing smart local energy system applications



ated with energy management, which together can be
considered the problem definition for the application.
The user then initialises an EnergySystem object and
calls the desired simulation method. Within the MPC
simulation method, an EMS method is called which
solves an optimisation problem formulated to gener-
ate Asset control references for the first EMS interval.
For each simulation interval within the EMS interval,
the states of the Asset objects are updated based on
the control references, and then the Asset output pow-
ers are used to update the state of the Network. Then,
the EMS time horizon recedes by a step, and the EMS
method is called again. A more detailed description is
provided in Appendix D. Once the simulation is com-
plete, it returns the Asset and Network states over the
simulation time-series, which the user can plot using a
data visualisation package, such as Matplotlib [51].

The EnergySystem class can be extended by defin-
ing new EMS methods. For example, EMS meth-
ods could be used to implement more advanced op-
timisation strategies which account for detailed asset
characteristics, decentralised coordination algorithms
or market-based scheduling with peer-to-peer energy
trading. The requirement for a new EMS method
to be interoperable is that it returns a Python dictio-
nary with Asset references that can be read by the
EnergySystem simulation methods that call it. There
is no restriction on the scheduling algorithms that are
implemented by EMS methods. An EMS method
could also be implemented to serve as an interface be-
tween OPEN and third-party software for DER coordi-
nation, with the EMS method sending system informa-
tion to the third-party software and receiving control
references. In this way, OPEN could be used to test
new coordination platforms prior to implementation.

3.2. Asset Class

The Asset class is used to define DERs and loads.
Attributes include network location, phase connection,
and real and reactive output power profiles over the
simulation time-series. Flexible Asset classes have
an update control() method, which is called by
EnergySystem simulation methods with control ref-
erences as inputs, and updates the Asset object’s out-
put power profiles and state variables. Note that an
update control() method can include constraints
which limit the implementation of control references
(e.g. a battery storage system which has reached a min-
imum energy level will not export power).

OPEN includes the following Asset subclasses:
NondispatchableAsset for uncontrollable loads
and generation sources, StorageAsset for storage
systems and BuildingAsset for buildings with flex-
ible HVAC. New Asset subclasses can be defined
which may have additional attributes and different
update control() method implementations.

3.3. Market Class

The Market class is used to define an upstream mar-
ket which the EnergySystem is connected to. At-
tributes include the network location, prices of imports
and exports over the simulation time-series, the de-
mand charge paid on the maximum demand over the
simulation time-series and import/export power limits.
The market class has a method which calculates the to-
tal revenue associated with a particular set of real and
reactive power profiles.

3.4. Network Class

OPEN offers two options for network mod-
elling. For balanced power flow analysis, the
PandapowerNet class from the open-source Python
package pandapower can be used by OPEN. Balanced
power flow is generally acceptable for transmission
system studies, but is often not suitable for distri-
bution systems, since they may have single/double-
phase spurs, untransposed lines with coupling between
sequence impedances and singe-phase sources/loads.
For unbalanced multi-phase power flow analysis,
OPEN offers the Network 3ph class.

The PandapowerNet class offers methods for bal-
anced nonlinear power flow using a Newton–Raphson
solution method, and balanced linear power flow based
on the DC approximation. OPEN’s Network 3ph

class offers nonlinear multi-phase power flow us-
ing the Z-Bus method [52], as well as linear multi-
phase power flow using the fixed-point linearisation
from [46]. Wye and delta connected constant power
loads/sources, constant impedance loads and capaci-
tor banks can be modelled. Lines are modelled as π-
equivalent circuits. Transformers with any combina-
tion of wye, wye-grounded or delta primary and sec-
ondary connections can also be modelled. Features
that are planned to be added in future include voltage
regulators and constant current loads.

Datasets associated with the initialisation methods
of the Network 3ph class have been included with
OPEN for a number of multi-phase networks, namely
the IEEE 13 Node Test Feeder and IEEE European
Low Voltage Test Feeder from [53], and 30 low voltage
feeders from [54]. A range of balanced distribution and
transmission network datasets are also available for the
PandapowerNet class [55]. Like the PandapowerNet
class, Network 3ph has been designed with its input
and output variables organised into pandas dataframes,
which provide a tabular data structure that can be easily
accessed and modified [56]. The initialisation meth-
ods for the multi-phase networks included with OPEN
have been written with line-by-line comments so they
can be straightforwardly adapted for third-party net-
work datasets.
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Figure 3: Summer building EMS case study. (a) The base demand
(net of inflexible load and PV generation) and total demand (includ-
ing HVAC). (b) The flexible HVAC output power used for cooling.
(c) The internal temperature of the building.
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Figure 4: Winter building EMS case study. (a) The base demand (net
of inflexible load and PV generation) and total demand (including
HVAC). (b) The flexible HVAC output power used for heating. (c)
The internal temperature of the building.

4. Case Studies

Two case study applications are included with
OPEN to demonstrate its capabilities, and to provide
templates to help users build their own applications.
The first considers building energy management for a
site with PV generation, flexible electric HVAC and
time-of-use energy prices. The second considers smart
EV charging within an unbalanced three-phase distri-
bution network.

4.1. Building Energy Management Case Study

The building energy management case study focuses
on a building with PV generation and a flexible HVAC
unit which is controlled in order to minimise costs,
with the constraint that the internal temperature re-
mains between 16◦C and 18◦C.

4.1.1. Setup
The building operates under an Economy 7 tariff,

which is a standard retail electricity supply option in
the UK that charges a higher price for energy used be-
tween 7 am and 12 am, and a lower price for usage
between 12 am and 7 am [57]. A lower feed-in price
is received for excess generation. Summer and win-
ter solar generation profiles with 1-minute resolution

Table 2: Building energy management case study parameters.

Allowed temperature range 16 to 18◦C
Initial temperature 17◦C
Ambient temp. (Summer / Winter) 22◦C / 10◦C
PV generation capacity 400 kWp
HVAC cooling capacity 200 kW
HVAC heating capacity 90 kW
Cooling coefficient of performance 1
Heating coefficient of performance 3
Building heat transfer 0.0337◦C/kW
Building thermal mass 500 kWh/◦C
Energy price (7 am to 12 am) £0.15/kWh
Energy price (12 am to 7 am) £0.075/kWh
Feed-in price £0.04/kWh
EMS time-series resolution 15 min.
Simulation time-series resolution 1 min.

from the Customer-led Network Revolution trial are
used [58]. The case study parameters are summarised
in Table 2.

The case study demonstrates the BuildingAsset

class for modelling flexible HVAC, the Market class
for modelling variable energy prices and open-loop op-
timal control within the EnergySystem class. The
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Table 3: Electric vehicle smart charging case study parameters.

Number of electric vehicles 80
Electric vehicle battery sizes 36 kWh
Electric vehicle charger capacities 6.6 kW
PV generation capacities 200 kWp
Phase voltage magnitude limits 0.95 to 1.05 pu
Import price £0.15/kWh
Export price £0.05/kWh
Demand charge £0.10/kW
EMS time-series resolution 30 min.
Simulation time-series resolution 5 min.

EMS is formulated with a 15-minute resolution time-
series, and the simulation time-series has 1-minute res-
olution. Since network modelling is not the focus of
this case study, a simple network with two buses has
been implemented using the PandapowerNet class.
The building is connected to the main grid via a 100 m
cable and a 400 kVA 20 kV / 415 V transformer.

4.1.2. Results
Fig. 3 presents results for operation in summer, as-

suming an initial internal temperature of 17◦C and an
external ambient temperature of 22◦C. Fig. 3a shows
the base demand (the net of the inflexible building load
and PV generation), as well as the total demand which
also includes the flexible HVAC demand. As shown in
Fig. 3b, the HVAC unit is used for cooling between 3
am and 7 am due to the lower energy price during this
period. The HVAC consumption increases again dur-
ing the middle of the day, since the low price received
for energy exports incentivises local self-consumption
of PV generation. As shown in Fig. 3c, the build-
ing temperature reaches but does not exceed the upper
limit of 18◦C.

Fig. 4 presents results for operation in winter, as-
suming the same initial internal temperature and an ex-
ternal ambient temperature of 10◦C. As shown in Fig.
4a, the base demand is rarely negative, since there is
significantly less solar generation in winter than sum-
mer. Fig. 4b shows that the HVAC unit is controlled
to heat the building before 7 am when the import price
of energy is lower. As shown in Fig. 4c, the building
temperature reaches but does not fall below the lower
limit of 16◦C.

4.2. Electric Vehicle Smart Charging Case Study

This case study considers smart charging of EVs
within an unbalanced three-phase distribution network.

4.2.1. Setup
The case study uses an adapted version of the IEEE

13 Node Test Feeder, shown in Fig. 5. Bus 634 has
a business park where 80 EVs are charged at 6.6 kW
controllable charge points. The objective is to charge

Main Grid
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Figure 5: The IEEE 13 Node Test Feeder which has been adapted
for the EV smart charging case study. The connected phases for
each line, load and source are indicated (e.g. abc for a three-phase
connection), as well as the connection configurations of the loads
and sources (Y for wye and ∆ for delta).

all of the vehicles to their maximum energy level prior
to departure, at lowest cost. This needs to be done
without violating the phase voltage magnitude limits
of 0.95 pu and 1.05 pu. The case study parameters are
summarised in Table 3.

It is assumed that vehicle arrival and departure times
are uniformly distributed between 6 am to 10 am, and
3 pm to 9 pm, respectively. The vehicles have 36 kWh
batteries and arrive with uniformly distributed energy
levels between 20% and 90%. The nonlinear relation-
ship between charging power and efficiency is mod-
elled using a stepwise approximation of empirical ob-
servations from charging a Nissan Leaf [59].

The network has five solar generation sources,
which are each rated at 200 kWp. These are mod-
elled as having the same generation profile (using a 24-
hour profile form [58]) due to their proximity to one
another. The price of energy imports is £0.15/kWh,
and £0.05/kWh is paid for energy exports. In addition,
there is a demand charge of £0.10/kW for the max-
imum power import over the day. Three-phase sub-
station load profiles from the Customer Led Network
Revolution trial are used to model the load at each bus
of the distribution network [60].

The case study demonstrates the StorageAsset

class for modelling EVs, the Market class for mod-
elling demand charges and the Network 3ph class for
multi-phase power flow. The case study was com-
pleted using open-loop optimisation and MPC within
the EnergySystem class to compare the performance
of these approaches. The EMS is formulated with a
30-minute resolution time-series, and the simulation
time-series has 5-minute resolution. For the solar gen-
eration and loads, a smoothed version of the data (the
100-minute rolling average) is used as the day-ahead
predicted generation and load for optimisation. Un-
der MPC there is a receding horizon, so that a new
optimisation problem is solved at each 30 minute sam-
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Figure 6: EV smart charging case study, under open-loop optimisa-
tion. (a) The base demand (net of inflexible load and PV generation)
and total imported power (including EV charging). (b) The average
energy level of the EVs. (c) The minimum voltage magnitude across
the network for each phase.
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Figure 7: EV smart charging case study, under MPC. (a) The base
demand (net of inflexible load and PV generation) and total imported
power (including EV charging). (b) The average energy level of the
EVs. (c) The minimum voltage magnitude across the network for
each phase.

pling interval based on updated predictions of the load
and renewable generation, as well as the current energy
levels of the EVs.

4.2.2. Results
Fig. 6 shows the results for open-loop optimisa-

tion and Fig. 7 shows the results for MPC. Under
both strategies, EV charging is scheduled to prevent
an increase in the maximum demand, which would re-
sult in higher demand charges. Fig. 7a shows that
the maximum demand under MPC is 1980 kW, which
is slightly lower than the maximum demand of 1997
kW shown in Fig 6a under open-loop optimisation.
Comparing Fig. 6b and Fig. 7b, it can be seen that
the vehicles reach a higher average energy level un-
der MPC (33.7 kWh) compared with open-loop opti-
misation (32.5 kWh). Note that the optimisation prob-
lem formulations treat battery efficiency as constant to
obtain linear models. However, under MPC the EV
charging power schedules are updated at each EMS
sampling interval based on the current EV energy lev-
els, which helps account for the nonlinear relationship
between battery efficiency and charging power. Fig.
6c shows that under the open-loop optimisation the
lower 0.95 pu phase voltage limit is violated by a small

amount just after 4pm. Fig. 7c shows that there are no
voltage violations under MPC, since the control ref-
erence updates at each EMS interval account for the
current demand.

5. Conclusion

This paper has presented the Open Platform for En-
ergy Networks (OPEN), an open-source Python plat-
form for developing smart local energy system appli-
cations. OPEN addresses the need for integration be-
tween software tools for modelling, control and simu-
lation, and combines important features for managing
smart local energy systems, including multi-phase dis-
tribution network power flow, nonlinear energy storage
modelling and receding horizon optimisation.

A key aim for OPEN is to enhance how academic
research is done, and thereby increase the speed at
which new methods are translated to industry appli-
cation. Standardising interfaces between components
(distributed energy resources, networks and markets)
and between tools (for modelling, control and simula-
tion) is important for helping teams retain knowledge
and leverage previous work from project to project.
Predefined interfaces between components and tools
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make it easier for laboratories specialising in different
areas to collaborate effectively. By providing modular
smart local energy system case studies, OPEN allows
users to focus on the novel aspects of their particular
application.

Since it is open source, users can extend OPEN by
implementing new inheriting classes, creating inter-
faces to other open-source tools and expanding its li-
brary of distributed energy resource models, networks
and market arrangements. Areas of particular inter-
est for future development include multi-energy vector
modelling, network investment planning and DC mi-
crogrid modelling.

Appendix A. Nonlinear Energy Storage Modelling

Energy storage systems can be modelled using the
StorageAsset class. Within the EMS methods of the
EnergySystem class, a linear energy storage model is
used to maintain a convex optimisation problem for-
mulation which can be solved in polynomial time by
standard solvers [61]. The discrete time linear energy
storage model is given by [62]

Eit+1 =

Eit −
1
ηi

∆tpdis
it , for pdis

it ≥ 0, pch
it = 0

Eit + ηi∆tpch
it , for pch

it ≥ 0, pdis
it = 0

(A.1)

For storage system i and time interval t, Eit is the en-
ergy level, pch

it is the charging power, pdis
it is the dis-

charging power and ∆t is the time series interval du-
ration. The model is based on the approximation of
constant efficiency ηi ∈ (0, 1] over the range of out-
put powers. Constraints are imposed on the maximum
charging and discharging power, and on the maximum
and minimum energy level. StorageAsset also in-
cludes a coefficient cdeg

i ≥ 0 specifying the cost of
degradation associated with energy throughput, which
is used as a cost term by the EMS optimisation meth-
ods.

The StorageAsset.update control() method
has been implemented to allow nonlinear relationships
between efficiency and output power to be modelled
during simulations. This is particularly relevant for
battery energy storage systems, since battery and con-
verter efficiency are output power dependent [59]. The
nonlinear relationship between output power and ef-
ficiency is modelled with stepwise approximations.
Practically, this is implemented with a 100-element
vector which specifies efficiencies over the range of
possible output powers (e.g. the 70th element speci-
fies the efficiency when the output power is between
69% and 70% of the maximum output power).
StorageAsset has been implemented in a generic

manner so that it can be used to model a variety
of energy storage technologies. The object-oriented
structure of OPEN allows more advanced technology-
specific storage system efficiency and degradation

models to be implemented by creating new subclasses
which inherit from StorageAsset.

Appendix B. Building Thermal Modelling

Buildings with flexible HVAC can be modelled us-
ing the BuildingAsset class. The thermal character-
istics of a building are modelled by a first order discrete
time temperature model (analogous to an RC electrical
circuit) [63]

τ jt+1 = τ jt +
∆t

R jC j
(τa

jt − τ jt) +
∆t
C j

(ηhe
j phe

jt − η
co
j pco

jt ).

(B.1)

For building j and time interval t, τ jt is the internal
building temperature, τa

jt is the ambient temperature,
phe

jt is the forced heating power and pco
jt is the forced

cooling power. R j and C j are constants which respec-
tively model the heat transfer and thermal mass of the
building. ηhe

j and ηco
j are the coefficients of perfor-

mance for heating and cooling.

Appendix C. Multi-Phase Power Flow Modelling
and Validation

OPEN’s Network 3ph class allows three-phase un-
balanced power systems to be accurately modelled.
The Network 3ph.update YandZ() method updates
the admittance matrix of the network based on pan-
das dataframes specifying the characteristics of lines,
transformers and capacitor banks. Consider a three-
phase network with phases {a, b, c}, slack bus volt-
age v0/|v0| = (1, e− j 2π

3 , e j 2π
3 ) and N load buses. Y ∈

C3(N+1)×3(N+1) is the three-phase admittance matrix
of the network, which can be partitioned into Y =[

Y00 Y0N
YN0 YNN

]
, where Y00 ∈ C3×3 and YNN ∈ C3N×3N .

Network 3ph.zbus pf() implements the Z-Bus
nonlinear power flow method to obtain complex phase
voltages and line currents. This involves iteratively ap-
plying the following fixed-point equation for a user-
specified number of iterations [46]

v[k+1] = Y−1
NN

(
diag(v[k])−1sY

+ H>diag(Hv[k])−1s∆) − Y−1
NNYN0v0, (C.1)

H = blockdiag
([

1 −1 0
0 1 −1
−1 0 1

])
.

v[k] = (v1[k], . . . , vN[k]) is the vector of complex
phase voltages calculated at iteration k, where vi[k] =

(va
i[k], v

b
i[k], v

c
i[k]). sY = (sY

1 , . . . , s
Y
N) and s∆ =

(s∆
1 , . . . , s

∆
N) are the vectors of wye and delta connected

complex power injections on each bus and phase,
where sY

i = (sa
i , s

b
i , s

c
i ) and s∆ = (sab

i , s
bc
i , s

ca
i ).
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Figure C.8: Voltage magnitude and angle for each bus and phase ob-
tained for the IEEE 13 Node Test Feeder using OPEN and OpenDSS.

To validate the accuracy of the Z-Bus method used
by Network 3ph, power flow simulations have been
completed for each of the multi-phase networks in-
cluded within OPEN (the IEEE 13 Node Test Feeder,
IEEE European Low Voltage Test Feeder [53], and 30
low voltage feeders from [54]). The solutions given
by OPEN have been compared with the solutions from
OpenDSS [35], a widely used power network simu-
lation tool which offers nonlinear multi-phase power
flow. The relative voltage error εv is calculated as

εv =
‖vOPEN–vOpenDSS‖2

‖vOpenDSS‖2
, (C.2)

where vOPEN and vOpenDSS are the vectors of complex
voltages calculated for each phase across the network
using OPEN and OpenDSS respectively.

Fig. C.8 shows the voltage magnitude and angle for
each bus and phase obtained for the IEEE 13 Node
Test Feeder using OPEN and OpenDSS. In this case,
the relative voltage error εv is 7.54 × 10−6. Across the
multi-phase networks which were tested εv was found
to be less than 3.3 × 10−5 in all cases.

Appendix D. Energy Management System Opti-
misation

The EnergySystem class has EMS methods for
open-loop optimisation and MPC. These methods gen-
erate references for controllable Asset objects for
each interval of the EMS time-series. The EMS time-
series has T ems intervals, each of duration ∆tems. There
is a separate simulation time-series with T intervals,
each of duration ∆t. The time-series should be defined
so that they have the same duration (T∆t = T ems∆tems),
and so that the EMS schedules assets at the same time-
scale, or slower, than the simulation (∆t ≤ ∆tems). The
EMS methods which are included with OPEN use the
open-source Python package PICOS for optimisation.

PICOS provides a high-level portable interface for a
range of conic and integer programming solvers [64].

Consider a smart local energy system with a set
of energy storage systems S, buildings with flexible
HVAC B, a three-phase network with slack bus 0, load
buses N = {1, . . . ,N} and lines L, and an upstream
market at the network’s slack bus. Combining the
linear energy storage system model (A.1), first order
building heat model (B.1) and linear three-phase power
flow model from [46], the multi-period smart local en-
ergy system optimisation can be formulated as a linear
program.

min λ̄p̄0 +
∑

t∈T ∆tems(λ̃imp
t pimp

0t − λ̃
exp
t pexp

0t

+
∑

i∈S cdeg
i (pdis

it + pch
it )

)
(D.1a)

s.t. 0 ≤ pch
it ≤ pch

it , 0 ≤ pdis
it ≤ pdis

it , (D.1b)

Eit+1 = Eit + ∆tems(ηi pch
it −

1
ηi

pdis
it ), (D.1c)

Eit ≤ Eit ≤ Eit, i ∈ S (D.1d)

0 ≤ phe
jt ≤ phe

jt , 0 ≤ pco
jt ≤ pco

jt (D.1e)

τ jt+1 = τ jt + ∆tems

R jC j
(τ̃a

jt − τ jt)

+ ∆tems

C j
(ηhe

j phe
jt − η

co
j pco

jt ), (D.1f)

τ jt ≤ τ jt ≤ τ jt, j ∈ B, (D.1g)

∆pY
lt =

∑
i∈S mYS

li (pdis
it − pch

it )

−
∑

j∈BmYB
l j (phe

jt + pco
jt ), l ∈ N (D.1h)

∆p∆
lt =

∑
i∈S m∆S

li (pdis
it − pch

it )

−
∑

j∈Bm∆B
l j (phe

jt − pco
jt ), l ∈ N (D.1i)

|v| ≤ KY
t ∆pY

t + K∆
t ∆p∆

t + |ṽt | ≤ |v|, (D.1j)

JY
lmt p

Y
t + J∆

lmt∆p∆
t + |ĩlmt | ≤ |īlm|, (l,m) ∈ L

(D.1k)

pexp
0t − pimp

0t = GY
t ∆pY

t + G∆
t ∆p∆

t − p̃0t, (D.1l)

0 ≤ pimp
0t ≤ p̄imp

0t , 0 ≤ pexp
0t ≤ p̄exp

0t , (D.1m)

pimp
0t − pexp

0t ≤ p̄0 + p̄pre
0 , 0 ≤ p̄0. (D.1n)

T = {tems
0 , . . . , tems

0 + T ems − 1} is the optimisation
time horizon. The objective (D.1a) is to minimise the
combined cost associated with importing/exporting en-
ergy upstream, demand charges and degradation. λ̄ is
the demand charge price and p̄0 is the maximum power
imported over the day at the slack bus. For time inter-
val t ∈ T , pimp

t0 , pexp
t0 are the import and export powers,

and λ̃
imp
t0 , λ̃

exp
t0 are the predicted prices of energy im-

ports and exports, where λ̃imp
t0 ≥ λ̃

exp
t0 .

The energy storage system constraints are given by
(D.1b)–(D.1d). For energy storage system i ∈ S and
interval t ∈ T , pch

it , p
dis
it are the maximum charging

and discharging powers, and Eit,Eit are the minimum
and maximum energy levels. These are time dependent
(and stored as vectors in OPEN), allowing a variety of
constraints to be modelled (e.g. electric vehicles which
are only available for charging at certain times). The
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initial energy levels Eitems
0

are inputs of the optimisa-
tion.

The building constraints are given by (D.1e)–(D.1g).
For building j ∈ B and interval t ∈ T , phe

jt , p
co
jt are the

maximum HVAC powers for heating and cooling, and
τ jt, τ̄ jt are the minimum and maximum internal tem-
peratures. The initial internal temperatures τ jtems

0
and

the predicted ambient temperature profiles τ̃a
jt are in-

puts of the optimisation.
The network constraints are given by (D.1h)–(D.1n).

To formulate the optimisation problem, linear net-
work models are obtained for each interval t ∈ T ,
based on nominal complex wye and delta power in-
jection vectors s̃Y

t , s̃
∆
t ∈ C3N . These include the

predicted real and reactive power injections from in-
flexible assets throughout the network. From the
fixed-point linearisation in [46], coefficient matrices
can be obtained for the phase voltage magnitudes
KY

t ,K
∆
t , line current magnitudes JY

lmt, J
∆
lmt, and net ex-

port power GY
t ,G

∆
t . Constraints (D.1h) and (D.1i)

link the energy storage system and building output
powers to the network power injections, based on the
vectors mYS

li ,m
∆S
li ,m

YB
l j ,m

∆B
l j ∈ R3 which depend on

the network locations and connection configurations
(single/three-phase and wye/delta) of the flexible as-
sets. p̄pre

0 is the maximum demand which occured prior
to tems

0 , and is therefore locked-in from the perspective
of demand charges. Note for the copper plate optimi-
sation methods, constraints (D.1h)–(D.1l) are replaced
by a single total power balance constraint for each time
interval t ∈ T ,

pexp
0t − pimp

0t =
∑

i∈S(pdis
it − pch

it )−
∑

j∈B(phe
jt + pco

jt )− p̃0t.
(D.2)

For the open-loop EMS methods, the optimisation
problem (D.1) is solved once with tems

0 = 0, based on
the predicted price, load and generation profiles, and
the initial flexible asset state variables (storage system
energy levels and building internal temperatures). This
generates control references for the flexible assets over
the full time horizon, which are then applied to the as-
sets during simulation.

For the MPC EMS methods, an optimisation prob-
lem is solved at each step of the time horizon, based on
up-to-date information. At each time interval tems

0 :

1. For the current interval tems
0 , the flexible asset state

variables (Etems
0
, i ∈ S and τ jtems

0
, j ∈ B) are up-

dated. For t ∈ T , the predicted energy import
and export prices λ̃imp

t , λ̃
exp
t , nominal power in-

jections s̃Y
t , s̃

∆
t and building ambient temperatures

τ̃a
jt, j ∈ B are also updated.

2. The optimisation problem (D.1) is solved.
3. Each flexible asset implements its control ref-

erences obtained for the current interval tems
0

(pch∗
items

0
, pdis∗

items
0
, i ∈ S and phe∗

jtems
0
, pco∗

jtems
0
, j ∈ B) dur-

ing the associated simulation time-steps tsim ∈

{∆tems

∆t tems
0 , ∆tems

∆t tems
0 + 1, . . . , ∆tems

∆t (tems
0 + 1) − 1}.

Also, the locked-in maximum demand is updated,
p̄pre

0 ← max{p̄pre
0 , p̄∗0}

4. The optimisation time horizon recedes by a step
tems
0 ← tems

0 + 1 and is shortened by an interval
T ems ← T ems − 1. Done when T ems = 0.
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