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ABSTRACT 

Peridynamics is a mesh-free particle method that has been proposed in the last two decades. Contact 

between bodies in Peridynamics is a challenging and critical phenomenon that not only affects the 

computational efficiency of the algorithm, but is also closely related to the accuracy of the 

calculations. Therefore, it is important to develop a contact detection algorithm that is efficient, 

accurate, easy to extend to coupled numerical methods, and conducive to parallel computation. This 

study proposes a fast and continuous contact detection algorithm (FCCDA) that consists of two main 

parts. The first involves establishing a regular box bounding the entire target of collision to avoid the 

unnecessary calculation of material points that are not in contact with it, where this critically reduces 

the number of time-consuming calculations. The second part is a graphics-based algorithm to identify 

specific particles that penetrate the target. Both the numerical strategies and the mathematical 

methodologies of the FCCDA are discussed here. It was embedded into a Peridynamics system and 
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examined in the context of a benchmark case for verification. Ship–ice interaction and propeller–ice 

interaction are also demonstrated using the proposed algorithm as examples of its applications to 

engineering.  

Keywords: Fast continuous contact detection algorithm (FCCDA), Peridynamics, ice-ship 

interaction, ice-propeller interaction 

1. Introduction

Compared with mesh-based algorithms, mesh-free material particle methods (MPM) such as 

Peridynamics (PD) and smooth particle hydrodynamics (SPH), do not require the remeshing process, 

and are thus better suited for simulating problems involving large deformations, for example, bending 

failure, crack propagation, and other discontinuities. The MPM has had a significant impact on 

computational mechanics, and has been applied to a variety of engineering problems [1-3]. The 

detection of contact in case of impact between objects in the MPM is a critical and challenging issue. 

PD, a representative MPM, has been developed in a variety of fields in solid mechanics. The 

governing equation of the PD is in integral form rather than differential form. Therefore, it has the 

advantage to solve the problems of large deformation and fracture. In addition to the deformation of 

and damage to objects under simple boundary conditions, most engineering problems involve 

interactions between structures, and PD is a useful tool to study and predict impact-based fracture [4, 

5]. A contact model is needed to identify the impact between bodies. In most cases of contact, both 

bodies are discretized according to whether the impactor is rigid or deformable. An example is the 

contact between different materials and structures [6-8]. The advantages of this kind of mesh-free 

discretization in the contact model are as follows:  
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1) The collision between bodies with complex shapes can be easily modeled by using discrete

particles. 

2) Identifying contact is easy to achieve since the contact detection equals to judgement of

relative position between points in space. 

3) All objects in contact are discretized by the equation of the particle method.

However, this method cannot be applied to impactors in mesh discretization. Moreover, a heavy 

computational burden is incurred when the impactor is rigid because searching for particles is time 

consuming in the MPM, and takes up to 60%–80% of the total time [9]. We thus recommend this kind 

of contact model only in the case all bodies in contact are governed by the MPM equation. A contact 

model based on a simply shaped impactor has also been introduced [10, 11]. The impactor in this case 

is a rigid body with a regular shape, such as a cylinder or a sphere. Contact is identified easily by 

calculating the distance between the particles and the centroid of the impactor. This method 

guarantees computational efficiency because the unnecessary particle search operation is no longer 

required, such as in case of contact between the PD domain and a regular-shaped structure [12, 13], 

and most damage modeling reviewed by Mewael et al. [4]. However, the shape of the impactor used 

in engineering is not regular, because of which it is difficult to find the centroid or a specific law to 

determine whether the particle penetrates the object of collision. A point-to-plane distance algorithm 

has been introduced for the convex polyhedron by Vazic [14]. 

This study develops an efficient and accurate contact detection algorithm for PD that is easily 

applicable to engineering analysis. The remainder of this paper is organized as follows: A brief 

overview of PD theory is introduced in Section 2, which helps illustrate the implementation of fast 

and continuous contact detection algorithm (FCCDA) to the PD framework. In Section 3, we detail 
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the method and mathematical principle of the graphics-based fast and continuous contact detection 

algorithm (FCCDA). The numerical implementation of the proposed algorithm is analyzed in Section 

4. To validate it, benchmark cases were examined by embedding it into Peridynamics (PD), and the 

results are compared with those of the Finite Element Method (FEM) in Section 5. The application 

of the proposed method to engineering is demonstrated in Section 6.   

2. Peridynamics theory  

This section briefly introduces the theory of Peridynamics (PD). The governing equations, their 

numerical discretization, and a contact model are provided. 

2.1 Fundamentals of PD 

PD is a non-local method that uses integral operators, instead of the spatial derivatives used in 

traditional solid mechanics, to describe discontinuities and large deformations within a continuous 

body. The domain is discretized by particles that interact only with their neighbors at a certain distance, 

usually known as the horizon ( xH ). Figure 1 shows the principle of PD theory: Particle i  at location 

x   interacts with particle j   located in x  . They have displacements u   and u  , respectively, 

when the body is deformed by an external force. The deformation results in a force density t  of i  

acting on j , and t  of j  acting on i . Then, the equation of motion of a material point in PD 

theory is given by Madenci and Oterkus [11] as: 
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FIGURE 1 Schematic diagram of particle interactions in PD theory [15] 

( ) ( , ) ( ( , , ) ( , , )) ( , )
xH

t t t dV t            x u x t u u x x t u u x x b x ,                 (1) 

where ( ) x  is the density of the material and ( , )tu x  is the acceleration of the particle. According 

to the state of the pairwise force density, PD is defined in three forms: 

1) Bond-based PD (BB-PD): This is a special case that assumes that the vectors t  and t  of 

force density are equal in magnitude, and are parallel to the relative position vector. Under 

this assumption, Poisson’s ratio is fixed at 1/3 in 2D and ½ in 3D. The force density in 

Equation (1) is: 

2 sb
   
 

y y
t t

y y
.                                         (2) 

2) Ordinary state-based PD (OSB-PD): The magnitudes of the vectors of force density are not 

equal to each other compared with the BB-PD. Then, the Poisson ratio has no limitation, 

and the force density is given as: 
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3) Non-ordinary state-based PD (NOSB-PD): The force density has no limitation in terms of 

direction, and there is no restriction on the material properties in NOSB-PD. The following 

relationship must hold [16]: 

 ( ) ( , ) 0
xH

t dV      y y t x x x ,                                    (4) 

in which 

1( , ) ( )t w      t x x x x x PK x x .                                 (5) 

Note that in the above formula, a , b , and d  are the parameters of PD,   represents the 

size of the horizon,   is an auxiliary parameter of PD,   and    are the dilatations of 

particles i  and j , respectively, s  is the stretch between particles, and is the key variable 

of the failure criterion, P  is the first-order Piola–Kirchhoff (Lagrangian) stress tensor, and 

K  is the explicit form of the shape tensor. Details of P  and K  are provided in Ref. 

[11]. 

The OSB-PD is the representative form for illustrating the coupling of the FCCDA and PD 

because it has no restriction on the Poisson ratio, ensures stable computing, and is the most widely 

used of the three forms in engineering [15, 17-21]. 

2.2 Contact modeling in PD 

The model of impact with a rigid target in the PD domain was first proposed by Silling in EMU 
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code [22], and was then presented in detail in Ref. [11]. At time t , the impactor located in ( )
t
penx  and 

the PD domain move with velocities, ( )
t
penv  and ( )

t
iv , respectively. The position and the displacement 

of particle i are ( )
t
ix  and ( )

t
iu , respectively, as shown in Figure 2(a). As the objects move to their 

new locations, ( )
t t
pen
x  and ( )

t t
i
x , contact occurs at time t t , and results in the particles penetrating 

the impactor. Their vector of relative position is ( )
t t
rel
x  , as shown in Figure 2(b). However, such 

penetration does not occur in fact. The penetrated particle thus needs to be relocated to its new 

position ( )
t t
i
x  outside the impactor, as shown in Figure 2(c). The allocation of new positions refers 

to the principle of the nearest distance. 

i
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y

 

(a) Time, t 
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(c) Time, t t   

FIGURE 2 Contact modeling in PD theory.  

An updated fast continuous contact detection algorithm and its implementation in case study of ice-structure interaction by peridynamics



 
9 

 

The contact process described above involves two stages: One involves detecting the penetrating 

particles, and the other involves reassigning their positions and calculating the contact force. Contact 

is identified by calculating the distance between the particle and the centroid of the impactor. The 

location of particle i at time t t  is: 

( ) ( ) ( )
t t t t
i i i
  x x u

.                                                  (6) 

Then, the criterion used to judge whether the particles penetrate the impactor is: 

( ) ( ) ( )
( )

( ) ( ) ( )

1     if   ,contact     

0    if   ,noncontact

t t t t t t
rel i pent t

i t t t t t t
rel i pen

r

r


  


  

       

x x x

x x x
,                               (7) 

where r  represents the radius of the impactor. Contact detection is thus completed.  

The next stage involves redistributing the penetrated particles according to the closest distance 

principle. A particle is relocated to ( ) ( ) ( )
t t t t t t
i pen rel
   x x x  , where ( )

t t
rel
x   is collinear and has the same 

direction as ( )
t t
rel
x . The velocity of the particle in its new location is: 

( ) ( )
( )

t t t
i it t

i t


 




x x
v

 
.                                                 (8) 

The contact force resulting from the particle in contact and the total force are: 

( ) ( )
( ) ( ) (i1

t t t t
i it t

i i V
t


 

 
  



v v
F ）,                                         (9) 

and 

 ( ) ( )
1

t t t t t t
i i

i

  



F F .                                               (10) 

3. Fast and continuous contact detection algorithm (FCCDA)  

The method of contact detection described in Section 2.2 is limited to regular-shaped impactors. 

It is difficult to determine whether the particle comes into contact with impactor owing to its irregular 

shape in most impact events in practice. The proposed FCCDA is decomposed into two main steps: 
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the bounding box presented in Section 3.1, and the contact detection algorithm presented in Section 

3.2. The algorithm also involves calculating the contact normal presented in Section 3.2. Furthermore, 

the proposed algorithm is easily to achieve the parallel computing which is present in our other work 

[15].  

3.1 Establishing the bounding box  

The idea of the bounding box was originally presented for the finite element method (FEM) [23, 

24] as shown in Figure 3(a). The bounding box was established to surround the face of the element 

in both its known location and its predicted position. To find FEM nodes in contact, the dimensions 

of the bounding box are determined by the maximum distance that a node in contact can move. The 

point-in-box search algorithm is used to detect element nodes inside the bounding box. The bounding 

box was subsequently extended to the discrete element method (DEM), to which its improved model 

was widely applied [25, 26] as shown in Figure 3(b). The bounding box method requires identifying 

all cells that may be occupied by any part of the target particles, listing the target particles in these 

cells, and searching for potential contact in the same group of cells (“bounding box”). The bounding 

box model proposed here uses the same main idea and has the purpose as the model above. However, 

it is specially designed for the mesh-free particle method of the same type of PD method. 
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(a) The bounding box in FEM [27]                   (b) The bounding box in DEM [26] 

FIGURE 3 The diagrammatic sketch of the bounding box in the FEM and DEM. 

The most time-consuming calculation in PD involves particle search in horizon definition and 

time integration [11]. The contact detection is implemented in the process of force integration of each 

particle at each time step. To reduce the computational cost caused by the unnecessary search of 

material points that never contact at each time step, the bounding box is developed before contact 

detection to include all the potential particles that may contact the impactor at the current time step. 

It begins by establishing a regular-shaped space box containing the impactor at all times. The box 

moves with the impactor and their (box and impactor) relative positions remain unchanged. Thus, the 

shape of the bounding box is changeable; it can be a circle, cube, or polyhedron depending on the 

shape of the impactor. The design principles of the bounding box are as follows: 1) It has a regular 

and simple shape (hexahedron is the best choice) such that it is easy to directly judge whether a given 

point is inside the box. 2) The box is a polyhedron with the smallest surface area and the lowest 

volume needed to surround the entire impactor. 

Below are three examples illustrating how the bounding box is designed and works. 
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Bounding box

Impactor 

Particles 

Particles outside 
bounding box

Particles inside bounding box 
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Diameter of the 
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d

d
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FIGURE 4 Hexahedral bounding box in example 1. 

Example 1. The particle domain impacts the sphere. A hexahedral bounding box is established 

containing the impact. Only particles inside the hexahedron are potential points in contact with the 

surface of the impactor, as shown in Figure 4. The hexahedral bounding box is the most common one 

used in impact problems, and the impactor in Figure 4 can have any shape, such as a cylinder, irregular 

bottle, hull, and an automobile. 

Bounding box

Impactor 

Particles 

Particles outside 
bounding box

Particles inside bounding box 
(potential particles)

 

FIGURE 5 The combined shape of a bounding box of multiple hexahedrons in example 2 

Example 2. Although the hexahedron can be used as a bounding box, there is still extra space 

not occupied by the collision body, as shown in Figure 5. Therefore, the combined shape of multiple 

hexahedrons is used as the optimal bounding box. 
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FIGURE 6 Bounding box in example 3 

Example 3. Some objects with very complex shapes cannot be surrounded by simple 

hexahedrons, and collision between complex targets and the particle domain is accompanied by 

complex contact-related issues caused by their motion. In this case, the method of modeling the 

bounding box must be analyzed according to the given situation. For example, as shown in Figure 6, 

the propeller is an impactor that rotates over time. Two boxes are combined to bound it: a cylinder 

surrounding the entire propulsion system; and a fan-shaped space that contains blades, and moves 

with them. Consequently, the bounding algorithm is divided into two steps as follows: 

1) If the particles are inside the cylinder, then go to (2); 

2) If the particles are inside the fan space, then go to the procedure for contact detection in 

Section 2.2. 

3.2 Contact detection algorithm 

This section proposes the algorithm for determining the specific particles in contact and 

calculating their motion-related information.  
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The colliding object is discretized into a sufficient number of quadrilateral/triangular panel 

elements to express its shape, where this is similar to the mesh discretization method in the FEM. 

Each panel element is treated as a spatial plane; then, contact detection is simplified as a problem of 

analytic geometry, one of determining the relative position between points and planes. The contact 

detection process involves the following steps: 

1) Preprocessing. The impactor is discretized by using a commercial software or a meshing 

program. However, the node labels of all planar elements should be uniformly arranged in 

clockwise or counterclockwise order, which facilitates the determination of the directions of 

their normal vectors. Examples are illustrated in Figure 7: A sphere is discretized into triangle 

elements represented in grid format by three nodes numbered in counterclockwise order, and 

a cylinder is discretized into quadrilateral elements represented in grid format by four nodes 

numbered in counterclockwise order. 

Node labels in 
counter-clockwise

     

Node labels in 
counter-clockwise

 

FIGURE 7 Examples of discretization of the impactor 

2) Search for planar elements that may come into contact with the particles. Several variables 

need to be declared, and all position vectors of particles inside the bounding box, ( )px , are 
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stored in an infinite-dimensional array or a vector state X  (a concept defined in PD theory 

[11]): 

 
( 1) 1 1 1

( )

( )

( , , )

( , )

( , , )

p p p p

p

p p p p

x y z

t

x y z   

   
       
   

  

x

X x

x

   .                             (11) 

All nodes of the discretized impactor are stored in IM : 

( 1) 1 1 1

( )

( )

( , , )

( , )

( , , )

n n n n

n

n n n n

x y z

t

x y z   

   
       
   

  

m

IM m

m

  .                             (12) 

Each planar element of the discretized impactor is dominated by its node, and a state of node 

numbers is defined here as e:  

(1)

(2)

( )

, , ,

, , ,
j k q r

l g k j

e n n n n

n n n ne
e

e 

   
   
       
   
     





,                                    (13) 

where jn , kn , qn , and rn  are all positive integer scalars representing the number of 

vectors in the state IM , and their order follows the rules in the previous step. For example, 

jn  is the number of the first control nodes of the first element (1)e .  

A computational geometry-based criterion is introduced to identify the planar elements 

with which the particle might collide. If a material point is located in the hexahedron space 

occupied by the impactor element at time step t, it is assumed that these two may come into 

contact. As shown in Figure 8, two planar quadrilateral elements (1)e  and (2)e  are defined 

by four nodes each,  , , ,j k q rn n n n  and  , , ,l g k jn n n n , respectively. Each element occupies a 
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hexahedral space. If the particle enters this space, it may collide with its corresponding 

element. For this process, the criterion is divided into two parts in sequence: 

Part 1: Estimate whether the particle is in the range of the hexahedron occupied by the 

element in the y and the z directions. Taking Figure 8 as an example, the criterion is: 

If min 2 max ( )

min 2 max ( )

     ( , )
      ( , )

p p p

p p p

y y y y t
z z z z t

X x
X x

, then ( 2)px  is the candidate particle in contact with (2)e ,  

(14) 

in which miny  , maxy  , minz  , and maxz   are the minimum and maximum values of the four 

nodes of the elements ( )nlm , ( )ngm , ( )nkm , and ( )njm in the y and z directions, respectively. 

Part 2: Estimate whether the particle is in the hexahedron occupied by the element. 

Taking Figure 8 as an example, A , B , C , and D  are projections of ln , gn , kn , and 

jn  in the x–y plane, respectively; 2p  is the projection of ( 2)px . Then, the criterion is : 

If 
2 2 2 2

( )ABCD ABp BCp CDp DAp
S S S S S , then ( 2)px  may contact (2)e ,       (15) 

where S  represents the area of the triangle and  is an infinitesimal.  
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FIGURE 8 Schematic of particle–element contact detection 

If the particle is located on one face or a corner of the hexahedron corresponding to the 

element, more than one and fewer than seven elements may collide with it. 

3) Estimate whether particles penetrate elements. The relative positions of the point and the 

plane are analyzed based on their spatial geometry to this end. The equation of planar 

elements can be obtained through the coordinates of the elemental nodes, that is, 

0Ax By Cz D    . Taking element (2)e  as an example, the normal vector of the plane is 

calculated by: 
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 2 ( ) ( ) ( ) ( )( , , ) ( ) ( )e nk nl nj ngA B C    n m m m m ,                            (16) 

Then, D  is calculated by 0 0 0 ( )D A x B y C z       , in which 0 0 0 0 (2)( , , )M x y z e . In step 

(1), the control nodes of the element are arranged in a clockwise or counterclockwise 

direction. Therefore, there are four situations to judge whether the particle has penetrated the 

impactor: Situation 1, normal vector points to the outside of the impactor and the particle has 

not penetrated the impactor; Situation 2, normal vector points to the outside of the impactor 

and the particle has penetrated the impactor; Situation 3, normal vector points to the inside 

of the impactor and the particle has not penetrated the impactor; Situation 4, normal vector 

points to the inside of the impactor and the particle has penetrated the impactor, as shown in 

Figure 3.9. 
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(a) Situation 1 
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(b) Situation 2 
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(c) Situation 3 
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(d) Situation 4 

FIGURE 9 Classification of positional relationship between the particle and the element 

Then, the following simple criterion is developed to detect the penetrated particle and the 

element: 

If 
0 & 0

0 & 0

t t t t t t t t t
p p p p p p

t t t t t t t t t
p p p p p p

A x B y C z D A x B y C z D

or

A x B y C z D A x B y C z D

  

  

              


              

  then contact occurs.   

(17)  

Contact detection is thus completed. The relocation and the force of the particle in contact are 

calculated by following the procedure in Section 2.2, that is, 

( ) ( ) ( ) ( ) *t t t t t t t t
i pen rel pen d      x x x x n ,                                       (18) 

with 

 
2 2 2

p p pAx By Cz D
d

A B C

  


  .                                             (19) 
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4. Solution strategy for the FCCDA 

The PD solver established here follows the recommendation in Chapter 7 of Ref. [11], and its 

framework is embedded into the PD solver as a subroutine. To better understand the strategy for 

contact detection in the PD solver, we first review its numerical solution of impact events. As shown 

in Figure 10, the contact detection procedure is an extra-iterative procedure embedded in the time 

integration part of the PD solver.  

Start

Initialize geometry and material parameters;
Special discretization: PD nodes;

Input impactor model;
Input initial conditions  of the impact；

Construct family member array for each PD node.

Pre-existing crack Initial fail array

Start loop 1: over time steps,  n=1,2,…,Nt

Apply boundary condition;
Dilataion calculation for OSBPD

Loop 2: PD force calculation

Loop 3: update displacement, velocity, and 
accelaration

FCCDA procedure

End loop 1

End 

Output temporal results file

Yes 

No

 

FIGURE 10 The framework of the FCCDA in the PD solver 

Contact is detected and the contact force calculated in the FCCDA algorithm as shown in Figs. 
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11 and 12. Here, nodeN  represents the total number of material points in the PD domain, and eN  

represents the total number of discretized elements of the impactor. A pointer parameter 1P , whose 

value is zero in case of no contact and one in case of contact, is introduced to transfer the results of 

detection of the subroutines to the main program. Two subroutines make up the FCCDA framework; 

one is the main module controlling the start and end of contact detection, and to transfer relocation 

information to PD integration, as shown in Figure 11, and the other is an algorithm module to calculate 

the analytical geometry, shown in Figure 12. 

Start

Update location of impactor at current time step

 Start loop 1: point of interest,  i=1,2,…,Nnode

Update particle location according to Eq. (6)；
Initialize pointer P1←0.

Contact detection algorithm described 
in Section 3.2, output pointer P1

End loop 1

End 

Is particle inside the bounding box 
(described in Section 3.1)

Yes 
No

 P1←0

P1=1?
No

Yes 

 Loop 2: 
Relocate the particle according to Eq. (18), Eq. (19);

Update the velocity  according to Eq. (8);
Calculate the force according to Eq. (9) and Eq. (10).

 

FIGURE 11 Flowchart of the algorithm for the FCCDA 
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Start

 Start loop 1: elements  of impactor ,  e=1,2,…,Ne

Analytical field described in Part. 1 in Section 3.2:
Calculate: ymin, ymax, zmin, zmax.

Analytical field described in Part. 2 in Section 3.2:
Calculate: SABCD, SABP, SBCP, SCDP, SDAP by Heron’s 

Formula.

End loop 1

End 

Judge criterion Eq. (14)

Yes 

No

Judge criterion Eq. (15)
No

Calculate normal vector of each contacted element 
according to Eq. (16);

Calculate general equation of each element. 

Yes 

Judge criterion Eq. (17)
No

Yes 

Calculate relocation distance for each contacted 
particle according Eq. (19);

Relocated the particle according to Eq. (18). 

Yes 

 P1←0

 

FIGURE 12 Flowchart of the contact detection algorithm presented in Figure 11 

5. Validation on benchmark with a regular-shaped impactor 

In this section, we examine the benchmark event of a rigid cylinder impacting a plate to validate 

the accuracy of the FCCDA and illustrate its implementation. The results were compared with those 

of the original PD and FEM calculations in Abaqus software, and were found to be in good agreement. 

Moreover, grid sensitivity analysis was conducted to examine the convergence and mesh size of the 
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proposed method. 

5.1 Model setup 

As shown in Figure 13, a rigid cylindrical wall impacted an isotropic elastic plate that was 

initially stationary without any constraint. The rigid cylinder had a diameter of DC=0.05 m, thickness 

of HC=0.025 m, and a mass of mC=1.57 kg. It moved along the y direction with an initial velocity of 

vC=32.0 m/s. The geometric dimensions of the plate were length Lp=0.2 m, width Wp=0.1 m, and 

thickness Hp=0.009 m. Its material properties were: elastic modulus E=191 GPa, Poisson’s ratio 

υ=0.25, and mass density ρ=8000 kg/m3. In the PD domain, the total number of material points in the 

x, y, and z directions were 200, 100, and nine, respectively. Furthermore, the spacing between particles 

was Δp=0.001 m, the time step for calculation was Δt=1.0×10-7 s, and the total number of time steps 

was t=2000.  

Wp=0.1 m

DC=0.05 mMeshed rigid cylinder

Plate with meshfree discretization

x

y

z

Bounding box:
Lb=Wb=DC=0.05 m
Hb=0.01 m
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FIGURE 13 Model setup of a rigid cylinder impacting a rectangular plate 

Note that the optimal scheme of the bounding box is for it to contain all possible contact meshes. 

It was established as a cuboid with geometric dimensions of Lb=Wb =DC=0.05 m, and thickness 

Hb=0.01 m (slightly greater than the thickness of the plate). The bounding box moved with the 

impactor. This not only helped avoid searching for particles that could not collide with it, but also 

helped avoid searching for meshes that could not collide with the particles. This helped significantly 

reduce the amount of computation needed for contact detection. In addition, all mesh control nodes 

were arranged in counterclockwise order so that the normal vectors of the elements pointed to outside 

the cylinder. The criteria of contact detection for different parts of the cylinder are different according 

to Equation (17): 

0,     

0,     

C

C

t t t t t
p p p p

t t t t t
p p p p

A x B y C z D if y p

A x B y C z D if y p

        


        

                         (20) 

in which 
C

tp  represents the center of the cylinder at time step t .  

5.2 Mesh sensitivity analysis and numerical results 

The meshes of the cylindrical impactor were set to Δm=0.0001 m, Δm=0.0005 m, Δm=0.001 m, 

Δm=0.0015 m, and Δm=0.002 m, as shown in Figure 14. The particles in the picture are from the 

domain of PD discretization. Note that the mesh size Δm=0.0001 m is not depicted here owing to its 

poor clarity in a dense mesh. 
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(a) Δm=0.002 m          (b) Δm=0.0015 m          (c) Δm=0.001 m           (d) Δm=0.0005 m  

FIGURE 14 Different mesh divisions 

The results of calculation are provided in Figs. 15–17. Figure 15 shows the contours of the 

deformation of the plate in the x and y directions. The displacements in both directions were highly 

consistent. Because the impact-induced motion and deformation mainly occurred in the y direction, 

the deformation in the x direction was completely consistent. With the increase in grid size, a slight 

difference in deformation was obtained at the center of the plate. Consequently, under the condition 

that the mesh size was sufficiently large to encompass the outline of the impactor, it did not affect the 

convergence of the results of the FCCDA model, but was not very sensitive to the accuracy of the 

results. Therefore, we recommend examining the mesh size further to select an optimal grid size to 

ensure the accuracy and efficiency of the calculations. 

Figs. 16 and 17 compare the curves of the PD solution with the results of the FEM (including the 

deformation of the plate in Figure 16 and the motion of the impactor in Figure 17). The results of the 

FEM were obtained using Abaqus, where the grid size of the plate was the same as the particle spacing 

in the PD domain, and that of the cylinder was identical to that in the PD scheme. The results show a 

remarkable agreement between the PD-FCCDA scheme and the results of the FEM, which 

demonstrates the validity of the former. 
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(a) Δm=0.002 m    

  

  (b) Δm=0.0015 m           

  

(c) Δm=0.001 m       

  

(d) Δm=0.0005 m 
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(e) Δm=0.0001 m     

            

 (f) original PD solution 

FIGURE 15 Comparison of mesh sizes in the PD solution: displacements in the x (right) and y directions (left) of 

the plate when in contact with the cylinder. (color should be used) 
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(b) PD and FEA displacement predictions in the y-direction at a time step of 2000 along 
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(c) PD and FEA displacement predictions in the y-direction at a time step of 2000 along  

the central y-axis 

FIGURE 16 Comparison of the deformation of the plate in the PD solution and the FEM (color should be used) 
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(b) PD and FEA predictions for the displacement component in the y-direction at the centre of the cylinder as time 

progresses 
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(c) PD and FEA predictions for the velocity component in the y-direction at the center of the cylinder as time 

progresses 

FIGURE 17 Comparison of the movements of the impactor in the PD solution and the FEM (color should be 

used) 

 

6. Engineering applications of irregular-shaped impactor  

To show that the proposed algorithm is applicable to more complex conditions than those 

considered above, two engineering events are simulated in this section. The impactors in both cases 

were either irregular surfaces or complex surfaces with self-driven motion. The impactor considered 

in Section 6.1 was discretized by the preprocessor in LS DYNA while that in Section 6.2 was 

discretized by a meshing solver that we developed. The nodes of elements in both models were 

arranged in counterclockwise order. 

6.1 A ship hull breaks through an ice sheet  

The proposed algorithm was applied to interactions involving a ship and a submarine surfacing 
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through the ice in our previous work [15, 17, 28], in which numerical results had been compared with 

experimental results. In this section, we show the applicative value of the proposed algorithm and 

provide suggestions for tutorials for readers to apply the algorithm to their own cases. Note that the 

failure model in the PD method was included in the present case. 

An icebreaker breaking level ice of uniform thickness was simulated. Its principal dimensions 

were: length on the waterline 155 WLL m , breadth 23 WLB m , draft 9 T m , stem angle 24 deg  , 

and waterline angle 22 deg  . The geometric dimensions of the ice plate were length 150 iceL m , 

width 36 iceB m  , and thickness 2 H m  . The ice was assumed to be a homogeneous isotropic 

material with an elastic modulus of 1.8 GpaE  , Poisson’s ratio 0.25  , and density 3900 /kg m  . 

The icebreaker broke ice at a speed of 3 knots. For the discretization of the information and the 

numerical simulation, the grid size was set to = / 240x L  and the time step was =0.00376 s t .  

Figure 18(a) gives the discretization of the impactor (ship model) and Figure 18(b) provides the 

bounding box of the ship model. The mesh of the bow of the ship was refined to precisely identify 

contact as most contact events occur in this area, and abrupt changes in the surface curvature of the 

ship are noticeable in the area of the bow. The bounding box had a regular hexahedral shape, and 

contained the entire hull. The height, length, and width of the hexahedron were equal to those of the 

hull, respectively.  

  

     (a)  the discretization of the impactor model               (b) the model of boxing box  
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FIGURE 18 Scheme of the bounding box for the ship 

Figure 19 shows the ice-breaking process at different times: The snapshots on the left are views 

of ice damage with the ship model while the images on the right show only ice damage corresponding 

to scenes on the left side. In each time step, the detection algorithm perfectly calculated and 

redistributed the PD particles that were in contact with the hull. The ice was broken around the surface 

of the hull according to the nature of its collision, and then moved away from the hull. The modes of 

failure and crack propagation of ice were remarkably consistent with empirical observations. The 

contact force in time was calculated by Equation (10) and is plotted in Figure 20. It shows that the 

contact force changed periodically over time. This explains the phenomenon whereby the detected 

particles of collision moved along the surface of the hull instead of impacting it when they were 

completely destroyed and redistributed to their new positions. This is consistent with ice–ship 

interactions. The force in the z direction was larger than that in the x direction because the inclined 

bow broke the ice plate through gravity. A majority of the particles in contact with it were redistributed 

vertically, which also demonstrate the efficiency of the FCCDA.  

t   

(a) 18.8 t s  
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(b) 37.6 t s  

  

(c) 56.4 t s  

  

(c) 75.2 t s  
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FIGURE 19 Process of ship impacting ice 
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FIGURE 20 Curve of force of ship impacting ice 

The above engineering case shows that the following should be addressed with regard to the 

numerical processing of different impact events when applying the proposed algorithm. 

Grid refinement is an excellent method to improve the efficiency and accuracy of calculation, 

and is applicable to the following two situations: 1) In case of collision of a body with an irregular 

surface, appropriate mesh refinement measures can be used where the curvature changes significantly, 

while a coarse mesh can be used where the surface does not change significantly. 2) Different areas 

of the same impactor are in different degrees of contact with the target of collision, and thus the mesh 

can be refined in the critical area of the impactor. 

6.2 A propeller in contact with an ice block 

The geometry of the propeller is expressed by the chord length, pitch, thickness, camber, rake, 

and skew at different radii; it also rotates when operating. The outline of the propeller is much more 

complex than that of ships, and collision in it is accompanied by the rotation of its blades. This makes 

contact detection in case of collisions involving a propeller one of the more complex cases in 

engineering analysis. Ice–propeller interactions include cutting, collision, and milling. The 

application of the PD method and the contact detection algorithm to propeller–ice interaction during 

milling has been validated in our previous work [29, 30]. The purpose of considering such a case here 
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is to illustrate the efficient application of the proposed contact algorithm when encountering impact 

involving complex objects.  

As shown in Figure 21(b), a propeller with four blades impacting an ice sphere was simulated. 

The propeller model was a product of the optimized design obtained by referring to the 1200 series 

R-class Ice Class propeller installed on the Canadian Coast Guard R-class icebreaker [31]. The 

parameters of the propeller model, as shown in Figure 20(a), were as follows: diameter 4.12 pD m , 

hub-to-diameter ratio 1.24hr  , and pitch ratio 0.76P  . The bounding box for propeller–ice contact 

was designed as depicted in Figure 6, and the details of the implementation of contact detection 

between the blades and ice have been provided in our previous work [29]. The mechanical properties 

of the ice sphere with a diameter 0.01 mD  were as follows: elastic modulus 1.8 GPaE  , Poisson’s 

ratio =0.25 , density 3=900 kg/m , critical stretch 0 0.032s  , time step 0.0348 mst  , and particle 

space 0.0005 mx  . The ice sphere moved with velocity 20.0 m/sicev   along the direction of the 

shaft of the propeller while the propeller rotated with a velocity of 3 rpsprov  . 

  

(a) The discretization of the propeller  (b) ice-propeller contact model 

FIGURE 21 Model of propeller impacting ice. 

Figure 22 shows the ice breaking at different times when it collides with the propeller during the 
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reversal of the latter. When the ice hit the blades of the propeller, it broke into smaller pieces of 

varying sizes. The contact detection algorithm perfectly captured the ice particles in the collision area. 

The collision phenomenon also accorded with the empirical characteristics of collision in case of ice–

propeller interaction. 

  
（a） =t 6.96 ms                 （b） =t 13.92 ms 

  
（c） =t 20.88 ms                 （d） =t 27.84 ms 

 

FIGURE 22 Dynamic process of ice failure in case of propeller–ice impact (reversal). (color should be used) 

The above case shows that the FCCDA can be usefully applied to cases of the complex impact 

event, and can solve for contact related to unusual surface profiles and dynamic motion. It extends 

the scope of application of the PD method and generalizes the physical problems that it can solve. 

7. Conclusions 

This study proposes a fast and continuous contact detection algorithm (FCCDA) to detect contact 

in case of impact by using Peridynamics. The FCCDA discretizes the impactor into numbers of plane 
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elements, and detects contact by judging the positional relationship between the particles and planes 

in the PD domain based on geometric graphics. The algorithm consists of a bounding box and the 

process of contact detection. The bounding box reduces the need to search for unnecessary particles 

to make the method more efficient. The contact detection process is the core process of the algorithm, 

and involves the redistribution of particles in contact and the calculation of the contact force. 

A benchmark case of a rigid cylinder impacting an elastic plate was used to validate the proposed 

model, and a sensitivity analysis of the mesh size was conducted to illustrate the characteristics of the 

proposed FCCDA. A good agreement was obtained between the results of the FEM and the PD 

solution. Moreover, two more engineering cases were used to highlight the advantages of its 

application to complex engineering problems. 

The following conclusions can be drawn: 

1) The benchmark cases showed that the proposed contact algorithm can accurately simulate 

the collision problem in PD mechanics. 

2) The mesh size has a weak influence on the numerical results under the condition that the 

shape of the impactor is adequately modeled. However, a sensitivity analysis of mesh size is 

still recommended to ensure the accuracy of the method in specific cases. 

3) The proposed algorithm has excellent applicative effect, and boasts advantages in solving 

collision problems involving objects with complex shapes. 

4) For different impacting objects, mesh refinement can be carried out in case of sharp changes 

in shape or on key collision parts. 

Although these have not been strictly derived and verified by numerical examination, the 

proposed method also has the following characteristics: 
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1)  It can be applied to most particle-based methods, such as the SPH. These are non-local 

particle discretization methods like the PD method. Therefore, this method is applicable when 

calculating collision between SPH-controlled objects and arbitrary targets. 

2)  It can also be applied to the problem of coupling of particles and grid methods, such as the 

FEM, as it is based on the mesh-related features of surface form. 
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