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Abstract
Following the analysis on the stability in distribution of stochastic differ-
ential equations discussed in Fei, Fei & Mao (2023) [11], this article fur-
ther investigates the stability in distribution of highly nonlinear stochastic
differential equations driven by G-Brownian motion (G-HNSDEs). To this
end, by employing the theory on sublinear expectations, the stability in
distribution of G-HNSDEs is analysed. Moreover, a sufficient criterion of
the stability in distribution of G-HNSDEs is provided for convenient use.

Keywords: G-HNSDEs; sublinear expectation; stability in distribution; Chebyshev
inequality; G-Itô formula.

1 Introduction
For the past decades, stochastic differential equations (SDEs) and their stabili-
ties have become an active area of stochastic analysis. The convergence of SDEs
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2 Asymptotic stability in distribution of G-HNSDEs

includes four types of convergence in probability theory, namely, stability in distri-
bution, stability in probability as well as moment stability and almost sure stability.
And almost sure stability and moment stability have received enormous attention.
Recently, in references [3, 4, 24], they investigated the pth moment exponential stabil-
ity, h-stability in pth moment, and partial asymptotic stability of neutral pantograph
stochastic differential equations with Markovian switching. The stability of highly
nonlinear hybrid stochastic delay equations is also discussed, see, e.g., [15, 17],
and references therein. The main tools used to show the results are the Lyapunov
function method, Razumikhin or comparison techniques. As far as we know, there
are some studies on the stability in distribution of SDEs. Among them, [35, 36]
provided a notable contribution to the stability in distribution. In [8], the authors
discussed a new sufficient condition for stability in distribution of stochastic differen-
tial delay equations with Markovian switching. [6] improved the results on stability
in distribution of nonlinear SDEs in [35]. In [1] and [28], the stability in distribu-
tion of neutral delay SDEs is investigated. [2] researched the stability in distribution
of Markovian delay SDEs with reflection. In [18], the stability in distribution of
neutral stochastic functional differential equations with Markovian switching is dis-
cussed. [37] studied the stability in distribution of stochastic delay recurrent neural
networks with Markovian switching. [22] analyzed the stability in distribution for
SDEs with memory driven by positive semigroups and Lévy processes. [29] explored
the asymptotic stability in distribution of stochastic systems with semi-Markovian
switching. [30] further investigated the stability in distribution of stochastic func-
tional differential equations. Recently, [20] considered the stabilization in distribution
of hybrid stochastic differential equations by feedback control based on discrete-time
state observations while the stabilisation in distribution by delay feedback control for
hybrid SDEs is studied in [34].

On the other hand, much work of SDEs driven by G-Brownian motion is studied
by many researchers, e.g., [7, 9, 10, 12, 14, 16, 19, 21, 26, 27, 32, 38], and the
references therein.

Recently, [11] explored the stability in distribution of SDEs driven by G-
Brownian motion, where the coefficients of SDEs are linear growth or bounded by
linear functions. To the best of our knowledge, the stability in distribution of highly
nonlinear SDEs driven by G-Brownian motion (G-HNSDEs) is not investigated yet.
In this article, we try to discuss the stability of the following G-HNSDE

dX(t) = f (X(t))dt +g(X(t))dB(t)+h(X(t))d < B > (t) (1)

on a sublinear expectation space (Ω,H , Ê).
The main contributions of this paper are as follows.

• We first investigate the stability in distribution of G-HNSDEs by using theory of
sublinear expectations.
• The related criteria of the stability in distribution of G-HNSDEs are given.
• Some mathematical techniques under sublinear expectation are employed.

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion
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The remaining part of this paper can briefly be stated as follows: Section 2 pro-
vides some definitions and assumptions for the derivation of main results. In Section
3, we prove the main results of the paper. In Section 4, an example is presented to
illustrate the obtained results. Sect. 5 concludes the paper and points out some future
research.

2 Definitions and Assumptions
Let (Ω,H , Ê) to be sublinear expectation space. Here, Ω is a given state set and H a
linear space of real valued functions defined on Ω. The related notions and properties
of sublinear expectation are referred to [26]. For the notions of stochastic processes,
the uncertainty probability family P and upper capacity V (or lower capacity V ),
we see [11, 12].

Definition 2.1. (i). The distribution Fξ generated by d-dimensional random variable
ξ in H is defined by

Fξ (A) = V{ω ∈Ω : ξ (ω) ∈ A}= Ê[1{ω∈Ω:ξ (ω)∈A}], ∀A ∈B(Rd).

(ii). For random variables ξ and η , we denote their distributions by Fξ and Fη ,
respectively. Define the distance of distributions of random variables ξ and η as
follows

dT(Fξ ,Fη) = sup
φ∈T
|Ê[φ(ξ )]− Ê[φ(η)]|,

where T= {φ : Rd → R : |φ(x)−φ(y)|≤ |x− y| and |φ(·)|≤ 1}.
(iii). For the stochastic process (x(t))t≥0 on sublinear expectation space

(Ω,H , Ê,V,(Ht)t≥0), we denote the distribution of x(t) by Fx(t) for each t ∈ [0,∞).
If there is a distribution ν(·) of the random variable such that

dT(Fx(t),ν)→ 0, as t→ ∞,

then the stochastic process (x(t))t≥0 is called the (asymptotic) stability in distribution.
We also call the process (x(t))t≥0 converges weakly to the distribution ν .

Denote the family of capacities on Rd by C (B(Rd)). It is easy to know that the
metric dT on C (B(Rd)) is a distance, and (C (B(Rd)),dT) is a Polish space.

Now we consider the stochastic differential equation (1) with initial value X(0) =
x, where (B(t))t≥0 is the G-Brownian motion in R on the generalized nonlinear
expectation space (Ω,H , Ê,V,(Ht)t≥0), and

f : Rd → Rd , g : Rd → Rd , h : Rd → Rd .

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion



4 Asymptotic stability in distribution of G-HNSDEs

For Eq. (1), we provide the following locally Lipschitzian condition. Let K denote
the family of increasing functions κ : R+ → R+ such that κ(0) = 0, and K∞ the
family of functions κ ∈K such that κ(s)→ ∞ as s→ ∞.

Assumption 2.2 The coefficients of SDE (1) satisfy the local Lipschitzian condition, that is,
for each k ∈ N, there is a bk > 0 such that

| f (x)− f (y)|2+|g(x)−g(y)|2+|h(x)−h(y)|2≤ bk|x− y|2, ∀|x|∨|y|≤ k.

Assumption 2.3 There are functions V ∈C2(Rd ; R+), λ ∈K∞ and a positive number ϖ such
that

lim
|x|→∞

V (x) = ∞ (2)

LV (x)≡Vx(x) f (x)+G(2Vx(x)h(x)+ trace[g>(x)Vxx(x)g(x)])≤−λ (x)+ϖ . (3)

Assumption 2.4 There are functions W ∈ C2(Rd ; R+), υ ∈ K∞ and νR ∈ K for R > 0
satisfying

W (0) = 0

υ(|x|)≤W (x), x ∈ Rd

LW (x,y) =Wx(x− y)[ f (x)− f (y)]+G(2Wx(x− y)[h(x)−h(y)]

+ trace([g(x)−g(y)]>Wxx(x− y)[g(x)−g(y)]))≤−ν
R(|x− y|), ∀|x|∨|y|≤R. (4)

3 Main Results
In this section, we shall show our main results on asymptotic stability in distribution
of SDEs driven by G-Brownian motion.

Proposition 3.1 Let Assumptions 2.2 and 2.3 hold. Then, for each initial value x∈Rd , there is
a unique global solution, denoted by Xx(t), to SDE (1) with initial value X(0) = x. Moreover,
for H > 0, we can find K̄ = K̄(H)> 0 such that

1
t

∫ t

0
Ê[λ (Xx(s))]ds≤ K̄, ∀|x|≤ H, t ≥ 1.

Proof. Under Assumption 2.2, by Fei et al. [14, Theorem 3.4], SDE (1) has a max-
imal solution Xx(t) on [0,σ∞), where σ∞ is the explosion time of solution. We now
need to prove σ∞ = ∞ q.s. If this is not true, then we can find two positive constants
ε,T such that

V {σ∞ ≤ T}> 2ε.

For any integer k ≥ 1, define the stopping time

σk = inf{t ≥ 0 : |X(t)|≥ k}.

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion
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Since σk→ σ∞ q.s. as k→ ∞, we can find a sufficiently large integer k0 such that

V {σk ≤ T}> ε, k ≥ k0. (5)

Fix any k ≥ k0, and t ∈ [0,T ], from the G-Itô formula from Peng [26, Proposition
3.6.3] and Assumption 2.3, we get

Ê[V (X(t ∧σk))]≤V (x)+ Ê
[∫ t∧σk

0
LV (Xx(s))ds

]
≤V (x)+ϖT,

which shows

Ê[1{σk≤t}V (X(σk))]≤V (x)+ϖT. (6)

On the other hand, if we set

`k = inf{V (x) : |x|≥ k},

then `k→ ∞ as k→ ∞ by (2). From (5) and (6), we have, k ≥ k0,

ε`k ≤ `kV {σk ≤ T} ≤ `kV{σk ≤ T} ≤V (x)+ϖT,

which shows a contradiction. Thus, we know σ∞ = ∞. q.s.
Define stopping time

υk = inf{t ≥ 0 : |Xx(t)|∨|Xy(t)|> k},k ∈ N.

Therefore, we have υk→∞ q.s. as k→∞. From the G-Itô formula, we have, for each
P ∈P ,

EP[V (Xx(t ∧υk))]≤V (x)+EP

[∫ t∧υk

0
(ϖ −λ (Xx(s)))ds

]
which shows

Ê
[∫ t∧υk

0
λ (Xx(s))ds

]
≤V (x)+ϖt.

Letting k→ ∞, by Fatou’s lemma, we get

1
t
Ê
[∫ t

0
λ (Xx(s))ds

]
≤ ϖ +

1
t

V (x)≤ K̄(H), ∀|x|≤ H, t ≥ 1.

Thus, we complete the proof. �

Proposition 3.2 Let Assumptions 2.2, 2.3 and 2.4 hold. SDE (1) has the property that for
positive constants H,ε,δ , there is a positive constant T = T (H,ε,δ ) such that

V {|Xx(t)−Xy(t)|≤ δ , ∀t ≥ T} ≥ 1− ε, (7)

for all |x|∨|y|≤ H.

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion



6 Asymptotic stability in distribution of G-HNSDEs

Proof. Take arbitrarily x,y ∈ Rd with |x|∨|y|≤ H. Let arbitrarily δ > 0 and ε1 > 0.
First, we shall verify, for bounded stopping times τ1 ≤ τ2,

Ê[W (Xx(τ2)−Xy(τ2))]≤ Ê[W (Xx(τ1)−Xy(τ1))]≤W (x− y) (8)

and

0≤W (x− y)+ Ê
[∫

τ1

0
LW (Xx(s),Xy(s))ds

]
. (9)

In fact, for the stopping time υk defined as above, by using G-Itô formula and (4), we
get

0≤ Ê[W (Xx(τ1∧υk)−Xy(τ1∧υk))]

≤W (x− y)+ Ê
[∫

τ1∧υk

0
LW (Xx(s),Xy(s))ds

]
≤W (x− y).

Consequently, letting k→ ∞, by Fatou’s lemma, we have ÊW (Xx(τ1)−Xy(τ1)) ≤
W (x− y). Similarly, we get

Ê[W (Xx(τ2)−Xy(τ2))]≤ Ê[W (Xx(τ1)−Xy(τ1))].

Then (8) holds. Note

−Ê
[∫

τ1∧υk

0
LW (Xx(s),Xy(s))ds

]
≤W (x− y).

Thus, letting k→ ∞, we get (9).
Since lim

ζ→∞

λ (ζ ) = ∞, for any ε1 > 0, there is a sufficient large H such that

inf
ζ≥H

λ (ζ ) ≥ 2K̄/ε2
1 with K̄ defined by Proposition 3.1. Therefore, by Chebyshev

inequality (see [5, Proposition 2.1]) we get

V{|Xx(t)|∨|Xy(t)|> H} ≤ V{|Xx(t)|> H}+V{|Xy(t)|> H}

≤ ε2
1

2K̄
(Ê[λ (|Xx(t)|)]+ Ê[λ (|Xy(t)|)]). (10)

Due to W (0) = 0, there is a ρ ∈ (0,δ ) such that

sup
|u|≤ρ

W (u)/υ(δ )≤ ε1.

Define the stopping time

τρ = inf{t ≥ 0 : |Xx(t)−Xy(t)|≤ ρ and |Xx(t)|∨|Xy(t)|≤ H}.

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion
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Moreover, by (4), we have, for each P ∈P ,

EP

[∫
τρ∧t

0
LW (Xx(s),Xy(s))ds

]
= EP

[∫ t

0
1{0≤s≤τρ}LW (Xx(s),Xy(s))ds

]
≤ EP

[∫ t

0
1{|Xx(s)|∨|Xy(s)|≤H}1{0≤s≤τρ}LW (Xx(s),Xy(s))ds

]
≤−ν

H(ρ)EP

[∫ t

0
1{|Xx(s)|∨|Xy(s)|≤H}1{0≤s≤τρ}ds

]
. (11)

On the other hand, we have

EP

[∫ t

0
1{0≤s≤τρ}ds

]
−EP

[∫ t

0
1{|Xs(s)|∨|Xy(s)|≤H}1{0≤s≤τρ}ds

]
= EP

[∫ t

0
1{|Xs(s)|∨|Xy(s)|>H}1{0≤s≤τρ}ds

]
.

In terms of the Hölder inequality, (10) and Proposition 3.1, we have(
Ê
[∫ t

0
1{|Xx(s)|∨|Xy(s)|>H}1{0≤s≤τρ}ds

])2

≤
∫ t

0
Ê[1{|Xx(s)|∨|Xy(s)|>H}]ds

∫ t

0
Ê[1{0≤s≤τρ}]ds

≤ t
ε2

1
2K̄

∫ t

0
(Ê[λ (|Xx(s)|)]+ Ê[λ (|Xy(s)|)])ds≤ (ε1t)2, t ≥ 1,

which implies, for each P ∈P ,

EP

[∫ t

0
1{|Xx(s)|∨|Xy(s)|>H}1{0≤s≤τρ}ds

]
≤ ε1t, t ≥ 1.

Thus, we get

EP

[∫ t

0
1{|Xx(s)|∨|Xy(s)|≤H}1{0≤s≤τρ}ds

]
≥ EP[τρ ∧ t]− ε1t,

which shows, by (11),

EP

[∫ t∧τρ

0
LW (Xx(s),Xy(s))ds

]
≤−ν

H(ρ)EP

[∫ t

0
1{|Xx(s)|∨|Xy(s)|≤H}1{0≤s≤τρ}ds

]

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion



8 Asymptotic stability in distribution of G-HNSDEs

≤−ν
H(ρ)(EP[τρ ∧ t]− ε1t).

From the Itô formula, we get, for each P ∈P ,

0≤W (x− y)+EP

[∫
τρ

0
LW (Xx(s),Xy(s))ds

]
.

Thus, we have

0≤W (x− y)+ν
H(ρ)ε1t−ν

H(ρ)EP[τρ ∧ t]

which implies EP[τρ ∧t]≤ W (x−y)
νH (ρ)

+ε1t. Hence, due to arbitrariness of P∈P , we get

tV{τρ ≥ t} ≤ Ê[τρ ∧ t]≤ W (x− y)
νH(ρ)

+ ε1t, t ≥ 1,

which shows that there exists a T > 1 such that

V{τρ ≥ T} ≤ 2ε1. (12)

Now define the stopping time ρ = inf{t ≥ τρ : |Xx(t)−Xy(t)|≥ δ}. Thus, define

σρ = { ρ, if τρ ≤ T,
τρ , otherwise.

Since σρ ≥ τρ , we get, from (8),

Ê[W (Xx(σρ ∧ t)−Xy(σρ ∧ t))]≤ Ê[W (Xx(τρ ∧ t)−Xy(τρ ∧ t))].

Furthermore, we have

Ê[1{τρ≤T}W (Xx(σρ ∧ t)−Xy(σρ ∧ t))]

≤ Ê[1{τρ≤T}W (Xx(τρ ∧ t)−Xy(τρ ∧ t))]. (13)

Then, by (13) we deduce, for t > T ,

V({τρ ≤ T}∩{ρ < t})υ(δ )
≤ Ê[1{τρ≤T}∩{ρ<t}W (Xx(ρ ∧ t)−Xy(ρ ∧ t))]

≤ Ê[1{τρ≤T}W (Xx(ρ ∧ t)−Xy(ρ ∧ t))]

= Ê[1{τρ≤T}W (Xx(σρ ∧ t)−Xy(σρ ∧ t))]

≤ Ê[1{τρ≤T}W (Xx(τρ ∧ t)−Xy(τρ ∧ t))]

≤ V{τρ ≤ T} sup
|u|≤ρ

W (u)≤ sup
|u|≤ρ

W (u).

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion
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Due to sup|u|≤ρ W (u)≤ ε1υ(δ ), it follows that

V({τρ ≤ T}∩{ρ < t})< ε1, ∀t > T,

which shows, letting t→ ∞,

V({τρ ≤ T}∩{ρ < ∞})≤ ε1.

Moreover, through (12), we have

V ({τρ ≤ T}∩{ρ = ∞})
≥ 1−V(τρ > T )−V({τρ ≤ T}∩{ρ < ∞})≥ 1−3ε1.

We know that if ω ∈ {τρ ≤ T}∩{ρ = ∞}, then |Xx(t)−Xy(t)|< δ , ∀t ≥ T. Thus,
for positive constants H,δ ,ε = 3ε1, there is a T = T (H,δ ,ε) such that

V
{

sup
t≥T
|Xx(t)−Xy(t)|≤ δ

}
> 1− ε, ∀|x|∨|y|≤ H.

Thus, the proof is complete. �

Lemma 3.3 Let Assumptions 2.2, 2.3 and 2.4 hold. Then, for any compact subset K of Rd , we
have

lim
t→∞

dT[FXx(t),FXy(t)] = 0 (14)

uniformly in x,y ∈ K.

Proof. From Proposition 3.1, it is easy to show that for positive numbers R,δ ,ε , we
can find a positive constant H = H(R,δ ,ε) such that

V
{

sup
0≤t≤T

|Xx(t)|≤ H
}
> 1− ε, |x|≤R.

Together with Proposition 3.2, we can deduce the desired claim. Thus, the proof is
complete. �

We now prove our main result below.

Theorem 3.4 Let Assumptions 2.2, 2.3 and 2.4 hold. Then, there exists an invariant measure
(upper capacity) ν ∈ C (B(Rd)) such that

lim
t→∞

dT(FXx(t),ν) = 0. (15)

That is, the transition measures FXx(t) converge weakly to the invariant measure ν for all
x ∈ Rd .

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion



10 Asymptotic stability in distribution of G-HNSDEs

Proof. Fix probability measure P(σ·) ∈P arbitrarily. Let the invariant measure of
random variable ξ0

ν = sup
P(σ·)∈P

ν
P(σ·)

while we set
ν = inf

P(σ·)∈P
ν

P(σ·)
.

Furthermore, there exists an invariant probability measure ν(σ·) = νP(σ·) from [25,
Theorem 4.5]. Denote the classical transition probability measure by p(σ·)(t,z,du)
under probability measure P(σ·). We easily know that

EP(σ·) [φ(ξ0)] =
∫
Rd

φ(u)ν(σ·)(du)

=
∫
Rd

φ(u)
(∫

Rd
p(σ·)(t,ζ ,du)ν(σ·)(dζ )

)
=
∫
Rd

(∫
Rd

φ(u)p(σ·)(t,ζ ,du)
)

ν
(σ·)(dζ )

=
∫
Rd

EP(σ·) [φ(X
ζ (t))]ν(σ·)(dζ ). (16)

For any z ∈ Rd , from (16), we derive

|EP(σ·) [φ(X
z(t))]−EP(σ·) [φ(ξ0)]|

=
∣∣∣∫

Rd

(
EP(σ·) [φ(X

z(t))]−EP(σ·) [φ(X
ζ (t))]

)
ν
(σ·)(dζ )

∣∣∣
≤
∫
Bm

∣∣∣EP(σ·) [φ(X
z(t))]−EP(σ·) [φ(X

ζ (t))]
∣∣∣ν(σ·)(dζ )

+
∫
Bc

m

∣∣∣EP(σ·) [φ(X
z(t))]−EP(σ·) [φ(X

ζ (t))]
∣∣∣ν(σ·)(dζ )

≤ sup
ζ∈Bm

|EP(σ·) [φ(X
z(t))]−EP(σ·) [φ(X

ζ (t))]|ν(Bm)+2ν(Bc
m), (17)

where Bm = {x ∈ Rd : |x|≤ m} and Bc
m = (Rd \Bm) and m ∈ N is selected to be suf-

ficiently large such that ν(Bm)≥ 1− ε

4 , which shows ν(Bc
m)≤ ε/4. By the classical

property of stability in distribution (see, e.g. Theorem 2.3 in Dang [6]), there exists a
T = T (Bm,ε)> 0 such that

sup
ζ∈Bm

|EP(σ·) [φ(X
z(t))]−EP(σ·) [φ(X

ζ (t))]<
ε

2
.

Moreover, from Lemma [11, Lemma 2.2], we get

sup
ζ∈Bm

dT(FXz(t),FXζ (t))<
ε

2
, ∀t ≥ T.

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion
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Since φ is taken arbitrarily, it follows from (16) and (17) that dT(FXz(t),ν)< ε, ∀t ≥
T. Thus the proof is complete. �

4 Example
In this section, we provide an example for illustrating our conclusions.

Example 4.1. We now consider stability in distribution of the stochastic logistic
model

dX(t) = X(t)(a−bX(t))dt + cX2(t)dB(t), (18)

where a,b,c are positive constants. Denote the family of uncertain probability mea-
sures of G-HNSDE (18) by P associated to sublinear expectation Ê. For each P∈P ,
by Luo and Mao [23, Theorem 2.2], we have that if x > 0, then 0 < Xx(t) = X(t)< ∞

P-a.s., which easily shows 0 < Xx(t) = X(t)< ∞ P-q.s. Let Y (t) = lnX(t). By G-Itô
formula, SDE (18) becomes

dY (t) =
(

a−beY (t)
)

dt− c2

2
e2Y (t)d < B > (t)+ ceY (t)dB(s). (19)

For equation (19), the local Lipschitzian condition (Assumption 2.2) is obviously
fulfilled. Furthermore, we consider the function V (y) = ey + e−y > 0, ∀y ∈ R, we
deduce

LV (y) = a(ey− e−y)−b(e2y−1)+ σ̄
2c2ey.

Note

ϖ = sup
y∈R
{LV (y)+ϑV (y)}

= sup
y∈R

{
(a+ σ̄

2c2 +ϑ)ey− (a−ϑ)e−y−b(e2y−1)
}
.

Then, ϖ < ∞ as 0 < ϑ < a. Hence, for the case of 0 < ϑ < a, we have LV (y) ≤
ϖ −ϑV (y), ∀y ∈ R. Thus, Assumption 2.3 holds for 0 < ϑ < a.

On the other hand, put W (u) = u2. We consider two solutions of (19) with initial
values being y,z. Thus, we deduce

LW (y,z) =−2(y− z)b(ey− ez)

+G
(
−2c2(y− z)(e2y− e2z)+2c2(ey− ez)2

)
=−2b(y− z)(ey− ez)+2c2G

(
− (y− z)(ey− ez)(ey + ez− ey− ez

y− z
)
)
.

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion



12 Asymptotic stability in distribution of G-HNSDEs

Note that ey+ez− ey−ez

y−z > 0, ∀(y,z)∈R×R. Moreover, by the definition of G(·),
we have

G
(
− (y− z)(ey− ez)(ey + ez− ey− ez

y− z
)
)
≤ 0.

Thus we have

LW (y,z)≤−2b(y− z)(ey− ez), ∀(y,z) ∈ R×R.

Since LW (y,z) → 0 as y → −∞ and z → −∞, there is no ϕ ∈ K such that
LW (y,z) ≤ −ϕ(|y− z|). It shows that the function W (u) = u2 does not satisfy
Assumption 2.4. But, for each R > 0, and |y|∨|z|≤ R, we have LW (y,z)≤−2b(y−
z)(ey − ez) ≤ −CR(y− z)2 with CR = 2be−R. Thus, Assumption 2.4 holds for the
function W (·). Moreover, SDE (19) is asymptotically stable in distribution. Conse-
quently, by Theorem 3.4, SDE (18) is asymptotically stable in distribution on state
space (0,+∞).
(Algorithm and simulation) In order to illustrate stability in distribution of solution
of SDE (18), we provide an algorithm as follows. We select σ = σ0 < σ1 < · · · <
σm = σ̄ such that σi+1−σi =σi−σi−1, i= 1, · · · ,m. Let h be a small positive number.
For any t > 0, there a positive integer k such that t ∈ [(k− 1)h,kh). The discrete
approximation solution of SDE (4.1) with probability measure P(σi) can be expressed
as

X j(kh,σi) =X j((k−1)h,σi)+X j((k−1)h,σi)(1−X j((k−1)h,σi))h

+(X j((k−1)h,σi))
2
σi∆w j, k ≥ 1, i≥ 0,

where ∆w j ( j = 1, · · · ,n) are random numbers from the normal distribution ∆w j ∼
N(0,h). Define the empirical distribution function of random variable X(kh) as
follows

ϒ
i
k(x) :=

1
n

n

∑
j=1

1{X j(kh,σi)≤x}, ∀x ∈ R.

Define the error of two empirical distributions of ϒi
k1
(x) and ϒi

k2
(x) by

e(tk1 , tk2 ; x) =
1

m+1

m

∑
i=0
|ϒi

k1
(x)−ϒ

i
k2
(x)|, ∀x ∈ R.

If the empirical error e(tk, tk +`; x) converges to zero uniformly in x ∈R as k, `→∞,
then we claim stability in distribution of solution of SDE (4.1). A simulation finds
e(tk, tk + `)→ 0 as k→ ∞ (see Figure 1) which verifies our theoretical assertion. In
real simulation, the empirical distribution at t = 10 is regarded as a true one. We
observe that other empirical distributions at time t ∈ [0,5] approximate the degree of
the true distribution. The differences between the empirical distributions and the true
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Fig. 1: The computer simulation of the empirical errors e(tk, tk + `) with a = b = c =
1,σ = 0.8, σ̄ = 1, x0 = 1,h = 0.005,n = 2000,m = 10.

distribution along the time line are plotted in Figure 1. It can be shown that as time
advances the difference tends to zero, which verifies that the solution of SDE (18) is
the stability in distribution.

5 Conclusions
Presently, the analysis on the stability in distribution of stochastic differential
equations is mainly based on linear or nonlinear SDEs which coefficients are bounded
linear functions. However, our paper further studies the stability in distribution of
highly nonlinear stochastic differential equations under sublinear expectation frame-
work. For our aim, by using the stochastic analysis on G-Brownian motion, we
investigate the stability in distribution of highly nonlinear stochastic differential
equations disturbed by G-Brownian motion. The sufficient criterion of the stability
in distribution of G-HNSDEs is given explicitly.

Recently, with classical probability space, [13] discussed the stabilization
of highly nonlinear hybrid stochastic differential equations under feedback con-
trol based on discrete-time state observations. In [31], authors investigated the
discrete-state-feedback stabilization of highly nonlinear hybrid stochastic differen-
tial equations by Razumikhin method. The stabilization in distribution of hybrid
stochastic differential equations by feedback control based on discrete-time state
observations is discussed in [20]. On nonlinear expectation space, [33] explored sta-
bilization of stochastic differential equations driven by G-Brownian motion with
feedback control based on discrete-time observations. Thus, we shall investigate
the stabilization in distribution of highly nonlinear stochastic differential equations
driven by G-Brownian motion by using feedback control based on discrete-time
observations.

Asymptotic stability in distribution of highly nonlinear stochastic differential equations with G-Brownian motion
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