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Abstract

An algorithm and numerical code for the up-sampling of a system of particles, from a smaller
to a larger number, is described. The method introduces a Poissonian ‘shot-noise’ to the up-
sampled distribution, typical of the noise statistics arising in a bunch of particles generated by
a particle accelerator. The algorithm is applied to a 6-Dimensional phase-space distribution of
relatively few simulation particles, representing an electron beam generated by particle accel-
erator modelling software, for subsequent injection into an Free Electron Laser (FEL) amplifier
which is used here to describe the model. A much larger number of particles is usually required
to model the FEL lasing process than is required to model the electron beam accelerators that
drive it. A numerical code developed from the algorithm was then used to generate electron
bunches for injection into to an unaveraged 3D FEL simulation code, Puffin. Results show good
qualitative and quantitative agreement with analytical theory. The program and user manual
is available for download.
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1. Introduction

Particle In Cell software usually runs faster with fewer simulation particles, with the op-
timum number determined by the degree of finesse required to model the physical processes.
Sometimes it is necessary to increase the degree of detail being modelled in moving from one
physical process to another. This may require an increase in the number of simulation particles
in moving between simulation codes. For example, when modelling an X-ray Free Electron
Laser (FEL) [1], the number of simulation particles used to model the acceleration stages of the
FEL often needs to be increased before simulation of the FEL itself. This is mainly due to the
fine longitudinal electron bunching structures at the FEL radiation wavelength that need to be
modelled. Such fine detail is very often not used when modelling the accelerator stages before
the FEL as it would be computationally inefficient, for example when simulations are used to
optimise these stages by scanning over different parameters. The data set from the accelerator
stages therefore often have a relatively sparse ‘macroparticle’ distribution in phase space, each
of which represents many electrons, and which do not model the Poissonian noise statistics of a
real electron distribution. Here, a method is described which breaks up this sparse phase–space
distribution of macroparticles into a greater number of ‘microparticles’, each representing fewer
electrons, to give a more dense phase–space distribution that is suitable for injection into an
FEL simulation code such as Puffin [2, 3], which is used here as the target code to demonstrate
the methods used. Furthermore, the method ensures that the microparticle distribution has
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the correct Poissonian shot–noise statistics of a real electron beam [4]. This is necessary to
simulate the spontaneous light generation which arises from the shot-noise and acts as the seed
field from which shorter wavelength amplifier FELs start up in the Self Amplified Spontaneous
Emission (SASE) mode of operation [1].

Of course, any fine phase-space structures that may develop in a real electron beam, but that
are not captured by the macroparticle distribution from the accelerator/beam transport system
simulations, would not be present in any up-sampled microparticle distribution. A smoothing of
the macroparticle distribution is carried out before the microparticles are assigned: too small a
smoothing function width and the individual macroparticles remain visible in the microparticle
distribution; too wide and finer structures in the macroparticle distribution are smoothed out.
The widths of these smoothing functions therefore limit the scales at which a real electron
beam can be modelled by the final microparticle distribution, and need to be chosen carefully.
It is clearly important to maintain the beam characteristics, such as current, emittance, energy,
energy spread and spatial dimensions, as close to the original accelerator simulator generated
macroparticle distribution as possible. However, given the wide range of possible particle
distributions that may occur, it would be difficult to prescribe a general method to do this and
it is left to the user to choose smoothing parameters appropriate for their requirements.

In Sections 2 to 5 the method of generating the microparticle distribution is described in
more detail. Before a FEL simulation using Puffin, the microparticles should be initialised by
distributing them longitudinally along the electron beam propagation direction, here the z–axis,
with sufficient longitudinal density to allow modelling of variations that are smaller than the
resonant radiation wavelength – such variations give rise to coherent emission in the FEL [1].
In Puffin, the thickness of each longitudinal slice (or bin) in z is therefore less than a resonant
radiation wavelength. The longitudinal z–axis is first discretised into a series of transverse
slices of sufficiently small width, each of which can contain a different charge (real number of
electrons). The microparticles are then distributed in transverse phase space (x, y) within each
of these slices and the appropriate charge weighting and Poissonian shot-noise applied. The
initialisation slicing structure is then removed and the microparticles are free to interact with
the radiation field and evolve in 6-Dimensional phase space without confinement to any sliced
structure.

Other FEL simulation codes, which use the Slowly Varying Envelope Approximation (SVEA)
and cannot therefore model sub-wavelength radiation evolution, such as GENESIS [5, 6], al-
locate their initial microparticle distributions according to the charge in single or multiple
wavelength longitudinal slices. GENESIS simulations therefore have fewer slices into which the
microparticles are initially assigned. In order to maintain the correct shot-noise, microparticles
remain in these slices during the FEL interaction. If, however, each microparticle represents a
single electron, then the microparticles (electrons) can be re-distributed between slices as the
FEL simulation progresses while maintaining the correct shot-noise statistics.

2. Charge density distribution functions

The method first uses the macroparticles of the accelerator modelling stage (each of which
may have an integer number of electron charges) to create a discrete charge histogram of bin
width ∆zh along the longitudinal z-axis of beam propagation at a given time (e.g. on entering
the FEL). A continuous longitudinal charge density function fz(z), proportional to the beam
current, is then created by interpolating from this histogram. The beam is then discretised
into a series of ‘slices’ of width ∆zs and charge fz(z)∆zs into which a transverse distribution
of microparticles will be assigned, each of which has a z−value at the centre of the slice. Note
that the histogram bin width ∆zh, will usually be greater than the microparticle slice width
∆zs. Also, the slice width ∆zs should be sufficiently short to allow for the required resolution
of microparticles in z. For example in a FEL the initial microparticle spacing, ∆zs, should be
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significantly smaller than the resonant radiation wavelength λr to allow the coherent bunching
of the electrons at the radiation wavelength scale to be resolved. The number of slices per
radiation wavelength should therefore be Nλ � 1 so that ∆zs = λr/Nλ.

A transverse charge density function f⊥(x, y, z) is then created for each longitudinal slice
using a similar 2-D histogram-interpolation method. Here the z-dependence of f⊥(x, y, z) will
be in integer units of the slice width ∆zs. The longitudinal density function and the transverse
density function can then be interpolated to create a continuous 3-D charge density function,
f(x, y, z) = fz(z)f⊥(x, y, z).

Smoothing of the charge distribution function may optionally be applied via a suitable
smoothing function when applying the interpolation from the histogram.

As described in the next section, a new set of microparticles is then created in each longitu-
dinal slice in z via a 2-D Joint Distribution Function (JDF) [7, 8] in the transverse plane so that
the JDF ∝ f⊥(x, y). The effects of Poissonian shot-noise are then added to each microparticle
using the method of [4]. Note that the JDF retains greater information on the distribution
of particles in the beam than by projection of charge first onto the transverse x and y axes
independently to give the product of two 1D ‘Cumulative Distribution Functions’ (CDF) so
that f⊥(x, y) → fx(x) × fy(y). The microparticle distributions generated by the JDF method
can then model more complex electron beam phase spaces.

The longitudinal charge histogram and the corresponding current evaluated from the charge
distribution function, I(z) ≈ cfz(z) for the relativistic beams assumed here, is shown in the
example of Fig. 1. The electron beam parameters are similar to a beam generated in designs for
the CLARA FEL test facility [9] as shown in Table 1 which gives: the peak current; normalised
RMS emittance; mean Lorentz factor; Lorentz factor spread; pulse duration; and electron
bunch charge. For a typical undulator of period λu ≈ 3cm this gives a FEL wavelength tuning
of λr ≈ 100− 400nm.

Ipk εn[mm-mRad] γ̄ σγ σz [µm] Q [pC]
395 0.3 475 0.04 82 250

Table 1: Typical CLARA beam parameters.

Here a Gaussian smoothing function, with smoothing parameter of 1.5 of the histogram
bin width, σz = 1.5∆zh was used [11]. Such smoothing can be important in FEL modelling
as un-physical, sharp changes in current can lead to the spurious generation of significant
Coherent Spontaneous Emission which would not be present in the real electron beam and
could subsequently be amplified in the FEL simulation [4].

An optionally smoothed charge density distribution function in the transverse plane f⊥(x, y, z)
is also calculated from the macroparticle distribution for each longitudinal slice in a similar way.
This transverse charge density will, in general, be a function of the longitudinal z position of
a given slice within the beam. The result is an optionally smoothed, 3-D charge density distri-
bution function of the macroparticle distribution, f(x, y, z) = fz(z)f⊥(x, y, z). This function is
significantly smoother than a discrete charge distribution of the initial, often relatively sparse,
macroparticle distribution and allows for a less noisy, more realistic, distribution of microparti-
cles to be generated for input into the FEL modelling software. The three dimensional density
map (3D histogram) smoothing is obtained by using the Python built-in library SciPy ndimage
gaussian filter function [11], which creates a convolution of the macroparticle histogram with
a Gaussian function. The greater the width of the Gaussian function, the greater the smooth-
ing, and the more the charge distribution function will deviate from the macroparticle charge
distribution. On the other hand, an insufficient degree of smoothing will make the individual
macroparticles more visible and can result in holes in the smoothed charge distribution function
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Figure 1: Sample electron charge per bin along the z–axis. The plot shows the original binned histogram
of the macroparticle charge and the interpolated data. The original beam is sampled over 50 bins and then
smoothed using the Python SciPy scipy.ndimage.gaussian filter [11] to give the (red) plot of the longitudinal
current profile. The Gaussian smoothing filter parameter in this figure was σz = 1.5∆zh.

as a result of oversampling. A good starting point would be to choose the Gaussian width to
be approximately the mean macroparticle spacing.

3. Microparticle generation

The method as described in Section 2 to generate the microparticles for use in the simulation
of the FEL interaction is now demonstrated.

The basic algorithm is first demonstrated for a simple case where only one transverse di-
mension, x, is used, i.e. via a CDF so that f⊥(x, y, z)→ f⊥(x, z). For each beam slice along the
z–axis, the initial macroparticle density is first smoothed to generate a transverse charge den-
sity for the slice as shown in the example of Fig. 2. The CDF is then calculated by integrating
and normalising this density function as shown in Fig. 3.

The CDF is then used to generate the required number of microparticles re-creating the
initial 1D transverse current density profile of the macroparticles, as shown in Fig. 4. An array
of random values along the CDF vertical axis in the range 0 to 1, or equally spaced as shown
here, is generated and the CDF is used to map these onto the microparticle positions along x
as shown. It is seen that the gradient of the CDF represents the particle density. Finally, the
new microparticle distribution can be checked by creating a histogram and comparing it with
that of the original macroparticle distribution histogram. This is repeated for each electron
beam slice in z.
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Figure 2: The initial and smoothed transverse charge density function of the macroparticle distribution in the
x–axis at a given slice in z. The beam centre here is at x = 6.

Figure 3: The Cumulative Distribution Function of a single slice taken from the macroparticle distribution
Fig. 2 and its interpolated function.

Note that the CDF function used to demonstrate the process above is replaced in the
developed software by a (parallelised) 2-dimensional JDF. An example of a transverse structure
that requires the use of a JDF is a ‘hollow’ electron beam in the transverse plane. Fig. 5
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Figure 4: The Cumulative Distribution Function profile of a single slice taken from the interpolated macropar-
ticle distribution of Fig. 2. On the vertical axis a series of equally spaced lines define the individual average
microparticle charges. While these give microparticles of the same mean charge, they could also be randomly
generated to give microparticles of different mean charge. The droplines from the CDF onto the horizontal axis
then give the positions of the microparticles.

demonstrates the use of the JDF in the transverse cross–section of such a beam and is seen to
maintain the hollow beam structure.

4. Microparticle Momentum

After the spatial generation of the microparticles from the macroparticle distribution as
described above, the momenta of the macroparicles is mapped onto them. The initial 6-D phase
space coordinates of the macroparticles creates a multidimensional map for the momentum
which is interpolated, using their spatial coordinates, onto the momenta of the microparticles
created in Section 3.

This is performed using the griddata module of the Python SciPy interpolate library [10,
11]. The griddata module interpolates the macroparticle momentum onto the microparticles
using either nearest–neighbour or a spatial linear interpolarion approximation applied to the
whole macroparticle distribution in one process, i.e. it is not applied on a slice-by-slice basis.
The general principle underlying griddata is to tessellate the input data set to n-dimensional
simplices, and then interpolate linearly on each simplex. When using the linear interpolation
option, the interpolant is built by triangulating the input macroparticle data with the Qhull
library [12, 13], and then on each triangle performing a linear barycentric interpolation [14] of
the macroparticle momenta onto the microparticles.

Note that the griddata module does not require a uniform grid and therefore works efficiently
even with with relatively irregularly spaced macroparticles and microparticles.

Where there may be significant and potentially important correlations between some macropar-
ticle momentum variables, e.g. between transverse momenta px and py, it would be prudent to
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Figure 5: An example of a electron density map of a slice of a hollow beam in the transverse (x, y) plane. The
initial 150 macroparticles (not shown) were first binned over a 50×50 histogram grid. A Gaussian smoothing,
using a factor of 1.5 times this grid spacing, was the used to obtain the transverse charge density function, here
plotted over 500×500 points in a colour density map. The black dots are 2000 microparticles created using the
JDF method.
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apply both nearest-neighbour and linear interpolation. One can then compare any important
correlations in the final microparticle distributions. This would also allow any reductions in
the spread in momenta in the microparticles, due to linear interpolation (regression towards
the mean), to become apparent. This may then require a greater number of macroparticles for
sampling via linear interpolation, or the use of the nearest-neighbour only sampling.

5. Poissonian noise application

Following the assignment of the interpolated positions and momenta of the microparticles
as described in Sections 2 – 4, a Poissonian noise is then applied to the microparticles to
model the shot-noise of a relativistic electron beam. This is done by adding a Poisonnian noise
contribution to both the interpolated mean microparticle positions in z, and to their charge
weighting as detailed in [4]. The noise added to the microparticle distribution is compared with
the theoretical shot-noise of a real relativistic electron beam propagating along the z−axis.

Note that the Poissonian noise added to the microparticles is independent of any FEL
operating wavelength and can be regarded as a generic property of the relativistic beam shot-
noise.

Following generation of the microparticle ensemble from the macroparticles as described
above, they are equally spaced at a distance of ∆zs = λr/Nλ along the z–axis in a sliced struc-
ture. A random variation about the mean z position of each microparticle is then introduced

by adding
(

∆zs/
√
N̄e

)
R onto its mean position in z, where R is a uniform random number

−0.5 < R < 0.5, and N̄e is the mean number of electrons (the mean charge weight) each mi-
croparticle represents [4]. The charge weight of each microparticle then also has noise added to
it by assigning it a random charge weight Ne, which is generated by a Poisson random deviate
generator of mean N̄e [4]. Note that the random charge weight Ne is an integer, so that each
microparticle will represent an integer number of electrons. For low charge weights, sometimes
the Poisson random deviate generator may assign Ne = 0. In this case these are simply removed
from the microparticle distribution.

Fig. 6 shows an example of a microparticle distribution along the longitudinal z-axis before
and after adding shot-noise, in this case for slices of width of ∆zs ≈ 183 nm. Before adding noise
all microparticles in the same slice have equal values of z (top), while after the Poissonian noise
has been added, they spread about their initial mean positions (bottom). The microparticles
also have the Poissonian charge variation applied as described above (not shown).

Coherent FEL radiation is driven by electron bunching at the radiation wavelength. At
a given point in the electron beam a ‘bunching parameter’ b(z, t) = 1/N

∑
j exp(−iθj) may

be defined, with, θj = (kr + ku)zj − ωrt and where kr and ku are the radiation and undulator
wavenumbers respectively with ωr = ckr. Subscripts j = 1..N refer to the N electrons contained
within an interval 2π of θ, approximately one radiation wavelength, about position z where b is
calculated. Note that the shot-noise added to the microparticles depends only upon the local
electron density and not the specific FEL parameters kr and ku. The bunching parameter will
therefore be correctly modelled for a wide range of wavelengths including harmonics of the
resonant wavelength.

The results obtained by adding the shot-noise to the microparticles were tested by analysing
an ensemble of identical microparticles with different noise added. Each member of the ensemble
would give the initial conditions for an electron beam before propagating through an FEL. The
scaled probability distributions for the bunching magnitude |b| and its square |b2| are shown in
Fig. 7, and agree very well with the Rayleigh and exponential distribution functions, expected
from the previous work of [4]. While the parameters used here were for an FEL operating with
wavelength λ = 4µm, undulator period λu = 4cm and γ̄ = 100, the results obtained in Fig. 7
are generally valid for an electron beam with shot-noise obeying Poissonian statistics.
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(a) Microparticles without noise applied.

(b) Microparticles with noise applied.

Figure 6: The plots show x/z projection of the beam before (top) and after applying the microparticle Poissonian
noise (bottom). On both plots one can clearly observe that the beam has an ordered structure with microparticles
equally separated along the longitudinal z–axis with a slice spacing ∆zs ≈ 183 nm. For the purpose of the
visualisation the noise has been amplified by factor of 5.
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Figure 7: Microparticles bunching statistics after CDF is applied. Top: the probability distribution for the
magnitude of the bunching parameter |b| (Rayleigh distribution function) and bottom: the probability distri-
bution for the magnitude of the bunching parameter squared |b|2 (negative exponential distribution function).
Both are in good agreement with theory [4].
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Figure 8: Bunching in an electron beam propagating through the undulator with FEL interaction turned off.
The mean value of |b| is predicted to be b̄ ≈ 3.97 × 10−5 and its standard deviation σ|b| is 2.077 × 10−5. The
numerical results are seen to be within the limits as predicted be the theory. Here z̄ = z/lg is the distance along
the undulator axis scaled with respect to the FEL gain length [1]

An additional test was performed to verify how the bunching behaves as the microparticles
propagate through an undulator, but in the absence of any FEL interaction. When FEL action
is switched off, the bunching parameter can be expected to evolve as the microparticles move
from their initial positions due to emittance and energy spread effects. The bunching parameter
|b| at a given point should therefore evolve as the beam propagates through the undulator.
The FEL simulation software Puffin [2, 3] was used to propagate the beam without any FEL
interaction along an undulator axis z̄. The results are shown in Fig. 8 and the bunching |b| is
seen to evolve about its mean theoretical value and within the range ∼ σ|b| in good agreement
with the theoretical model of [4].

6. Comparison between input and output data

An example of the conversion of an electron bunch of macroparticles, generated by the
accelerator modelling code ASTRA [15, 16] for a CLARA FEL [9] simulation, into an electron
bunch of many more microparticles suitable for the FEL simulation is now presented. Beam
parameters are similar to those of Table 1.

In changing from the macroparticle to microparticle distribution, beam parameters, such
as current, energy spread, emittance etc, should remain essentially unchanged. This can be
seen from Fig. 9 which plots the electron pulse emittance, energy, energy spread and current,
as calculated from both the initial macroparticle distribution from the output from ASTRA
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Figure 9: Electron beam parameters as a function of position in the beam propagation direction z. From top:
normalised emittance (m rad); beam lorentz factor (∝ beam energy); energy spread and current as calculated
from the macroparticle beam (blue) and microparticle beam after the JDF method has been applied (red).

with approximately 2.6×105 macroparicles, and following application of the JDF microparticle
generation of approximately 5.7 × 107 microparticles with addition of shot-noise as described
above. The final number of microparticles is the result of generating 20 slices per wavelength
(71325 slices in total) and with each slice containing 800 microparticles. This microparticle
distribution can then be used as input to the FEL simulation code Puffin. Note that, as
expected, the plots obtained for the microparticle distribution are a little smoother than the
original macroparticle distribution and is due to the increased microparticle density over that
of the macroparticles. Further smoothing can also be applied as described above.

In addition to the longitudinal beam parameters of Fig. 9, which are seen to be in in good
agreement, further analysis was done on projections of spatial and momentum density maps.
These are shown for the spatial dimensions in Fig. 10 and for the momentum in Fig 11. Again
good agreement is seen.
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Figure 10: Particle spatial density maps for macroparticles (left) and the microparticle distributions after JDF
processing (right). The data was sampled over 150×150 grid.
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Figure 11: Particle momentum density maps for macroparticles (left) and the microparticle distributions after
JDF processing (right). The data was sampled over 150×150 grid.
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7. Conclusion

The method presented of increasing the number of simulation particles that describe a
particle beam, while retaining a good estimate of the beam parameters and introducing realistic
Poissonian shot-noise properties, has been described and demonstrated. While the method is
primarily intended as an up-sampling of particles for subsequent injection into a FEL simulation
code, it may well have applications in other areas, or be adapted to them, where the statistical
noise may be important. The method is computationally efficient and easy to apply in most
computer programming languages. We note that the algorithm was previously successfully
applied in so-called start–to–end simulations of the CLARA FEL using Puffin FEL simulation
software, and the FEL output data compared with same simulation using a different 3-D FEL
simulator GENESIS 1.3 [17, 5]. Very good agreement between the two were found. The main
limitation for the algorithm is in the potential sparcity of the input macroparticle ensemble. If
it is too sparse the interpolation and extrapolation parts of the algorithm may create inaccurate
results – the quality of the output is only as good as that of the input. There is no easy way
we have found to determine a-priori how dense the input macroparticles should be to avoid
potential problems - this probably needs to be done via trial and error. We would also advise
use and comparison of both nearest-neighbour and linear interpolation methods in calculating
the momentum of the microparticles from the macroparticles. The software and documentation
is freely available from the repository [18].

8. Acknowledgements

We are grateful to funding from the Science and Technology Facilities Council (Agreement
Number 4163192 Release #3); EPSRC grant EP/K000586/1; EPSRC Grant EP/M011607/1

15



References

[1] Brian W.J. McNeil and Neil R. Thompson, Nature Photon., 4, 814 (2010)
DOI: https://doi.org/10.1038/nphoton.2010.239

[2] L.T. Campbell and B.W.J. McNeil, Phys. Plasmas 19, 093119 (2012)
DOI: https://doi.org/10.1063/1.4752743

[3] L.T. Campbell, J.D.A. Smith, P. Traczykowski, and B.W.J. McNeil, 9th Int. Part. Accel.
Conf. IPAC2018, Vancouver, BC, Canada, 4579–4582 (2018)
DOI: https://doi.org/10.18429/JACoW-IPAC2018-THPMK112

[4] B.W.J. McNeil, M.W. Poole and G.R.M. Robb, Physical Review Special Topics – Accel-
erators and Beams Vol 6, 070701 (2003)
DOI: https://doi.org/10.1103/PhysRevSTAB.6.070701

[5] S. Reiche, Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999)
DOI: https://doi.org/10.1016/S0168-9002(99)00114-X

[6] S. Reiche, Update on the FEL code GENESIS 1.3, Proceedings of FEL2014, Basel, Switzer-
land, TUP019, 403-407

[7] Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. New York:
Oxford University Press, 1992

[8] Weisstein, Eric W. ‘Joint Distribution Function.’ From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/JointDistributionFunction.html

[9] J.A. Clarke et al., Journal Of Instrumentation, 9, T05001 (2014)
DOI: http://dx.doi.org/10.1088/1748-0221/9/05/T05001

[10] P. Virtanen, R. Gommers, T.E. Oliphant, et al., Nat Methods 17, 261–272 (2020)
DOI: https://doi.org/10.1038/s41592-019-0686-2

[11] Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python,
2001 - , http://www.scipy.org/.

[12] https://github.com/qhull/qhull/wiki

[13] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, The Quickhull Algorithm for Convex
Hulls, ACM Transactions on Mathematical Software, Vol. 22, No. 4, Dec. 1996, p. 469-483

[14] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge Univ. Press,
2007

[15] S.M. Lidia, K. Floettmann, P. Piot, Recent Improvements to the ASTRA Particle Tracking
Code, Proceedings of the Particle Accelerator Conference, Portland, Oregon, USA, 2003,
FPAG015
https://accelconf.web.cern.ch/p03/PAPERS/FPAG015.PDF

[16] K. Floettmann, ASTRA – A space charge tracking algorithm, http://www.desy.de/ mpyflo.

[17] D.J. Dunning et. al., THPMK060, 4430-4433, IPAC, 2018, Vancouver, BC, Canada.
DOI: https://doi.org/10.18429/JACoW-IPAC2018-THPMK060

[18] https://github.com/UKFELs/JDF

16

http://dx.doi.org/10.1088/1748-0221/9/05/T05001
http://www.scipy.org/

	1 Introduction
	2 Charge density distribution functions 
	3 Microparticle generation 
	4 Microparticle Momentum 
	5 Poissonian noise application 
	6 Comparison between input and output data
	7 Conclusion
	8 Acknowledgements

