

De-risking Libyan Giant Oilfields for Subsurface Net Zero Transition

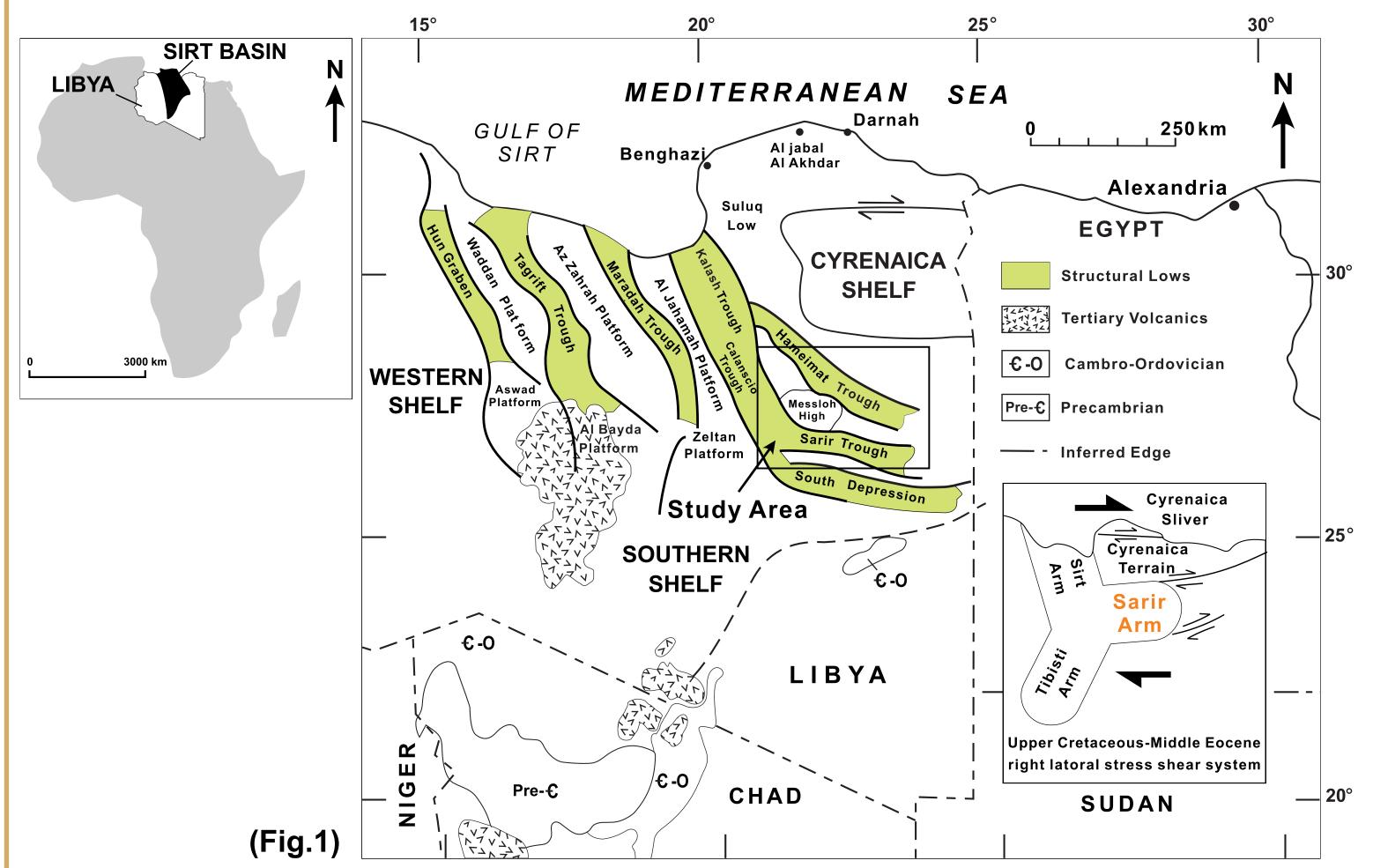
University of Strathclyde Glasgow

By: Mohamed El Gheriani 1'2

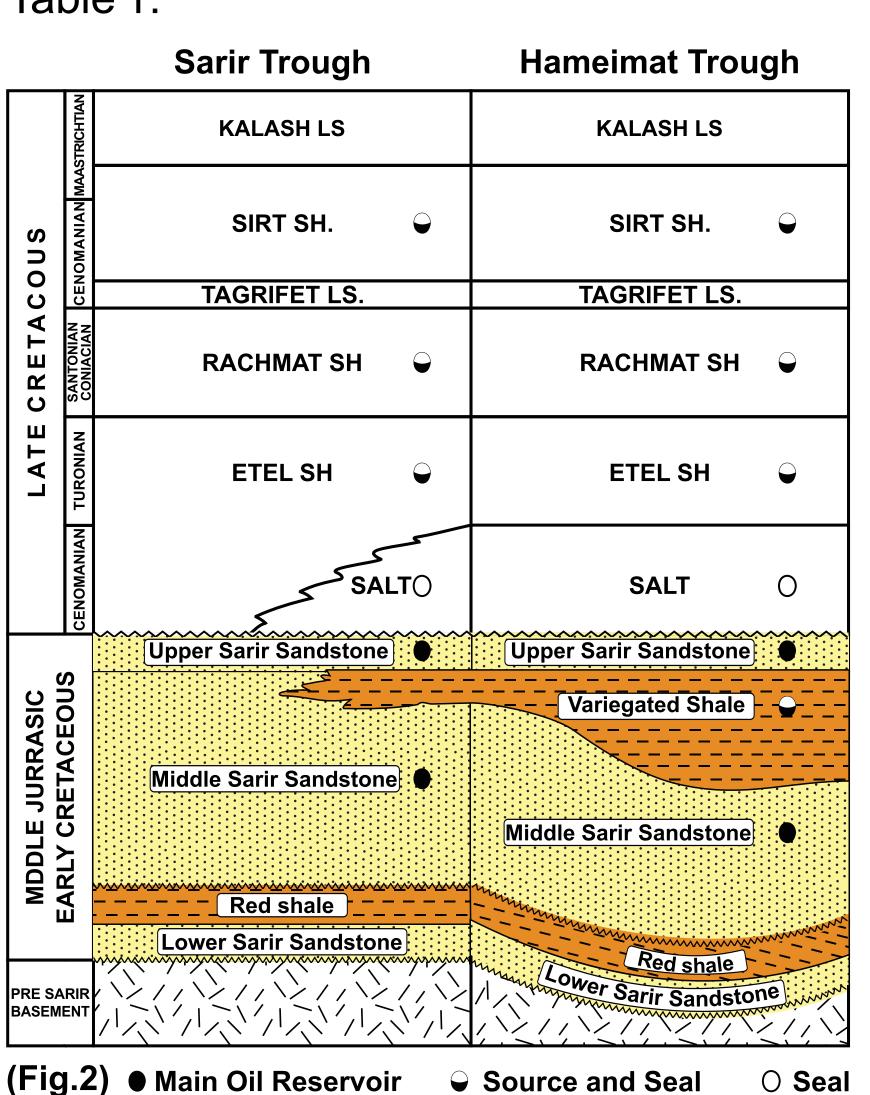
Supervisors: Dr Neil Burnside¹ and Dr Jennifer Roberts ¹

- 1- Civil & Environmental Engineering Department University of Strathclyde Glasgow UK, G1 1XJ
- 2- Geology Department Faculty of Science University of Tripoli Tripoli Libya, P.O.BOX: 13555

1-Introduction


Fossil fuel production and consumption are central to global CO₂ emissions and the geological storage of CO2 is among the promising solutions to achieve the global Net Zero targets.

As the largest crude oil holder in Africa, Libya is one of the main hydrocarbon suppliers in North Africa region. However, the fossil fuel dependency for economic and energy needs put the country in real challenge in keeping up the global trends toward low-carbon transition [1].


This research aims to explore options for Libya to transition its subsurface resources for net zero applications, with particular focus on CO2 storage potential. The objectives are to (a) examine geological suitability of the giant oilfields for CO2 storage and estimate CO2 storage capacity. (b) conduct fault stability analysis to ensure CO2 storage security.

2- Study Area

The study area lies in eastern of the most prolific petroleum province of Libya's Sirt Basin. This basin was formed by crustal rifting during Cretaceous and Tertiary times and resulted in triple junction failed arms: the northern Sirt Arm, the eastern Sarir Arm that chosenas a case study and the southwestern Tibesti Arm (see Fig. 1) [2].

The pre-Upper Cretaceous Sarir/Nubian Sandstone is the primary hydrocarbon reservoir [2], as shown in the stratigraphic column in (Fig. 2). The suitability of this reservoir and overlying units will be considered for CO2 storage. Key geological information about the Sarir Arm is summarised in Table 1.

Table 1: Key Facts [2][3]				
Geology	 Syn-rift fluvial sandstone. Mainly deposited in Early Cretaceous Multiple seals are existed. Structural traps are common. 			
Thickness	Typical section is about 1400 m in Hameimat depocenter.			
Depth	Most of oil production commenced in the 1960s and 1970s. Several giant oilfields with greater than			
Activity				
Recourses				
Possible Risk	Freshwaters of Post-Nubian Aquifer System is adjacent to the oil and gas fields, makes CO ₂ injection and storage challenging.			

3- Research Workflow

Step 1: Assessment of the Geological Suitability of the Sirt Basin Giant Oilfields for CO2 Storage

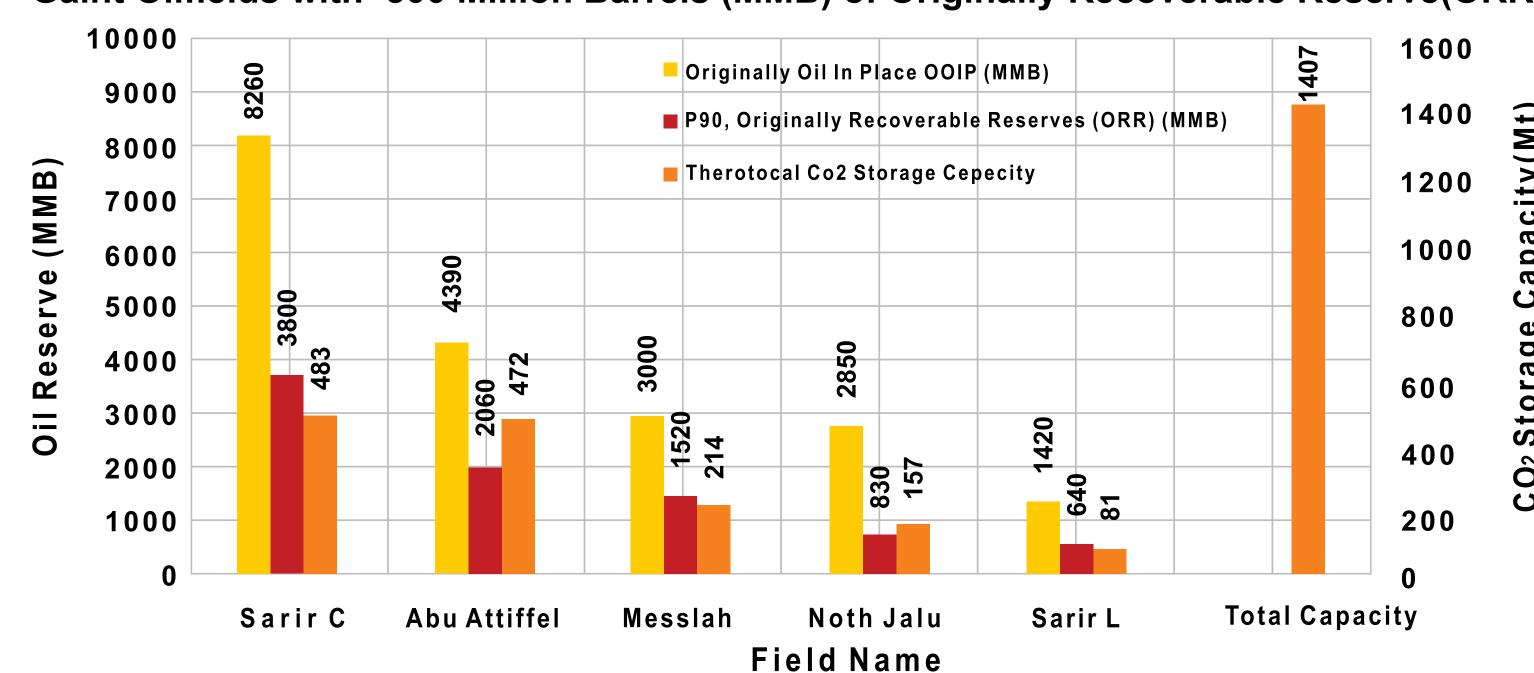
When considering CO₂ storage in oil reservoirs, several basin criteria need to be considered to ensure the effective use of oil fields for subsurface Net Zero transition [3][4]. Based on that, Table 2 summarises the assessment criteria for basin-wide storage capacity in the study area.

Table 2: Screening CO2 Storage in the Sarir Arm, Sirt Basin				
Criteria		Best Case Scenario based on [3] and [4]	Sarir Arm, E. Sirt Basin ^[5]	
			Risky Accepted Ideal	
Containment	Tectonic setting	Cratonic Basin	Intra-Cratonic Rift	
	Faulting intensity	Limiting Faulting & frac.	Extensively Faulted & Frac.	
	Evaporites	Beds	Beds	
ပိ	Depth of basin	Deep (> 3500m)	(2500 – 4000 m)	
Capacity	Size of basin	Giant (> 50,000 km2)	Large (25,000-50,000 km2)	
	Aquifer	Regional Flow System	Regional Flow System	
	Geothermal regime	Cold basin (<30 C/Km)	Moderate (30-40 C [°] /Km)	
	Hydrocarbon Potential	Giant	Giant	
Feasibility	Industry Maturity	Over-mature	Mature	
	On/offshore	Onshore	Onshore	
	Climate	Temperate	Desert	
	Accessibility	Easy	Acceptable	
	Infrastructure	Extensive	Extensive	
	CO ₂ Sources	Major	Moderate	

Step 2: CO₂ Storage Estimation (**Preliminary Finding**) [5][6]

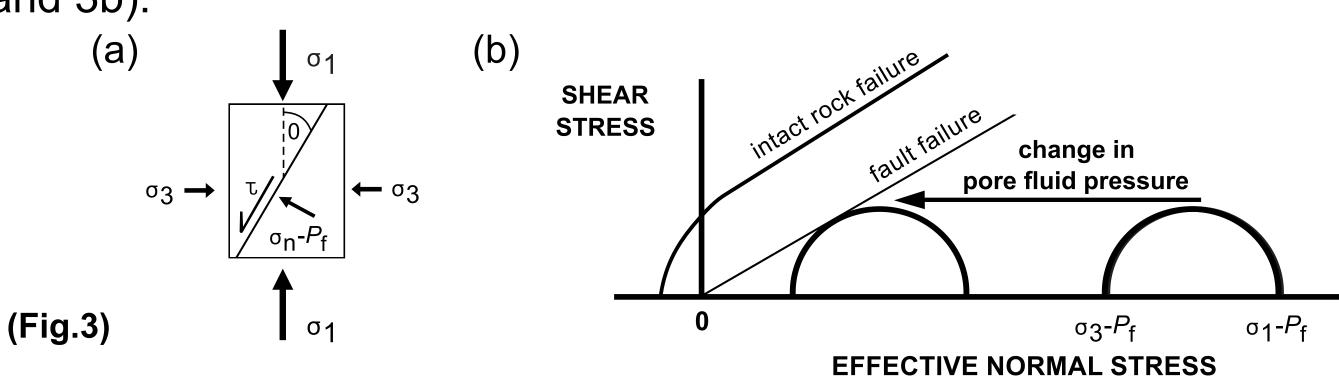
$M_{CO_2} = P_{CO_2res} \times RF_{BT} \times OOIP/S_h$

Mco₂: CO₂ storage capacity in Megatonne (Mt).


Pco₂res: CO₂ density at reservoir temperature and pressure (assumed 700 Kg/m³).

RFBT: the recovery factor at breakthrough.

OOIP: the volume of the original oil in place in Cubic Meter (m3).


Sh: the oil shrinkage factor.

Gaint Oilfields with>500 Million Barrels (MMB) of Originally Recoverable Reserve(ORR)

Step 3: Fault Stability Analysis (Ongoing Research) [7][8]

Geomechanical modelling of pore pressure de-risks CO2 injection-induced reactivation of pre-existing faults and interaction with vital freshwater aquifers (Fig. 3a and 3b).

Acknowledgement: MEG is funded by a Higher Education Ministry of Libya PhD studentship (2021-2025). Thanks to Professor Daniel Clark-Lowes and Dr Don Hallett for their permission to use primary data from Petroleum Geology of Libya, 2nd edition.

References:

Environmental Geology, 44(3), pp.277-289.

- [1] Country Analysis Brief: Libya. (2015). U.S. Energy Information Administration.
- [2] Ambrose, G.(2000). The geology and hydrocarbon habitat of the Sarir Sandstone, SE Sirt Basin, Libya. Journal of Petroleum
- Geology, 23(2), pp.165-192. [3] Bachu, S. (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response
- [4] Gibson-Poole, C. M., Edwards, S., Langford, R. P., Vakarelov, B.(2008). Review of Geological Storage Opportunities for Carbon Capture and Storage (CCS) in Victoria.
- [5] Hallett, D. and Clark-Lowes, D.(2016). Petroleum geology of Libya.2nd edition, Elsevier.
- [6] Shaw, J. and Bachu, S.(2002). Screening, evaluation, and ranking of oil reservoirs suitable for CO2-flood EOR and carbon
- dioxide sequestration. Journal of Canadian Petroleum Technology, 41(09). [7] Morris, A., Ferrill, D.A. and Henderson, D.B.(1996). Slip-tendency analysis and fault reactivation. Geology, 24(3), pp.275-278.
- [8] Zoback, M.D. (2010) Reservoir geomechanics. Cambridge university press.