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Abstract
With a view towards modelling the foam improved oil recovery process, fractional flow 
theory is used to study the dynamics of a foam as it propagates in a porous medium that 
is initially filled with liquid. In particular, a case is studied whereby, at a certain time, the 
net pressure driving the foam is decreased below the hydrostatic pressure at depth, leading 
to a local change in the flow direction. This is known as flow reversal. In both forward and 
reverse flow, the boundary between foamed gas and liquid is found as a discontinuous jump 
in liquid saturation. Over a certain thickness in the neighbourhood of this discontinuity, 
foam is finely textured, and the mobility of foamed gas drops by orders of magnitude rela‑
tive to either pure gas or pure liquid. In reverse flow, however, the foam mobility itself and 
also the thickness over which low mobilities apply might differ from the forward flow case. 
Fractional flow theory reveals that the thickness of the low mobility region, and hence the 
resistance to motion that it presents, increases directly proportional to the distance trav‑
elled. Previous studies recognised this, but assumed the thickness of this region to be just a 
small fraction of the distance travelled by the discontinuity. Here, however, we demonstrate 
that the extent of the low mobility region, in both forward and reverse flow, accounts for 
a considerable fraction of the distance travelled by the foam, despite what was assumed in 
previous works.

Article Highlights

• Flow of finely textured, low mobility foam in a porous medium is studied under for‑
ward and then reverse flow conditions

• Foam is even less mobile in reverse flow than forward flow, but low mobility regions 
cover a comparable spatial extent

• Low mobilities confined to small domain of liquid saturations, but not a small spatial 
domain in the medium
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1 Introduction

Foam improved (or enhanced) oil recovery, also known as foam IOR, is a tertiary oil 
extraction technique which aims to sweep the remaining oil trapped in porous media (Shan 
and Rossen 2004). Within the reservoir or porous medium, foam can be created either by 
co‑injection of a liquid surfactant solution and gas, or via surfactant alternating gas (SAG) 
injection (Li et al. 2010), which is the mechanism to be considered in this study. Upon con‑
tacting the liquid filled region (containing both liquid oil and liquid surfactant solution), 
the injected gas produces foam.

Foam tends to have a high effective viscosity and therefore low mobility (maybe even 
orders of magnitude lower than other fluids within the medium, often with surprisingly low 
mobility in more permeable parts of a medium where foam is difficult to break (Zhou and 
Rossen 1995)). As a result, foam can penetrate through low permeability regions and hence 
offer a more uniform sweep, avoiding fluid escaping preferentially through high perme‑
ability regions, and in addition avoiding fingering phenomena (Grassia et  al. 2014). The 
entire system’s dynamics can then be controlled by controlling the flow of foam (Farajza‑
deh et al. 2012; de Velde Harsenhorst et al. 2014). The foam then propagates pushing the 
liquid (oil and surfactant solution) to an extraction well. Although originally considered for 
IOR, several industrial applications involving flow through porous media take advantage of 
foam properties, including processes like remediation of contaminated aquifers, clean up of 
polluted soils, and subsurface sequestration of foamed  CO2, to name a few (Ma et al. 2015; 
Shen et  al. 2011; Wang and Mulligan 2004; Zhong et  al. 2010; Farajzadeh et  al. 2020; 
Gong et al. 2020; Skauge et al. 2020; Boeije et al. 2020).

In foam IOR via SAG, the propagating foam front (or the region where the gas and the 
liquid surfactant solution meet), can usually be identified as the region with lowest mobil‑
ity along the direction of flow (see Fig.  1). Lower mobilities are associated with finely 
textured foam, since a higher resistance to motion is encountered when more films are 
present (Kovscek and Bertin 2003; Khatib et al. 1988). Texture is however a function of 
liquid saturation, because liquid saturation influences the pore scale processes that create 
and destroy foam films. It is then possible to make a direct link between liquid saturation 
and foam mobility, bypassing the need to determine texture explicitly (Ma et  al. 2015). 
Low mobility (and by implication fine texture, even if not determined explicitly) tend to 
be associated with a fairly narrow domain of liquid saturations (Shan and Rossen 2004). 
In a system with very low liquid saturation, foam collapses due to capillary effects, and 
unfoamed gas is usually much more mobile than foamed gas. In a system with substantially 
higher liquid saturations, the overall mobility of the system is dominated by the mobility of 
the liquid rather than any contribution from the much smaller mobility of foamed gas. Thus 
low overall mobilities correspond to a window of liquid saturations in which gas is foamed, 
but liquid relative permeability and hence liquid mobility likewise are not so high (Shan 
and Rossen 2004).

Once mobilities for foamed gas and for liquid are specified, driving injection pressures 
are imposed and flow propagates forward through the porous medium at a well‑defined 
rate. Flows are then often determined (Majid Hassanizadeh and Gray 1993) based on Dar‑
cy’s law or multiphase extensions thereof. Consequently pressure gradients are necessarily 
highest where overall mobilities are lowest. In view of this, models such as the so called 
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pressure‑driven growth model have been used to capture a forward propagating foam front 
considering that essentially all the pressure drop is tied to the aforementioned low mobility 
region (Shan and Rossen 2004; Grassia et al. 2014, 2017; Torres‑Ulloa and Grassia 2021). 
Note that in the 2‑D pressure‑driven growth model (see Fig. 1) the low mobility region as 
a whole is often considered to represent the foam front, since pressure‑driven growth does 
not attempt to resolve the internal structure of this region, merely where it is located.

However, the imposed injection pressure is not the only pressure that is relevant. Hydro‑
static pressures arise due to the density difference between the liquid‑filled region and 
the region filled with foamed gas. What matters is then the net driving pressure differ‑
ence, namely the difference between the imposed injection pressure and the hydrostatic 
one  (Shan and Rossen 2004). There is moreover a certain depth at which imposed pres‑
sure and hydrostatic pressure balance: the foam front as it moves forward can penetrate no 
deeper than that (Grassia et al. 2014).

If the imposed injection pressure subsequently falls below the hydrostatic pressure at 
depth, the process goes from injecting gas into liquid to injecting liquid into foamed gas. 
This is known as flow reversal (Eneotu and Grassia 2020), and is the main process studied 
in this work (see Fig. 1). Flow reversal would take place, as described in Eneotu and Gras‑
sia (2020), if the injection pressure is suddenly reduced, or if due to external factors, the 
pressure field downstream of the front is increased: e.g. new gas injection wells are brought 
online downstream, or indeed if a gas injection well is shut in. It can also be relevant when 
porous media are used for gas storage in energy applications (e.g. hydrogen storage (Heine‑
mann et al. 2021)): relatively immobile foamed gas can be readily stored in a medium, but 
eventually the gas needs to be extracted for energy generation and so must flow back out of 
the medium again.

Regardless of the underlying reason causing flow reversal, in a typical situation (Ene‑
otu and Grassia 2020) on the upper part of the foam front we may still have forward 

Fig. 1  Illustrative definition sketch: foam front propagation across a vertical domain Y and a horizontal 
domain X. At time zero, the front is located along the Y axis. It then propagates forward under the influence 
of an imposed injection pressure Pinj but offset by a hydrostatic pressure Phyd . After time t∗ , the injection 
pressure is reduced from a value Pbefore

inj
 to a value Pafter

inj
 . Some points on the front keep moving forward even 

after this happens, but others switch to reverse flow: the focus here is upon these latter points. Specifically 
the front starts backtracking at any points below the depth at which Phyd = Pafter

inj
 , where as mentioned Phyd 

denotes hydrostatic pressure
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flow, while it is at depth where hydrostatic pressure is larger that the flow starts revers‑
ing (see Fig.  1). The sketch of the 2‑D process shown in Fig.  1 here is merely how‑
ever for illustrative purposes to motivate the study. In the present work we focus just on 
understanding 1‑D dynamics along particular flow paths in detail, rather than obtaining 
the full 2‑D solution for an entire collection of flow paths.

Figure 1 as drawn is a 2‑D sketch indicating the foam front location, but (as already 
alluded to) does not resolve what happens in detail within the foam front itself. There 
is however a 1‑D fractional flow theory (Buckley and Leverett 1942; Zhou and Rossen 
1995; Ashoori et  al. 2010) that underlies the 2‑D pressure‑driven growth theory: the 
1‑D theory resolves the detailed structure of front in a manner made precise by Eneotu 
and Grassia (2020). Essentially the 1‑D theory follows the flow paths executed by each 
of the elements constituting the 2‑D foam front. The 1‑D theory allows us to interrogate 
the mobility at any point on the flow path and hence to assign a thickness to the front 
along the flow direction: as will be discussed in detail later on, the assigned thickness 
represents the size of the region that is at or near the lowest mobility on each flow path.

What the 1‑D theory predicts more specifically is a discontinuous jump in liquid sat‑
uration at the front location (Eneotu and Grassia 2020): the liquid saturation however 
ultimately governs the mobility, and it is indeed those liquid saturations at the front 
which turn out to have lowest mobility. This situation arises both in forward flow and 
in reverse flow (Eneotu and Grassia 2020), but details differ (see Sect. 2 later on). What 
the 2‑D model is trying to capture as the foam front is therefore the location of this 
discontinuous jump in liquid saturation on each flow path. The 1‑D model however cap‑
tures details around this discontinuity.

The way the 1‑D theory itself proceeds (Buckley and Leverett 1942) is discussed 
further in Sect. 2, but briefly is as follows. Based on the mobilities of foamed gas and of 
liquid, it determines what proportion of the flow is foamed gas and what proportion of 
it is liquid. Conservation equations can then be solved to determine how liquid satura‑
tions are distributed in space and time (Buckley and Leverett 1942; Eneotu and Grassia 
2020), and likewise how mobilities are distributed. It is these conservation equations 
that admit the aforementioned discontinuous jumps in saturations in their solutions.

For either forward flow (when gas is pushed into liquid) (Shan and Rossen 2004) 
or upon flow reversal (liquid pushed into foamed gas) (Eneotu and Grassia 2020), the 
liquid saturation and foam mobility specifically at these discontinuous jumps can be 
obtained using fractional flow theory. This information can then feed into the pressure‑
driven growth model, which has even been reformulated so as to predict the foam front 
behaviour as the flow is reversed. A key result of the reformulated theory (Eneotu and 
Grassia 2020) (discussed in more detail later) was that the mobility in reverse flow 
could be substantially lower than that in forward flow.

Now we return to the question of front thickness measured along the flow direction. 
Fractional flow theory recognises that the thickness (or extent) of the region with low 
mobilities will be some fraction, denoted � say, of the distance travelled by the foam 
front (Shan and Rossen 2004; Grassia et  al. 2014; Eneotu and Grassia 2020). Front 
thickness, in particular, is relevant to front propagation since it is across this region 
(with low mobility) where it is assumed that the majority of the pressure drop occurs. 
The thinner the region, the higher the pressure gradient, and the faster the front propa‑
gates. Remember, as alluded to earlier, that to evaluate � we only need here to discuss a 
1‑D theory, since the 1‑D result for � will inform the 2‑D theory. Thus here we are con‑
sidering just one spatial coordinate plus time. In the 1‑D model, the foam front at any 
given time has propagated a certain distance along that spatial coordinate, and adjacent 
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to the front, a fraction � of the distance covered corresponds then to a region of low 
mobility.

This value � (the front’s thickness to displacement ratio) is generally assumed to 
be small compared to unity (Shan and Rossen 2004; Grassia et  al. 2014), regardless of 
whether forward or reverse flow is considered (Eneotu and Grassia 2020). However, what 
Eneotu and Grassia (2020) did not consider is that different values of � might still apply as 
we switch from injecting gas into liquid, to pushing liquid into foamed gas as flow starts 
reversing at depth. In the present work therefore we obtain formulae to compute � for both 
cases (forward and reverse flows) and we compare the � values in relative terms. We have 
already mentioned that reverse flow mobility is rather lower than forward flow mobility. 
If the front thickness in reverse flow also happens to exceed the front thickness in forward 
flow that merely exacerbates the effect.

Another important issue that we address here is to query the assumption that � is small 
compared to unity. Having small � simplifies modelling because it means than all pressure 
gradients are confined close to the front location with pressures close to uniform every‑
where else: this then has been the basis under which the 2‑D pressure‑driven growth model 
attempts to track foam fronts without needing to resolve their detailed structure (Shan and 
Rossen 2004; Grassia et al. 2014). However, the underlying assumption of � being small 
was based on the fact that low mobilities tend to be associated with just a small domain of 
liquid saturations. There is no guarantee that this small domain of liquid saturations neces‑
sarily translates to a small thickness domain over space. If � is not small, then pressure gra‑
dients are distributed over a wide domain of space, and knowing a front location alone may 
then be insufficient to determine how the entire 2‑D flow proceeds. The underlying 1‑D 
fractional flow theory itself (which is what we study here) has no difficulty dealing with � 
values that are not small. The concern is instead about future impact on a 2‑D model which 
is fed information from the 1‑D solution: that is why establishing the value of � (as is to be 
done here) is of such interest.

The rest of this work is structured as follows. In Sect. 2 we start by reviewing fractional 
flow theory and its application to the present study. In Sect. 3 we review the theory used to 
compute pressure drops, and then extend that theory to derive novel formulae determining 
the thickness of the low mobility region. In Sect. 4 we use those formulae to evaluate front 
thicknesses in both forward and reverse flow. That then determines the region across which 
the bulk of the driving pressure is dissipated in each flow scenario, as well as the size of 
the pressure drop when forward and reverse flows are combined. Finally in Sect. 5 we offer 
conclusions.

2  Modelling foam IOR via SAG

As mentioned in Sect. 1, fractional flow theory (Buckley and Leverett 1942; Zhou and Ros‑
sen 1995; Ashoori et al. 2010) can be used to determine how liquid saturation and hence 
foam mobility evolve in space and time in porous media, for both forward and reverse flow. 
Fractional flow theory incorporating reverse flow after an initial forward flow has already 
been modelled in detail by Eneotu and Grassia (2020). However since not all readers might 
be familiar with the models in that work, we have provided an in depth discussion within 
an appendix (see Sect. A in supplementary material). Some readers may prefer to consult 
that appendix immediately, but in what follows we give just a brief description of what it 
covers.
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As the appendix explains, what fractional flow theory tells us (Eneotu and Grassia 2020; 
Fisher et al. 1990) is how liquid saturation Sl evolves with position x and time t when liquid 
and gas flow together with a total overall fluid flux q in a medium of porosity � and perme‑
ability k. To achieve this, it is first necessary (Buckley and Leverett 1942) to determine (as 
a function of Sl ) what fraction of the flow fl is liquid, with the remaining fraction being 
flowing gas. Increasing Sl leads to fl increasing also, but the relationship is nonlinear (see 
Fig. A2(a) in the appendix for an example). Once fl is known though, a conservation equa‑
tion (Buckley and Leverett 1942; Zhou and Rossen 1995; Ashoori et al. 2010) coupled to 
the method of characteristics (Courant and Friedrichs 1999; Laney 1998), then allows us 
to determine how Sl varies with x and t. Some typical examples of how Sl varies with x are 
plotted in Fig. 2 later on, albeit specifically with the x coordinate normalised in Fig. 2 to 
collapse together data at different times. The way figures such as these are determined is 
that so called characteristic lines each with a specified Sl value propagate through x versus 
t space, with a well‑defined velocity (q∕�)dfl∕dSl for each line. Different Sl values however 
have different dfl∕dSl values and hence different velocities associated with them, so in x 

Fig. 2  a Values of x∕xs vs Sl 
for forward flow. Note that 
at x∕xs = 1 , the value of Sl 
undergoes a discontinuous jump 
to unity. b Values of x∕xs vs Sl 
for pure reverse flow, without 
previous forward flow. Note 
that at x∕xs = 1 , the value of 
Sl undergoes a discontinuous 
jump to zero. Note also that even 
though xs formally switches 
sign between forward flow and 
pure reverse flow, the domain of 
x values upon which we focus 
likewise switches sign, so the 
domain of x∕xs is positive in both 
instances
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versus t space, the characteristics spread out in the form of a fan (Shan and Rossen 2004): 
see e.g. Fig. A1 in the appendix, particularly the left side of the figure, for a schematic indi‑
cation of what such a fan might look like.

In order to determine the form of the function fl(Sl) , it is necessary to know viscosities 
of liquid and gas, �l and �g , respectively (with gas remaining rather less viscous than liquid 
under typical reservoir conditions (Shan and Rossen 2004)). We also need so called rela‑
tive permeabilities (Brooks 1965) of liquid and gas kr,l and k0

r,g
, respectively. These relative 

permeabilities and are often treated as power law functions of Sl or 1 − Sl, respectively (Shi 
1996; Brooks 1965): see Sect. A.2.1 in the appendix for details of the functions we assume. 
Specifically we will consider both quadratic and quartic power laws here, see equa‑
tions (A2)–(A3). Ratios between relative permeabilities and viscosities give so called rela‑
tive mobilities. A total relative mobility Mtot is defined here as the sum of the liquid and 
gas relative mobilities, and a dimensionless analogue Mtot ≡ �lMtot can also be defined. 
The quantity Mtot (see equation (A5) for the formal definition) is then a well‑defined func‑
tion of Sl (Buckley and Leverett 1942; Fisher et al .1990).

We are interested here however, not merely in gas, but specifically in foamed gas. Foam 
causes a very large reduction in the mobility of gas in particular (Shan and Rossen 2004; 
Eneotu and Grassia 2020). Towards this end, we identify a maximum mobility reduc‑
tion factor Rf , which is the maximum factor by which the mobility of foamed gas can be 
reduced relative to unfoamed gas. The value of Rf is often very large (Ashoori et al. 2010), 
up to tens of thousands (Zeng et al. 2016; Ma et al. 2013; Rossen and Boeije 2014). Fol‑
lowing Eneotu and Grassia (2020) we will consider values Rf = [185, 1850, 18,500].

The mobility of foamed gas does not always reduce by quite so much at the maximum 
mobility reduction factor Rf suggests (see equation  (A4) in the appendix for example). 
Even more importantly, total mobilities do not always reduce by quite so much as the maxi‑
mum reduction factor Rf either (Ma et al. 2013). The reasons have already been mentioned 
in Sect.  1. At very high liquid saturations, total mobilities tend to be dominated by the 
mobility of liquid, so any reduction in gas mobility is less relevant. Meanwhile, at very low 
liquid saturations, foam collapses (Zeng et al. 2016), so we deal then with high mobility 
unfoamed gas, rather than low mobility foamed gas. It is for intermediate saturations there‑
fore that Mtot or equivalently Mtot tend to be lowest. Often there can be quite deep minima 
in Mtot at intermediate liquid saturations, such that very low Mtot values correspond to a 
rather narrow domain of saturations: see Fig. A2(b) for an example. What is evident here 
is that the presence of foamed gas influences the functional form of Mtot(Sl) . It also con‑
sequently influences the function fl(Sl) , because this turns out to be nothing more than the 
ratio between liquid mobility and total mobility: see the definition in equation (A6). As is 
then seen in Fig. A2(a), when Sl rises meaning that foamed gas is present, flow is primarily 
liquid, and so fl rises.

Turning now back to consider the liquid saturation Sl , the aforementioned method of 
characteristics admits discontinuous jumps in solutions for Sl . During so called forward 
flow (Shan and Rossen 2004), gas is pushed into liquid, and a discontinuity (called a con‑
tact discontinuity (Courant and Friedrichs 1999; Laney 1998)) appears at a location xs , 
with this location xs moving over time t at a well‑defined velocity. Remember we are deal‑
ing with a 1‑D problem here, so xs is propagating here along just a single spatial coordinate.

At the discontinuity, liquid saturation jumps from a value Sl,fwd to unity (we ignore 
here complications associated with having irreducible gas saturation and/or irreducible 
liquid saturation (Attia et al. 2008), but they can be handled merely by rescaling the def‑
inition of Sl ). Likewise during pure reverse flow (without any prior forward flow occur‑
ring), liquid is pushed into gas. Once again a contact discontinuity appears (Eneotu and 
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Grassia 2020) at a certain 1‑D location xs and again this location moves with a well‑
defined velocity. At the discontinuity, liquid saturation now jumps from a value Sl,rev,∞ 
to zero. Note that Sl,rev,∞ exceeds Sl,fwd : see e.g. Fig.  A2(a) which identifies values of 
Sl,fwd and Sl,rev,∞ , and see also Table A1. Consider also that the slope of the fractional 
flow curves themselves in Fig. A2(a) indicates the velocity of characteristics, whereas 
the slope of the various straight lines constructed upon Fig. A2(a) indicates instead the 
velocity of the discontinuity. The fact that, both in forward flow and in pure reverse 
flow, we can identify specific liquid saturations at which these slopes match is what 
implies in each case the existence of a contact discontinuity. This property relies in turn 
on the fractional flow curve exhibiting a point of inflection.

Thus far we have considered liquid saturation itself at the discontinuities. Now we 
consider instead mobility, which as we have noted is just a function of saturation. The 
total mobility (in dimensionless form) at the saturation adjacent to each discontinuity 
will be denoted Mtot,fwd and Mtot,rev,∞, respectively. Typically we find that Mtot,rev,∞ is 
rather smaller than Mtot,fwd , which was one of the key results of Eneotu and Grassia 
(2020): see also Fig. A2(b) and Table A1 in the appendix.

In both cases forward flow or reverse flow however, moving away from the discon‑
tinuity causes mobility Mtot to increase (Shan and Rossen 2004; Grassia et al. 2014). It 
can happen though that Mtot is less sensitive to liquid saturation Sl for the reverse flow 
case than the forward flow case, owing to the reverse flow case being close to a local 
minimum in the Mtot versus Sl curve (see Fig. A2(b)). Here however we consider instead 
how mobility Mtot increases not with liquid saturation Sl moving away from the disconti‑
nuity, but rather how Mtot increases with position x moving away.

In x versus t space it has been mentioned already that characteristics spread out like 
a fan (Shan and Rossen 2004) (again see Fig. A1 in the appendix, particularly the left 
side of the figure). It follows then that characteristics in parts of the fan that are far away 
from the discontinuity should have rather higher mobility than the mobility at the dis‑
continuity itself. There will however be regions of the fan very close to the discontinu‑
ity at which Mtot still remains close to either Mtot,fwd or Mtot,rev,∞ . In a sense to be made 
precise later, these regions are assumed (Shan and Rossen 2004; Grassia et  al. 2014; 
Eneotu and Grassia 2020) to extend (as alluded to in Sect.  1) over a fraction � of the 
distance ∣ xs ∣ that the discontinuity itself displaces, remembering throughout here that 
we are working in 1‑D. Specifically we define values �fwd for forward flow and �rev for 
reverse flow and these values need not be the same. Indeed computing these quantities is 
one of the contributions of the present work.

Thus far we have considered forward flows and reverse flows separately. Now we 
consider these together, namely a forward flow followed immediately by a reverse 
flow (Eneotu and Grassia 2020). This is what appendix A.1 discusses, and an illustra‑
tion of what is happening here in x versus t space is shown in Fig. A1: this figure cap‑
tures the essence of what Eneotu and Grassia (2020) discovered. The sign convention 
we adopt is that the initial forward flow is in the negative x direction, seen towards 
the left of Fig. A1. Moreover, the forward flow is assumed to last for a duration t∗ , so 
we focus now on times t ≥ t∗ once reverse flow has already begun, which is seen now 
towards the right of Fig. A1.

For times t ≥ t∗ , it turns out that a discontinuity in liquid saturation is still present. How‑
ever, it is no longer a contact discontinuity (which would have a constant velocity), but 
instead is now a shock (with variable velocity, as the right of Fig. A1 also indicates) (Cou‑
rant and Friedrichs 1999; Laney 1998; Eneotu and Grassia 2020). We still however con‑
tinue to denote its location by xs as a function of t.
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Initially when it appears at time t∗ , the shock is at a specific location xswitch : it inherits 
the same location as the predecessor contact discontinuity had at the instant when the flow 
direction switches. The shock’s subsequent locations at later times can be computed, know‑
ing liquid saturations on either side of the discontinuity (Eneotu and Grassia 2020).

The liquid saturation at the shock jumps from a higher value Sl,high on the upstream side 
of the shock to a lower value Sl,low on the downstream side. These values can be identified 
using the method of characteristics recognising that there is no longer just a single fan of 
characteristics, but rather a double fan (Eneotu and Grassia 2020): again see the right of 
Fig. A1. One characteristic fan, which is downstream of the shock is just a reflection of the 
characteristic fan that was present in the original forward flow. A second fan however, with 
a different (i.e. higher) set of liquid saturations now appears upstream of the shock. One of 
the issues that Eneotu and Grassia (2020) considered was which of these two fans presents 
more resistance to the motion: this is a point we will return to discuss later on.

The saturations Sl,high and Sl,low at the shock evolve with time (Eneotu and Grassia 2020). 
Specifically Sl,high begins with a certain value Sl,rev,0 and grows over time towards Sl,rev,∞ . 
The value of Sl,rev,0 is typically only slightly less than Sl,rev,∞ (see Fig. A2(a)), so the growth 
in Sl,high is quite modest. Meanwhile Sl,low begins with a value Sl,fwd and falls over time.

At a certain time that we call the cross‑over time tcross , the shock has moved back in 
reverse flow through exactly the same distance that the discontinuity originally moved in 
forward flow. Moreover, at time tcross , it turns out that the value of Sl,low has fallen to zero, 
and thereafter downstream of the shock we have only gas, rather than a mixture of liq‑
uid and gas together. Moreover, at very long times after tcross , the shock asymptotes back 
towards the same contact discontinuity as arises in pure reverse flow, without any initial 
forward flow period (Eneotu and Grassia 2020).

This then provides a description of the findings of Eneotu and Grassia (2020) insofar 
as they impact on the present work. Further details of what Eneotu and Grassia (2020) 
achieved are presented in appendix (see Sect. A), along with parameter values that need 
to be used within models for forward‑and‑reverse flows of liquid and gas in porous media. 
Based on all this information, we can now proceed in what follows to determine pressure 
drops associated with such flows.

3  Pressure drop across the flow and thickness of low mobility region

As shown in Eneotu and Grassia (2020) (by invoking Darcy’s law), the pressure drop ΔP 
across a region of variable liquid saturation Sl extending in the x direction can be computed 
as

with k as the permeability of the medium, q as the total fluid flux (liquid and gas together), 
�l as liquid viscosity and Mtot being the dimensionless analogue of mobility Mtot . Note that 
ΔP here is always defined in the sense from upstream to downstream, so ought to be a posi‑
tive quantity. In the present work, we are interested in both forward flows and reverse flows, 
so the direction of upstream and downstream relative to the x coordinate is liable to change. 
The sign of q is likewise liable to change. Integration limits for equation (1) are omitted 
for now to give the flexibility to maintain ΔP positive regardless of the sign convention for 

(1)ΔP = ∫
q

kMtot(Sl(x))
dx = ∫

q�l

kMtot(Sl(x))
dx,
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how x and q are defined. It is only in later equations that we will invoke a definite sign con‑
vention for x and for q, and we will ensure that ΔP is positive once that is done.

We now proceed to use equation (1) to develop novel formulae to compute the ratio � 
between front thickness and displacement for two situations, namely forward flow and pure 
reverse flow (both processes discussed in Sect.  2). These situations lead to formulae for 
ratios �fwd and �rev , respectively, see Sects. 3.1–3.2. These values are later used in Sect. 3.3 
to obtain a formula for pressure drop applicable to the case of flow reversal immediately 
after forward flow.

3.1  Forward flow

When considering just forward flow, and looking at the pressure drop just across the region 
containing foamed gas (the region between 0 and xs ), the pressure drop ΔP can be repre‑
sented as

where absolute value signs are included on the right hand side of the equation to remind us 
that ΔP measured upstream to downstream is positive. Here the factor 𝜖fwd < 1 represents 
that across this region of size ∣ xs ∣ , mobility is at least Mtot,fwd , and typically higher. Via 
combining equations (1) and (2) the value of �fwd can therefore be computed as

integration limits here being obtained remembering the aforementioned convention that 
forward flow corresponds to the negative x direction. Now substituting in x = (q t∕�)dfl∕dSl 
(the equation for a characteristic line) and also xs = (q t∕�)dfl∕dSl ∣Sl=Sl,fwd (with the con‑
vention that q < 0 in forward flow) gives

The smaller the value of �fwd , the faster Mtot rises above Mtot,fwd as we move away from the 
front, and hence as x becomes smaller in magnitude than xs . The value we compute for �fwd 
depends of course on the functional forms for fl and Mtot . Typical formulae used to deter‑
mine these are provided in Sect. A.2.1 in the appendix (see equations (A2)–(A6)), but the 
actual formulae would need to be validated in any specific system.

Equations (3)–(4) assume that the dominant pressure drop is occurring across regions 
in which Mtot is varying (with Sl also varying specifically in the domain Sl < Sl,fwd ), but is 
ignoring regions in which Mtot is spatially uniform (far upstream or far downstream, where 
Sl is spatially uniform). In particular, we are explicitly excluding pressure drop across 
any regions filled with pure liquid. This is based on the notion that regions containing 
foamed gas should be rather less mobile than regions containing pure liquid (by defini‑
tion Mtot = 1 for pure liquid). As data provided in the appendix make clear, however (see 
Table A1), this is not actually the case for forward flows with quadratic power laws (as per 
equation (A2)) for relative permeability: the mobility at Sl = Sl,fwd exceeds that at Sl = 1 . 
Neglecting the pressure drop across spatially uniform regions as we do here is not such a 

(2)ΔP ≈
∣ q ∣�l�fwd ∣ xs ∣

kMtot,fwd

,

(3)�fwd = ∫
0

−∣xs∣

Mtot,fwd

∣ xs ∣ Mtot

dx = ∫
Sl,fwd

0

Mtot,fwd

∣ xs ∣ Mtot(Sl)

||||

dx

dSl

||||
dSl,

(4)�fwd =
Mtot,fwd

dfl∕dSl ∣Sl=Sl,fwd
∫

Sl,fwd

0

1

Mtot(Sl)

d2fl

dS2
l

dSl.
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good approximation in that case. In pure reverse flow however (again based on Table A1), 
the mobilities within the region containing foamed gas are much lower than those in the 
region containing foamed gas in forward flow. Hence in pure reverse flow, the assump‑
tion that the region containing foamed gas is rather less mobile than any spatially uniform 
regions containing pure gas (mobility Mtot = �l∕�g = 10 ) is now a rather good one, so we 
go on to consider that case next.

3.2  Pure reverse flow

Pure reverse flow consists of the injection of liquid (which subsequently forms foamed gas 
and liquid), into a pure gas phase. Such a flow can also be considered to take place at an 
asymptotically long time when a front is made to backtrack following forward flow. The 
formula for pressure drop ΔP via equation (1) still applies and the subsequent analysis is 
analogous to what is already presented in Sect. 3.1. For brevity we have relegated details to 
appendix B.1 in supplementary material. A formula for �rev eventually results (see equation 
(B3) in the appendix). Whereas equation (4) for forward flow requires integrating over a 
characteristic fan involving liquid saturations from 0 to Sl,fwd , the analogous equation (B3) 
for reverse flow requires integrating over a characteristic fan involving saturations from 
Sl,rev,∞ to 1. As was also the case for �fwd , the actual �rev value is sensitive to formulae 
used to obtain fl and Mtot . Typical formulae used to determine these have been provided in 
Sect. A.2.1, but actual formulae are subject to validation in any specific system.

3.3  Flow reversal immediately after forward flow

Having considered the situation of forward flow and the situation of pure reverse flow, we 
now consider the case of flow reversal immediately after forward flow. We need now to 
account for the double fan structure of the flow (Eneotu and Grassia 2020) mentioned in 
Sect. 2 and sketched in Fig. A1. Again full details are relegated to an appendix (Sect. B.2) 
in supplementary material, being largely analogous to what we have already discussed 
before in Sects. 3.1–3.2. A summary of the situation is given below.

There is now a shock present, which forms at time t∗ when the flow switches direction. 
It forms at first at a location xswitch . Later on, the shock propagates to location xs , with xs 
varying with time. Our sign convention is such that xswitch is negative, and (at least to start 
with) xs is negative also.

As mentioned a double fan structure develops around the shock. As per Fig. A1, one fan 
appears downstream of the shock between spatial locations xs and 0. The other fan appears 
upstream of the shock between spatial locations xswitch and xs . As far as pressure drops are 
concerned, spatially uniform regions of pure gas (which are even further downstream than 
the downstream fan) or pure liquid (which are even further upstream than the upstream fan) 
are neglected altogether, on the basis that pure gas or pure liquid should be more mobile 
than the regions within the fans containing liquid and foamed gas. To obtain the resulting 
pressure drop ΔP then, equation (1) is broken up into just two pieces, one for each fan, and 
that is what the pressure drop equation (B4) in the appendix shows.

Within the double fan structure, the downstream fan is inherited from the initial forward 
flow stage and involves comparatively low liquid saturations in a domain from 0 to a value 
Sl,low . The upstream fan is newly formed after flow reversal begins and involves compara‑
tively high liquid saturations in a domain from a value Sl,high and 1. Recall from Sect. 2 that 
both Sl,low and Sl,high vary with time. We need to know Sl,low and Sl,high at each time in order 
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evaluate ΔP via equation (B4). However, it turns out that estimates of ΔP can still be pro‑
posed even without all that information, as we now discuss.

3.3.1  Estimate of pressure drop

It has been proposed (Eneotu and Grassia 2020) that a reasonable estimate for pressure 
drop (that we call ΔPestimate ) might result if we approximate the double fan as being com‑
posed of two separate fans as follows. The downstream fan is replaced by a fan having the 
same spatial extent but resulting from forward flow. The upstream fan is again replaced by 
a fan having the same spatial extent but resulting from pure reverse flow.

The domain of liquid saturations covered by the downstream fan is now estimated to be 
0 to Sl,fwd (where Sl,fwd is fixed over time, unlike Sl,low which varies). The domain of liquid 
saturations covered by the upstream fan is now estimated to Sl,rev,∞ to 1 (where Sl,rev,∞ is 
fixed over time, unlike Sl,high which varies). Mobilities can likewise be estimated. The liq‑
uid saturation Sl,fwd is associated with a mobility Mtot,fwd and the liquid saturation Sl,rev,∞ is 
associated with a mobility Mtot,rev,∞.

Knowing these mobilities (see e.g. values in Table A1), and coupling together solutions 
for forward flow and pure reverse flow, an estimate for pressure drop across the full domain 
of interest is obtained (Eneotu and Grassia 2020). It is considered that the total mobility 
Mtot remains in effect close to Mtot,fwd over a region of extent �fwd ∣ xs ∣ on the low liquid 
saturation side of the shock (low liquid saturation fan with Sl values close to Sl,low ), and 
remains in effect close to Mtot,rev,∞ over a region of extent �rev ∣ xs − xswitch ∣ on the high 
liquid saturation side of the shock (high liquid saturation fan with Sl values close to Sl,high ). 
The pressure drop across these regions as determined in Eneotu and Grassia (2020), can 
then be estimated as

We emphasise that this is an estimate, and need not be identical to the ΔP computed by 
equation (1) using the actual distribution of Mtot around the shock during a reverse flow 
following immediately after a forward flow, i.e. it need not be identical to equation (B4).

The question now arises also as to which region, the downstream side of the shock (the 
first term on the right hand side of equation (5)) or the upstream side of the shock (the sec‑
ond term on the right hand side of equation (5)) makes the dominant contribution to ΔP . 
It is already established (Eneotu and Grassia 2020), that Mtot,rev,∞ is smaller than Mtot,fwd 
(mentioned in Sect.  2; see also Table  A1 for instance), and moreover immediately after 
flow reversal starts, the shock can move quite quickly, meaning that the magnitude of xs can 
also decrease quickly (as incidentally Fig. A1 shows). Both these effects give more weight 
to the second term in equation (5).

What Eneotu and Grassia (2020) did not do however was establish the values of �fwd and 
�rev . We do not know definitively which side of the shock makes the dominant contribution 
to driving pressure difference unless �fwd and �rev are known. What Eneotu and Grassia 
(2020) did instead was assume �fwd and �rev were equal, and it set them both to an arbitrar‑
ily chosen small value (much smaller than unity). Small values of �fwd and �rev , i.e. greater 
increases in mobility moving away from the shock, would tend to give a lower pressure 
drop for a given propagation rate or equivalently faster propagation for a given imposed 
pressure. The assumption of �fwd and �rev being small, and the assumption of equality 

(5)ΔPestimate ≈
q�l

k

(
�fwd ∣ xs ∣

Mtot,fwd

+
�rev ∣ xs − xswitch ∣

Mtot,rev,∞

)

.
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between them, will however be relaxed here. Instead these quantities will be computed as 
we have said.

Obtaining values of �fwd and �rev as we do here is also expected to be important eventu‑
ally in moving from 1‑D model to 2‑D models (Eneotu and Grassia 2020). In 1‑D we often 
set flow rates, and then from those flow rates we determine a posteriori pressures required 
to maintain that flow. In 2‑D however we typically know driving pressure difference and 
could use equation (5) to deduce flow rate, and hence foam front propagation rate, which 
clearly depends on �fwd and �rev . Moving the front location in 2‑D however modifies the 
hydrostatic pressure and hence modifies the driving pressure difference, which then impact 
back on how the front propagates.

3.3.2  Discontinuity that moves further in reverse flow than in forward flow

Before proceeding further with any calculations, we first consider a discontinuity which 
propagates in reverse flow at least as far as it travelled in forward flow, a situation which 
can happen in 1‑D flows (and also in 2‑D flows like those sketched in Fig. 1 if points are 
considered that start off just slightly above what was originally the bottom of the front). 
Full discussion of this in the 1‑D context considered here is again relegated to supplemen‑
tary material, on the basis that it is developed using arguments about pressure drops across 
characteristic fans analogous to those we have already seen. Essentially what happens (as 
Sect. 2 also alludes to) is that there is a certain time tcross after which the front has back‑
tracked during reverse flow at least as far as it originally propagated in forward flow. In 
the context of Fig. A1 for instance, the downstream fan has now disappeared and only the 
upstream fan survives.

Exactly at time tcross , there is a pressure drop ΔPcross and a formula for determining it 
is presented in equation (B9). At this same time, we can also identify a region within the 
surviving upstream fan within which mobility Mtot remains in effect close to Mtot,rev,∞ . The 
ratio between the size of this region to the full extent of the upstream fan is a quantity 
�cross , a formula for which is given in equation (B11). Although the formula for �cross looks 
somewhat similar to that for �rev (arising in pure reverse flow, see equation (B3)) the two 
formulae are not quite the same. In particular the domain of liquid saturations covered by 
the surviving upstream fan at time tcross is not the same as the domain of saturations cor‑
responding to pure reverse flow.

This completes our review of the formulae (Eneotu and Grassia 2020) to compute pres‑
sure drops ΔP and as well as our extension of those formulae to determine relative thick‑
nesses ( �fwd , �rev and �cross ) of low mobility regions that result in the flow domain. All this 
material discussed in Sects. 2–3 is now used in Sect. 4 to generate the main novel results of 
this work. Parameter values utilised are provided in appendix A.2.2.

4  Results: Foam front thickness to displacement ratio & pressure drop

In Sect. 4.1 we first determine liquid saturation profiles over position. Then Sects. 4.2–4.3 
use that information to obtain �fwd and �rev, respectively. Recall that if these values are 
small, then low mobility regions are localised close to foam fronts, but if they are not small, 
then low mobility regions are more extended spatially. The final section here, namely 
Sect. 4.4 goes on to consider pressure drops when flow reversals take place.
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4.1  Liquid saturation over the x domain

Once we know fractional flow curves (see Fig. A2(a) in the appendix), we can now proceed 
to solve for the spatial distribution of liquid saturations. In Fig. 2 we show Sl versus x∕xs , 
first in Fig. 2a for forward flow with Sl ∈ [0, Sl,fwd] , and then in Fig. 2b for pure reverse 
flow (without previous forward flow, i.e. with xswitch ≡ 0 ). In both figures we see that much 
of the domain of x corresponds to Sl values close to either Sl,fwd or Sl,rev,∞ . This imme‑
diately implies that the extent of the low mobility region along x is considerably larger 
than what was assumed in previous studies (Grassia et al. 2014; Torres‑Ulloa and Grassia 
2021). The only exception is seen for the quartic power laws for relative permeability with 
Rf = 185 . Here Sl changes away from Sl,rev,∞ more quickly than for any of the other cases, 
and the reason is actually discussed in Sect. A.2.3 in the appendix. The effect arises due to 
the gradual change in slope in the fl versus Sl curve for this particular case (see Fig. A2(a)), 
so that a significant change in Sl is needed to impact on dfl∕dSl and hence on distance that 
a given characteristic will propagate. Aside from this exceptional case, the results with low 
mobilities extending over a significant x domain suggest that the bulk of the pressure drop, 
is not confined to a limited portion of the solution spatial domain, despite what has been 
assumed before (Grassia et al. 2014; Torres‑Ulloa and Grassia 2021).

4.2  Computing �fwd

Here we compute the value of the front’s thickness to displacement ratio, in the first 
instance for forward flow (i.e. �fwd ). As mentioned before, the propagating foam front in a 
porous medium can be captured as the region where the foam is finely textured, and there‑
fore is, in principle at least, less mobile than in other regions within the medium (Shan and 
Rossen 2004; Grassia et al. 2014; Torres‑Ulloa and Grassia 2021). The thickness of this 
region is taken to be a fraction �fwd of the front’s total travelled distance ∣ xs ∣ , and the value 
of �fwd can then be determined by using equation (4).

By using the various formulae for fl and Mtot (as discussed in Sect. A.2 in the appen‑
dix), and the two different relative permeability approaches (quadratic and quartic) along 
with selected values for the maximum mobility reduction factor Rf , we can determine vari‑
ous values of �fwd : these are reported in Table 1. Clearly the �fwd values are smaller than 
unity (as they must be) but are not orders of magnitude smaller than unity. In addition in 
Fig. 3a, we plot Mtot,fwd∕Mtot against the scaled distance over which the front is propagating 
x∕xs . Moving back from the contact discontinuity, the value Mtot,fwd∕Mtot does not decay 
remarkably quickly, which means that �fwd (which is the area under the curve in Fig. 3a) is 
not terribly small. Note that Mtot,fwd∕Mtot is relatively insensitive to Rf but there are some 
differences depending on whether we consider a quartic or quadratic power law for rela‑
tive permeability. The quartic power law has a slightly faster decay of Mtot,fwd∕Mtot moving 
back from the front (hence a slightly smaller �fwd , remembering this is the area under the 
curve in Fig. 3a).

In Fig.  3b, on the other hand, we show a plot of the function 
(Mtot,fwd∕(∣ dfl∕dSl ∣Sl=Sl,fwd Mtot))d

2fl∕dS
2
l
 versus Sl . Here we can see that this function is 

sharply peaked near Sl = Sl,fwd . Once again however, the value of �fwd is just the area under 
the curve. The main contribution to this is from Sl values close to Sl,fwd . This narrow 
domain of Sl values might however map to a fairly wide domain of x values (as Fig. 2a 
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makes clear). In other words, the majority of the pressure drop needed to drive the flow 
arises from a narrow domain of Sl values, but this does not correspond to a narrow domain 
of x values.

Returning to consider Table 1, we can see how different values of �fwd are obtained for 
different power laws for the liquid and (unfoamed) gas relative permeabilities kr,l and k0

r,g
 , 

respectively and for different maximum mobility reduction factors Rf . As Fig. 3a also sug‑
gests (considering the area under the curves), �fwd decreases monotonically with Rf , but the 

Fig. 3  a Mobility ratio 
Mtot,fwd∕Mtot versus 
x∕xs . This quantity inte‑
grates to �fwd . b Function 
(Mtot,fwd∕(∣ dfl∕dSl ∣Sl=Sl,fwd Mtot)) d

2fl∕dS
2
l
 

versus Sl with Sl ∈ [0, Sl,fwd]

Table 1  Ratio between foam front thickness and 
displacement for forward flow �fwd . This is com‑
puted for different power laws for relative perme‑

ability kr,l and k0
r,g

 , and in addition for different 
maximum mobility reduction factors Rf

Rf = 185 Rf = 1850 Rf = 18,500

kr,l = S2
l
 & k0

r,g
= (1 − Sl)

2 �fwd 0.7708 0.7559 0.7388

kr,l = S4
l
 & k0

r,g
= (1 − Sl)

4 �fwd 0.6374 0.6157 0.5962
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decreases are only slight. In addition, lower values of �fwd are observed for quartic power 
laws, in comparison with quadratic ones. None of the �fwd values are however orders of 
magnitude smaller than unity. Of course establishing which of the various �fwd values in 
Table 1 is most appropriate for a given system relies on validating the various formulae 
proposed in Sect. A.2.1. Even if some adjustments to those formulae were to be made how‑
ever, it seems unlikely that �fwd would ever become orders of magnitude smaller than unity.

4.3  Computing �rev

As mentioned already (see Sects. 1 and 2), when flow is reversed, the thickness of the 
low mobility region near the front might not necessarily be the same as in forward flow. 
We are now pushing liquid into gas, not gas into liquid. Here we compute the value of the 
front’s thickness to displacement ratio, i.e. �rev , under conditions of pure reverse flow. This 
is given by equation (B3), and is evaluated for the quadratic and quartic power laws for 
relative permeability and for different values of maximum mobility reduction factor Rf . 
Relevant data are reported in Fig. 4 and Table 2.

Fig. 4  a Mobility ratio 
Mtot,rev,∞∕Mtot versus x∕xs . This 
quantity integrates to �rev . b 
Function 
(Mtot,rev,∞∕(∣ dfl∕dSl ∣Sl=Sl,rev,∞ Mtot)) ∣ d2fl∕dS

2

l
∣ 

versus Sl with Sl ∈ [Sl,rev,∞, 1]
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In Fig. 4a, we plot Mtot,rev,∞∕Mtot against rescaled distance x∕xs . Here we can see that 
moving back from the front, the value of Mtot decays only rather gradually (even when 
different power laws or mobility reduction factors are considered). This implies that the 
value of �rev (which is the integral under these curves) is not extremely small, despite what 
was assumed previously (Shan and Rossen 2004; Grassia et al. 2014). On the contrary, �rev 
can be rather close to unity (see Table 2). This is partly the effect of Sl being insensitive 
to x (see Fig. 2b), and partly the effect of Mtot being insensitive to Sl (as it is near a global 
minimum, see Fig. A2(b)). In the case of forward flow, we had the first effect but not the 
second.

In Fig.  4a we also observe some sensitivity of Mtot,rev,∞∕Mtot to Rf (higher Rf gives 
higher Mtot,rev,∞∕Mtot ). There is also sensitivity to whether a quartic or quadratic power law 
is used for relative permeability: Mtot,rev,∞∕Mtot is smaller for the quartic. The exception 
which differs from the other curves is (as already noted) the case Rf = 185 for the quartic 
power law, which shows Mtot,rev,∞∕Mtot decaying faster as x∕xs decreases. The reasons have 
already been discussed: Sl shows more sensitivity to x∕xs than any of the other reverse flow 
cases (see Fig. 2b), and Mtot incidentally shows more sensitivity to Sl also (see Fig. A2(b)).

Changing now to consider Fig.  4b, we show a plot of the function 
(Mtot,rev,∞∕(∣ dfl∕dSl ∣Sl=Sl,rev,∞ Mtot)) ∣ d

2fl∕dS
2
l
∣ versus Sl . As Sl increases above Sl,rev,∞ , the 

value of this function falls considerably. This implies that, when considering the area under 
the curve to obtain �rev , the majority of the contribution arises from saturations close to 
Sl,rev,∞ , although these do not necessarily correspond to x values close to xs.

In Table 2 we summarise the different values of �rev , for different power laws for the liq‑
uid and gas relative permeabilities kr,l and k0

r,g
 , respectively, and different maximum mobil‑

ity reduction factors Rf . As Fig. 4 also suggests (considering the area under the curves), 
�rev tends to increase monotonically with Rf . A different behaviour was observed for �fwd 
(see Fig. 3, and also Table 1), where �fwd tended to decrease as Rf increases. This difference 
between the effect of Rf on forward and reverse flows can be traced back to the shape of 
the mobility curve (see Fig. A2(b)). The point Sl,fwd is well away from the global minimum 
of the Mtot versus Sl curve and increasing Rf makes the slope of that curve steeper around 
Sl,fwd . This makes Mtot(Sl,fwd)∕Mtot(Sl) smaller and hence �fwd becomes smaller. However, 
Sl,rev,∞ is much closer to the global minimum and the Mtot versus Sl curve is not so steep 
there. Increasing Rf however moves Sl,rev,∞ slightly closer to the global minimum (again 
see Fig. A2(b)), the Mtot curve is slightly less steep making Mtot(Sl,rev,∞)∕Mtot(Sl) slightly 
larger, and �rev increases. Moreover, as Table 3 makes clear, �fwd is consistently less than 
�rev , which is presumably associated with Mtot being more sensitive to Sl in the neighbour‑
hood of Sl,fwd than in the neighbourhood of Sl,rev,∞ . Determining the actual �fwd and �rev in a 
given system requires validation of the various formulae in Sect. A.2.1, but the result that 
�fwd is less than �rev appears robust.

In summary, lower values of both �fwd and �rev are observed for quartic power laws, in 
comparison with quadratic power laws. Increasing Rf has two effects. It makes the slope of 

Table 2  Ratio between foam front thickness and 
displacement for reverse flow �rev . This is com‑
puted here for different power laws for relative per‑

meability kr,l and k0
r,g

 , as well as for different maxi‑

mum mobility reduction factors Rf

Rf = 185 Rf = 1850 Rf = 18,500

kr,l = S2
l
 & k0

r,g
= (1 − Sl)

2 �rev 0.8547 0.9493 0.9601

kr,l = S4
l
 & k0

r,g
= (1 − Sl)

4 �rev 0.6625 0.8586 0.9132
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the Mtot versus Sl curve steeper around Sl,fwd , even though the slope is rather shallow around 
Sl,rev,∞ . This in turn makes Mtot(Sl,fwd)∕Mtot(Sl) smaller and hence �fwd becomes smaller. 
Increasing Rf also turns out however to compress the domain of Sl values that account for 
most of the x values. This keeps Mtot(Sl,rev,∞)∕Mtot(Sl) larger for most x, hence �rev becomes 
larger. The former effect seems to dominate in the case of �fwd , while the latter effect seems 
to dominate in the case of �rev.

In Table 3, we compute not just the ratio between �rev and �fwd , but also the ratio between 
Mtot,fwd and Mtot,rev,∞ . Even though the latter ratio is clearly far away from unity, the former 
ratio is not. This suggests that it is not really necessary to consider �rev and �fwd (i.e. the 
thicknesses of the low mobility regions relative to front displacement) as unequal values. 
What is more important as a finding here is that neither �rev nor �fwd is very small compared 
to unity. As a result, even though low mobilities account for only a small fraction of the Sl 
domain, they actually account for a fairly large fraction of the x domain (as Fig. 2 makes 
apparent). Hence the notion proposed previously (Shan and Rossen 2004; Grassia et  al. 
2014) of low mobilities being confined spatially (as opposed to confined merely in Sl ) is 
actually not such a good one.

4.4  Pressure drop data for forward‑and‑reverse flow

Now that �fwd and �rev have been determined, we proceed to calculate the pressure drop 
across the full 1‑D domain, considering forward‑and‑reverse flow, i.e. reverse flow follow‑
ing immediately after forward flow. The pressure drop is then as given by equation (B4). 
This is then compared with the estimated pressure drop across the low mobility regions 
on both sides of the shock as given by equation (5), which effectively combines together a 
fan from a forward flow and a fan from a pure reverse flow. This is what we plot in Fig. 5. 
In Fig. 5a specifically we show the ratio between the estimated pressure drop ( ΔPestimate ), 
as computed by equation (5), and (neglecting any regions of pure liquid or pure gas) the 
actual pressure drop (now denoted ΔPactual ) given by equation (B4). This is plotted against 
t∕t∗ . Figure 5b corresponds to a zoomed view of Fig. 5a at small times shortly after t∗.

Unsurprisingly perhaps, the ratio between estimated pressure drop and the actual pres‑
sure drop remains close to unity. At times close to t∗ and also at later times t ≫ tcross this 
is actually guaranteed by construction. However, after t∗ , the ratio between estimated and 
actual pressures decreases up to time t = tcross (see “ ◦ ” in Fig. 5), and then starts increasing 
again. The minimum value of ΔPestimate∕ΔPactual is given in Table 4, for each case.

Table 3  Ratios between �rev and �fwd and between Mtot,fwd and Mtot,rev,∞

Rf = 185 Rf = 1850 Rf = 18,500

kr,l = S2
l
 & k0

r,g
= (1 − Sl)

2 �fwd

�rev

0.9019 0.7962 0.7694

Mtot,fwd

Mtot,rev,∞

17.62 21.88 24.42

kr,l = S4
l
 & k0

r,g
= (1 − Sl)

4 �fwd

�rev

0.9620 0.7171 0.6529

Mtot,fwd

Mtot,rev,∞

16.25 26.64 29.43
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From Table 4, we notice that larger Rf gives less deviation between the estimated and 
actual pressure drops (which is useful because in realistic problems often Rf is on the 
order of tens of thousands (Ma et al. 2013)). The quartic power law however gives more 

Fig. 5  a Pressure drop ΔPestimate 
given by equation (5) divided 
by actual pressure drop ΔPactual 
given by equation (B4). The 
value tcross∕t∗ is indicated via 
◦ . For relative permeability 
given by a quadratic power 
law, tcross∕t∗ corresponds to 
1.1476, 1.1254, and 1.1176, 
while for the quartic power 
law it corresponds to 1.1463, 
1.1101, and 1.1019, in each case 
for Rf = [185, 1850, 18,500] , 
respectively. b Zoom in of (a) at 
small times

Table 4  Minimum value of 
ΔPestimate∕ΔPactual for each case. 
The minimum itself. Occurs at 
time tcross . The corresponding 
Sl,high values which are required 
here in order to determine 
ΔPactual are 0.3713, 0.3503 
and 0.3290 for the quadratic 
power law, and also 0.3798, 
0.3597 and 0.3400 for the 
quartic power law, in each case 
for Rf = [185, 1850, 18,500] , 
respectively

Rf = 185 Rf = 1850 Rf = 18,500

kr,l = S2
l
 & k0

r,g
= (1 − Sl)

2 0.8811 0.9585 0.9667

kr,l = S4
l
 & k0

r,g
= (1 − Sl)

4 0.5875 0.8404 0.8894



 C. Torres-Ulloa, P. Grassia 

1 3

deviation than the quadratic. It is clear from Fig. 4 that the maximum deviation happens at 
time tcross , which is an effect of the estimate in equation (B6) (with xs = 0 by definition at 
t = tcross ) underestimating the actual pressure drop. In other words �rev is smaller than the 
quantity �cross appearing in equations (B8) and (B11). In order to elucidate how this occurs, 
the liquid saturation profile and mobility along x at time tcross can be examined: for brevity 
though, these results and discussion of them are relegated to Sect. C in the appendix.

5  Conclusions

We have studied the process of foam IOR via SAG injection. This has been done using 
1‑D fractional flow theory. In particular, we have analysed the flow reversal process, which 
takes place at depth as the imposed injection pressure is reduced. Although the case of 
interest is reverse flow after forward flow, these two individual flow directions are studied 
in the first instance separately. Thus forward flow, i.e. injecting gas into liquid (oil plus sur‑
factant solution), and pure reverse flow, i.e. injecting liquid into a pure gas phase (without 
prior forward flow) have been studied in order to determine the profile of liquid saturation 
and foam mobility in each case.

Via fractional flow theory it is found that the mobility of foamed gas falls by orders 
of magnitude in the neighbourhood where the gas and liquid meet. In the particular sys‑
tems we study, there is a discontinuous jump in the liquid saturation at some point in the 
flow field, and mobilities tend to be low in the neighbourhood of that discontinuity, but 
can be higher away from that discontinuity. The extent of the low mobility region in rela‑
tion to the distance travelled by the discontinuity is then computed as �fwd and �rev for for‑
ward and reverse flow, respectively. What we found is that the relative differences between 
�fwd and �rev are actually relatively modest, certainly far less than differences between for‑
ward and reverse mobilities Mtot,fwd and Mtot,rev,∞ . In principle, given a shock location, to 
determine which side of the low mobility region dominates the pressure drop associated 
with forward‑and‑reverse foam front motion, we need to know the ratios �fwd∕Mtot,fwd and 
�rev∕Mtot,rev,∞ , respectively downstream and upstream of the shock. Given the very modest 
difference between �fwd and �rev what matters then for judging which side of the low mobil‑
ity region dominates pressure drop during foam propagation in porous media are the differ‑
ent mobilities Mtot,fwd and Mtot,rev,∞ for forward and reverse flow. Generally Mtot,rev,∞ is the 
smaller of the two, so the upstream side dominates the pressure drop as indeed Eneotu and 
Grassia (2020) suggested.

We found that even though low mobilities account for only a small fraction of the liq‑
uid saturation Sl domain, they actually account for a fairly large fraction of the x domain. 
Hence the notion of low mobilities being confined spatially (as opposed to confined to a 
small domain of Sl ) is not a good assumption. Indeed, �rev and �fwd although smaller than 
unity, are not orders of magnitude smaller than unity. Results from forward flow and from 
pure reverse flow were subsequently combined to consider foam fronts and associated dis‑
continuities in liquid saturation that arise during flow reversal, i.e. when a forward flow 
is followed by a reverse flow. Based on estimates of the thicknesses of the low mobility 
regions either side of a discontinuity, and estimates of the mobilities within such regions, 
we have obtained reasonably reliable estimates of the pressure drop that results as the dis‑
continuity propagates.

In this work, we have focussed on 1‑D modelling in which we specify flow rate and 
compute pressure drop. The findings in principle however carry over to 2‑D (and more 
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generally 3‑D) models, in which we typically know imposed injection pressures and wish 
to compute flow rate. The 1‑D modelling work we have done here provides the necessary 
parameters to insert into a 2‑D pressure‑driven growth model, which can then in principle 
be used to predict evolving front shape and front location. A question remains however 
regarding how accurate such predictions might be. Pressure‑driven growth as originally 
conceived by Shan and Rossen (2004) and Grassia et al. (2014) envisaged that low mobili‑
ties and hence significant pressure gradients were confined just to thin regions adjacent to 
a foam front: the front location was then evolved on that basis. Nonetheless, given that low 
mobility regions are now expected to be quite extended spatially, what we have found is 
that specifying just a propagating foam front location alone provides limited information 
about how pressures are distributed in space. Whether 1‑D information along flow paths 
that then feeds into a 2‑D pressure‑driven growth model can adequately predict front loca‑
tion for a pressure field that is in effect fully 2‑D still remains to be determined. In other 
words, establishing whether pressure‑driven growth predictions for foam front propagation 
are still validated by a fully 2‑D Darcy type flow remains an important outstanding task.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11242‑ 023‑ 01925‑5.

Acknowledgements We acknowledge useful conversations with Elizabeth Mas‑Hernández and Gino 
Montecinos.

Author Contributions Author contributions were as follows: Carlos Torres‑Ulloa: Acquired, analysed and 
interpreted data; drafted the paper; Paul Grassia: Conceived the study, acquired funding; interpreted data; 
revised the paper for important intellectual content. Both authors read and approved the final submitted 
manuscript. Both authors agree to be accountable for all aspects of the work.

Funding The authors acknowledge funding from EPSRC grant EP/V002937/1.

Data Availability The programs that are used to generate the datasets analysed in the current study are avail‑
able in https://strathcloud.sharefile.eu/d‑seeb998e96d7347838b2a85a9f7f07396. Other relevant computer 
programs and additional data are also available from Eneotu and Grassia (2020) (see the supplementary 
material of the cited reference).

Declarations 

 Conflict of interest The authors have no relevant financial or non‑financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com‑
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ashoori, E., van der Heijden, T., Rossen, W.: Fractional‑flow theory of foam displacements with oil. SPE J. 
15, 260–273 (2010). https:// doi. org/ 10. 2118/ 121579‑ PA

https://doi.org/10.1007/s11242-023-01925-5
https://doi.org/10.1007/s11242-023-01925-5
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2118/121579-PA


 C. Torres-Ulloa, P. Grassia 

1 3

Attia, A., Fratta, D., Bassiouni, Z.: Irreducible water saturation from capillary pressure and electrical resis‑
tivity measurements. Oil Gas Sci. Technol.: Revue de l’IFP 63, 203–217 (2008). https:// doi. org/ 10. 
2516/ ogst: 20070 66

Boeije, C.S., Portois, C., Schmutz, M., Atteia, O.: Tracking a foam front in a 3D, heterogenous porous 
medium. Transp. Porous Media 131, 23–42 (2020). https:// doi. org/ 10. 1007/ s11242‑ 018‑ 1185‑0

Brooks, R.H.: Hydraulic Properties of Porous Media. Colorado State University, Fort Collins (1965)
Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 

(1942). https:// doi. org/ 10. 2118/ 942107‑G
Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, Applied Mathematical Sciences, vol. 21. 

Springer, New York (1999)
de Velde Harsenhorst, R.M., Dharma, A.S., Andrianov, A., Rossen, W.R.: Extension of a simple model for 

vertical sweep in foam SAG displacements. SPE Reserv. Eval. Eng. 17, 373–383 (2014). https:// doi. 
org/ 10. 2118/ 164891‑ PA

Eneotu, M., Grassia, P.: Modelling foam improved oil recovery: towards a formulation of pressure‑driven 
growth with flow reversal. Proc. R. Soc. A: Math. Phys. Eng. Sci. 476, 20200573 (2020). https:// doi. 
org/ 10. 1098/ rspa. 2020. 0573

Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G.J., Rossen, W.R.: Foam‑oil interaction in porous 
media: implications for foam assisted enhanced oil recovery. Adv. Coll. Interface. Sci. 183–184, 1–13 
(2012). https:// doi. org/ 10. 1016/j. cis. 2012. 07. 002

Farajzadeh, R., Bertin, H., Rossen, W.R.: Editorial to the special issue: Foam in porous media for petroleum 
and environmental engineering: experience sharing. Transp. Porous Media 131, 1–3 (2020). https:// 
doi. org/ 10. 1007/ s11242‑ 019‑ 01329‑4

Fisher, A.W., Foulser, R.W.S., Goodyear, S.G.: Mathematical modeling of foam flooding. In: SPE Improved 
Oil Recovery Conference, Tulsa, OK, 22nd–25th April (1990) https:// doi. org/ 10. 2118/ 20195‑ MS

Gong, J., Vincent‑Bonnieu, S., Bahrim, R.Z.K., Mamat, C.A.N.B.C., Groenenboom, J., Farajzadeh, R., Ros‑
sen, W.R.: Laboratory investigation of liquid injectivity in surfactant‑alternating‑gas foam enhanced 
oil recovery. Transp. Porous Media 131, 85–99 (2020). https:// doi. org/ 10. 1007/ s11242‑ 018‑ 01231‑5

Grassia, P., Mas‑Hernández, E., Shokri, N., Cox, S.J., Mishuris, G., Rossen, W.R.: Analysis of a model for 
foam improved oil recovery. J. Fluid Mech. 751, 346–405 (2014). https:// doi. org/ 10. 1017/ jfm. 2014. 
287

Grassia, P., Lue, L., Torres‑Ulloa, C., Berres, S.: Foam front advance during improved oil recovery: similar‑
ity solutions at early times near the top of the front. J. Fluid Mech. 828, 527–572 (2017). https:// doi. 
org/ 10. 1017/ jfm. 2017. 541

Hassanizadeh, S.M., Gray, W.G.: Toward an improved description of the physics of two‑phase flow. Adv. 
Water Resour. 16, 53–67 (1993). https:// doi. org/ 10. 1016/ 0309‑ 1708(93) 90029‑F

Heinemann, N., Alcalde, J., Miocic, J.M., Hangx, S.J.T., Kallmeyer, J., Ostertag‑Henning, C., Hassanpoury‑
ouzband, A., Thaysen, E.M., Strobel, G.J., Schmidt‑Hattenberger, C., Edlmann, K., Wilkinson, M., 
Bentham, M., Haszeldine, R.S., Carbonell, R., Rudloff, A.: Enabling large‑scale hydrogen storage in 
porous media: the scientific challenges. Energy Environ. Sci. 14, 853–864 (2021). https:// doi. org/ 10. 
1039/ D0EE0 3536J

Khatib, Z.I., Hirasaki, G.J., Falls, A.H.: Effects of capillary pressure on coalescence and phase mobilities 
in foams flowing through porous media. SPE Reserv. Eng. 3, 919–926 (1988). https:// doi. org/ 10. 2118/ 
15442‑ PA

Kovscek, A.R., Bertin, H.J.: Foam mobility in heterogeneous porous media. I. Scaling concepts. Transp. 
Porous Media 52, 17–35 (2003). https:// doi. org/ 10. 1023/A: 10223 12225 868

Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)
Li, R.F., Yan, W., Liu, S., Hirasaki, G., Miller, C.A.: Foam mobility control for surfactant enhanced oil 

recovery. SPE J. 15, 928–942 (2010). https:// doi. org/ 10. 2118/ 113910‑ PA
Ma, K., Lopez‑Salinas, J.L., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Estimation of param‑

eters for the simulation of foam flow through porous media. Part 1: the dry‑out effect. Energy Fuels 27, 
2363–2375 (2013). https:// doi. org/ 10. 1021/ ef302 036s

Ma, K., Ren, G., Mateen, K., Morel, D., Cordelier, P.: Modeling techniques for foam flow in porous media. 
SPE J. 20, 453–470 (2015). https:// doi. org/ 10. 2118/ 169104‑ PA

Rossen, W.R., Boeije, C.S.: Fitting foam‑simulation‑model parameters to data: II. Surfactant‑alternating‑
gas foam applications. SPE Reserv. Eval. Eng. 18, 273–283 (2014). https:// doi. org/ 10. 2118/ 165282‑ PA

Shan, D., Rossen, W.R.: Optimal injection strategies for foam IOR. SPE J. 9, 132–150 (2004). https:// doi. 
org/ 10. 2118/ 88811‑ PA

Shen, X., Zhao, L., Ding, Y., Liu, B., Zeng, H., Zhong, L., Li, X.: Foam, a promising vehicle to deliver 
nanoparticles for vadose zone remediation. J. Hazard. Mater. 186, 1773–1780 (2011). https:// doi. org/ 
10. 1016/j. jhazm at. 2010. 12. 071

https://doi.org/10.2516/ogst:2007066
https://doi.org/10.2516/ogst:2007066
https://doi.org/10.1007/s11242-018-1185-0
https://doi.org/10.2118/942107-G
https://doi.org/10.2118/164891-PA
https://doi.org/10.2118/164891-PA
https://doi.org/10.1098/rspa.2020.0573
https://doi.org/10.1098/rspa.2020.0573
https://doi.org/10.1016/j.cis.2012.07.002
https://doi.org/10.1007/s11242-019-01329-4
https://doi.org/10.1007/s11242-019-01329-4
https://doi.org/10.2118/20195-MS
https://doi.org/10.1007/s11242-018-01231-5
https://doi.org/10.1017/jfm.2014.287
https://doi.org/10.1017/jfm.2014.287
https://doi.org/10.1017/jfm.2017.541
https://doi.org/10.1017/jfm.2017.541
https://doi.org/10.1016/0309-1708(93)90029-F
https://doi.org/10.1039/D0EE03536J
https://doi.org/10.1039/D0EE03536J
https://doi.org/10.2118/15442-PA
https://doi.org/10.2118/15442-PA
https://doi.org/10.1023/A:1022312225868
https://doi.org/10.2118/113910-PA
https://doi.org/10.1021/ef302036s
https://doi.org/10.2118/169104-PA
https://doi.org/10.2118/165282-PA
https://doi.org/10.2118/88811-PA
https://doi.org/10.2118/88811-PA
https://doi.org/10.1016/j.jhazmat.2010.12.071
https://doi.org/10.1016/j.jhazmat.2010.12.071


Foam Propagation with Flow Reversal  

1 3

Shi, J.: Simulation and experimental studies of foam for enhanced oil recovery. Ph.D. thesis, University of 
Texas at Austin (1996)

Skauge, A., Solbakken, J., Ormehaug, P.A., Aarra, M.G.: Foam generation, propagation and stability in 
porous medium. Transp. Porous Media 131, 5–21 (2020). https:// doi. org/ 10. 1007/ s11242‑ 019‑ 01250‑w

Torres‑Ulloa, C., Grassia, P.: Breakdown of similarity solutions: a perturbation approach for front propaga‑
tion during foam‑improved oil recovery. Proc. R. Soc. A: Math. Phys. Eng. Sci. 477, 20200691 (2021). 
https:// doi. org/ 10. 1098/ rspa. 2020. 0691

Wang, S., Mulligan, C.N.: An evaluation of surfactant foam technology in remediation of contaminated soil. 
Chemosphere 57, 1079–1089 (2004). https:// doi. org/ 10. 1016/j. chemo sphere. 2004. 08. 019

Zeng, Y., Muthuswamy, A., Ma, K., Wang, L., Farajzadeh, R., Puerto, M., Vincent‑Bonnieu, S., Eftekhari, 
A.A., Wang, Y., Da, C., Joyce, J.C., Biswal, S.L., Hirasaki, G.J.: Insights on foam transport from a 
texture‑implicit local‑equilibrium model with an improved parameter estimation algorithm. Ind. Eng. 
Chem. Res. 55, 7819–7829 (2016). https:// doi. org/ 10. 1021/ acs. iecr. 6b014 24

Zhong, L., Szecsody, J.E., Zhang, F., Mattigod, S.V.: Foam delivery of amendments for vadose zone reme‑
diation: propagation performance in unsaturated sediments. Vadose Zone J. 9, 757–767 (2010). https:// 
doi. org/ 10. 2136/ vzj20 10. 0007

Zhou, Z., Rossen, W.R.: Applying fractional‑flow theory to foam processes at the limiting capillary pres‑
sure. SPE Adv. Technol. Ser. 3, 154–162 (1995). https:// doi. org/ 10. 2118/ 24180‑ PA

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s11242-019-01250-w
https://doi.org/10.1098/rspa.2020.0691
https://doi.org/10.1016/j.chemosphere.2004.08.019
https://doi.org/10.1021/acs.iecr.6b01424
https://doi.org/10.2136/vzj2010.0007
https://doi.org/10.2136/vzj2010.0007
https://doi.org/10.2118/24180-PA

	Foam Propagation with Flow Reversal
	Abstract
	Article Highlights
	1 Introduction
	2 Modelling foam IOR via SAG
	3 Pressure drop across the flow and thickness of low mobility region
	3.1 Forward flow
	3.2 Pure reverse flow
	3.3 Flow reversal immediately after forward flow
	3.3.1 Estimate of pressure drop
	3.3.2 Discontinuity that moves further in reverse flow than in forward flow


	4 Results: Foam front thickness to displacement ratio & pressure drop
	4.1 Liquid saturation over the x domain
	4.2 Computing 
	4.3 Computing 
	4.4 Pressure drop data for forward-and-reverse flow

	5 Conclusions
	Anchor 18
	Acknowledgements 
	References


