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Abstract

Freshly synthesized r-process elements in kilonovae ejecta imprint absorption features on optical spectra, as
observed in the GW170817 binary neutron star merger. These spectral features encode insights into the physical
conditions of the r-process and the origins of the ejected material, but associating features with particular elements
and inferring the resultant abundance pattern is computationally challenging. We introduce Spectroscopic r-
Process Abundance Retrieval for Kilonovae (SPARK), a modular framework to perform Bayesian inference on
kilonova spectra with the goals of inferring elemental abundance patterns and identifying absorption features at
early times. SPARK inputs an atomic line list and abundance patterns from reaction network calculations into the
TARDIS radiative transfer code. It then performs fast Bayesian inference on observed kilonova spectra by training
a Gaussian process surrogate for the approximate posteriors of kilonova ejecta parameters, via active learning. We
use the spectrum of GW170817 at 1.4 days to perform the first inference on a kilonova spectrum, and recover a
complete abundance pattern. Our inference shows that this ejecta was generated by an r-process with either (1)
high electron fraction Ye∼ 0.35 and high entropy s/kB∼ 25, or, (2) a more moderate Ye∼ 0.30 and s/kB∼ 14.
These parameters are consistent with a shocked, polar dynamical component, and a viscously driven outflow from
a remnant accretion disk, respectively. We also recover previous identifications of strontium absorption at
∼8000Å, and tentatively identify yttrium and/or zirconium at 4500Å. Our approach will enable
computationally tractable inference on the spectra of future kilonovae discovered through multimessenger
observations.

Unified Astronomy Thesaurus concepts: Nuclear abundances (1128); R-process (1324); Radiative transfer
simulations (1967); Spectral line identification (2073)

1. Introduction

More than half a century ago, rapid neutron capture in
astrophysical settings was identified as a likely source for the
heaviest elements (Burbidge et al. 1957; Cameron 1957). This
so-called “r-process” nucleosynthesis is now thought to
contribute significantly to cosmic abundances of almost half
of all known elements (see Cowan et al. 2021 for a recent
review). Mergers of two neutron stars (NS–NS) or a neutron
star and black hole (NS–BH) have long been suspected as a site
of this r-process (Lattimer & Schramm 1974; Symbalisty &
Schramm 1982; Eichler et al. 1989; Freiburghaus et al. 1999;
Goriely et al. 2011; Korobkin et al. 2012; Bauswein et al.
2013). However, a major outstanding question is whether these
mergers alone can robustly produce the observed abundances
of r-process elements. Recently, the measurement of large r-
enhancement in the ultra-faint dwarf galaxy Reticulum II was
ascribed to a single high-yield event such as an NS–NS or NS–
BH merger (Ji et al. 2016; Roederer et al. 2016), although the
scenario of one or more core-collapse supernovae cannot be
ruled out (Beniamini et al. 2016). Similarly, in the solar system,
very low meteoritic and deep-sea abundances of the actinides

(Z= 89–103, but specifically 244 Pu and 247 Cm; Wallner et al.
2015; Bartos & Marka 2019) argue for a single, rare actinide
production site, consistent with mergers. Yet, isotopic ratios of
247 Cm / 129I in meteorites are also consistent with both merger
accretion disks and magnetorotationally driven supernovae
(Côté et al. 2021). Adding to the confusion, so-called “actinide-
boost” stars can be reproduced by the dynamical ejecta from
mergers (Lai et al. 2008; Roederer et al. 2009; Holmbeck et al.
2018), but their actinide-poor counterparts (Holmbeck et al.
2019) imply either intrinsic variation in actinide yield from
the same class of sources (as might be replicated in post-
merger ejecta; Holmbeck et al. 2019) or additional actinide
production sites. Finally, mergers have difficulty producing
observed trends in [Eu/Fe] abundance ratios in the disk of the
Milky Way (Côté et al. 2019), while collapsars at sufficiently
high accretion rates (Siegel et al. 2019) may produce these
trends (Brauer et al. 2021; Yamazaki 2022, but see Wanajo
et al. 2021). Identifying the dominant site(s) of the r-process in
the universe will thus require further, more constraining
observations.
One avenue for tackling this question is the direct

measurement of the r-process abundances at the different
candidate sites. The landmark NS–NS merger GW170817,
detected first in gravitational waves (GWs) by the LIGO and
Virgo observatories and then across the electromagnetic
spectrum (Abbott et al. 2017a, 2017c), offered the first
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opportunity to directly test these mergers’ ability to synthesize
the r-process elements. Observations in the ultraviolet (UV),
optical, and infrared (IR), including both photometry (Andreoni
et al. 2017; Arcavi et al. 2017; Coulter et al. 2017; Díaz et al.
2017; Drout et al. 2017; Evans et al. 2017; Hu et al. 2017;
Kasliwal et al. 2017; Lipunov et al. 2017; Tanvir et al. 2017;
Troja et al. 2017; Utsumi et al. 2017; Valenti et al. 2017)6 and
spectroscopy (Chornock et al. 2017; Kasen et al. 2017; Pian
et al. 2017; Shappee et al. 2017; Smartt et al. 2017; Côté et al.
2018), broadly matched expectations for a transient kilonova
powered by the radioactive decay of freshly synthesized r-
process elements (see Metzger 2019; Margutti & Chor-
nock 2021 for reviews). It was thus confirmed that NS–NS
mergers must be the source of some fraction of the r-process
elements in the universe. However, whether the abundances of
the heaviest r-process elements (e.g., the lanthanides
Z= 57–71, and beyond) match those of the universal r-process
remains unclear. Indeed, Ji et al. (2019) reviewed the
lanthanide mass fraction Xlan inferred for this event across the
literature, and broadly found that the lanthanides were under-
produced relative to the r-process abundances measured in
Galactic halo stars. They concluded that some fraction of future
kilonovae would need to be significantly more lanthanide-rich
for NS–NS mergers to remain a viable candidate for the
dominant source of r-process elements in the Milky Way.

To quantify the r-process yield of GW170817, various
studies have attempted to associate features in the spectrum of
the kilonova with specific elements through forward-modeling.
This process is complicated by both the presence of up to
billions of lines in the spectrum (Tanaka et al. 2020), and the
broadening of these lines due to the high velocities of the
kilonova ejecta. Nonetheless, a broad absorption feature
(relative to a thermal continuum) at ∼8000Å has received
much attention. Smartt et al. (2017) attributed this feature to a
combination of absorption at 7000–7500 Å and 8000–8500 Å
from Cs I and Te I, respectively. Watson et al. (2019) argued
instead that Sr II was responsible for the absorption at both
∼8000Å and potentially ∼4000Å. They noted that at the
temperatures required for the presence of sufficient Cs I and
Te I, singly ionized species such as La II, Gd II, and Eu II would
also be highly populated. These lanthanide elements would
themselves imprint absorption features on the spectra, but were
not observed. Using updated atomic data, Domoto et al. (2021)
similarly attributed the feature at ∼8000Å to Sr II. Gillanders
et al. (2021) searched the spectrum for evidence of gold and
platinum, and found no such evidence. Recently, using a
combination of observed and theoretical atomic data, Gil-
landers et al. (2022) recovered the Sr II feature and also found
evidence for absorption from Y II and Zr II at wavelengths
5000Å. Similarly, Domoto et al. (2022) used a combination
of observed and theoretical lines to argue for absorption from
La III and Ce III at ∼12000–14000Å, as well as recovering the
aforementioned Sr II, Y II, and Zr II features.

While the detection of these individual elements can be used
to constrain their abundances, it has not been possible to
systematically infer the full, element-by-element abundance
pattern of the ejecta. First, due to the large number of heavy
elements which may be coproduced in the ejecta and the large
opacities of these elements under the conditions in the ejecta
(as large as κ≈ 10–100 cm2 g−1 for the lanthanides and

actinides; Kasen et al. 2013, 2017; Even et al. 2020; Fontes
et al. 2020; Tanaka et al. 2020; Silva et al. 2022), spectral
synthesis for comparison to the observed spectra is computa-
tionally expensive. Second, kilonova parameter space is high-
dimensional, and the dependence of the emergent spectrum on
the elemental abundances is highly nonlinear. The net effect is
that a thorough exploration of abundance-space, and the impact
of all of the elements on the spectrum, has not yet been
possible.
Here, we solve this problem and perform the first inference

on the spectrum of the GW170817 kilonova in the early-time
optically thick phase, to retrieve posteriors for parameters of
the ejecta material. We introduce Spectroscopic r-Process
Abundance Retrieval for Kilonovae (SPARK), a framework for
performing Bayesian inference of key kilonova parameters
using optical spectra with the dual goals of (1) inferring the
entire r-process elemental abundance pattern, and (2) robustly
associating features in the observed spectra with specific r-
process elements. Using a simple parameterization of the
kilonova ejecta, we input a line list constructed from the
Vienna Atomic Line Database (VALD; Ryabchikova et al.
2015; Pakhomov et al. 2019) and abundance patterns from the
nuclear reaction network calculations of Wanajo (2018) into
the TARDIS (Kerzendorf & Sim 2014) radiative transfer code.
We then couple TARDIS to the approximate Bayesian
inference framework of approxposterior (Fleming &
VanderPlas 2018; Fleming et al. 2020), which uses a Gaussian
process (GP) surrogate model to approximate a posterior
distribution through active learning when forward-modeling is
computationally expensive. This yields a modular inference
engine that is capable of inferring the properties of the kilonova
ejecta with few forward model evaluations.
The organization of this paper is as follows. In Section 2, we

describe our line list, radiative transfer, kilonova parameteriza-
tion, abundances, and inference techniques. In Section 3, we
apply SPARK to the spectrum of the GW170817 kilonova at
t = 1.4 days post-merger and present approximate posterior
distributions and inferred abundances for this early, optically
thick component of the ejecta. We also associate features in the
spectrum with particular species. In Sections 4 and 5, we
discuss the implications of our results, including the physical
origins of the ejecta, and conclude.

2. Methods

We present a general schematic for SPARK in Figure 1. We
discuss each of the steps in detail in the following sections.

2.1. Building a Line List

In problems of spectroscopic inference, the accuracy of the
inference is highly dependent on the quality of the employed
atomic data. These atomic data or “line lists” include, at
minimum: the energy levels, transition wavelengths, and the
strengths of the transitions for all ions of relevance. Aside from
these line lists, we also require the masses and ionization
potentials of different elements. This poses a challenge for
performing inference on kilonovae because a wide range of
heavy elements, up to and including the actinides, are expected
to be present. For many of these elements, and in particular
ionized species, observed atomic data is limited or nonexistent.
Theoretical atomic data can be used, but may not be sufficiently
accurate in wavelength (e.g., Tanaka et al. 2020). We therefore

6 See Villar et al. (2017) for a compilation of this photometry considering
inter-instrument variation.
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use the most complete source of atomic data currently
available: VALD (Ryabchikova et al. 2015; Pakhomov et al.
2019).7 For elements from Z= 1–92 (with some missing),
neutral to doubly ionized, VALD provides approximately 1.6
million observed lines. We do not include any theoretical or
semiempirical lines at this time. Because of their relevance to
kilonovae, we also use a small number of astrophysically
measured lines from the APOGEE survey (Majewski et al.
2017). These include 10 Nd II lines (Hasselquist et al. 2016)
and nine Ce II lines (Cunha et al. 2017), in the ∼15000–17000
Å range. We convert these line lists to a format compatible with
our radiative transfer using the carsus8 package. The final
tally of lines for each ion is provided in Appendix A.

2.2. Radiative Transfer with TARDIS

To generate synthetic spectra, we use the Monte Carlo (MC)
radiative transfer code TARDIS9 (Temperature And Radiative
Diffusion In Supernovae; Kerzendorf & Sim 2014).
TARDIS employs the indivisible photon packet Monte Carlo
scheme formalized in Mazzali & Lucy (1993) and Lucy (1999,
2002, 2003) to produce a synthetic spectrum at a single point in
time.10 In this scheme, photon packets are generated at a user-
specified inner computational boundary (the photosphere11)

and allowed to redagate until they either escape through the
user-set outer boundary or are reabsorbed and lost at the inner
boundary. As they propagate, packets may undergo bound-
bound line interactions in the ambient ejecta and/or electron
scattering. Over several iterations, the parameters of the
radiation field are updated until a steady plasma state is
achieved. During the run, interaction histories of all packets are
tracked. At each interaction, Nv= 5 “virtual” packets are
generated, escape the ejecta without further interaction, and are
recorded. This virtual packet technique (Long & Knigge 2002)
yields a synthetic virtual packet spectrum in which the impact
of Monte Carlo noise is reduced relative to a “real” packet
spectrum. For our purposes, we further smooth the spectrum
with a Savitzky-Golay filter (Savitzky & Golay 1964), as in
Vogl et al. (2020).
For details of the different modes available within TARDIS,

we refer the reader to Kerzendorf & Sim (2014) and its
extensive documentation. Briefly, we use the macroatom
(Lucy 2002) scheme to handle radiation–matter interactions.
Note that macroatom does not consider auto-ionizing lines,
and indeed all bound-free processes are neglected. Brems-
strahlung (free–free) and synchrotron processes are also
neglected, as they are subdominant due to the much larger
contribution from bound-bound processes to the opacities of
the ejecta at all relevant wavelengths (e.g., Kasen et al. 2013).12

Ionization fractions and level populations in the plasma are

Figure 1. Schematic of the steps in a SPARK run. We take as inputs the observed spectrum of some kilonova, an atomic line list (Section 2.1), and the abundances
from a nuclear reaction network (Section 2.4). The line list and abundances are used to generate synthetic spectra, via Monte Carlo radiative transfer with
TARDIS (Section 2.2). We aim to construct a posterior distribution given a parameterization of the kilonova ejecta (Section 2.3) and find the best fit to the observed
spectrum. Because this radiative transfer is computationally expensive, we use Bayesian Active Posterior Estimation (BAPE) to determine where in parameter space to
perform the radiative transfer (Section 2.5). In BAPE, a Gaussian process (GP) surrogate for the posterior actively learns the posterior as a training set of synthetic
spectra is accumulated. As this training set grows, we periodically assess the convergence of the posterior. Once convergence is achieved, we produce our final
approximate posterior using nested sampling on the GP surrogate. We extract the best fit and uncertainties for parameters of the kilonova, and use the relevant
parameters to obtain a best-fit abundance pattern. Finally, we iteratively remove one element at a time from our best-fit model, re-perform radiative transfer, and
compare this new spectrum to the best fit to assess the impact of each individual element. In the end, we obtain the full abundance pattern and robustly associate
features in the spectrum of the kilonova with specific species.

7 http://vald.astro.uu.se/~vald/php/vald.php
8 https://github.com/tardis-sn/carsus
9 https://tardis-sn.github.io/tardis/
10 See Noebauer & Sim (2019) for a review of Monte Carlo radiative transfer
techniques.
11 Note, however, that this is a simplification: the photosphere is fundamen-
tally a wavelength-dependent quantity (e.g., Fontes et al. 2020).

12 Indeed, TARDIS currently cannot model bound-free or free–free processes.
In future work, it may be useful to take advantage of the modularity of
SPARK to swap out TARDIS for some equivalent code that can include these
processes, to assess their importance.
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computed assuming local thermodynamic equilibrium (LTE).
This approximation is valid at the early times modeled here, but
note that departures from LTE may be significant at later times
(3–4 days), when the ejecta becomes optically thin and enters
a nebular phase (e.g., Gillanders et al. 2021; Hotokezaka et al.
2021; Pognan et al. 2022a, 2022b).

At present, TARDIS can consider only 1D, spherically
symmetric ejecta. Multidimensional general relativistic magne-
tohydrodynamics (GRMHD) simulations of NS–NS/NS–BH
mergers indicate that the ejecta does not necessarily follow
such a distribution; it may have a faster tidal component
confined mostly to the equator, shocked ejecta from the
collision interface in an NS–NS merger, and/or slower disk
outflows emitted more isotropically or even more prominently
toward polar regions (see, e.g., Fernández & Metzger 2016;
Baiotti & Rezzolla 2017; Shibata & Hotokezaka 2019; Radice
et al. 2020 for reviews). These components are also
characterized by different elemental compositions and opacities
(e.g., Wanajo et al. 2014; Just et al. 2015; Mendoza-Temis
et al. 2015; Wu et al. 2016). As a result, the spectra and light
curves of these events should be viewing-angle (and time)
dependent, and axisymmetric profiles (e.g., Wollaeger et al.
2018; Bulla 2019; Darbha & Kasen 2020; Kawaguchi et al.
2020; Heinzel et al. 2021; Korobkin et al. 2021; Wollaeger
et al. 2021) would be more physically motivated. However, an
increase in spatial dimensions would significantly increase
radiative transfer computation times and the complexity of our
model. For now, we accept this limitation, and employ a simple
power-law profile for the density ρ:

r r= -( ) ( ) ( ) ( )v t t t v v, , 1n
0 0

3
0

where ρ0, v0, and t0 are normalization terms. We treat ρ0 as a
free parameter and fix v0= 0.1c and t0= 1.4 days across all
runs. Under the assumption that the ejecta is expanding
homologously, which is accurate as of ∼102− 103 seconds
post-merger (Metzger et al. 2010; Kasen et al. 2013; Rosswog
et al. 2014; Grossman et al. 2014), the velocity follows v= r/t
at all radii r and can thus be interpreted as a radial coordinate at
some time t. We fix n=−3, which agrees with hydrodynami-
cal simulations (e.g., Kasen et al. 2017; Tanaka et al. 2017;
Watson et al. 2019), although this choice is somewhat arbitrary
and the emission is not particularly sensitive to the choice of
density profile (Kasen et al. 2017). We fix the velocity at the
outer computational boundary to a fiducial value of
vouter= 0.35c, sufficiently large to allow propagating photon
packets to redshift and interact with all relevant atomic lines
(Gillanders et al. 2022). We find that our inference yields
similar results for vouter in the range 0.35c–0.38c. Finally, to
simplify our model, ensure that there is an analytic mapping
between our fit parameters and the synthesized spectra, and
reduce run times, we use a single shell in the ejecta and perform
a single TARDISMC iteration. In this single-shell configura-
tion, the plasma is described by a single temperature, mass
density, and abundance pattern. These quantities influence the
opacity of the ejecta and the features in the emergent spectrum.

Importantly, we use the fully relativistic implementation of
TARDIS (Vogl et al. 2019, 2020). Some previous works
applying TARDIS to kilonovae (Smartt et al. 2017; Watson
et al. 2019) did not include this full treatment, which was not
available at the time.

2.3. Parameterization of a Kilonova

The inputs required by the radiative transfer and our goal of
inferring elemental abundances motivate our parameterization
of a kilonova. We use as free parameters:

q r= -{ ( ) ( )
} ( )

L L

v v Y s

log , log g cm ,

, , , , 2e

10 outer 10 0
3

inner exp

corresponding to the luminosity at the outer computational
boundary (Louter, normalized by solar luminosities Le), the
normalization in the density power law (ρ0; Equation (1)), the
inner computational boundary velocity (vinner; also the photo-
spheric velocity), and three parameters related to the abun-
dances: the expansion velocity of the ejecta (vexp), the electron
fraction of the ejecta (Ye), and the specific entropy (per
nucleon) of the ejecta (s). We note that the expansion velocity
vexp describes the conditions during r-process nucleosynthesis,
which occurs in just the first second(s) post-merger, and is thus
not necessarily equivalent to the velocities in the ejecta (vinner,
vouter) at later times; we discuss this detail further in
Section 2.4.
The luminosity at the outer boundary is used in TARDIS to

set the initial guess for the blackbody temperature at the inner
boundary, Tinner (Kerzendorf & Sim 2014):

p s
= ⎜ ⎟

⎛
⎝

⎞
⎠

( )T
L

r4
3inner

outer

inner
2

1 4

where rinner= vinnert is the radius at the inner boundary and σ is
the Stefan-Boltzmann constant. Because we perform a single
MC iteration within TARDIS, Tinner is not iterated and keeps
this relation to Louter; Louter can thus be understood as an analog
for the temperature of the photosphere in this configuration.
The inner boundary velocity vinner denotes the velocity of the
ejecta at the photosphere. Given ρ0, vinner, and our fixed
vouter= 0.35c, we can compute the mass above the photo-
sphere, and thus place a lower limit on the total mass of the
ejecta. Finally, the electron fraction Ye, expansion velocity vexp

and entropy s are used to parameterize the abundances in the
ejecta, as described in Section 2.4.
This parameterization describes a single epoch of a single-

component kilonova. In reality, kilonova ejecta are likely
composed of multiple components of different masses, velocity
profiles, spatial distributions, and compositions. These compo-
nents interact with each other, leading to viewing-angle- and
time-dependent effects such as lanthanide curtaining (Kasen
et al. 2015; Wollaeger et al. 2018; Darbha & Kasen 2020;
Nativi et al. 2021) and reprocessing where different compo-
nents overlap in space (Kawaguchi et al. 2020; Korobkin et al.
2021). However, including additional components would
significantly increase the dimensionality of our parameteriza-
tion and the run time of the radiative transfer. Furthermore, the
early-time spectrum (1.4 days) may be dominated by a single
component, compared to later epochs, which are better
described with multiple components (e.g., Kasen et al. 2017).
It is thus worth investigating if this simple single-component
model can adequately reproduce the spectra. Given our
Bayesian approach, it is also possible to compute the evidence
of this model and compare it to that of multicomponent models
to determine whether additional component(s) are needed,
which we will explore in future work.
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2.4. Elemental Abundances

A useful tracer for the abundances in kilonova ejecta is the
electron fraction Ye (equivalently the proton fraction: the ratio
of protons to all baryons). Different physical/morphological
components of the kilonova are distinguished by their Ye and
corresponding abundance pattern (e.g., Wanajo et al. 2014; Just
et al. 2015; Mendoza-Temis et al. 2015; Wu et al. 2016). The
electron fraction is determined by the initial composition of the
merging NS(s) and subsequent neutrino emission and absorp-
tion via charged-current weak interactions. These microphysi-
cal processes are in turn driven by various global processes,
with one of the most important being the fate of the merger
remnant. In an NS–NS merger, a short- or long-lived
hypermassive or supermassive NS remnant can produce
significant neutrino radiation and raise the electron fraction of
a surrounding accretion disk through weak interactions, leading
to a higher-Ye outflow from this disk (e.g., Metzger &
Fernández 2014; Perego et al. 2014; Lippuner et al. 2017;
Fahlman & Fernández 2018; Siegel & Metzger 2018; Miller
et al. 2019; Nedora et al. 2021). If the remnant instead promptly
collapses to form a BH, the electron fraction in this outflow
may be lower; this is simplified in NS–BH mergers, in which
no NS remnant can survive. A sufficiently low electron fraction
(e.g., Ye 0.25) can enable production of all three observed r-
process peaks (see Cowan et al. 2021), producing isotopes up
to A∼ 250, whereas a higher electron fraction ejecta (e.g.,
Ye 0.25) may be truncated at A 140 or may induce a shift in
the location of these peaks. This in turn leaves an indelible
impact on the observed spectrum: a sufficiently low-Ye ejecta
will contain a significant abundance of lanthanides and/or
actinides, with millions to billions of blended atomic lines
predominantly in the optical/UV, leading to a redder spectrum.
A higher-Ye ejecta will instead be dominated by lighter
elements, and yield bluer emission.

The composition of the ejecta also depends on the entropy s
and expansion velocity vexp of the ejecta. At the time of r-
process nucleosynthesis (first ∼seconds post-merger), a high-
entropy (“hot”) outflow will remain in an extended (n, γ) Ç(γ,
n) equilibrium (i.e., equilibrium between neutron captures and
photodissociations), while a low-entropy (“cold”) outflow will
instead quickly β-decay to form quasi-equilibrium groups of
isotopes, leading to differing abundance patterns (Cowan et al.
2021; Vassh et al. 2021). In addition, the expansion timescale
can influence the cooling and entropy of the material, and thus
the expansion velocity is also important. We therefore employ
the full, time-dependent reaction network calculations of
Wanajo (2018). These calculations were performed for electron
fractions Ye= (0.01, 0.02, K, 0.50), expansion velocities

= ( )v c 0.05, 0.10, ..., 0.30exp , and specific entropies s= (10,
15, ..., 35)kB/nucleon, where kB is Boltzmann’s constant, for a
total of 50× 6× 6= 1800 calculations. We treat Ye, vexp, and s
directly as fit parameters (Section 2.3).

To obtain a smoother mapping of the fit parameters to the
elemental abundances, we linearly interpolate the abundances
for each element, for values = ( )v c 0.05, 0.06, ..., 0.30exp
and s= (10, 11, ..., 35)kB/nucleon. In Figure 2, we show the
variation in abundances holding two of ( )Y v s, ,e exp fixed and
allowing the other parameter to vary, at t= 1.4 days post-
merger. The abundances are most sensitive to the electron
fraction, as expected. However, variations in the expansion
velocity and entropy can introduce order-of-magnitude differ-
ences in the abundances for a given electron fraction. We

emphasize that these parameters Y v s, ,e exp describe the initial
conditions of the r-process, which operates on a timescale of
t∼ seconds post-merger, and then sets the initial abundances in
the ejecta. These abundances themselves are then time-evolved
within the reaction network to produce abundances at times that
are relevant to our spectral retrieval, e.g., t = 1.4 days. Thus,
vexp should not be directly equated with the velocities in the
ejecta at 1.4 days. The calculations in Wanajo (2018) assume a
spherical density profile that is fully equivalent to the power-
law density in Equation (1) at t v150 km exp, as is the case at
t= 1.4 days and beyond. However, they further assume that the
velocity in the ejecta remains constant over time. vexp is thus
equivalent to the ejecta velocities if and only if the ejecta does
not experience any acceleration before the onset of homologous
expansion. The ejecta might experience this acceleration if
subjected to a strong magnetic field from a remnant NS in the
first ~ 1 second post-merger (e.g., Metzger et al. 2018),
significant r-process heating (e.g., Klion et al. 2022), or a
Poynting flux-dominated wind from a central engine remnant
NS (Ai et al. 2022).
We note that it is well documented that uncertainties in

nuclear models (nuclear masses, neutron capture rates, β-decay
rates, and treatments of fission) impact the abundances obtained
from different reaction networks (e.g., Eichler et al.
2015, 2019; Barnes et al. 2016, 2021; Mumpower et al.
2016; Côté et al. 2018; Zhu et al. 2021; Kullmann et al. 2022b).
It is thus possible that new reaction network calculations that
incorporate, e.g., improved measurements of decay rates or
more accurate nuclear mass models, will replace the calcula-
tions used here in the future. This motivates our use of a
modular framework in SPARK in which different inputs can
easily be swapped for others.

2.5. Inference with APPROXPOSTERIOR

As a first test of SPARK, we perform inference on the VLT/
X-shooter spectrum of GW170817 (Pian et al. 2017; Smartt
et al. 2017) at t = 1.4 days post-merger.13 This spectrum spans
roughly 3200–24800Å. The relevant parameters θ are
{ ( )L Llog10 outer , r -( )log g cm10 0

3 , }v v Y s, , ,einner exp , and
we wish to compare synthetic spectra of various θ to the
spectrum of GW170817. However, due to the considerable run
times for each radiative transfer run, traditional inference
techniques such as a Markov Chain Monte Carlo (MCMC)
would be prohibitively computationally expensive. At six
parameters, one would easily require >106 forward model
evaluations (TARDIS runs) to perform this MCMC. We
therefore instead use approxposterior (Fleming & Van-
derPlas 2018; Fleming et al. 2020), in which the posterior
distribution is approximated using active learning with a
surrogate GP. We specifically use the technique of Bayesian
Active Posterior Estimation (BAPE; Kandasamy et al. 2017).
In this technique, the GP surrogate for the posterior is
iteratively trained using active learning on points obtained by
maximizing an acquisition function.
A summary of the steps involved in SPARK is given in

Algorithm 1. A more detailed description is as follows. We
begin with a training set T of m0 Latin Hypercube-sampled
pairs (θi, Lp(θi)), q Î i , where Lp(θ) is the posterior and  is
the domain of the parameters. We similarly construct a test set
of mtest Latin Hypercube-sampled points to be used later to

13 Acquired through WISeREP (Yaron & Gal-Yam 2012).
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assess convergence. We then condition a GP
q m q q qº ¢( ) ( ( ) ( ))f k, , on T, where μ(θ) and q q¢( )k ,

are the mean and covariance kernel of the GP, respectively. For
the mean, we initialize with μ= 0. For the kernel, we employ
the squared exponential:

q q
q q

= -
-

⎜ ⎟
⎛
⎝

⎞
⎠

( )
∣∣ ∣∣

( )k
ℓ

, exp
2

, 4i j
i j

2

2

where ℓ is a hyperparameter that controls the length scale of
correlations in each dimension of parameter space. A small
amount of white noise of -( )exp 3 is added to the diagonals of
the kernel’s covariance matrix as a form of regularization (to
prevent the GP from overfitting to the potentially complex
posterior) and to ensure numerical stability. The value of white
noise that was required to prevent overfitting was determined
through trial and error; in the future, it will be useful to

Figure 2. Elemental abundances for Z = 1–92 as a function of the initial electron fraction Ye, expansion velocity vexp, and entropy s, derived from Wanajo (2018), at
t = 1.4 days post-merger. Wanajo (2018) performed time-dependent reaction network calculations for electron fractions Ye = (0.01, 0.02,K,0.50), expansion
velocities = ( )v c 0.05, 0.10, ..., 0.30exp , and specific entropies s = (10, 15, ..., 35)kB/nucleon. For a smoother mapping of these parameters to abundances, we
linearly interpolate v cexp in steps of 0.01 and s in steps of 1 kB/nucleon. Top: variation due to the electron fraction, for fixed =v c0.25exp and s = 25 kB/nucleon.
Abundance patterns are color-coded, with those corresponding to lower Ye and thus redder kilonovae colored red, and those of higher Ye and bluer kilonovae colored
blue. For sufficiently low Ye, the r-process extends up to the lanthanides and/or up to the actinides. At higher Ye, the abundances are instead dominated by lighter
elements. Center: abundances as a function of the expansion velocity, for fixed Ye = 0.20 and s = 25 kB/nucleon. While the abundances are less sensitive to the
velocities than the electron fraction, variations in the velocity still induce order-of-magnitude changes in the abundances of particular elements. Bottom: abundances as
a function of entropy, for fixed Ye = 0.20 and =v c0.25exp . As with the velocities, the abundances are not as sensitive to the entropy as the electron fraction, but
variations in entropy can nonetheless alter the abundance of certain elements by several orders of magnitude. While the effect of increasing the entropy is similar to
that of increasing the expansion velocity around the point = = =( )Y v c s k0.20, 0.20 , 25 nucleone exp B , this is not necessarily a general trend or feature of the input
abundance patterns. Indeed, the abundances are a complex, nonlinear function of Ye, vexp, s, and Z (e.g., Lippuner & Roberts 2015).
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regularize the GP with some more robust techniques. The
solution to this problem is outside the scope of this work, but
will be required for future works fitting other spectra.

With the base training set constructed, we transition to active
learning, and obtain mactive new points for the training set.
These points are selected by maximizing an acquisition
(“utility”) function. We use the exponentiated variance utility
function (Equation (5) of Kandasamy et al. 2017):

q m q s q s q= + -( ) ( ( ) ( )) · ( ( ( )) ) ( )u exp 2 exp 1 , 5n n nEV
2 2

where μn(θ) and s q( )n
2 are the mean and variance of the GP’s

predictive conditional distribution, respectively. The θ* at the
maximum of this function maximizes a combination of the
approximate posterior density and the predictive uncertainty of
the GP, ensuring that we sample around the expected peak of
the posterior but also explore regions of parameter space where
the GP fit is uncertain. This optimization is reinitialized
NMinObjRestarts times to mitigate the impact of local extrema. We
then synthesize a spectrum at the optimal θ* and compute the
posterior Lp(θ

*), and the new pair (θ*, Lp(θ
*)) is added to the

training set T. For every NoptGPEvery points sampled, the GP is
reconditioned on the augmented training set T, and the GP
hyperparameters are re-optimized. Optimization of hyperpara-
meters is also reinitialized, NGPRestarts times.

Once mactive new points have been sampled, the active
learning ends. With a final training set of m0+mactive samples,
we perform dynamic nested sampling with dynesty (Spea-
gle 2020) to obtain a final approximate posterior distribution.
We opt for nested sampling rather than an MCMC due to
nested sampling’s greater ability to sample complex and
potentially multimodal distributions, and capture the tails of
distributions. Since we are currently only interested in the
posterior and not the Bayesian evidence, we perform dynamic
nested sampling with 100% weight on the posterior. We use
another implementation of nested sampling, UltraNest
(Buchner 2021), to verify our posteriors. We observe no
significant differences in our tests.

Algorithm 1. The algorithm used in SPARK/approxpos-
terior, from the construction of the initial training set to the
final dynamic nested sampling run. Choices for all hyperpara-
meters are included in Table 1 and described in Section 2.5.

Set an input domain  and a prior on the GP surrogate q q»( ) ( )f Lp

Build initial training set T of m0 pairs (qi, q( )Lp i ), where qi are Latin Hyper-
cube-sampled

Build initial test set of m test points, Latin Hypercube-sampled
Condition q( )f on T and optimize GP hyperparameters
for =j m N0, 1, ..., active optGPEvery do

for =i N0, 1, ..., optGPEvery do
Find q* which maximizes q( )uEV over NMinObjRestarts optimizations
Run TARDIS on q*
Compare synthetic spectrum to observed, compute q( )Lp *
Append q q( ( ))L, p* * to T

end
Condition q( )f on augmented T and determine optimal GP hyperparameters
over NGPRestarts optimizations

end
Sample final q( )f with dynamic nested sampling to obtain final approximate

posterior distribution

Table 1 contains our choices for the
approxposterior parameters m0, mtest, mactive, NoptGPEvery,
NMinObjRestarts, NGPRestarts, the optimizers used for the GP
hyperparameters/acquisition function, and other choices relevant
to the inference. These choices were initially based on
observations presented in Fleming et al. (2020), which used
approxposterior for an inference problem in five dimen-
sions. We find that these parameters are effective with minor
changes when scaled up to six dimensions, except that we require
a larger number of points m0= 1500 in the base training set and
let active learning proceed for longer. Table 1 also includes our
priors, which are uniform in all dimensions. The prior on the
luminosity is approximately centered around the observed
bolometric luminosity of the kilonova at t = 1.4 days (e.g., Villar
et al. 2017 and references therein). Priors for the density and
inner boundary (photospheric) velocity are wide, but span the
values estimated for these parameters in other works (e.g., Kasen
et al. 2017; Villar et al. 2017; Watson et al. 2019; Domoto et al.
2021; Gillanders et al. 2021, 2022). For the electron fraction,
expansion velocity, and entropy, we allow the entire range
spanned by the reaction network calculations, but we ignore
Ye> 0.4.
Finally, to compute likelihoods, we use the full log-

likelihood function of Czekala et al. (2015):

q p= - + +-( ∣ ) ( ) ( )p F Nln
1

2
R C R ln det C ln 2 , 6obs

T 1
pix

where Fobs is the observed spectrum, R is the residual between
the observed and TARDIS spectrum of parameters θ, and Npix

is the number of wavelength bins (pixels) in the spectrum.14 C
is the covariance matrix of the observed spectrum, and can

Table 1
Parameters Used in the SPARK Run on the 1.4 day GW170817 Kilonova

Spectrum

Parameter Value

mtest 60
m0 1500
mnew 60
mactive 1140
NoptGPEvery 10

NMinObjRestarts 10
NGPRestarts 10

uEV optimization Nelder & Mead (1965)
GP optimization Powell (1964)

priors Î( ) [ ]


log 7.6, 8.0L

L10
outer

Î - -r
-( ) [ ]log 16.0, 14.010 g cm

0
3

vinner/c ä [0.25, 0.34]
Î [ ]v c 0.05, 0.30exp

Ye ä [0.01, 0.40]
s ä [10, 35] kB/nucleon

likelihood Czekala et al. (2015) global
aG = 10−34 (erg s−1 cm−2 Å−1)2,
ℓ = 0.025c

14 The observed spectrum is resampled onto an array of Npix = 5000
logarithmically spaced wavelength bins, to match the wavelength bins of the
synthetic TARDIS spectra.
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include both the inherent measurement noise and pixel-to-pixel
covariances. In the trivial scenario where pixels in the spectrum
are uncorrelated, this reduces to the common

= - +cpln constant
2

2

. In reality, this is not the case for most
spectra, and so Czekala et al. (2015) constructed a more
complete C for the general problem of spectroscopic inference,
which can include both “global” covariance structure (pixel-to-
pixel covariances) and “local” covariance structure arising
from, e.g., missing lines in a line list. As in Czekala et al.
(2015), we adopt a Matérn-3/2 kernel that depends only on the
separation between two pixels to represent the global
covariance structure (see their Equation (11)). The benefits of
this approach are a more realistic estimation of the uncertainties
on the best-fit parameters and a smoother likelihood/
acquisition function uEV over which it is easier to optimize.
After some trial and error, we find that an amplitude term
aG= 10−34 (erg s−1 cm−2 Å−1)2 and a correlation length scale
ℓ= 0.025c for the global covariance lead to an accurate
representation of the uncertainties on the observed spectrum.
This amplitude is roughly the mean uncertainty on the
spectrum, squared, while this correlation length scale is
approximately 10% of the photospheric velocities present in
the ejecta at early times (Watson et al. 2019).

At present, we do not employ any local covariance features
in the Czekala et al. (2015) framework, as it is unclear a priori
which regions of the spectrum suffer most from incomplete
atomic data. In the future, determining which parts of the
spectrum require such local covariance features to improve the
fit could provide insight into where atomic data is most lacking,
or, where the model fails more generally.

3. Results

3.1. Convergence and Best Fits

X-shooter acquired spectra of the GW170817 kilonova every
night beginning at t = 0.5 days post-merger. The early 1.4 days
spectrum shows the most striking, broad absorption feature at
∼8000 Å, and so we perform inference at this epoch.
Moreover, our assumption of LTE in the radiative transfer is
most accurate at earlier times. At later times (3–4 days), when
the ejecta becomes optically thin, this approximation breaks
down, and TARDISmay not be able to reproduce the observed
spectra.

Our final inference is performed with 2640 synthetic
TARDIS spectra: m0= 1500, which are obtained with Latin
Hypercube sampling to obtain a coarse map of the posterior,
followed by mactive= 1140, which are obtained with BAPE.
We present all of these spectra in Figure 3, alongside the
observed X-shooter spectrum at t = 1.4 days. We also show
our best-fitting models, which we discuss at length below
(3.1.1, 3.1.2) after first assessing the convergence of our
algorithm.

We use our test set to quantitatively assess the convergence
of the GP surrogate before active learning begins. The test set
contains mtest= 60 points and is also obtained with Latin
Hypercube sampling to evenly sample parameter space. Since
the GP is not conditioned on these test points, whether the GP
accurately predicts the values at these points serves as a test of
the GP’s ability to capture the entire posterior distribution.
Figure 4 shows the mean-squared-error (MSE) of the GP’s

predictions on the test set as the training set grows. As training
progresses, the test set MSE decreases, and eventually reaches
a plateau, demonstrating that our training set of m0= 1500 is
adequately large to capture the global properties of the
posterior.
Once active learning begins, BAPE attempts to better resolve

the peak of the posterior. In this regime, we introduce a
convergence diagnostic z*:

=
-

-
-

- -

∣ ∣
( )z

q q

q q
, 7t j

t j t j

t j t j
,

1 2, , 1 2, 1,

upp, 1, low, 1,

*

which compares the median (q1/2,t,j) and the range between
some upper and lower quantiles (qupp,t,j− qlow,t,j) of the
marginal distributions, for all fit parameters j, at successive
nested sampling runs t. This z* is analogous to the Z-score used
to measure the distance of some value from the mean of a
distribution. A new nested sampling run is performed every
time mnew= 60 points are added to the active learning set to
compute this diagnostic. Convergence is obtained if
z*t,j� some small number ò for all parameters j for multiple
consecutive nested sampling runs, indicating that the posterior
is stable. In Figure 5, we find that z*t,j� 0.1 for 10 consecutive
iterations, demonstrating convergence.15

One final diagnostic to assess the convergence of the GP is to
directly follow the evolution of the optimized GP hyperpara-
meters over the course of training. This diagnostic is instructive
both when constructing the base training set and once active
learning begins. This diagnostic again confirms that the GP has
converged; we show this in Appendix B.
With the GP converged, we perform a last nested sampling

run to finally obtain the approximate posterior distribution. We
show the joint posterior distributions and 1D marginal
posteriors for all fit parameters in Figure 6. We also
superimpose the points at which we performed radiative
transfer during the inference, distinguishing between the Latin
Hypercube samples and BAPE-selected active learning
samples.
The active learning samples are grouped into two clusters

that are most distinguished in the Ye and s dimensions. After
performing our final nested sampling, we see that these clusters
lie over two modes of a distinctly bimodal posterior. Our best-
fit parameters for both modes, and associated uncertainties, are
listed in Table 2. We adopt as best-fit parameters and
uncertainties the median and the 2.5% and 97.5% quantiles,
and keep this convention for the remainder of this work. We
separate the two modes using a cut at s/kB= 18, and then cuts
of Ye� 0.325 and Ye� 0.34, on the samples. These modes are
characterized by (1) a larger electron fraction and higher
entropy (“blue + hot”), and, (2) a moderate electron fraction
and moderate entropy (“purple + warm”). We discuss these
modes below.

3.1.1. Blue, Hot Model

We present the posterior, zoomed in to the higher electron
fraction and entropy blue+hot mode, in Figure 7. For this

15 This diagnostic is a modified version of the convergence z presented in
Fleming et al. (2020), which used the mean and standard deviation. We use the
median and 2.5% and 97.5% quantiles instead to account for the possibility of
complex, non-Gaussian posteriors, but find similar results using the original
convergence z.
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model, we infer a luminosity of = -
+( )L Llog 7.78410 outer 0.018

0.016,
or equivalently, = ´-

+ -L 2.328 10 erg souter 0.096
0.086 41 1. Recalling

that this outer boundary luminosity is an analog for the inner
boundary temperature, we obtain a temperature of =Tinner

-
+3962 K109

102 .
We infer a density normalization constant of r =-( )log g cm10 0

3

- -
+15.069 0.409

0.511 or equivalently r = ´-
+8.5310 8.034

10.038

- -10 g cm16 3. For the inner boundary velocity (i.e., photo-
spheric velocity), we find = -

+v c 0.313inner 0.016
0.015. Combining

this density normalization, our inferred inner boundary
velocity, and the fixed outer boundary velocity
vouter = 0.35c, we find that a total mass of

´ =-
+ -

-
+

ÅM M3.5 10 11.83.3
4.2 5

11.1
13.8 is contained in our

Figure 3. Set of all synthetic spectra generated during the SPARK run. Orange traces denote the m0 = 1500 spectra acquired by Latin Hypercube sampling, while
turquoise traces show the mactive = 1140 points where SPARK chose to evaluate the forward model using BAPE with the acquisition function given by Equation (5).
We also show the two best-fitting models, “blue+hot” and “purple+warm,” which are discussed at length in Sections 3.1.1 and 3.1.2. The 1.4 days spectrum for the
GW170817 kilonova, AT2017gfo, is also included. Missing regions in the observed spectrum are regions of either poor sensitivity in the X-shooter spectrograph or
telluric features. All fluxes are obtained assuming a fiducial distance of 40 Mpc to the kilonova.

Figure 4. Scaled mean-squared error (MSE) of the GP’s predictions on the test
and training sets, over the course of building up the base training set. The test
set contains a fixed number of points mtest = 60. The training set grows in size
with m. The training set error is always low (about 109 times smaller than the
test set), as expected, since the GP is conditioned on this set. The test set error
gradually decreases and then reaches a plateau, demonstrating that the GP has
converged and is accurately reproducing the overall posterior distribution.

Figure 5. Convergence diagnostic z for the active learning portion of training.
A new nested sampling run is performed on the re-optimized GP every
mnew = 60 iterations, and the median and 2.5% and 97.5% quantiles are
computed. These are compared at consecutive iterations according to
Equation (7). The diagnostic z*t,j � 0.1 for all parameters j for 10 consecutive
iterations, demonstrating that the posterior has converged.

9

The Astrophysical Journal, 944:123 (27pp), 2023 February 20 Vieira et al.



simulation. We emphasize that this is only the mass
above the photosphere; most of the ejecta mass should be
contained below the photosphere. Indeed, simulations
predict a larger total ejecta mass of 10−3

–10−1 Me across a
range of NS–NS mergers (e.g., Fernández & Metzger 2016;
Shibata & Hotokezaka 2019), while inferences on the light
curves suggest a mass of 0.02Me for an early, blue
component of the GW170817 kilonova (e.g., Villar et al.
2017 and references therein). Spectral modeling, in part-
icular at early epochs when the photosphere lies in the outer
regions of the total ejecta, cannot be used to infer the total

ejecta mass. Nonetheless, we can place a conservative lower
limit on the ejecta mass, > ´ =-

+ -
M M3.5 10ej 3.3

4.2 5

-
+

ÅM11.8 11.1
13.8 . This mass estimate is dependent on the

interplay between our inferred ρ0 and vinner; different (ρ0,
vinner) may yield the same photospheric masses. To this end,
the uncertainties on the mass estimate are computed by
propagating the uncertainties on ρ0 and vinner. We note that
the uncertainty in mass is dominated by the much larger
uncertainty in ρ0, compared to vinner. Also, there is no
evidence for any strong degeneracy between ρ0 and vinner in
our posteriors.

Figure 6. Corner plot showing the approximate posterior as obtained from dynamic nested sampling. Dashed lines in the 1D marginalized distributions indicate the
2.5%, 50%, and 97.5% quantiles. Orange points indicate the m0 = 1500 initial Latin Hypercube-sampled points, while turquoise points indicate the mactive = 1140
points where SPARK chose to evaluate the forward model using BAPE with the acquisition function given by Equation (5). The BAPE points are grouped into two
clusters that are easiest to distinguish in the Ye and s dimensions. These clusters lie on the two peaks of the bimodal posterior, which we recover with nested sampling,
demonstrating the ability of BAPE to sample complex, multimodal posteriors with few forward model evaluations. We highlight the apparent higher electron fraction,
higher entropy (“blue + hot”) mode of the posterior in Figure 7, and the moderate electron fraction, moderate entropy (“purple + warm”) mode in Figure 8.
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This model is distinguished by the parameters that set the
abundance pattern. We infer an electron fraction

= -
+Y 0.351e 0.025

0.025, an expansion velocity = -
+v c 0.176exp 0.099

0.091,
and specific entropy = -

+s k25.3 nucleon4.5
6.0

B . These para-
meters describe an r-process with a relatively large electron
fraction, which leads to bluer emission, and a higher (hotter)
entropy. The expansion velocity is moderate, but relatively
poorly constrained compared to the other parameters, con-
sidering our initial uniform prior of Î [ ]v c 0.05, 0.30exp .
Indeed, the expansion velocity inferred here is consistent with
that of the purple+warm model described in the following
section.

We include the spectrum of this blue+hot model in Figure 3.
In all, the fit captures the general shape of the continuum, as
well as the broad absorption feature at ∼8000Å. It somewhat
underestimates the expected emission at the red end of this
feature, in the interpretation that this is a P Cygni feature (e.g.,
Watson et al. 2019). It struggles most with the spectrum at the
blue end, 5000Å.

3.1.2. Purple, Warm Model

We show the posterior distribution at the purple+warm
mode in Figure 8. The inferred luminosity, density, and
velocity, and thus the temperature and ejecta mass, are
remarkably consistent between the blue+hot mode discussed
above and this purple+warm mode. This model is distinct from
the previously discussed model in its abundance-setting
parameters: we find electron fraction = -

+Y 0.311e 0.011
0.013, expan-

sion velocity = -
+v c 0.240exp 0.082

0.055, and specific entropy
= -

+s k13.6 nucleon3.0
4.1

B . This expansion velocity is faster
than that of the blue+hot model; however, we reiterate that the
expansion velocity is in general poorly constrained, and that
this value is consistent with that of the blue+hot model. The
electron fraction and entropy, in contrast, are distinctly lower
than those of the previously discussed model. They describe a
more moderate electron fraction (hence “purple” emission,
being somewhat redder than “blue”), and a lower, but still
substantial entropy (hence “warm”), given the ranges spanned
by existing kilonova simulations (e.g., Kawaguchi et al. 2020).

The spectrum generated by this model is included in
Figure 3. In all, the quality of the fit is similar to that of the
blue+hot model. The most notable difference is that the purple
+warm slightly improves the fit to the blue end at 5000Å.
This is due to the differing abundance patterns of these two
modes, which we discuss in Section 3.2.
All parameters are systematically more tightly constrained in

this model. This is not surprising given that the Ye peak of this
mode is much sharper (see Figure 6). This has important
consequences on the inferred abundances and the features in
the emergent spectra, as presented in Sections 3.2 and 3.3.

3.2. Inferred Abundance Patterns

The two models discussed in the previous section are
characterized by different abundance patterns due to their
differences in electron fraction Ye, expansion velocity vexp, and
entropy s. We present the complete abundance patterns of both
models for the inferred Ye, vexp, s in Figure 9. The abundance
patterns broadly have similar properties: they have large
abundances at the first r-process peak and quickly drop off as
we approach the lanthanides. However, the purple+warm
model evidently has a larger abundance of the iron-group
elements (Z∼ 26–30) and of the lanthanides. Moreover,
because the purple+warm model systematically imposes
tighter constraints on all parameters, the scatter in the allowed
abundance patterns is smaller. Indeed, the abundances of the
first r-process peak elements strontium 38 Sr, yttrium 39 Y, and
zirconium 40 Zr, the importance of which is discussed in
Section 3.3, are all constrained to within a factor of 2 in the
purple+warm abundance pattern.
Both abundance patterns show a scarcity of lanthanides and

heavier elements. We place a conservative upper limit
Xlan� 5.6× 10−9 for the blue+hot model, but note that the
best-fit lanthanide fraction for this model is substantially lower
at Xlan∼ 10−15. For the purple+warm, the lanthanide fraction
is better constrained, but still small: = ´-

+ -X 1.82 10lan 1.79
26.3 7.

Notably, this lanthanide fraction is 5 orders of magnitude
smaller than that of the solar system (Xlan,e≈ 10−1.4; Ji et al.
2019). Beyond this single quantity, we can further compare our
complete abundance pattern to that of the solar system, as
computed by Lodders et al. (2009) with the s-process
subtraction of Bisterzo et al. (2014). Both models’ abundances
are evidently nonsolar. This indicates that the early, blue
component of the kilonova that is visible at 1.4 days cannot
account for the solar r-process abundances on its own.
However, a later, redder component that is buried under the
photosphere at these early times might be characterized by an
abundance pattern that contains heavier elements and is closer
to solar.
A subtle, but important difference between the blue+hot

model and the purple+warm is the differences in the best-fit
abundances of Sr, Y, and Zr. The blue+hot model has best-fit
abundances of Sr, Y, and Zr that are factors of 2×, 3×, and
2× larger than the purple+warm, respectively, albeit the
uncertainties on the blue+hot model’s abundances are large.
In the following section, we examine the impact of these
elements on the emergent spectrum, and how these differences
in abundances might lead to the observed differences at the
blue end (4500Å) of the spectrum.

Table 2
Best-fit Parameters for the GW170817 Kilonova at t = 1.4 days, for the blue

+hot and purple+warm Models Discussed in the Text

Parameter SPARK blue+hot SPARK purple+warm

( )L Llog10 outer -
+7.784 0.018

0.016
-
+7.782 0.014

0.013

r -( )log g cm10 0
3 - -

+15.069 0.409
0.511 - -

+15.016 0.316
0.320

vinner/c -
+0.313 0.016

0.015
-
+0.313 0.014

0.013

v cexp -
+0.176 0.099

0.091
-
+0.240 0.082

0.055

Ye -
+0.351 0.025

0.025
-
+0.311 0.011

0.013

s [kB/nucleon] -
+25.3 4.5

6.0
-
+13.6 3.0

4.1

Tinner [K] -
+3962 109

102
-
+3958 94

87

Mej [ Me] > ´-
+ -3.5 103.3

4.2 5 > ´-
+ -4.0 102.9

2.9 5

Mej [M⊕] > -
+11.8 11.1

13.8 > -
+13.3 9.7

9.8

Xlan �5.6 × 10−9 ´-
+ -1.82 101.79

26.3 7

Note. Upper and lower bounds correspond to the 97.5% and 2.5% quantiles,
respectively. The inner boundary temperature Tinner, lower bound on the ejecta
mass Mej, and lanthanide mass fraction Xlan are derived parameters, i.e., they
are not dimensions in θ-space.
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3.3. Spectral Features

To assess the contribution of individual elements to the
emergent spectrum, we produce “leave-one-out” spectra.
Specifically, we take a single element and set its abundance
to 0, replacing it by increasing the abundance of the filler
element helium, an element that should not have a large impact
on the emergent spectrum at early times when the approx-
imation of LTE is valid (Perego et al. 2022). For a given set of

best-fit parameters, we then iteratively perform radiative
transfer, leaving each element out, and determine which
elements’ presence substantially alters the best-fitting spectrum.
In Figure 10, we show the leave-one-out spectra for the blue

+hot model. All elements with a relative abundance >10−15

are tested. At ∼8000Å, we see clear evidence that the
absorption is due to the presence of strontium 38 Sr. This agrees
with other works (Watson et al. 2019; Domoto et al. 2021;

Figure 7. Corner plot showing the approximate posterior obtained from dynamic nested sampling, zoomed in to the higher electron fraction, higher entropy (“blue +
hot”) mode of the bimodal posterior shown in Figure 6. This blue+hot mode has electron fraction = -

+Y 0.351e 0.025
0.025, expansion velocity = -

+v c 0.176exp 0.099
0.091, and

entropy = -
+s k25.3 nucleon4.5

6.0
B . This electron fraction and entropy are both substantially higher than those of the purple+warm mode. The expansion velocity is

smaller than that of the purple+warm, but is poorly constrained and is consistent with that of the other mode. While the luminosity and photospheric velocities are
nearly identical for both modes, the density (and thus overall ejecta mass above the photosphere; > ´ =-

+ -
-
+

ÅM M M3.5 10 11.8ej 3.3
4.2 5

11.1
13.8 ) is slightly smaller for this

blue+hot mode. The abundance pattern corresponding to this blue+hot r-process is shown in the top panel of Figure 9. The spectrum generated by this model is
shown in Figure 3.
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Gillanders et al. 2022), which have similarly attributed this
absorption to Sr. No other element contributes substantial
absorption from ∼7000–9000Å.

At shorter wavelengths 4500Å, there is evidence for
absorption from some combination of yttrium 39Y and zirconium
39 Zr. In particular, Y contributes absorption over this entire range,
while Zr contributes some smaller amount of absorption at
3600Å. However, this absorption is too strong from
∼3600–4500Å, and too weak at 3600Å. While we note that

this region of the spectrum is at the edge of the X-shooter
spectrograph’s sensitivity, the systematic over- and underestimation
are still significant. The reason for the overestimated absorption at
3600–4500Åmay be that the abundance of Y is overestimated in
this blue+hot model. For the underestimated absorption at
3600Å, this may be point to either an underestimation of the
Zr in the model, or, incompleteness of the line lists for Y and/or Zr.
In Figure 11, we see the leave-one-out spectra for the purple

+warm model. Because the abundances of this model extend to

Figure 8. Corner plot showing the approximate posterior obtained from dynamic nested sampling, zoomed in to the moderate electron fraction, moderate entropy
(“purple + warm”) mode of the bimodal posterior shown in Figure 6. In contrast with the blue+hot mode, this purple+warm mode has electron fraction

= -
+Y 0.311e 0.011

0.013, and entropy = -
+s k13.6 nucleon3.0

4.1
B , both substantially lower than those of the blue+hot mode. The expansion velocity = -

+v c 0.240exp 0.082
0.055 here

is faster than that of the blue+hot, but is once again poorly constrained. The luminosity and photospheric velocity are nearly identical for both modes, but the density
(and thus overall ejecta mass above the photosphere; > ´ =-

+ -
-
+

ÅM M M4.0 10 13.3ej 2.9
2.9 5

9.7
9.8 ) is slightly larger for this purple+warm mode. All fit parameters are

more tightly constrained at this mode than in the blue+hot; this is reflected in the abundance pattern corresponding to this purple+warm r-process, shown in the
bottom panel of Figure 9. The spectrum corresponding to this model is included in Figure 3.
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heavier elements, we perform our leave-one-out analysis for a
larger set of elements. Nonetheless, the elements that generate
the prominent absorption features in the spectrum are still Sr,
Y, and Zr. The ∼8000Å absorption by Sr is once again
recovered, as is the absorption by Y and Zr at shorter
wavelengths. In contrast with the blue+hot model, the purple
+warm is better able to capture the absorption from
predominantly Y at ∼3600–4500Å. The purple+warm model

has best-fit abundances of Sr, Y, and Zr that are factors of 2×,
3×, and 2× smaller than the blue+hot. We thus see that in the
purple+warm model, the smaller abundance of Y leads to less
absorption at ∼3600–4500Å and a better fit. This reiterates the
importance of this element and strengthens the association
between this feature and this element. The absorption from Zr
at 3600 Å is also weaker in the purple+warm model due to
its smaller abundance, but less noticeably so.

Figure 9. Elemental mass fractions for the blue+hot and purple+warm best-fit models. The blue+hot model (top) has electron fraction = -
+Y 0.351e 0.025

0.025, expansion
velocity = -

+v c 0.176exp 0.099
0.091, and entropy = -

+s k25.3 nucleon4.5
6.0

B , while the purple+warm model (bottom) has = -
+Y 0.311e 0.011

0.013, = -
+v c 0.240exp 0.082

0.055, and
= -

+s k13.6 nucleon3.0
4.1

B . The solid lines indicate the best fit, while the semitranslucent lines reflect how uncertainties in electron fraction, entropy, and expansion
velocity of the ejecta lead to uncertainties in the abundances. The smaller scatter of lines in the purple+warm abundances reflects the fact that all fit parameters are
more tightly constrained in this model. Lines are color-coded by their electron fraction, i.e., redder lines for a lower electron fraction and bluer for higher. Both
abundance patterns are very lanthanide-poor: the blue+hot model has an upper bound of Xlan � 5.7 × 10−9, but has a much smaller best-fit Xlan ∼ 10−15. The purple
+warm model marginally produces some lanthanides, but still has a low lanthanide fraction = ´-

+ -X 1.82 10lan 1.79
26.3 7. Also shown are the solar r-process mass

fractions for elements Z � 31, obtained using the solar system data of Lodders et al. (2009) subtracted by the s-process fractions of Bisterzo et al. (2014). The best-fit
abundance patterns are both clearly nonsolar. We also include a mass axis, in Earth masses, based on the inferred lower bound on the ejecta mass,

> ´ =-
+ -

-
+

ÅM M M3.5 10 11.8ej 3.3
4.2 5

11.1
13.8 for the blue+hot model and > ´ =-

+ -
-
+

ÅM M M4.0 10 13.3ej 2.9
2.9 5

9.7
9.8 for the purple+warm. We highlight three elements

of interest, strontium (38Sr), yttrium (39Y), and zirconium (40Zr), in both panels.
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We can further quantitatively verify the importance of the
mentioned elements, and determine which particular ionization
states are responsible for the absorption, using the spectral element
decomposition tool available in TARDIS. In this technique, at the
end of a radiative transfer simulation, all escaping photon packets
are labeled by the species they last interacted with (or, an electron
scattering event or escaping without interaction). We can then
assess which species dominate radiation–matter interactions and
thus contribute the greatest absorption. In our purple+warm
model, we find that photon packets interact predominantly with
singly ionized species, and we confirm the importance of Sr, Y,
and Zr in the emergent spectrum. At 7000–9000Å, 84% of line
interactions occur with Sr II, 12% with Y II, and 4% with Zr II. At
�4500Å, 4% of interactions occur with Sr II, 29% with Y II, and
58% with Zr II. Singly ionized iron-group elements (chromium 24

Cr II, manganese 25 Mn II, and iron 26 Fe II) contribute at these
shorter wavelengths as well, but are subdominant, contributing at
the level of 1%–4%. All neutral or doubly ionized species
contribute <0.1% to radiation–matter interactions, indicating that
singly ionized species dominate the opacity of the ejecta at early
times. The statistics of the line interactions in the blue+hot
spectrum are similar, affirming that singly ionized Sr, Y, and Zr
are responsible for the absorption in the model spectra.

In all, the association of Sr II to the ∼8000Å feature is strong,
and in agreement with other works (Watson et al. 2019; Domoto
et al. 2021; Gillanders et al. 2022; Domoto et al. 2022). The
association with Y II and Zr II at 4500Å is less secure due to
our models’ inability to adequately fit the spectrum at these
wavelengths. We nevertheless tentatively associate these

features with Y and Zr, for multiple reasons: (1) the effect of
leaving out these elements, in particular Y, is substantial in both
models, (2) no other elements contribute substantial absorption
in this region of the spectrum, (3) the smaller abundances of Y
and Zr in the purple+warm model compared to the blue+hot
lead to less absorption, as would be expected if these elements
were responsible, and (4) other works using different methods
(Domoto et al. 2022; Gillanders et al. 2022) have similarly
attributed these features to these elements.

3.4. Computational Feasibility

Beyond the goal of inferring the abundances and identifying
spectral features, our goal in this work is also to make spectral
retrieval of kilonovae computationally feasible. Despite the small
set of just 2640 points in a 6D parameter space, SPARK converges
to a good fit to the observed spectrum. In contrast, an MCMC
approach to this 6D inference problem might require as many as
102 walkers × 104 steps =106 forward model evaluations, and
this number could be larger for a complex, multimodal posterior.
This would be prohibitively computationally expensive. To
demonstrate this, Figure 12 presents a comparison between the
total time to inference for SPARK versus a standard MCMC, as a
function of the time required for a single forward model
evaluation. Across all 2640 runs, we observe an average±
standard deviation forward model evaluation time of 31± 10 s.16

Figure 10. Leave-one-out spectra, using the best-fit parameters from the blue+hot model. The synthetic spectra demonstrate the effect of omitting a particular element by
transferring its abundance to the filler element He (which is not expected to contribute to the emission significantly) and recomputing the radiative transfer. These leave-one-
out spectra are then compared the observed spectrum. Only three elements contribute substantial absorption. We highlight the 3000–5000 Å and 6000–10000 Å regions in
insets (a) and (b). In inset (b), at ∼8000 Å, we see strong evidence that the absorption is produced by strontium 38Sr, as has been found in other works (Watson et al. 2019;
Domoto et al. 2021; Gillanders et al. 2022). In inset (a), we see tentative evidence for some combination of absorption at4500 Å produced by yttrium 39Y, and absorption
at3600 Å produced by zirconium 40Zr. If these elements are responsible, the absorption from these elements is overestimated from∼3600–4500 Å and underestimated at
3600 Å. While this region is near the edge of the X-shooter sensitivity, the systematic under- and overestimations are significant.

16 All TARDIS runs are performed on a node of 48 cores, with
8 GiB ∼ 8.6 GB memory per core. We refer the reader to https://docs.
alliancecan.ca/wiki/Narval/en for details of the nodes.
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This average forward model time leads to a total inference time
of 1 week for SPARK, compared to as long as a year for a
standard MCMC. As our model increases in complexity and we
incorporate both multiepoch and multicomponent inference
into SPARK, these forward model evaluation times will only
increase, and this discrepancy will become more severe. For
example, a simple two-epoch fit would double the forward
model time by requiring twice as many radiative transfer
simulations.

We note that, while our initial m0 samples can be obtained in
parallel, our active learning approach is necessarily sequential.
In contrast, MCMC can be arbitrarily parallelized—one could
thus argue that an MCMC, if highly parallelized, would have a
run time comparable to SPARK. However, our method enables
an almost 1000× decrease in the number of forward model
evaluations needed compared to an MCMC. Such a large
amount of parallelization is currently impractical. Furthermore,
since TARDIS itself is an MC radiative transfer code and can
be arbitrarily parallelized, any increase in parallelization also
accelerates SPARK. We also note that while other sampling
techniques such as nested sampling can increase the sampling
efficiency and reduce the number of required forward model
evaluations, this typically leads to a reduction by a factor of
∼10× at most. Thus, these faster sampling techniques are
similarly slower than SPARK.

4. Discussion

4.1. Interpretation of the Bimodal Posterior

Spectral synthesis is a highly nonlinear process, and thus it is
not surprising that our inferred posterior might be complex or

multimodal. However, the physical meaning of this bimodality
merits some discussion. We find that an r-process with higher
electron fraction and entropy can generate a qualitatively similar
spectrum to that of a moderate electron fraction and entropy. We
further find that the differences between these two models’ spectra
arise primarily from differing abundances of just three elements:
Sr, Y, and Zr. If the spectrum at this epoch is indeed insensitive to
all but three elements, this may allow for some degeneracy in the
abundance patterns that can adequately reproduce the observed
spectrum. This degeneracy may be worsened by the fact that the
elemental abundances obtained from reaction network calcula-
tions are highly nonlinear functions of Ye, vexp, and s (e.g.,
Wanajo et al. 2014; Lippuner & Roberts 2015; Wanajo 2018). At
later epochs, when more elements (e.g., the lanthanides) may also
contribute to the emergent spectrum, it may be possible to break
these degeneracies.
We caution that this bimodality should not be interpreted as

evidence for multiple ejecta components. Our model is single-
component and assumes a uniform abundance. This approach is
likely most valid at early times, when the emission may be
dominated by that of a single component (e.g., Kasen et al.
2017). Furthermore, the two models presented here yield similar
spectra. A true multicomponent analysis would require a fully
multicomponent model. Evidence for multiple components might
also be stronger at later epochs, when the photosphere recedes
into the ejecta, allowing the observer to potentially peer through
the faster, bluer ejecta to see a slower, redder component.

4.2. Consistency with Other Studies

Our inferred temperatures, velocities, and ejecta mass are
broadly consistent with those of other works that have studied

Figure 11. Leave-one-out spectra for the purple+warm model. As in Figure 10, we see strong evidence for absorption from strontium 38 Sr at ∼8000 Å (inset (b)), and
tentative evidence for absorption from some combination of yttrium 39Y and zirconium 40Zr at 4500 Å (inset (a)). The similarities between the leave-one-out spectra
of the blue+hot model and the purple+warm model suggest that, at 1.4 days, the absorption in the spectrum is indeed dominated by these elements from the first peak
of the r-process, and not others such as the iron-group elements (present in large amounts) or the lanthanides (present in modest amounts) in the abundance pattern of
the purple+warm model. Compared to the blue+hot model, the over- and underestimation of the absorption from Y and Zr at 4500 Å is less severe.
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the spectra (and light curves) of the GW170817 kilonova, but
we find some differences.

Our inferred temperature of Tinner= 3960 K (the same in
both models) is in agreement with that of Watson et al. (2019).
It is somewhat cooler than that of Gillanders et al. (2022), but
we note that their spectrum has undergone a different
calibration, which raises the overall flux. We obtain a lower
limit on the ejecta mass of 3× 10−5Me, which is well below
the 0.02Me inferred from photometric analyses for a putative
early, blue component (e.g., Drout et al. 2017; Villar et al. 2017
and references therein). Similarly, our inferred photospheric
velocity of vinner= 0.31c is broadly consistent with photometric
analyses that inferred an ejecta velocity of ∼0.3c for this early,
blue component (Villar et al. 2017 and references therein), and
consistent with the blackbody expansion velocity measured
from the spectra in Watson et al. (2019). It is slightly larger
than the =v c0.28min in Gillanders et al. (2022), but they note
some arbitrariness in the choice of these and other parameters.
Finally, our inferred lower bounds on the ejecta mass are
factors of ∼6× and ∼2× smaller than the “Ye− 0.37a” and
“1st r-peak’ models of Gillanders et al. (2022), respectively.
This is because (1) our inferred ρ0 is smaller, and (2) our
photosphere is at v= 0.31c, compared to their =v c0.28min .

We can also compare our inferred abundances to those of
other works. In Tables 4 and 5 (Appendix C), we list the mass
fractions, lower bound on the ejecta mass, and mass assuming
some fiducial total mass, for all elements in the ejecta. The larger
uncertainties on our abundances in the blue+hot model preclude

any useful comparison with those of other works. In contrast, the
abundances in the purple+warm are tightly constrained. In
particular, we infer lower bounds on the ejecta masses of the
important ions Sr II, Y II, and Zr II as ´-

+ -
M1.85 100.98

1.14 7 ,
´-

+ -
M2.35 100.98

1.14 7 , and ´-
+ -

M2.45 100.98
1.14 6 , respectively.

For Sr II, this mass is within a factor of ∼15% of the Ye− 0.37a
model of Gillanders et al. (2022), and within a factor of 2× the
1st r-peak model of the same work. The inferred mass of Y II
is similarly within a factor of ∼3–4× that of the Ye− 0.37a
model, and the inferred mass of Zr II is within a factor of
∼2–3× that of the first r-peak model. The agreement among
these ions’ masses reiterates their importance in shaping the
emergent spectrum.
It is also useful to compute the abundance ratios of certain

elements. Domoto et al. (2021) noted that calcium 20 Ca and Sr
are coproduced under many r-process conditions due to their
similar electronic structures. They find that Ca II lines will
appear in the spectrum unless XCa/XSr 0.002, and note the
absence of Ca II lines in the observed kilonova spectrum. We
do not see Ca II absorption in our model spectra, and indeed we
recover XCa/XSr∼ 10−5 in both our blue+hot and purple
+warm models. Domoto et al. (2021) further showed that, for
velocities v/c∼ 0.15− 0.20, this small ratio XCa/XSr< 0.002
can be obtained with either (1) s/kB 25 and Ye∼ 0.35− 0.45,
or (2) s/kB∼ 10 and Ye 0.35 (see their Figure 10). These
constraints match our blue+hot and purple+warm models,
respectively.
We emphasize that we are probing only the outermost

3× 10−5Me of approximately 0.02Me of ejecta that was
produced during the merger according to other studies, i.e., less
than 1% of the total ejecta. Thus, we do not claim that our
inferred mass fractions (in particular the lanthanide mass
fraction Xlan), Ye, vexp, or s describe all of the ejecta produced
during the merger. The inferred parameters describe the line-
forming region of the ejecta, which (remarkably, given its small
mass) produces the prominent spectral features in the early, 1.4
days spectrum.

4.3. Physical Origin of the Early Emission

By directly inferring the electron fraction Ye, expansion
velocity vexp, and entropy s, we are able to constrain the
fundamental conditions of the r-process that generate the early-
time ejecta in the line-forming region. In particular, we can
determine whether our inferred values match those of any of
the various components expected from a merger.
In the purple+warm model, we infer a moderate electron

fraction of = -
+Y 0.311e 0.011

0.013 and moderate entropy of
= -

+s k 13.6B 3.0
4.1. These parameters are comparable to those of

the simulations of Fujibayashi et al. (2020), who study the post-
merger mass ejection from low-mass NS+NS systems (total
mass ∼2.5Me; compare to the total mass of 2.74Me inferred
from GWs for GW170817; Abbott et al. 2017b) in full
GRMHD with neutrino radiation and viscosity. They find a
robust Ye∼ 0.32–0.34 and s/kB∼ 15–19 in the viscously
driven outflows from the accretion disks that form around the
merger remnant in their models. However, they find much
smaller (mean) expansion velocities, v/c∼ 0.09–0.11, com-
pared to our = -

+v c 0.240exp 0.082
0.055. This discrepancy might arise

from the fact that the early spectra probe only the higher-
velocity component of the velocity distribution, whereas the
values reported in, e.g., Fujibayashi et al. (2020) are the
averages over the entire (multicomponent) distributions.

Figure 12. Comparison of run times for the entire inference with
SPARK versus an MCMC. The purple band indicates the mean forward model
run time of 31 ± 10 s to generate a single synthetic spectrum at a single epoch,
averaged across all 2640 forward model evaluations. The variations in forward
model time arise from two factors: (1) as the abundances in the ejecta vary, so
do the opacities and the number of matter–radiation interactions, and (2) the
inner edge of the computational grid, vinner, is itself a fit parameter. While
inference with an MCMC of nsamples = 102 × 104 = 106 (reasonable given the
6D parameter space) would take as prohibitively long as a year, the time
required by SPARK is more reasonable at 1 week. We note that while an
MCMC can be arbitrarily parallelized, the degree of parallelization needed to
be competitive with SPARK is currently unreachable. Moreover, because
TARDIS itself benefits from large parallelization, any increases in paralleliza-
tion will also decrease the run time for SPARK.
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Indeed, Fahlman & Fernández (2018) found that viscous
hydrodynamic simulations of the disk outflows cannot produce
ejecta with average velocities greater than ∼0.15c. One
solution to this discrepancy might be the presence of a strong
magnetic field around a remnant NS (Metzger et al. 2018;
Fujibayashi et al. 2020). Within a strong magnetic field, mass
ejection is accelerated, raising the velocities in the ejecta. This
also has the effect of lowering the electron fraction, as the faster
ejecta suffer less neutrino irradiation from the remnant NS.
Weaker neutrino heating could also result in smaller entropies
in the ejecta. The inclusion of a strong magnetic field could
thus raise the expansion velocity, lower the electron fraction,
and lower the entropy of the models of Fujibayashi et al.
(2020), bringing all three of these quantities into closer
agreement with our inferred values. Ciolfi (2020) and Ciolfi
& Kalinani (2020) similarly argued that the relatively high
velocity v/c 0.20 (and large mass 0.015–0.025Me) of the
early kilonova, reported across the literature, could be
reproduced by a magnetically accelerated wind from a
metastable NS remnant.

For the blue+hot model, the higher inferred entropy may be
explained by significant shock heating in the ejecta. Indeed, the
larger electron fraction = -

+Y 0.351e 0.025
0.025, expansion velocity

= -
+v c 0.176exp 0.099

0.091, and high entropy = -
+s k 25.3B 4.5

6.0 of this
blue+hot model are consistent with the shocked, polar
dynamical ejecta that originate from the collisional interface
of the two NSs during the merger, subject to strong neutrino
heating. Including a proper treatment of neutrino irradiation,
Kullmann et al. (2022a) and Just et al. (2022) found a strong
angular dependence for Ye in the dynamical ejecta. In
particular, across multiple NS equations of state and binary
mass ratios, they observed electron fractions Ye∼ 0.28–0.34
and velocities v/c∼ 0.22–0.28 in the polar ejecta, consistent
with our blue+hot model.17 Furthermore, a smaller expansion
velocity in their models would have the effect of further
increasing neutrino irradiation on the dynamical ejecta, raising
its electron fraction and entropy. This would bring these
models into greater agreement with our blue+hot model. The
need for a strong neutrino flux on the dynamical ejecta could
also be satisfied by a short-lived NS remnant.

4.4. Impact of Incomplete Atomic Line Lists

During spectral synthesis, we have conservatively used only
the observed lines from VALD when constructing our line list.
This excludes any semiempirical lines acquired by calibrating
theoretically calculated lines to observations as well as any
purely theoretical lines. It is well established that the observed
line lists are incomplete, and this may be the reason for our
difficulty in fitting the blue end of the spectrum.

If the observed absorption at 4500Å is indeed solely from
Y II and Zr II, the fact that we do not adequately fit this portion
of the spectrum may suggest that our line lists for these
elements are incomplete. For example, missing transitions in
the 3600Å range might absorb radiation and re-emit in the
3600–4500Å range, simultaneously solving the problem of
underestimated absorption in the former range and over-
estimated absorption in the latter. However, we note that
Gillanders et al. (2022) observed the same difficulty with fitting

this region of the spectrum, even after their inclusion of the
semiempirical extended Kurucz ATOMS lines (Kurucz 2018)
for the ions Sr I–III, Y I–II, and Zr I–III, which greatly
outnumber the observed lines. It is thus possible that the lists
are incomplete for other elements that are present in the ejecta.
In particular, the lanthanides should have many lines in the UV
and optical in this wavelength range (e.g., Tanaka et al. 2020),
but very few observed lines exist for these elements. We infer
the presence of very few lanthanides in our fits, but this may
result from the incompleteness of the line lists for these
elements. This reiterates the importance of obtaining complete
line lists for these elements in the future.
Finally, we also note that our fits do not fully capture the IR

spectrum at 10000Å (nor do those of Gillanders et al. 2022).
Some of the emission at these wavelengths may be emission
that would be reprocessed from the bluer end of the spectrum if
the line lists were more complete. Alternatively, the temper-
ature of the blackbody-like continuum that underlies the fits
might be biased by their inability to fully capture the blue end.
In either case, more complete line lists might remedy these
issues.

4.5. Alternative Approaches to Modeling

In SPARK, we model the spectra of the kilonova, with the
goal of inferring the elemental abundance patterns and
identifying spectral features. This is distinct from performing
inference on light curves, for two reasons: (1) modeling the
spectra is crucial for inferring individual abundances, and (2)
simulations that primarily yield light curves may be relatively
computationally inexpensive, and other inference schemes may
be used. Indeed, the 3D, time-dependent radiative transfer code
POSSIS (Bulla 2019) has been used extensively to model the
light curves, and different inference techniques have been
employed due to its greater speed compared to, e.g., TARDIS.
Almualla et al. (2021) used POSSIS to generate a grid of
synthetic kilonova light curves. They then used a neural
network to interpolate over this grid, constructing a surrogate
model capable of producing synthetic light curves, and then
they performed inference on the observed light curves. Ristic
et al. (2022) similarly used POSSIS to generate a grid of light
curves, but instead, they used adaptive learning to select the
location of some of their simulations and construct their
surrogate using a GP. Finally, Lukošiute et al. (2022) used
three existing sets of spectra (Kasen et al. 2017; Dietrich et al.
2020; Anand et al. 2021; the latter two generated with
POSSIS) and constructed a conditional Variational Auto-
Encoder, KilonovaNet, which acts as a surrogate for these
spectral data sets. They convolve the output of their spectral
emulator with standard photometric filters to produce light
curves and perform inference.
These studies take advantage of the speed of POSSIS and

inference techniques that are suited to this speed to study the
light curves of the GW170817 kilonova and recover its
macroscopic properties: total ejecta masses, velocities, geome-
tries, and morphologies. However, POSSIS is faster than
TARDIS because it takes as input a grid of wavelength- and
time-dependent opacities, rather than computing expansion
opacities (which depend on the number density of a given ion
in the plasma) during the simulation itself. Thus, these studies
of the light curves do not constrain the elemental abundance
patterns (beyond the lanthanide fraction; Lukošiute et al. 2022),
nor the fundamental conditions of the r-process.

17 These Ye and v are also consistent with the purple+warm model; note,
however, that the higher entropies in such shock-heated ejecta are inconsistent
with the entropy of this model.
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In contrast, SPARK is not sensitive to some overall properties
of the kilonova (such as total ejecta masses or observing angle),
but can extract the element-by-element abundance patterns,
constrain Ye, vexp, and s with uncertainties, and identify spectral
features. This inference is only possible due to the direct
connection between the abundances and opacities present in
TARDIS. These trade-offs highlight the crucial importance of
performing inference on both light curves and spectra using
different forward models, and applying different inference
schemes depending on the ensuing computational cost of the
forward model and the dimensionality of the problem. A
variety of complementary approaches are required to fully
characterize the kilonova, from the macroscopic to the
microscopic. SPARK contributes uniquely in this context by
performing the first inference of the elemental abundance
pattern using a kilonova spectrum.

5. Conclusions

We introduce SPARK, a modular inference engine for
spectral retrieval of kilonovae. We employ approximate
posterior estimation with active learning to solve an inference
problem that has been computationally intractable to date.
Crucially, our inference approach allows us to estimate
uncertainties in key kilonova parameters. With SPARK, we
are able to obtain the complete element-by-element abundance
pattern of a kilonova, with uncertainties, given a single
observed spectrum.

The abundance pattern for the GW170817 kilonova in the
early, optically thick phase at t = 1.4 days is exceptionally
lanthanide-poor. The ejecta are dominated by elements from
the first r-process peak, including strontium 38 Sr, yttrium 39 Y,
and zirconium 40 Zr. However, the observed spectrum is well fit
by two different models: a blue+hot model with higher
electron fraction and entropy, and, a purple+warm model with
more moderate electron fraction and entropy.

Adoption of our purple+warm model would suggest that we
observe the viscously driven outflows from the remnant
accretion disk of a neutron star + neutron star merger at these
early times. Our relatively high inferred expansion velocity for
this model may hint at the presence of a strong magnetic field
around a remnant metastable neutron star, which would
accelerate these outflows. Alternatively, the blue+hot model
may be evidence for a highly shocked dynamical component
that is squeezed at the collisional interface of the two neutron
stars and preferentially ejected along the poles of the merger. A
strong neutrino flux from a remnant metastable neutron star
could support the high electron fraction and entropy of this
component. Our purple+warm and blue+hot models thus both
suggest the presence of a remnant metastable neutron star
following the merger.

In addition to inferring the complete abundance pattern, we
also use leave-one-out spectra to identify signatures of specific
elements in the spectrum of the kilonova. We recover evidence
for absorption from Sr II, Y II, and Zr II in the ejecta.

In this work, we have explored single-component ejecta and
have studied only the 1.4 days spectrum of the GW170817
kilonova. In the future, we will adapt SPARK to handle
multicomponent, stratified ejecta, which will enable us to
capture important effects like lanthanide curtaining, if present.
Our inference approach also lends itself to performing
Bayesian model comparison, which will allow us to quantita-
tively determine whether additional component(s) are needed

to accurately model the kilonova. There is also information in
the temporal evolution of the spectrum, and so in future work,
we will jointly fit multiple epochs of data by self-consistently
evolving the relevant fit parameters. As the ejecta expand and
the photosphere recedes deeper into the ejecta at later times, we
may be able to identify different components in the ejecta. This
naturally combines itself with multicomponent analyses.
Given the modularity of our approach, it is easy to swap out

reaction network calculations or atomic line lists for some other
set of calculations or line lists. We will thus also explore the
effect of incorporating theoretical lines (generated by AUTO-
STRUCTURE; Badnell 2016) that have been calibrated to
observations in future work.
Beyond extending our analysis of the GW170817 kilonova,

we also anticipate applying SPARK to any future kilonovae
discovered by follow-up of gravitational wave sources, in the
next LIGO-Virgo-KAGRA Observing Run 4 (O4) and beyond.
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Appendix A
Line List Details

We provide a breakdown of our line list in Table 3, which
details the number of lines for each ion. We only list elements
that are synthesized in part by the r-process (Z� 31), but note
that we use 1,476,338 additional VALD lines for Z� 30,
dominated by iron-group elements. For these elements with
Z� 30, we acquire lines as available; for some doubly ionized
iron-group elements, no lines are present.

Table 3
Number of Lines for Each Ion, for Elements with Z � 31

Z Ion Nlines

1-30 H—Zn I - IIIa 1,476,338
31 Ga I 41

Ga II 194
Ga III 2

32 Ge I 64
Ge II 22

33 As I 110

34 Se I 8

37 Rb I 143

38 Sr I 110
Sr II 695

39 Y I 5365
Y II 7753
Y III 39

40 Zr I 699
Zr II 542
Zr III 359

41 Nb I 1044
Nb II 2988
Nb III 76

42 Mo I 2892
Mo II 328

43 Tc I 52

Table 3
(Continued)

Z Ion Nlines

44 Ru I 1028
Ru II 127

45 Rh I 440
Rh II 94

46 Pd I 76
Pd II 13

47 Ag I 15
Ag II 10

48 Cd I 20
Cd II 4

49 In I 24
In II 16

50 Sn I 59
Sn II 22

51 Sb I 73

52 Te I 18

54 Xe II 33

55 Cs I 150

56 Ba I 125
Ba II 244

57 La I 267
La II 3938
La III 131

58 Ce I 903
Ce II 16,014
Ce III 3023

59 Pr I 127
Pr II 7723
Pr III 1151

60 Nd I 281
Nd II 1279
Nd III 71

62 Sm I 520
Sm II 1334
Sm III 49

63 Eu I 352
Eu II 871
Eu III 1150

64 Gd I 620
Gd II 963
Gd III 52

65 Tb I 3
Tb II 1822
Tb III 80

66 Dy I 834
Dy II 897
Dy III 1337

67 Ho I 711
Ho II 496
Ho III 1309
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Appendix B
Gaussian Process Hyperparameters

To further assess the convergence of the SPARK run, we can
plot the hyperparameters of the GP over the course of training.
In Figure 13, we see this evolution for the mean μ(θ) of the GP
and the scale length hyperparameters ℓj in each dimension j of
θ-space. This diagnostic is instructive both when constructing
the base training set and during active learning. As with the GP
test set error, during the construction of the base training set,
the hyperparameters eventually converge to stable values,
indicating that the GP has captured the global properties of the
posterior. Once active learning begins at m= 1500, the
hyperparameters remain stable.

Appendix C
Detailed Ion Abundances

In Tables 4 and 5, we provide mass fractions and uncertainties
for all of the relevant ions in the ejecta in our best-fit blue+hot
and purple+warm models. The majority of elements are singly
ionized. We also provide the total mass of each ion contained in
our simulation, and, the mass of each ion under the assumption
of some fiducial total ejecta mass of 0.02Me and uniform
composition above and below the photosphere.

Table 3
(Continued)

Z Ion Nlines

68 Er I 365
Er II 775
Er III 1308

69 Tm I 532
Tm II 7919
Tm III 1479

70 Yb I 83
Yb II 6794
Yb III 271

71 Lu I 247
Lu II 125
Lu III 59

72 Hf I 430
Hf II 434

73 Ta I 11,470
Ta II 3992

74 W I 1062
W II 221

75 Re I 772
Re II 47

76 Os I 891
Os II 47

77 Ir I 501
Ir II 28

78 Pt I 215
Pt II 119
Pt III 666

79 Au I 61
Au II 498
Au III 175

80 Hg I 27
Hg II 446
Hg III 42

81 Tl I 22

82 Pb I 38
Pb II 60

83 Bi I 29
Bi II 14

90 Th I 700
Th II 1448
Th III 903

92 U I 561
U II 622

TOTAL 1,597,376

Note. For elements with Z < 31, an additional 1,476,338 lines (dominated by
the iron group) are used.
a Lines acquired as available: for some doubly ionized iron-group elements,
lines are not available.

Figure 13. Hyperparameters of the GP over the course of training.
Hyperparameters include the mean value and covariance kernel length scales
of the GP, ℓj, in each dimension j of θ-space. The mean value is normalized by
102 for legibility. The hyperparameters rapidly converge and then remain stable
during construction of the base training set, indicating that the optimal
hyperparameters have been found. Once active learning begins at m = 1500,
the hyperparameters remain stable.
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Table 4
Mass Fractions and Masses for All Ions in the blue+hot Model with a Mass Fraction Xi � 10−9

Z Ion Mass Fraction Xi Lower Bound Mej,i [ Me] Fiducial M0.02,i

1 H I ´-
+ -5.01 101.00

0.04 5 ´-
+ -1.75 101.37

1.20 9 ´-
+ -1.00 101.00

0.04 6

H II ´-
+ -4.75 101.00

0.04 7 ´-
+ -1.66 101.37

1.20 11 ´-
+ -9.51 101.00

0.04 9

2 He I ´-
+ -8.36 101.00

4.03 1 ´-
+ -2.93 101.37

4.21 5 ´-
+ -1.67 101.00

4.03 2

3 Li II ´-
+ -2.49 101.00

0.55 8 ´-
+ -8.72 101.37

1.32 13 ´-
+ -4.98 101.00

0.55 10

4 Be II ´-
+ -8.53 101.00

0.55 9 ´-
+ -2.98 101.37

1.32 13 ´-
+ -1.71 101.00

0.55 10

6 C I ´-
+ -3.49 101.00

356.60 7 ´-
+ -1.22 101.37

356.60 11 ´-
+ -6.97 101.00

356.60 9

C II ´-
+ -4.63 101.00

356.60 6 ´-
+ -1.62 101.37

356.60 10 ´-
+ -9.26 101.00

356.60 8

7 N I ´-
+ -5.16 101.00

356.60 8 ´-
+ -1.81 101.37

356.60 12 ´-
+ -1.03 101.00

356.60 9

8 O I ´-
+ -7.72 101.00

12.24 7 ´-
+ -2.70 101.37

12.30 11 ´-
+ -1.54 101.00

12.24 8

O II ´-
+ -6.30 101.00

12.24 9 ´-
+ -2.20 101.37

12.30 13 ´-
+ -1.26 101.00

12.24 10

9 F I ´-
+ -9.59 101.00

14.04 6 ´-
+ -3.36 101.37

14.09 10 ´-
+ -1.92 101.00

14.04 7

10 Ne I ´-
+ -2.94 101.00

14.04 7 ´-
+ -1.03 101.37

14.09 11 ´-
+ -5.88 101.00

14.04 9

11 Na II ´-
+ -1.93 101.00

33.94 7 ´-
+ -6.76 101.37

33.96 12 ´-
+ -3.86 101.00

33.94 9

12 Mg II ´-
+ -5.89 101.00

33.94 7 ´-
+ -2.06 101.37

33.96 11 ´-
+ -1.18 101.00

33.94 8

13 Al II ´-
+ -6.60 101.00

12.79 8 ´-
+ -2.31 101.37

12.85 12 ´-
+ -1.32 101.00

12.79 9

14 Si II ´-
+ -5.21 101.00

12.79 7 ´-
+ -1.82 101.37

12.85 11 ´-
+ -1.04 101.00

12.79 8

15 P I ´-
+ -1.34 101.00

12.69 9 ´-
+ -4.68 101.37

12.74 14 ´-
+ -2.68 101.00

12.69 11

P II ´-
+ -5.39 101.00

6.06 7 ´-
+ -1.89 101.37

6.18 11 ´-
+ -1.08 101.00

6.06 8

16 S I ´-
+ -1.07 101.00

6.06 8 ´-
+ -3.74 101.37

6.18 13 ´-
+ -2.14 101.00

6.06 10

S II ´-
+ -1.34 101.00

3.52 6 ´-
+ -4.70 101.37

3.72 11 ´-
+ -2.68 101.00

3.52 8

17 Cl I ´-
+ -4.09 101.00

3.52 8 ´-
+ -1.43 101.37

3.72 12 ´-
+ -8.17 101.00

3.52 10

Cl II ´-
+ -7.55 101.00

3.52 9 ´-
+ -2.64 101.37

3.72 13 ´-
+ -1.51 101.00

3.52 10

18 Ar I ´-
+ -2.05 101.00

1.41 7 ´-
+ -7.16 101.37

1.85 12 ´-
+ -4.09 101.00

1.41 9

19 K II ´-
+ -1.48 101.00

1.41 7 ´-
+ -5.17 101.37

1.85 12 ´-
+ -2.96 101.00

1.41 9

20 Ca II ´-
+ -7.18 101.00

1.41 8 ´-
+ -2.51 101.37

1.85 12 ´-
+ -1.44 101.00

1.41 9

Ca III ´-
+ -1.10 101.00

5.15 7 ´-
+ -3.86 101.37

5.29 12 ´-
+ -2.21 101.00

5.15 9

21 Sc II ´-
+ -6.07 101.00

5.15 9 ´-
+ -2.13 101.37

5.29 13 ´-
+ -1.21 101.00

5.15 10

22 Ti II ´-
+ -3.45 101.00

5.15 8 ´-
+ -1.21 101.37

5.29 12 ´-
+ -6.89 101.00

5.15 10

23 V II ´-
+ -1.88 101.00

17.02 7 ´-
+ -6.59 101.37

17.06 12 ´-
+ -3.76 101.00

17.02 9

24 Cr II ´-
+ -9.65 101.00

17.02 5 ´-
+ -3.38 101.37

17.06 9 ´-
+ -1.93 101.00

17.02 6

Cr III ´-
+ -1.16 101.00

20.41 9 ´-
+ -4.04 101.37

20.45 14 ´-
+ -2.31 101.00

20.41 11

25 Mn II ´-
+ -6.20 101.00

20.41 6 ´-
+ -2.17 101.37

20.45 10 ´-
+ -1.24 101.00

20.41 7

26 Fe II ´-
+ -3.66 101.00

46.99 5 ´-
+ -1.28 101.37

47.01 9 ´-
+ -7.32 101.00

46.99 7

27 Co II ´-
+ -1.24 101.00

46.99 7 ´-
+ -4.35 101.37

47.01 12 ´-
+ -2.48 101.00

46.99 9

28 Ni II ´-
+ -1.00 101.00

34.30 4 ´-
+ -3.51 101.37

34.32 9 ´-
+ -2.00 101.00

34.30 6

29 Cu II ´-
+ -2.54 101.00

34.30 5 ´-
+ -8.90 101.37

34.32 10 ´-
+ -5.09 101.00

34.30 7

30 Zn I ´-
+ -7.42 101.00

73.25 9 ´-
+ -2.60 101.37

73.26 13 ´-
+ -1.48 101.00

73.25 10

Zn II ´-
+ -7.86 100.86

3698.81 5 ´-
+ -2.75 101.28

3698.81 9 ´-
+ -1.57 100.86

3698.81 6

31 Ga II ´-
+ -2.27 100.86

3698.81 5 ´-
+ -7.93 101.28

3698.81 10 ´-
+ -4.53 100.86

3698.81 7

32 Ge II ´-
+ -1.30 100.86

3698.81 4 ´-
+ -4.54 101.28

3698.81 9 ´-
+ -2.59 100.86

3698.81 6
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Table 4
(Continued)

Z Ion Mass Fraction Xi Lower Bound Mej,i [ Me] Fiducial M0.02,i

33 As I ´-
+ -2.95 101.00

1118.47 7 ´-
+ -1.03 101.37

1118.47 11 ´-
+ -5.91 101.00

1118.47 9

As II ´-
+ -1.15 101.00

1118.47 4 ´-
+ -4.03 101.37

1118.47 9 ´-
+ -2.30 101.00

1118.47 6

34 Se I ´-
+ -1.01 101.00

1118.47 5 ´-
+ -3.53 101.37

1118.47 10 ´-
+ -2.02 101.00

1118.47 7

Se II ´-
+ -1.07 100.98

18627.73 2 ´-
+ -3.76 101.36

18627.73 7 ´-
+ -2.15 100.98

18627.73 4

35 Br I ´-
+ -2.14 100.98

18627.73 4 ´-
+ -7.48 101.36

18627.73 9 ´-
+ -4.28 100.98

18627.73 6

Br II ´-
+ -1.04 100.98

18627.73 3 ´-
+ -3.64 101.36

18627.73 8 ´-
+ -2.08 100.98

18627.73 5

36 Kr I ´-
+ -4.06 100.99

5859.54 2 ´-
+ -1.42 101.37

5859.54 6 ´-
+ -8.12 100.99

5859.54 4

Kr II ´-
+ -9.31 100.99

5859.54 4 ´-
+ -3.26 101.37

5859.54 8 ´-
+ -1.86 100.99

5859.54 5

37 Rb II ´-
+ -2.53 100.99

5859.54 2 ´-
+ -8.84 101.37

5859.54 7 ´-
+ -5.05 100.99

5859.54 4

38 Sr II ´-
+ -1 35 10. 1.00

920.70 3 ´-
+ -4 72 10. 1.37

920.70 8 ´-
+ -2 70 10. 1.00

920.70 5

Sr III ´-
+ -2.65 101.00

920.70 2 ´-
+ -9.29 101.37

920.70 7 ´-
+ -5.31 101.00

920.70 4

39 Y II ´-
+ -3 55 10. 1.00

920.70 3 ´-
+ -1 24 10. 1.37

920.70 7 ´-
+ -7 10 10. 1.00

920.70 5

Y III ´-
+ -2.68 101.00

298.76 3 ´-
+ -9.37 101.37

298.76 8 ´-
+ -5.35 101.00

298.76 5

40 Zr I ´-
+ -1.23 101.00

298.76 9 ´-
+ -4.31 101.37

298.76 14 ´-
+ -2.46 101.00

298.76 11

Zr II ´-
+ -3 50 10. 1.00

298.76 2 ´-
+ -1 23 10. 1.37

298.76 6 ´-
+ -7 01 10. 1.00

298.76 4

Zr III ´-
+ -1.24 101.00

318.33 3 ´-
+ -4.33 101.37

318.34 8 ´-
+ -2.48 101.00

318.33 5

41 Nb II ´-
+ -7.49 101.00

318.33 5 ´-
+ -2.62 101.37

318.34 9 ´-
+ -1.50 101.00

318.33 6

Nb III ´-
+ -5.13 101.00

318.33 8 ´-
+ -1.80 101.37

318.34 12 ´-
+ -1.03 101.00

318.33 9

42 Mo II ´-
+ -4.40 101.00

456.69 3 ´-
+ -1.54 101.37

456.69 7 ´-
+ -8.80 101.00

456.69 5

Mo III ´-
+ -5.93 101.00

456.69 9 ´-
+ -2.08 101.37

456.69 13 ´-
+ -1.19 101.00

456.69 10

43 Tc II ´-
+ -2.18 101.00

456.69 4 ´-
+ -7.64 101.37

456.69 9 ´-
+ -4.37 101.00

456.69 6

Tc III ´-
+ -2.50 101.00

203.20 8 ´-
+ -8.74 101.37

203.20 13 ´-
+ -4.99 101.00

203.20 10

44 Ru I ´-
+ -5.54 101.00

203.20 9 ´-
+ -1.94 101.37

203.20 13 ´-
+ -1.11 101.00

203.20 10

Ru II ´-
+ -7.20 101.00

203.20 3 ´-
+ -2.52 101.37

203.20 7 ´-
+ -1.44 101.00

203.20 4

Ru III ´-
+ -5.07 101.00

179.83 9 ´-
+ -1.77 101.37

179.83 13 ´-
+ -1.01 101.00

179.83 10

45 Rh II ´-
+ -5.23 101.00

179.83 4 ´-
+ -1.83 101.37

179.83 8 ´-
+ -1.05 101.00

179.83 5

46 Pd I ´-
+ -2.55 101.00

115.22 9 ´-
+ -8.91 101.37

115.23 14 ´-
+ -5.09 101.00

115.22 11

Pd II ´-
+ -1.10 101.00

115.22 3 ´-
+ -3.84 101.37

115.23 8 ´-
+ -2.19 101.00

115.22 5

47 Ag II ´-
+ -2.55 101.00

115.22 4 ´-
+ -8.94 101.37

115.23 9 ´-
+ -5.11 101.00

115.22 6

48 Cd I ´-
+ -6.49 101.00

94.70 9 ´-
+ -2.27 101.37

94.71 13 ´-
+ -1.30 101.00

94.70 10

Cd II ´-
+ -2.27 101.00

94.70 4 ´-
+ -7.95 101.37

94.71 9 ´-
+ -4.54 101.00

94.70 6

49 In II ´-
+ -6.99 101.00

208.53 6 ´-
+ -2.45 101.37

208.54 10 ´-
+ -1.40 101.00

208.53 7

50 Sn II ´-
+ -6.25 101.00

208.53 5 ´-
+ -2.19 101.37

208.54 9 ´-
+ -1.25 101.00

208.53 6

Sn III ´-
+ -1.91 101.00

208.53 8 ´-
+ -6.70 101.37

208.54 13 ´-
+ -3.83 101.00

208.53 10

51 Sb II ´-
+ -9.76 101.00

38.01 6 ´-
+ -3.42 101.37

38.03 10 ´-
+ -1.95 101.00

38.01 7

52 Te II ´-
+ -7.71 101.00

38.01 6 ´-
+ -2.70 101.37

38.03 10 ´-
+ -1.54 101.00

38.01 7

53 I I ´-
+ -1.07 101.00

38.01 8 ´-
+ -3.74 101.37

38.03 13 ´-
+ -2.14 101.00

38.01 10

I II ´-
+ -3.03 101.00

9.27 6 ´-
+ -1.06 101.37

9.35 10 ´-
+ -6.05 101.00

9.27 8

54 Xe I ´-
+ -1.27 101.00

9.27 9 ´-
+ -4.43 101.37

9.35 14 ´-
+ -2.53 101.00

9.27 11

Xe II ´-
+ -7.68 101.00

24.70 9 ´-
+ -2.69 101.37

24.73 13 ´-
+ -1.54 101.00

24.70 10

Note. Columns include the atomic number Z, the name of the ion, the mass fraction Xi of the ion, and the mass of the ion in our simulation, using our inferred lower
bound on the ejecta mass > ´-

+ -
M M3.5 10ej 3.3

4.2 5 . We also include the mass of the ion assuming some fiducial total ejecta mass of Mej = 0.02 Me and a uniform
composition above and below the photosphere. We highlight ions of interest: Sr II, Y II, and Zr II.
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Table 5
Same as Table 4, for the purple+warm Best-fitting model

Z Ion Mass Fraction Xi Lower Bound Mej,i (Me) Fiducial M0.02,i

1 H I ´-
+ -1.69 100.78

1.93 4 ´-
+ -6.74 101.07

2.06 9 ´-
+ -3.37 100.78

1.93 6

H II ´-
+ -8.27 100.78

1.93 7 ´-
+ -3.31 101.07

2.06 11 ´-
+ -1.65 100.78

1.93 8

2 He I ´-
+ -6.79 100.50

1.20 2 ´-
+ -2.72 100.88

1.40 6 ´-
+ -1.36 100.50

1.20 3

3 Li II ´-
+ -1.34 100.50

0.90 7 ´-
+ -5.34 100.88

1.16 12 ´-
+ -2.67 100.50

0.90 9

4 Be I ´-
+ -8.10 100.50

0.90 9 ´-
+ -3.24 100.88

1.16 13 ´-
+ -1.62 100.50

0.90 10

Be II ´-
+ -5.56 100.58

1.22 5 ´-
+ -2.23 100.93

1.42 9 ´-
+ -1.11 100.58

1.22 6

5 B II ´-
+ -5.45 100.58

1.22 8 ´-
+ -2.18 100.93

1.42 12 ´-
+ -1.09 100.58

1.22 9

6 C I ´-
+ -3.06 100.58

1.22 7 ´-
+ -1.22 100.93

1.42 11 ´-
+ -6.11 100.58

1.22 9

C II ´-
+ -2.12 100.66

1.39 6 ´-
+ -8.47 100.98

1.57 11 ´-
+ -4.23 100.66

1.39 8

7 N I ´-
+ -2.01 100.66

1.39 8 ´-
+ -8.02 100.98

1.57 13 ´-
+ -4.01 100.66

1.39 10

8 O I ´-
+ -1.11 100.74

4.42 6 ´-
+ -4.45 101.03

4.48 11 ´-
+ -2.23 100.74

4.42 8

O II ´-
+ -4.70 100.74

4.42 9 ´-
+ -1.88 101.03

4.48 13 ´-
+ -9.40 100.74

4.42 11

9 F I ´-
+ -1.20 100.89

18.89 8 ´-
+ -4.78 101.15

18.91 13 ´-
+ -2.39 100.89

18.89 10

20 Ca II ´-
+ -6.75 100.89

18.89 7 ´-
+ -2.70 101.15

18.91 11 ´-
+ -1.35 100.89

18.89 8

Ca III ´-
+ -5.41 100.81

6.35 7 ´-
+ -2.16 101.08

6.39 11 ´-
+ -1.08 100.81

6.35 8

21 Sc II ´-
+ -2.17 100.81

6.35 8 ´-
+ -8.70 101.08

6.39 13 ´-
+ -4.35 100.81

6.35 10

22 Ti II ´-
+ -1.05 100.88

17.53 5 ´-
+ -4.21 101.14

17.54 10 ´-
+ -2.11 100.88

17.53 7

Ti III ´-
+ -4.27 100.88

17.53 8 ´-
+ -1.71 101.14

17.54 12 ´-
+ -8.53 100.88

17.53 10

23 V II ´-
+ -1.28 100.92

2.72 4 ´-
+ -5.14 101.17

2.81 9 ´-
+ -2.57 100.92

2.72 6

V III ´-
+ -2.58 100.92

2.72 8 ´-
+ -1.03 101.17

2.81 12 ´-
+ -5.17 100.92

2.72 10

24 Cr I ´-
+ -4.43 100.92

2.72 8 ´-
+ -1.77 101.17

2.81 12 ´-
+ -8.85 100.92

2.72 10

Cr II ´-
+ -2.33 100.94

4.41 1 ´-
+ -9.31 101.19

4.47 6 ´-
+ -4.65 100.94

4.41 3

Cr III ´-
+ -1.43 100.94

4.41 6 ´-
+ -5.71 101.19

4.47 11 ´-
+ -2.85 100.94

4.41 8

25 Mn I ´-
+ -6.86 100.94

4.41 9 ´-
+ -2.75 101.19

4.47 13 ´-
+ -1.37 100.94

4.41 10

Mn II ´-
+ -7.89 100.99

62.39 3 ´-
+ -3.16 101.23

62.39 7 ´-
+ -1.58 100.99

62.39 4

Mn III ´-
+ -1.44 100.99

62.39 7 ´-
+ -5.76 101.23

62.39 12 ´-
+ -2.88 100.99

62.39 9

26 Fe I ´-
+ -2.45 100.99

62.39 7 ´-
+ -9.78 101.23

62.39 12 ´-
+ -4.89 100.99

62.39 9

Fe II ´-
+ -9.32 100.76

22.49 2 ´-
+ -3.73 101.05

22.51 6 ´-
+ -1.86 100.76

22.49 3

Fe III ´-
+ -2.17 100.76

22.49 7 ´-
+ -8.66 101.05

22.51 12 ´-
+ -4.33 100.76

22.49 9

27 Co I ´-
+ -1.12 100.76

22.49 9 ´-
+ -4.48 101.05

22.51 14 ´-
+ -2.24 100.76

22.49 11

Co II ´-
+ -1.77 100.56

0.60 4 ´-
+ -7.07 100.92

0.94 9 ´-
+ -3.54 100.56

0.60 6

28 Ni I ´-
+ -7.32 100.56

0.60 7 ´-
+ -2.93 100.92

0.94 11 ´-
+ -1.46 100.56

0.60 8

Ni II ´-
+ -1.24 100.56

0.60 1 ´-
+ -4.98 100.92

0.94 6 ´-
+ -2.49 100.56

0.60 3

Ni III ´-
+ -2.40 100.58

1.69 9 ´-
+ -9.59 100.93

1.84 14 ´-
+ -4.79 100.58

1.69 11

29 Cu I ´-
+ -8.23 100.58

1.69 8 ´-
+ -3.29 100.93

1.84 12 ´-
+ -1.65 100.58

1.69 9

Cu II ´-
+ -1.51 100.58

1.69 2 ´-
+ -6.03 100.93

1.84 7 ´-
+ -3.02 100.58

1.69 4

30 Zn I ´-
+ -7.30 100.60

0.53 6 ´-
+ -2.92 100.94

0.90 10 ´-
+ -1.46 100.60

0.53 7

Zn II ´-
+ -4.06 100.60

0.53 2 ´-
+ -1.62 100.94

0.90 6 ´-
+ -8.12 100.60

0.53 4

31 Ga I ´-
+ -1.16 100.60

0.53 9 ´-
+ -4.62 100.94

0.90 14 ´-
+ -2.31 100.60

0.53 11

Ga II ´-
+ -1.64 100.56

0.43 2 ´-
+ -6.58 100.92

0.84 7 ´-
+ -3.29 100.56

0.43 4

32 Ge I ´-
+ -2.66 100.56

0.43 7 ´-
+ -1.07 100.92

0.84 11 ´-
+ -5.33 100.56

0.43 9

Ge II ´-
+ -3.88 100.56

0.43 2 ´-
+ -1.55 100.92

0.84 6 ´-
+ -7.76 100.56

0.43 4

Ge III ´-
+ -8.71 100.63

0.67 8 ´-
+ -3.49 100.96

0.98 12 ´-
+ -1.74 100.63

0.67 9

33 As I ´-
+ -2.67 100.63

0.67 5 ´-
+ -1.07 100.96

0.98 9 ´-
+ -5.33 100.63

0.67 7

As II ´-
+ -5.45 100.63

0.67 3 ´-
+ -2.18 100.96

0.98 7 ´-
+ -1.09 100.63

0.67 4
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Table 5
(Continued)

Z Ion Mass Fraction Xi Lower Bound Mej,i (Me) Fiducial M0.02,i

34 Se I ´-
+ -1.00 100.59

0.80 4 ´-
+ -4.01 100.93

1.08 9 ´-
+ -2.01 100.59

0.80 6

Se II ´-
+ -5.61 100.59

0.80 2 ´-
+ -2.24 100.93

1.08 6 ´-
+ -1.12 100.59

0.80 3

35 Br I ´-
+ -1.14 100.65

0.82 3 ´-
+ -4.57 100.97

1.09 8 ´-
+ -2.28 100.65

0.82 5

Br II ´-
+ -2.89 100.65

0.82 3 ´-
+ -1.16 100.97

1.09 7 ´-
+ -5.78 100.65

0.82 5

36 Kr I ´-
+ -6.12 100.65

0.82 2 ´-
+ -2.45 100.97

1.09 6 ´-
+ -1.22 100.65

0.82 3

Kr II ´-
+ -7.25 100.65

0.84 4 ´-
+ -2.90 100.98

1.11 8 ´-
+ -1.45 100.65

0.84 5

37 Rb II ´-
+ -2.07 100.65

0.84 2 ´-
+ -8.29 100.98

1.11 7 ´-
+ -4.14 100.65

0.84 4

38 Sr II ´-
+ -4 62 10. 0.66

0.88 3 ´-
+ -1 85 10. 0.98

1.14 7 ´-
+ -9 25 10. 0.66

0.88 5

Sr III ´-
+ -4.75 100.66

0.88 2 ´-
+ -1.90 100.98

1.14 6 ´-
+ -9.51 100.66

0.88 4

39 Y II ´-
+ -5 88 10. 0.66

0.88 3 ´-
+ -2 35 10. 0.98

1.14 7 ´-
+ -1 18 10. 0.66

0.88 4

Y III ´-
+ -2.31 100.66

0.89 3 ´-
+ -9.23 100.98

1.15 8 ´-
+ -4.62 100.66

0.89 5

40 Zr I ´-
+ -4.06 100.66

0.89 9 ´-
+ -1.63 100.98

1.15 13 ´-
+ -8.13 100.66

0.89 11

Zr II ´-
+ -6 13 10. 0.66

0.89 2 ´-
+ -2 45 10. 0.98

1.15 6 ´-
+ -1 23 10. 0.66

0.89 3

Zr III ´-
+ -1.12 100.30

0.41 3 ´-
+ -4.49 100.79

0.83 8 ´-
+ -2.25 100.30

0.41 5

41 Nb II ´-
+ -2.15 100.30

0.41 4 ´-
+ -8.61 100.79

0.83 9 ´-
+ -4.30 100.30

0.41 6

Nb III ´-
+ -7.62 100.15

1.01 8 ´-
+ -3.05 100.74

1.24 12 ´-
+ -1.52 100.15

1.01 9

42 Mo I ´-
+ -7.13 100.15

1.01 9 ´-
+ -2.85 100.74

1.24 13 ´-
+ -1.43 100.15

1.01 10

Mo II ´-
+ -1.71 100.35

0.59 2 ´-
+ -6.84 100.80

0.93 7 ´-
+ -3.42 100.35

0.59 4

Mo III ´-
+ -1.18 100.35

0.59 8 ´-
+ -4.73 100.80

0.93 13 ´-
+ -2.37 100.35

0.59 10

43 Tc II ´-
+ -8.75 100.38

0.87 4 ´-
+ -3.50 100.82

1.14 8 ´-
+ -1.75 100.38

0.87 5

Tc III ´-
+ -5.15 100.41

0.96 8 ´-
+ -2.06 100.84

1.20 12 ´-
+ -1.03 100.41

0.96 9

44 Ru I ´-
+ -6.01 100.41

0.96 8 ´-
+ -2.40 100.84

1.20 12 ´-
+ -1.20 100.41

0.96 9

Ru II ´-
+ -4.13 100.37

1.20 2 ´-
+ -1.65 100.82

1.41 6 ´-
+ -8.26 100.37

1.20 4

Ru III ´-
+ -1.49 100.37

1.20 8 ´-
+ -5.95 100.82

1.41 13 ´-
+ -2.98 100.37

1.20 10

45 Rh I ´-
+ -8.74 100.37

1.20 9 ´-
+ -3.50 100.82

1.41 13 ´-
+ -1.75 100.37

1.20 10

Rh II ´-
+ -4.86 100.37

0.79 3 ´-
+ -1.95 100.82

1.07 7 ´-
+ -9.73 100.37

0.79 5

46 Pd I ´-
+ -5.19 100.37

0.79 8 ´-
+ -2.08 100.82

1.07 12 ´-
+ -1.04 100.37

0.79 9

Pd II ´-
+ -1.18 100.37

0.79 2 ´-
+ -4.72 100.82

1.07 7 ´-
+ -2.36 100.37

0.79 4

47 Ag I ´-
+ -9.45 100.46

0.96 9 ´-
+ -3.78 100.86

1.21 13 ´-
+ -1.89 100.46

0.96 10

Ag II ´-
+ -3.00 100.46

0.96 3 ´-
+ -1.20 100.86

1.21 7 ´-
+ -6.00 100.46

0.96 5

48 Cd I ´-
+ -2.43 100.46

0.96 7 ´-
+ -9.72 100.86

1.21 12 ´-
+ -4.86 100.46

0.96 9

Cd II ´-
+ -4.47 100.55

1.07 3 ´-
+ -1.79 100.91

1.29 7 ´-
+ -8.94 100.55

1.07 5

Cd III ´-
+ -1.12 100.55

1.07 9 ´-
+ -4.47 100.91

1.29 14 ´-
+ -2.24 100.55

1.07 11

49 In II ´-
+ -2.22 100.55

1.07 4 ´-
+ -8.87 100.91

1.29 9 ´-
+ -4.43 100.55

1.07 6

50 Sn I ´-
+ -6.40 100.58

1.26 9 ´-
+ -2.56 100.93

1.46 13 ´-
+ -1.28 100.58

1.26 10

Sn II ´-
+ -5.45 100.58

1.26 3 ´-
+ -2.18 100.93

1.46 7 ´-
+ -1.09 100.58

1.26 4

Sn III ´-
+ -8.61 100.58

1.26 7 ´-
+ -3.44 100.93

1.46 11 ´-
+ -1.72 100.58

1.26 8

51 Sb I ´-
+ -1.67 100.59

1.08 7 ´-
+ -6.66 100.94

1.30 12 ´-
+ -3.33 100.59

1.08 9

Sb II ´-
+ -1.08 100.59

1.08 3 ´-
+ -4.31 100.94

1.30 8 ´-
+ -2.16 100.59

1.08 5

Sb III ´-
+ -2.51 100.59

1.08 9 ´-
+ -1.00 100.94

1.30 13 ´-
+ -5.01 100.59

1.08 11

52 Te I ´-
+ -1.19 100.63

1.13 7 ´-
+ -4.77 100.96

1.34 12 ´-
+ -2.38 100.63

1.13 9

Te II ´-
+ -7.22 100.63

1.13 4 ´-
+ -2.89 100.96

1.34 8 ´-
+ -1.44 100.63

1.13 5

53 I I ´-
+ -1.88 100.63

1.13 6 ´-
+ -7.51 100.96

1.34 11 ´-
+ -3.76 100.63

1.13 8

I II ´-
+ -2.78 100.69

1.62 4 ´-
+ -1.11 101.00

1.77 8 ´-
+ -5.56 100.69

1.62 6

54 Xe I ´-
+ -6.01 100.69

1.62 7 ´-
+ -2.40 101.00

1.77 11 ´-
+ -1.20 100.69

1.62 8

Xe II ´-
+ -1.89 100.68

1.65 6 ´-
+ -7.57 100.99

1.80 11 ´-
+ -3.79 100.68

1.65 8
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Table 5
(Continued)

Z Ion Mass Fraction Xi Lower Bound Mej,i (Me) Fiducial M0.02,i

55 Cs II ´-
+ -2.87 100.68

1.65 7 ´-
+ -1.15 100.99

1.80 11 ´-
+ -5.74 100.68

1.65 9

56 Ba III ´-
+ -4.16 100.78

1.97 8 ´-
+ -1.66 101.06

2.10 12 ´-
+ -8.32 100.78

1.97 10

57 La II ´-
+ -6.19 100.78

1.97 9 ´-
+ -2.47 101.06

2.10 13 ´-
+ -1.24 100.78

1.97 10

La III ´-
+ -2.43 100.78

1.97 8 ´-
+ -9.74 101.06

2.10 13 ´-
+ -4.87 100.78

1.97 10

58 Ce III ´-
+ -3.24 100.80

2.36 9 ´-
+ -1.30 101.08

2.47 13 ´-
+ -6.48 100.80

2.36 11

60 Nd III ´-
+ -5.09 100.80

2.36 9 ´-
+ -2.04 101.08

2.47 13 ´-
+ -1.02 100.80

2.36 10

62 Sm III ´-
+ -1.37 100.80

2.36 9 ´-
+ -5.46 101.08

2.47 14 ´-
+ -2.73 100.80

2.36 11

Note. The lower bound on the total ejecta mass, which is used to compute the mass of each ion in the simulation, is > ´-
+ -

M M4.0 10ej 2.9
2.9 5 for this model. We

highlight ions of interest: Sr II, Y II, and Zr II.
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